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Abstract
This paper presents an integrated framework for estimation and inference from generalized linear models using adjusted score
equations that result in mean and median bias reduction. The framework unifies theoretical and methodological aspects of
past research on mean bias reduction and accommodates, in a natural way, new advances on median bias reduction. General
expressions for the adjusted score functions are derived in terms of quantities that are readily available in standard software
for fitting generalized linear models. The resulting estimating equations are solved using a unifying quasi-Fisher scoring
algorithm that is shown to be equivalent to iteratively reweighted least squares with appropriately adjusted working variates.
Formal links between the iterations for mean and median bias reduction are established. Core model invariance properties are
used to develop a novel mixed adjustment strategy when the estimation of a dispersion parameter is necessary. It is also shown
how median bias reduction in multinomial logistic regression can be done using the equivalent Poisson log-linear model.
The estimates coming out from mean and median bias reduction are found to overcome practical issues related to infinite
estimates that can occur with positive probability in generalized linear models with multinomial or discrete responses, and
can result in valid inferences even in the presence of a high-dimensional nuisance parameter.

Keywords Adjusted score equations · Data separation · Dispersion · Iterative reweighted least squares · Multinomial
regression · Parameterization invariance

1 Introduction

The flexibility of generalized linear models (McCullagh and
Nelder 1989) in handling count, categorical, positive and
real-valued responses under a commonmodelling framework
has not only made them a typical choice in applications but
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also the focus of much methodological research on their esti-
mation and use in inference.

Suppose that y1, . . . , yn are observations on independent
random variables Y1, . . . ,Yn , each with probability density
or mass function of the exponential family form

fYi (y; θi , φ) = exp

{
yθi − b(θi ) − c1(y)

φ/mi

− 1

2
a

(
− mi

φ

)
+ c2(y)

}

for some sufficiently smooth functions b(·), c1(·), a(·)
and c2(·), and fixed observation weights m1, . . . ,mn . The
expected value and the variance of Yi are then E(Yi ) = μi =
b′(θi ) and var(Yi ) = φb′′(θi )/mi = φV (μi )/mi , respec-
tively, where b′(θi ) and b′′(θi ) are the first two derivatives of
b(θi ). Compared to the normal distribution, exponential fam-
ilymodels are generally heteroscedastic because the response
variance depends on the mean through the variance function
V (μi ), and the dispersion parameter φ allows shrinking or
inflating that contribution of the mean. A generalized lin-
ear model (GLM) links the mean μi to a linear predictor
ηi through a monotone, sufficiently smooth link function
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Table 1 Clotting data
Parameter B RMSE B2/SD2 PU MAE C

β1 − 0.33 16.15 0.04 50.42 12.87 89.26

93.05∗

β2 0.36 23.09 0.02 49.61 18.46 88.87

92.66∗

β3 0.06 4.69 0.01 49.73 3.74 89.62

93.04∗

β4 − 0.11 6.71 0.03 50.51 5.36 88.78

92.47∗

φ − 0.38 0.65 54.13 78.77 0.55

< 0.01∗ 0.67∗ < 0.01∗ 55.61∗ 0.53∗

Estimated bias (B), rootmean squared error (RMSE), percentage of underestimation (PU),mean absolute error
(MAE) of maximum likelihood estimator and coverage of nominally 95%Wald-type confidence intervals (C),
based on 10,000 samples under the ML fit. The summary B2/SD2 is the relative increase in mean squared
error from its absolute minimum due to bias. The results include the same summaries of the moment-based
estimator of φ (row marked with ∗). All reported figures are ×100 of their actual value and < 0.01 is used
for a value that is less than 0.01 in absolute value

g(μi ) = ηi with ηi = ∑p
t=1 βt xi t where xit is the (i, t)th

component of a model matrix X , and β = (β1, . . . , βp)
�.

An intercept parameter is typically included in the linear pre-
dictor, in which case xi1 = 1 for all i ∈ {1, . . . , n}.

Estimation of the parameters of GLMs is commonly
done using maximum likelihood (ML) because of the lim-
iting guarantees that the ML estimator provides assuming
that the model assumptions are adequate. Specifically, the
ML estimator (β̂�, φ̂)� is consistent, asymptotically unbi-
ased and asymptotically efficient with a limiting normal
distribution centred at the target parameter value and a
variance–covariance matrix, given by the inverse of the
Fisher information matrix, which is also the Cramér–Rao
lower bound for the variance of unbiased estimators. These
properties are used as reassurance that inferential proce-
dures based on Wald, score or likelihood ratio statistics will
perform well in large samples. Another reason that ML is
the default estimation method for GLMs is that maximizing
the likelihood can be conveniently performed by iteratively
reweighted least squares (IWLS;Green 1984), requiring only
standard algorithms for least squares and the evaluation of
working weights and variates at each iteration.

Nevertheless, the properties of theMLestimator and of the
associated inferential procedures that depend on its asymp-
totic normality may deteriorate for small or moderate sample
sizes or, more generally, when the number of parameters is
large relative to the number of observations.

