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Abstract
In many epidemiologic models, a disease is assumed to spread along a contact network. We aim to infer this network, in
addition to the epidemiologic model parameters, from the binary status of individuals observed throughout time. We perform
an exact evaluation of the probability for each edge to be part of the network by using the matrix-tree theorem on the set of
vertices made of the individual status at all times. This leads to a computational complexity of order O(mn2), where n is
the number of individuals and m the length of the time series. Simulations are provided to demonstrate the efficiency of the
proposed method, and it is applied on data concerning seed choices by farmers in India and on data on a measles outbreak.

Keywords Contact network · Matrix-tree theorem · Propagation path · SIS Model

1 Introduction

The spread of epidemics within a given population has been
extensively studied for many years in the pursuit of a bet-
ter understanding of their dynamics and mechanisms. The
spread is known to depend on numerous parameters such
as contamination and extinction rates (Welch et al. 2011;
Brauer et al. 2012). From a statistical point of view, a sig-
nificant amount of work has been put into the estimation of
such parameters in a series of classical models (Neal and
Roberts 2004). Whenever the contacts between individuals
can be organized according to a network, the topology of this
network is also known to affect the dynamics of an epidemic
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In this paper, we are interested in both the estimation of
the parameters of the epidemic and the reconstruction of the
social network along the edges of which it spreads, with a
special emphasis on the latter. More specifically, we consider
the general framework of a susceptible–infected–susceptible
(SIS)modelwhere the status (sick or healthy) of each individ-
ual from a given population is observed at a series of discrete
times.We aim to reconstruct the path of the spread or, at least,
the contact network that actually structures the diffusion of
the epidemic. Put in the framework ofWelch et al. (2011), the
disease data that we rely on are quite poor as we only observe
the binary status of each individual throughout time, without
any additional information about the pathogen or contacts.
This framework can also apply to the propagation of goods
or information.

The reconstruction of a contact network based on epi-
demic data has been previously considered in several pieces
of work (see, e.g., Welch et al. 2011, for a review). Brit-
ton and O’Neill (2002) or Ray and Marzouk (2008) do not
directly infer the network itself but assume it follows a ran-
dom graph model and infer the parameters of this model,
which encodes the global topological properties of the net-
work. In both Groendyke et al. (2011) and Groendyke et al.
(2012), a susceptible–exposed–infectious–removed (SEIR)
model is assumed for the epidemic and combined with a
random graph model for the contact network (Erdős–Rényi
model in the former and Exponential Random Graph Model
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in the latter). By posterior sampling, they can recover pos-
terior probabilities on the possible sources of infection for
individuals.
We consider the case where cascades of propagation events
are observed and where the goal is to estimate the contact
network over which the cascades can propagate. In the set-
ting where node status are observed at continuous times,
Myers and Leskovec (2010) propose a penalized likelihood
approach, where the �1 penalization encourages the sparsity
of the inferred network. The inference algorithm takes advan-
tage of the convexity of the penalized likelihood to estimate
the parameters of the epidemic model and the edge probabil-
ities.
In the context of a susceptible–infected (SI) model, all the
information can be encoded in the times at which nodes get
infected. This encoding imposes some constraints on the net-
work to be inferred. Although the data are time stamped,
the network reconstruction problem actually becomes static.
In this framework, Gomez-Rodriguez et al. (2012) propose
an efficient algorithm to search for the most likely network,
faster than the ones developed inMyers and Leskovec (2010)
and Gomez-Rodriguez et al. (2011) at the cost of a simpler
context.

From a statistical point of view, the inference of a contact
network can be seen as a special instance of a more general
problem of network or structure inference. This problem can
be stated as follows: based on observations collected on a
set of nodes, one would like to infer the network encoding
the interactions between these nodes. All network inference
methods have to deal with a huge number of possible net-
works, that is 2n(n−1)/2 undirected structures on n nodes.
Chow and Liu (1968) proposed to circumvent the impossi-
bility of an exhaustive exploration of this set by reducing
the search space to the set of acyclic undirected connected
graphs, also known as spanning trees, whose cardinality is
only nn−2. As the interaction network is unlikely to follow a
single spanning tree, Meilă and Jaakkola (2006) and Kir-
shner (2007) suggested to consider an averaging over all
possible spanning trees. Averaging over this set is feasible
with a reasonable computational burden through closed-form
expressions based on the matrix-tree theorem, which we
recall in Sect. 3.1 as it constitutes the cornerstone of our
approach. This theorem was previously used for contact net-
work reconstruction in the essentially static context of SI
models by Gomez-Rodriguez et al. (2012). The authors of
this article were interested in retrieving the most likely con-
tact network. We propose a different usage of the matrix-tree
theorem to average over possible spanning trees, in order to
estimate the probability for each possible edge to be part of
the contact network. To our knowledge, this tool has not yet
been used this way or in the context of a dynamic model,
when data are collected on nodes throughout time.

In an SIS model, nodes can recover from an infection and
then get infected several times. A propagation must therefore
be expressed as a directed acyclic graph (DAG) on n×m ver-
tices corresponding to n nodes observed at times {1, . . . ,m}.
This differs from the Independent Cascade Model and its
derivatives, where nodes can only get infected once (since
the propagation follows an SI model) and where a cascade
can be seen as a DAG on the nodes themselves.
Our main contribution is to leverage the Markovian structure
of ourmodelwith respect to time, therebymaking an efficient
use of the matrix-tree theorem. As the states of nodes at time
t can only be influenced by their states at time t − 1, the
Laplacianmatrix used to sumupover all possible propagation
paths (or trees) has a block upper triangular form and its
determinant can be computed efficiently.

The main novelties of this contribution are (i) the infer-
ence of the contact network under an SIS model in discrete
time, which allows for re-infection and (ii) the use of the
matrix-tree theorem in a temporal setting which, to the best
of our knowledge, is completely new and turns out to be very
efficient. The inference of the contact network is model-free
in the sense that we do not posit any random graph model
upon the network underpinning the epidemic. We also show
how the inference procedure we propose can be extended to
learn prior weights on the edges of the contact network.

The paper is organized as follows. In Sect. 2, the mod-
els for the structure of the network and the diffusion are
presented. The inference of the model parameters and the
network are detailed in Sect. 3. Section 4 demonstrates the
efficiency of the proposed method in contrasting situations.
In Sect. 5, we apply the proposed methodology to data on
annual seed choices collected from Telangana farmers in
India to infer the network of influences between farmers,
which might drive their collective seed choices. We also deal
with a dataset on a measles outbreak. Some possible exten-
sions are discussed in the concluding section.

2 Model

We consider the observation over time of n nodes. At any
given time, each of these nodes can be in one of two states:
‘infected’ or ‘susceptible’. We assume that infection events
propagate along the edges of an unobserved contact network
interconnecting the nodes. We consider the following SIS
(susceptible–infected–susceptible) model. At each time step,
an infected node can get cured with probability e or stay
infected with probability 1− e, while a susceptible node can
be infected by one of its neighbors with probability c. The
infection process is made explicit in the next paragraph. Our
main goal is to infer the topology of the contact network,
along the edges of which the infection events can occur.
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Fig. 1 Graphical model associated with an example of tree T =
(T 1, T 2, . . . )

2.1 Networkmodel

We consider n nodes {1, . . . , n} observed at times {1, . . . ,m}
and we let V := {(i, t) : 1 ≤ i ≤ n, 1 ≤ t ≤ m} be the
product set of the set of nodes with time. Our modeling of
an epidemic is based on the assumptions that, (i) at each
time step, each node can only be infected by one other node,
which we call its parent, and taken among its neighbors in
the contact network and that (i i) the parent of a node can
change from one step to another. If node i is the parent of
node j at time t + 1, we put a directed edge from (i, t) to
( j, t+1). The infection path is the directed graph on the set of
vertices V made of all these parent–child edges. An example
of infection path is given in Fig. 1. This path is distinct from
the contact network that we are trying to infer, the latter being
defined on {1, . . . , n} and not on V , but they are related as
the contact network determines the set of possible parents for
each node in the infection path.

Assumption (i) can seem quite strong, but it is consis-
tent with the fact that in most epidemiological models, an
individual is actually infected by only one individual among
many possible candidates. This latter point is accounted for
through assumption (i i), which allows the infectious contact
to vary from one time to another.

We would like to emphasize that the infection path actu-
ally describes the way potential infection events could occur,
as the transitionmodel described in Sect. 2.2 allows for infec-
tions to miss with a given probability.

Because of assumption (i), the infection path is actually
a tree, once a root vertex Δ and edges from Δ to vertices
(i, 1), 1 � i � n, have been added (cf. Figure 1 for an illus-
tration). Formally, we let V ∗ := {Δ} ∪ V be the augmented
set with nm + 1 elements and we let T denote the tree on V ∗
resulting from the completion of the infection path with the
root Δ.

Because its edges only link vertices at time t to vertices
at time t + 1, T can be sliced into m − 1 oriented bipartite
graphs T t (1 ≤ t ≤ m − 1), that each define the parents of
nodes at time t . More specifically, we denote by {[i j] ∈ T t }

the event that makes i the parent of j during the transition
from time t to time t + 1.

In the proposed modeling, the tree T is random and its
distribution is defined as follows.We associate a prior weight
βi j with each oriented edge [i j] and assume that, at each
time t , each node j samples its parent i with probability
proportional to βi j . As a consequence, the probability of a
tree T is

P(T ) = B−1
m−1∏

t=1

∏

[i j]∈T t

βi j (1)

where B := ∑
T

∏m−1
t=1

∏
[i j]∈T t βi j .

The weights βi j can be seen as a way to account for some
prior knowledge about the likelihood of each edge or as
parameters of the model that need to be inferred. Here we
will adopt the former point of view but our approach can
easily be extended to the latter as discussed in Sect. 3.5.

2.2 Transitionmodel

We now detail how each node may evolve conditionally on
the current state of the network. We denote by Y t

i the state (0
for susceptible and 1 for infected) of node i at time t . Thus
Y t = (Y t

i )i=1...n summarizes the state of the whole network
at time t and Y = (Y t )t=1...m constitutes the whole observed
dataset. We assume that the epidemiological process (Y t )t
is Markovian so its behavior is described by the transitions
from Y t to Y t+1. We further assume that, at each time, nodes
evolve independently from one another, conditionally on the
preceding state of the network. Hence, we have that

P(Y | T )

= P(Y 1)

m−1∏

t=1

P(Y t+1 | Y t , T t )

=
n∏

j=1

P(Y 1
j )

m−1∏

t=1

∏

i, j :[i j]∈T t

P(Y t+1
j | Y t

j ,Y
t
i ). (2)

The transitionprobabilities are givenby the terms P(Y t+1
j |

Y t , T t ) in (2). First, when infected, a node may stay infected
(with probability 1 − e) or become susceptible (with prob-
ability e) independently from the other nodes. Second, a
susceptible node can only be infected at time t if its par-
ent in T t is infected. If so, infection occurs with probability
c. All these conditional probabilities are summarized in (4).

In the proposed modeling the marginal probability for a
susceptible node to get infected depends on the fraction of
infected nodes in an implicitmanner, through the choice of its
parent (which may or may not be infected). A more explicit
dependence, such as P(Y t+1

j = 1 | Y t
j = 0) = 1 − q It (It
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being the number of infected nodes at time t) cannot be cast
in the tree-structured model we propose as it introduces a
dependence with respect to the whole population.

3 Inference

3.1 Graphical model

In Sect. 2.1, we saw how the addition of a root vertex Δ

turned the infection path into a spanning tree on the set of
vertices V ∗ = {Δ} ∪ {(i, t) : 1 ≤ i ≤ n, 1 ≤ t ≤ m}.
This property is the result of the Markovian structure of the
model with respect to time and of the assumptions made on
the infection model. This tree structure allows us to explore
the set of possible infection paths at a low computational cost
through an interesting algebraic result called the matrix-tree
theorem.

Matrix-tree theorem. LetW be a square matrix with entries
in R+ and whose rows and columns are indexed by a finite
setU . ThematrixW is taken so that, for all v ∈ U ,Wv,v = 0.
The general term of the Laplacian matrix Q associated with
W is given by

Qu,v :=
{−Wu,v if u �= v,∑

k∈V Wkv if u = v.

Theorem 1 (Directed matrix-tree theorem, Chaiken (1982))
Let C denote the cofactor matrix of Q and Tv , v ∈ V , denote
the set of directed trees on U rooted at vertex v. It holds that,
for any v ∈ U,

∑

T∈Tv

∏

(k,l)∈T
Wk,l = Cv,v.

The definition of the cofactor matrix is given at the begin-
ning of the Appendix. Theorem 1 can be used to sum over all
infection paths by taking U equal to V ∗ and considering the
trees rooted atΔ. TheMarkovian structure of the model with
respect to time can be encoded in W as described in Fig. 2,
whereWt contains the weights of all possible edges between
times t and t +1. The row vectorW 0 contains the weights of
all edges between the root Δ and each node at times t = 1,
and all its terms are usually taken equal to 1.

The following corollary will enable us to evaluate sums
over all possible spanning trees in an efficient manner when-
ever W has this particular structure.

Corollary 1 If W has the upper-diagonal block-structure
described in Fig. 2, then

Δ 1 . . . n

⎤ ⎥ ⎥ ⎦t = 1

1 . . . n

⎤ ⎥ ⎥ ⎦t = 2

1 . . . n

⎤ ⎥ ⎥ ⎦t = 3

Δ
1

..
.

n

⎡
⎢⎢⎣t=

1

1
..
.

n

⎡
⎢⎢⎣t=

2

1
..
.

n

⎡
⎢⎢⎣t=

3

0 0 0

0 0 0

0 0 0

0 0 0 0

W 0

W 1

W 2

Fig. 2 General structure of matrix W for summing over all directed
trees corresponding to the structures of our model

∑

T∈TΔ

∏

(k,l)∈T
Wk,l =

∏

j

W 0
Δ j

m−1∏

t=1

∏

j

W t
+ j

where W t
+ j = ∑

i :i �= j W
t
i j .

Proof This follows from Theorem 1 and from the definition
of theLaplacian ofW , which has the same structure asW plus
nonzero entries on the diagonal. As a consequence, theminor
CΔΔ is the determinant of the Laplacian ofW deprived of its
first row and column. The computation of this determinant
boils down to the product of all the diagonal terms of the
Laplacian matrix except the first one. ��

Complexity. The approach we propose takes advantage of
Corollary 1. Indeed, Theorem 1 requires that we compute
the determinant of the matrix W , which would result in a
computational complexity of order O(n3m3). Since W is
upper triangular, the complexity of the computation of the
Laplacianmatrix and the evaluation of its determinant reduce
to O(mn2).

3.2 Parameter inference

We consider here the weights βi j to be fixed. Indeed, these
weights can be used to introduce prior knowledge on the pos-
sibility for each edge to actually be part of the network. In
Sect. 3.3, we will show how to compute the probability that
an edge is part of the contact network, based on prior informa-
tion and conditionally on the data. But the βi j could also be
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considered as parameters to be inferred and Sect. 3.5 shows
that maximum likelihood estimates this can be obtained via
a regular EM algorithm.

Regarding the estimation of parameters r = (c, e), we
also adopt a maximum likelihood approach.

Note that as the distribution of the data at time 1 does not
bring any information about the transmission process we are
interested in, wewill work conditionally on Y 1, meaning that
P(Y ) actually stands for P(Y | Y 1).

Using Eqs. (1) and (2), we can write the likelihood of the
data as

P(Y ) =
∑

T∈T
P(Y | T )P(T )

=
∑

T∈T

m−1∏

t=1

∏

[i j]∈T t

βi jφ
t
i j/B, (3)

denoting

φt
i j := P(Y t+1

j | Y t
j ,Y

t
i , [i j] ∈ T t ).

When i is the parent of j in T t , the following table summa-
rizes all possible values for φt

i j :

φt
i j Y t+1

j = 1 Y t+1
j = 0

Y t
j = 1Y t

i = 1 1 − e e
Y t
j = 1Y t

i = 0 1 − e e
Y t
j = 0 Y t

i = 1 c 1 − c
Y t
j = 0 Y t

i = 0 0 1

(4)

An obvious consequence of these transition parameters is
that the time during which an infected node stays infected is
geometrically distributed.

If we further denote ψ t
i j = φt

i jβi j , the likelihood of the
observed data can be written as

P(Y ) = C/B (5)

where C := ∑
T∈T

∏
t
∏

[i j]∈T t ψ
t
i j . Both B and C can be

computed thanks to Corollary 1:

B =
m−1∏

t=1

∏

j

β+ j =
∏

j

(β+ j )
m−1,

C =
m−1∏

t=1

∏

j

ψ t+ j , (6)

where β+ j := ∑
i βi j and ψ t

+ j := ∑
i ψ

t
i j , that is

ψ t
+ j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − e)
∑

i βi j if ytj = 1, yt+1
j = 1,

e
∑

i βi j if ytj = 1, yt+1
j = 0,

c
∑

i βi j yti if ytj = 0, yt+1
j = 1,

−c
∑

i βi j yti + ∑
i βi j if ytj = 0, yt+1

j = 0.

We now consider the inference of parameters e and c.
According to Eq. (5), their maximum likelihood estimates
(MLEs) are obtained via the maximization of log P(Y ) =
logC − log B. These parameters are only involved in the
term logC , which can be split according to four subsets cor-
responding to the four possible configurations of (ytj , y

t+1
j ) ∈

{0, 1}2. For any (a, b) ∈ {0, 1}2, we defineMab := {( j, t) :
ytj = a, yt+1

j = b} and Mab := |Mab|. So we have

BP(Y ) =
∏

a,b

∏

( j,t)∈Mab

ψ t
+ j (r)

=
(
B10e

M10
) (

B11(1 − e)M11
) (

S01c
M01

)

×
⎛

⎝
∏

( j,t)∈M00

(β+ j − c stj )

⎞

⎠

where Bab := ∏
( j,t)∈Mab

β+ j , stj := ∑
i y

t
i βi j , and Sab :=∏

( j,t)∈Mab
stj . The log likelihood is then

log P(Y ) = M10 log e + M11 log(1 − e) + M01 log c

+
∑

( j,t)∈M00

log
(
β+ j − c stj

)
+ cst.

The MLE of e is straightforwardly ê = M10/(M10 + M11).
The MLE ĉ of c has no closed-form expression but satisfies

∑

( j,t)∈M00

ĉ stj

/ (
β+ j − ĉ stj

)
= M01 (7)

which has a unique solution as the left-hand-side term is
monotonically increasing in c and is zero for c = 0. The
MLE ĉ can therefore be easily obtained numerically.

3.3 Conditional edge probability

From a network point of view, we are interested in identify-
ing the edges that are most likely to be part of the contact
network. With this goal in mind, we define the two fol-
lowing complementary sets Ti j := {

T ∈ T : ∃t, [i j] ∈ T t
}

and T i j := {
T ∈ T : ∀t, [i j] /∈ T t

}
and the corresponding

events Ei j := {T ∈ Ti j } and E i j := {T ∈ T i j }, where
the latter states that [i j] never appears along the tree T . To
assess whether the edge [i j] is part of the network, we want
to compute the conditional probability
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P(Ei j | Y ) = 1 − P(E i j | Y ).

Now we have that

P(E i j | Y ) = P(E i j ,Y )/P(Y )

=
∑

T∈T i j

∏

t

∏

(k,l)∈T t

ψ t
k�

/ ∑

T∈T

∏

t

∏

(k,l)∈T t

ψ t
k�

=
∏

t

⎛

⎝
∏

k �= j

ψ t
+k

⎞

⎠ (ψ t
+ j − ψ t

i j )
/ ∏

t

∏

k

ψ t
+k

=
∏

t

(
1 − ψ t

i j

ψ t
+ j

)
.

3.4 Multiple independent waves

We now extend the inference to the case where several
independent spreads of the epidemic are observed. In the
following, we refer to each spread as a ‘wave’. Let us denote
by H the number of waves and by Y (1), . . . ,Y (H) the series
of observed infection waves, which are assumed to be i.i.d.
Therefore, the likelihood is simply

P
(
Y (1), . . . Y (H)

)
=

H∏

h=1

P
(
Y (h)

)
(8)

Each log likelihood log P
(
Y (h)

)
can be evaluated as descri-

bed in Sect. 3.2. To infer the parameters e and c jointly on
all waves, we denote by M (h)

ab the statistic Mab (defined in

Sect. 3.2) computed on wave Y (h) and by M(h)
ab the corre-

sponding set defined on the same wave. We further define
the cumulated statistic M (+)

ab = ∑H
h=1 M

(h)
ab .

Thus, the inference on parameters e and c can be con-
ducted by replacing each Mab with M (+)

ab in the previously
described procedure. The estimate of e becomes ê =
M (+)

10 /(M (+)
10 + M (+)

11 ) and, for the estimation of c, the esti-
mation Eq. (7) becomes

∑

h

∑

( j,t)∈M(h)
00

ĉ st,hj

/ (
β+ j − ĉ st,hj

)
= M (+)

01 . (9)

Similarly, to compute the conditional edge probabilities,
we define the general event E (+)

i j = {∃h, ∃t : [i j] ∈ T t(h)},
were T t(h) stands for t-th part of the tree T (h) along which
the wave Y (h) takes place. Similarly, we define the comple-

mentary event E (+)

i j = ∩hE
(h)

i j where E (h)

i j is the event E i j

(defined in Sect. 3.3) for wave h. Because the waves are

independent, so are the events E (h)

i j across waves. So we have

that P
(
E (+)

i j

)
= ∏

h P

(
E (h)

i j

)
= P

(
E i j

)H
,

P
(
Y (1) · · · Y (H) | E (+)

i j

)
=

∏

h

P
(
Y (h) | E (h)

i j

)

and

P

(
E (+)

i j | Y
)

=
P

(
E (+)

i j

)

P(Y )
P

(
Y (1) · · · Y (H) | E (+)

i j

)

and the conditional probability of an edge given the complete

set of waves is P
(
E (+)
i j

)
= 1 − P

(
E (+)

i j

)
.

Note that the waves can involve different set of nodes.
However, the power of the statistical inference will only be
improved for pairs of nodes which are present in several
waves.

3.5 Alternative estimation procedures

Other strategies for the inference of the proposed model can
be considered.

Bayesian inference. Parameters c and e can be inferred
with a Bayesian approach. When using conjugate priors, the
posterior distribution of both parameters can be established
easily (see Appendix A.1 The posterior distribution of other
quantities of interest, such as edge probabilities, can then be
obtained via Monte Carlo sampling from the posterior dis-
tribution of parameters.

EM algorithm The proposed model can be seen as a mix-
ture model with as many components as possible trees. In
this setting, the weights βi j act as the parameters ruling the
proportions of the mixture components and their maximum
likelihood estimates can be obtained via the EM algorithm
Dempster et al. (1977). The update formulas are given in
Appendix A.2. One interest of this approach is that it allows
the estimation the weights of the edges βi j , rather than keep-
ing them fixed at a prescribed value.

In practice, none of these alternatives turned out to signif-
icantly improve edge retrieval.

4 Simulation study

We designed a simulation study to illustrate the ability of
the proposed method to infer the edges of the contact net-
work. We wanted to compare the accuracy of the inference
under different network topologies, different settings for the
infection parameters, and under both a unique long wave and
several short waves.

Simulation settings Data were simulated according to
the proposed model. For each dataset, a contact network
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was drawn determining the edges that could be used in
the simulated infection path. To consider different network
topologies, we chose two random graphmodels and different
densities (the proportion of actual edges of a network over the
set of total possible edges). Networks were generated from
the Erdős–Rényi (ER) and preferential attachment (PA)mod-
els. In the ER model (Erdős and Rényi 1959), the status of
each edge in the network is drawn randomly and indepen-
dently, the probability of inclusion is equal to the desired
density. In the PA model (Barabási and Albert 1999), the
network is constructed sequentially. A new node is attached
to the previous network at a location randomly selected with
probabilities proportional the degrees of former nodes. We
chose these two generative models since they lead to con-
trasted structures. The ER model leads to networks well
balanced with homogeneous degrees while the PA model
leads to networks characterized by having few nodes with
high degrees (hubs). In the simulations, we only considered
undirected networks inwhich an edge between a pair of nodes
indifferently makes any of the nodes the parent and the other
the offspring. When performing the inference, we may or
may not enforce the symmetry of edge probabilities.

For each topology, the density of the network varies in
d ∈ {0.1, 0.2, 0.4}. Waves were initialized with a random
set of nodes in state 1 and all the others set to 0. We com-
pared the results obtained from one long wave of m = 200
time steps with the ones resulting from the observation
of H = 10 waves of 20 time steps. We only considered
simulations where the epidemic was active throughout the
considered time period. Whenever the epidemic died out,
we re-simulated the wave. We set the extinction probabil-
ity to e = 0.05 and the infection probability varies in
c ∈ {0.1, 0.2, 0.4}. We chose the parameter ranges so that
the total extinction of the epidemic was rather unlikely. For
the inference, all the weights βi j were set to 1.

Results The conditional edge probabilities were computed
as in Sect. 3.3 for uniwave simulations and as in Sect. 3.4
for multiwave simulations. The AUC were then computed
by comparing the conditional edge probabilities to the actual
edges of the simulated contact network. Figure 3 displays the
boxplots of the AUC obtained over 100 simulations under
each of the different settings.

A general remark that can be made is that all AUC are
greater that .5, meaning that it is possible to recover the
edges based only on the observation of nodes status along
time.

Enforcing the symmetry improved the results, especially
for large values of c. In all the settings, the multiwave simu-
lations lead to a more accurate inference. This is also more
contrasted when c is larger. This can be explained by the
fact that the first time steps after the introduction of the “epi-

demic” (a node with state 1) are the more informative ones.
Indeed, the possible edges used to propagate the epidemic
are restricted to those which link the few already infected
nodes with the new infected ones. We can also notice that
the inference is easier in the case where the network is sim-
ulated from an ER model and when it is not too dense. The
results on the inference of parameters e and c are provided
in Appendix 1.

5 Illustration

5.1 Seed influence in Telangana region

Context Telangana is a region known for agrarian crisis in
the form of pesticide overuse, seed uncertainty, and farmer
suicide (Galab et al. 2009; Gutierrez et al. 2015; Stone 2007).
Since 2002, more than 1,200 new genetically modified (GM)
cotton seed brands have been released in India, with some
achieving a robust but fleeting popularity (Stone et al. 2014).
The causes driving these rises and falls in farmer seed cer-
tainty are not clear, but the ecological and socioeconomic
stakes are high. Seed choices are a path-dependent decision
(David 2007) in agriculture because a seed choice cannot
be modified or re-selected once it has been sown. Scholar-
ship in the spread of agricultural technologies emphasizes
environmental learning, in which individuals try technolo-
gies and learn from the results (Griliches 1980; Herring and
Rao 2012), social learning, in which individuals emulate oth-
ers (Boyd et al. 2011;Henrich 2001), and didactic learning, in
which individuals are influenced by larger institutions (Stone
2016). To understand how information flows across a com-
munity such as farmers learning which seeds to plant, it is
first necessary to describe and model this community.

Data The data used for this dynamic model were collected
by Andrew Flachs during a study of farmer decision-making
in Telangana, India (Flachs et al. 2017). The data were drawn
from annual surveys of seed choice in two Telangana vil-
lages where farmers grow commercial varieties of rice and
hybrid genetically modified cotton. Farmers were asked to
report on seeds sown in their fields, and Flachs collected
other demographic and agricultural information pertaining
to decision-making, including crop yields, spatial relation-
ships of farmers, age, caste, and education. Because each
of these socioeconomic and agronomic factors may influ-
ence how farmers choose seeds and the larger impact of GM
crops in the developing world, it is important to model how
influence travels across this network of farmers.

In order to have dense enough data,we focused on them =
3 last years (2012 to 2014) where more data on seed choices
were collected, on seeds grown at least 10 times over the three
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Fig. 3 Boxplots of areas under
curve (AUC) computed for the
conditional edge probabilities.
Each boxplot is obtained from
100 simulations. In the
simulations, the extinction and
infection probabilities were set
to e = 0.05 and
c ∈ {0.1, 0.2, 0.4}. The number
of nodes in the network was 20,
networks were simulated with
Erdős–Rényi (ER) and
preferential attachment (PA)
topologies, and the density of
the network was set to
d ∈ {0.1, 0.2, 0.4}. A simulation
was always initialized with a
unique node in state 1. A
uniwave simulation (uW)
consists of a wave of m = 200
time steps. A multiwave
simulation (mW) consists of
H = 10 waves of m = 20 time
steps. Edge probabilities were
inferred by enforcing or not
enforcing the symmetry of the
network (s on the x-axis means
inference with symmetry
enforced). For example,
PA_uWs corresponds to a
uniwave simulation over a
preferential attachment network
with symmetric edge inference
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years by all the farmers and on seedswhich are at least present
two consecutive years. It resulted in data concerning n = 127
farmers growing H = 14 different seeds. The farmers were
considered as nodes of an unknown network that we tried to
infer from their seed choices. For each seed, we created a
n ×m matrix with 0− 1 entries, a 1 entry indicating that the
corresponding farmer grows the seed the corresponding year,
a 0 entry indicating that he/she does not. The discrete time
model is well suited to these data since the seed choices are
made for a whole season and new choices will only happen
the following year. We considered the H seed diffusions as
independent waves which is a strong assumption. However,
since the farmers can grow more that one seed per year, it
is not unrealistic to consider that between two years they
may be influenced by several farmers concerning different
seeds. Moreover, the waves were still related in the sense

they share the same underlying network. We also chose to
consider the parameters e and c as constant since the number
of observations was limited. They can be seen as accounting
for general trends in the farmer community regarding their
willingness to try new seeds and to be influenced by others
rather than by a seed’s specific attribute. We computed the
conditional probabilities for oriented edges as influence is an
asymmetric phenomenon. Besides the seed data, the caste,
village, acreage (agricultural exploited surface) and age of
the farmers were available.

Results Transition parameters were estimated to e = 0.69
and c = 0.88. The high value for e shows that farmers are
prone to change the seeds they grow often while the high
value for c shows a rapid diffusion of seed choices. We chose
to represent the results about the contact network by select-
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ing the most probable edge for each farmer. The resulting
network is displayed in Fig. 4. We favored this represen-
tation over a network obtained by thresholding the values
of the computed conditional edge probabilities because the
latter would have been hardly readable. We mainly noticed
that some nodes seem to have a great influence, while some
others are organized in small groups. We studied the links
between the inferredprobabilities of edges and the covariates.
We compared the computed conditional edge probabilities
between pairs of nodes within the same caste or village and
between pairs of nodes from two different castes or villages
by t tests for mean comparison. We found that edges within
the same caste and the same village weremore likely to occur
(P values, respectively, 2.4 × 10−13 and 2.5 × 10−8). This
shows that farmers from the same castes and villages are
more likely to influence one another than farmers that are
not. Agricultural learning is often a highly localized pro-
cess, where results from one area may not easily translate
to results in another. Fields may differ by fertility, access to
water, pest susceptibility, and a number of other factors. Fur-
thermore, studies of social learning show that important and
useful information may not cross key social dividing lines
(Henrich 2001), such as caste, when members of a network
must learn from others in different levels of a social hier-
archy. Thus it is not surprising that farmers near in space
and social status are likely to influence one another more
than farmers of different castes and in different villages. The
correlation between the differences of age (age of influencer
minus age of influenced farmer) and the computed condi-
tional edge probabilities was found significantly negative (P
value 2.5 × 10−3) which indicates that farmers tend to be
influenced by farmers younger than they are. No signifi-
cant correlation was found between the difference of total
acreages exploited by the farmers (acreage of influencer
minus acreage of influenced farmer) and the conditional edge
probabilities.

5.2 Measles epidemic data

Dataset The Hagelloch dataset collected by Pfeilsticker
(1863) and augmented by Oesterle (1993) is a detailed
dataset on the 1861 measles outbreak in Hagelloch, Ger-
many. Because of its completeness, it has been analyzed in
several papers dealing with the inference of epidemic mod-
els (to cite but a few Neal and Roberts 2004; Groendyke
et al. 2011, 2012). This dataset includes the dates of the pro-
dromes, rash eruption and death (whenever it occurred) for
each of the 188 children infected by the measles. In addition
to these data on the epidemic, other information concern-
ing the children such as their household with space location,
school class, family, age, and gender are available. In order
to fit our model, we transformed the data into a 46 × 187

Fig. 4 Network of seed choice influences between farmers. This net-
workwas obtained by taking themost probable neighbor for each farmer
from the inferred edge probabilities

matrix. One child was removed since he/she was infected
long after the others (40 days after the last one infected). We
considered an infectious period starting one day before the
prodromes and ending 3 days after the rash or at the date
of death whenever it occurred. These choices were guided
by Neal and Roberts (2004). Since our model is SIS, at the
end of the infectious period the children were set back to a
susceptible state although a removed state would have been
more relevant. We enforced symmetry for the computation
of conditional edge probabilities since the contact network
accounted for the interactions between children.

Results The transition parameters were estimated to e =
0.11 and c = 0.18. However, these estimates do not con-
vey much information since we know that the SIS model is
not totally suitable for these data. Nevertheless, we could
still obtain the conditional edge probabilities which were our
main interest. Figure 5 displays the quantiles of the com-
puted conditional edge probabilities with respect to the delay
between the starting dates of the infectious periods. For pairs
of nodes with a delay of 1 to 9 days, the computed probabil-
ities were among the highest. The edges between these pairs
of nodes may then correspond to the edges of the contact
network which are likely to have been part of the propaga-
tion path of the epidemic. To relate the conditional edges
probabilities to the other data available on the children we
used standard statistical tests: t tests for mean comparison to
test whether the means of the computed edge probabilities
were significantly higher or lower between children within
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Fig. 5 Distribution of the computed conditional edge probabilities with
respect to the delay between the starting dates of the infectious periods.
The proportions are constrained to sum to one by row

Table 1 Relationships between covariates on children and computed
conditional edge probabilities. NS means nonsignificant

Covariates Effect P value

distance − 2.2 × 10−3

age − < 2.2 × 10−16

family + 1.2 × 10−2

house + 3.8 × 10−6

sex NS 4.4 × 10−1

classroom + < 2.2 × 10−16

the same family, house, sex, classroom than between chil-
dren from different ones, and correlation tests between the
computed probabilities and the distances between the houses
where the children live, and between the computed probabil-
ities and the difference in ages of children (in absolute value).
The sign of the effect and the P values are given in Table 1.
These results are quite consistent with what was found in
Neal and Roberts (2004) and in Groendyke et al. (2012),
especially for the house and classroom effects.

6 Conclusion

We introduced a model for the spread of an epidemic and
showed that the underlying social contact structure can be
inferred from the observation of individual statuses along
time. To perform the inference, we observed that the path

of the epidemic can be assumed to be tree-shaped and we
resorted to the matrix-tree theorem to average over all pos-
sible tree-structured paths. To our knowledge, this is one of
the few uses of the matrix-tree theorem for the statistical
inference of a dynamic model.

An important feature of the proposed approach is that
the matrix-tree theorem gives rise to an inference procedure
with very low computational complexity. This low complex-
ity results from the combination of the Markov structure of
the dynamic model with the tree structure of the infection
path, which is summarized in Eq. (2). The marginal log like-
lihood of any model satisfying both properties will take the
form

∏

t

∏

j

ψ t
+ j

/ ∏

t

∏

j

β t
+ j

where ψ t
i j = β t

i jφ
t
i j (see Eqs. (3), (5) and (6)).

The model defined in Sect. 2 implies a geometric dura-
tion for contamination, but the second application shows
that a fixed contamination time can also be considered.
The proposed approach can be extended to more complex
propagation models, the propagation rules being encoded in
the terms φt

i j . More that two levels of infection (’sick’ or
’healthy’) can be considered: when the contamination dura-
tion is known, the model can be extended to an SIR model,
by simply adding a ’recovered’ state. From a general point
of view, the model can be extended to an arbitrary number
of states (for example, ’susceptible’, ’incubating’, ’contam-
inated’, ’recovered’) provided that all states are observed,
which is not always the case. This generalization also allows
for the joint modeling of several diseases (or seeds), using
H binary states (H being the number of diseases) indicating
which disease affects each node at each time. This represen-
tation allows us to model non-independent spreads, at the
price of a larger number of parameters. In the same vein, the
effect of environmental factors could also be accounted for
via a regression term in the transition rates encoded in the
φt
i j .

The difficulty of the parameter inference will mostly depend
on the expression of φt

i j , but the complexity of the network
reconstructionwill remain the same andwill still benefit from
the computational efficiency achieved through the matrix-
tree theorem.

In this work, we did not consider any additional informa-
tion on contacts, which led to the choice βi j = 1 for any pair
(i, j). However, if some information is available, it could be
encoded through particular choices of βi j . For instance, if
information on distances between individuals is available, a
parametric form for βi j linking the probability of contact to
the distance could be assumed.
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A Appendix

Definition 1 (Cofactor matrix) Consider a p × p square
matrix A. For any pair 1 ≤ u, v ≤ p, the cofactor Cu,v

is defined as Cu,v := (−1)u+v|Au,v|, where Au,v stands for
the matrix A deprived from its u-th row and v-th column.
The cofactor matrix of A is the p × p square matrix C , with
general term Cu,v .

A.1 Bayes inference for the parameters

Assume that parameters e and c have independent Beta prior
distributions:

r = (c, e) ∼ Beta(βe, β
′
e) ⊗ Beta(βc, β

′
c). (10)

In a Bayesian setting, the likelihood given in (5) corresponds
to the conditional distribution P(Y |r) so that the joint distri-
bution of (Y , r) is given by

B P(Y , r) = B10B11

B(βe, β ′
e)
eM10+βe (1 − e)M11+β ′

e

× S01
B(βc, β ′

c)
cM01+βc (1 − c)β

′
c

×
∏

( j,t)∈M00

(
β t

+ j − c · stj
)

.

The marginal likelihood of the data Y is obtained by inte-
grating over c and e to get

B P(Y ) = B10B11

B(βe, β ′
e)
B(M10 + βe, M11 + β ′

e)

× S01
B(βc, β ′

c)

∫
cM01+βc (1 − c)β

′
c

×
∏

( j,t)∈M00

(
β t

+ j − c · stj
)
dc.

Both P(Y , r) and P(Y ) factorize with respect to e and c, e
and c are therefore conditionally independent given Y . The
posterior distribution of e is simply Beta:

P(e|Y ) = Beta(βe + M10, β
′
e + M11) (11)

whereas the posterior distribution of c does not have a closed-
form expression:

P(c|Y ) ∝ cM01+βc (1 − c)β
′
c

∏

( j,t)∈M00

(
β t

+ j − c · stj
)

(12)

but can be easily sampled via Monte Carlo or importance
sampling, or numerically integrated. Observe that, in this
setting, the weights βi j act as hyper-parameters.

A.2 EM inference

If T is considered as a latent variable, the proposed model
becomes an incomplete data model, for which maximum
likelihood inference can be carried out via the EM algo-
rithm (Dempster et al. 1977). Because the distribution of T
is parameterized by β, the parameters to be inferred become
θ = (β, c, e). To use the EM algorithm, we first need to write
the complete log likelihood:

log Pθ (Y , T ) =
∑

t

log Pθ (T
t ) + log Pθ (Y

t+1|Y t , T t )

=
∑

i, j

Ni j (T ) logβi j +
∑

i, j

∑

t :T t�(i, j)

logφt
i j − log B

where Ni j (T ) = ∑
t I{(i, j) ∈ T t }. Then, we need

the conditional expectation of this complete log likelihood
Eθq

[
log Pθ (Y , T )|Y ]

, that is

∑

T

Pθq (T |Y ) log Pθ (Y , T )

=
∑

i, j

Eθq [Ni j (T )|Y ] logβi j

+
∑

i, j,t

Pθq {(i, j) ∈ T t |Y } logφt
i j − log B

E step The E step requires to compute the conditional edge
probability
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Pθ {(i, j) ∈ T t |Y } = 1 − Pθ {(i, j) /∈ T t |Y } = 1 − Ct
i j/C

where Ct
i j is computed in the same way as C in Eq. (6),

setting the term ψ t
i j to 0. As a consequence, we get C

t
i j/C =(

ψ t
+ j − ψ t

i j

)
/ψ t

+ j , so

Pθ {(i, j) ∈ T t |Y } = ψ t
i j/ψ

t
+ j .

This provides us with the conditional expected counts:

Eθ [Ni j (T )|Y ] =
∑

t

Pθ {(i, j) ∈ T t |Y } =
∑

t

ψ t
i j/ψ

t
+ j .

M step The parameter estimates are updated by maximiz-
ing the conditional expectation Q(θ |θq) := Eθq

[
log Pθ (Y ,

T )|Y ]
. The terms of Q(θ |θq) depending on e are

M11 log(1 − e) + M10 log e

because, for all j and t ,
∑

i Pθq {(i, j) ∈ T t |Y } = 1. (Each
node has one and only one parent at each time.) Notice that
the involved quantities do not depend on h, so we get the
same estimate as in Sect. 3.2: ê = M10/(M10 + M11).
The terms of Q(θ |θq) depending on c are

Eq
101 log c + Eq

100 log(1 − c),

where Eq
101 = ∑

i, j,t Pθq {(i, j) ∈ T t |Y }Y t
i (1−Y t

j )Y
t+1
j and

Eq
100 = ∑

i, j,t Pθq {(i, j) ∈ T t |Y }Y t
i (1− Y t

j )(1− Y t+1
j ), so

at iteration q, the estimate of c is updated to

cq+1 = argmax
c

Eθq
[
log Pθ (Y , T )|Y ]

= Eq
101/(E

q
100 + Eq

101).

Then we have to maximize Q(θ |θq) w.r.t. β, which is equiv-
alent to maximizing Eθq [Ni j (T )|Y ] logβi j − log B, where∑

i, j Eθq [Ni j (T )|Y ] logβi j −m
∑

j logβ+ j is maximal for

β
q+1
i j

β
q+1
+ j

= β
q+1
i j

β
q+1
i j + ∑

u �=i β
q+1
u j

= Eθq [Ni j (T )|Y ]
m

,

which leads to the update formula

β
q+1
i j = Eθq [Ni j (T )|Y ]

m − Eθq [Ni j (T )|Y ]
∑

u �=i

β
q
u j .

Estimates of the parameters e and c for the
simulation study

Figures 6 and 7 display, respectively, the results on the esti-
mates of the parameters e and c. The inference for e is mainly
satisfactory except for someconfigurationswhere this param-
eter is underestimated in the multiwave setting. This appears
in configurations with the lowest value for c (c = 0.1). In
these configurations, a total extinction of the epidemic may
happen (the lower c, the more likely the total extinction).
Then the underestimation of e seems to be a consequence of
our simulation choice which enforces that no total extinction
occurs in any of the waves. This also leads to overestimate
c for the very same configurations while for other config-
urations, the estimations of c suffers from a negative bias.
This may be due to the fact that the edges were sampled
in an underlying network instead among all possible pairs
of nodes. Nevertheless, these estimates are still satisfactory
since they do not prevent us from recovering the edges which
is our main goal.
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Fig. 6 Boxplots of estimates of e. Each boxplot is obtained from 100
simulations. In the simulations, the extinction and infection parameters
were set to e = 0.05 and c ∈ {0.1, 0.2, 0.4}. The number of nodes in
the network was 20, networks were simulated with Erdős–Rényi (ER)
and preferential attachment (PA) topologies, and the density of the net-

work was set to d ∈ {0.1, 0.2, 0.4}. A simulation was always initialized
with a unique node in state 1. A uniwave simulation (uW) consists in a
wave ofm = 200 time steps. A multiwave simulation (mW) consists in
H = 10 waves ofm = 20 time steps. For example,PA_uW corresponds
to a uniwave simulation over a preferential attachment network
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Fig. 7 Boxplots of estimates of c. Each boxplot is obtained from 100
simulations. In the simulations, the extinction and infection parameters
were set to e = 0.05 and c ∈ {0.1, 0.2, 0.4}. The number of nodes in
the network was 20, networks were simulated with Erdős–Rényi (ER)
and preferential attachment (PA) topologies, and the density of the net-

work was set to d ∈ {0.1, 0.2, 0.4}. A simulation was always initialized
with a unique node in state 1. A uniwave simulation (uW) consists in a
wave ofm = 200 time steps. A multiwave simulation (mW) consists in
H = 10 waves ofm = 20 time steps. For example,PA_uW corresponds
to a uniwave simulation over a preferential attachment network
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