Example 1.1 To illustrate the differences between finite sam-
ple and limiting behaviour of theML estimator and associate
inferential procedures, consider the data in McCullagh and
Nelder (1989, Sect. 8.4.2) of mean blood clotting times in
seconds for nine percentage concentrations of normal plasma
and two lots of clotting agent. The plasma concentrations are

5, 10, 15, 20, 30, 40, 60, 80, 100, with corresponding clotting
times 118, 58, 42, 35, 27, 25, 21, 19, 18 for the first lot, and 69,
35, 26, 21, 18, 16, 13, 12, 12 for the second lot, respectively.
We fit a gamma GLM with logμi = ∑4

t=1 βt xi t , where μi

is the expectation of the i th clotting time, xi1 = 1, xi2 is 1 for
the second lot and 0 otherwise, xi3 is the corresponding (log)
plasma concentration and xi4 = xi2xi3 is an interaction term.
TheML estimates are β̂ = (5.503,− 0.584,− 0.602, 0.034)
and φ̂ = 0.017. Table 1 shows the estimated bias, root
mean squared error, percentage of underestimation andmean
absolute error of the ML estimator from 10,000 simulated
samples at the ML estimates, with covariates values fixed
as in the original sample. The table also includes the same
summaries of the moment-based estimator of φ (see, for
example, McCullagh and Nelder 1989, Sect. 8.3, and the
summary.glm function in R). The ML estimator of the
regression parameters illustrates good bias properties, with
distributions that have a mode around the parameter value
used for simulation. On the other hand, the ML estimator
of the dispersion parameter is subject to severe bias, which
inflates the mean squared error by 54.13% from its absolute
minimum, and has a severely right skewed distribution. Note
here that the latter observation holds for any monotone trans-
formation of the dispersion parameter. The moment-based
estimator on the other hand has a much smaller bias, proba-
bility of underestimation closer to 0.5, and its use delivers a
marked improvement to the coverage of standard confidence
intervals for all model parameters.

Improvements in first-order inference based on ML can
be achieved in several ways. For instance, bootstrap methods
guarantee both correction of bias and higher-order accurate
inference. Alternatively, analytical methods derived from
higher-order asymptotic expansions based on the likeli-
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hood (see, for instance, Brazzale et al. 2007) have been
found to result in accurate inference on model parameters.
Nevertheless, bootstrap methods typically require inten-
sive computation, and analytical methods, typically, require
tedious, model-specific algebraic effort for their implemen-
tation. Furthermore, both bootstrap and analytical methods
rely on the existence of theML estimate, which is not always
guaranteed. Such an example is GLMs with multinomial or
discrete responses (Heinze and Schemper 2002; Kosmidis
2014b).

This paper presents a unified approach for mean and
median bias reduction (BR) in GLMs using adjusted score
functions (Firth 1993; Kosmidis and Firth 2009; and Kenne
Pagui et al. 2017, respectively). Specifically, Firth (1993) and
Kosmidis and Firth (2009) achieve higher-order BR of the
ML estimator through the additive adjustment of the score
equation. Kenne Pagui et al. (2017) use a similar approach in
order to obtain component-wise higher-order median BR of
the ML estimator, i.e. each component of the estimator has,
to third order, the same probability of underestimating and
overestimating the corresponding parameter component. We
illustrate how those methods can be implemented without
sacrificing the computational simplicity and the first-order
inferential properties of the ML framework, and illustrate
that they provide simple and practical solutions to the issue
of boundary estimates in models with categorical responses.

Explicit, general formulae are derived for the adjusted
score equations that produce higher-order mean and median
unbiased estimators for GLMs. It is shown that, like ML,
bothmean andmedian BR can be conveniently performed by
IWLS after the appropriate adjustment of the working vari-
ates for ML. Extensive empirical evidence illustrates that
such an adjustment of IWLS leads to a stable estimation
procedure even in case in which standard IWLS for ML esti-
mation diverges.

Each method possesses invariance properties that can be
more useful or less desirable depending on the GLM under
consideration; the estimators resulting from mean BR (mean
BR estimators, in short) are exactly invariant under linear
transformations of the parameters in terms of the mean bias
of the transformed estimators, which is useful, for exam-
ple, when estimation and inference on arbitrary contrasts
of the regression parameters is of interest. These invari-
ance properties do not extend, though, to more general
nonlinear transformations. On the other hand, median BR
delivers estimators that are exactly invariant in terms of their
improved median bias properties under general component-
wise transformations of the parameters, which is useful,
for example, when a dispersion parameter needs to be esti-
mated from data. However, estimators from median BR are
not invariant in terms of the median bias properties under
more general transformations, for example, parameter con-
trasts. In order to combine the desirable invariance properties

of each method when modelling with GLMs, we exploit
the Fisher orthogonality (Cox and Reid 1987) of the mean
and dispersion parameters to formally derive a novel mixed
adjustment approach that delivers estimators of the regres-
sion parameters with improved mean bias and estimators for
any unknown dispersion parameter with improved median
bias.

Examples and simulation studies for various response dis-
tributions are used to demonstrate that both methods for BR
are effective in achieving their respective goals and improve
upon maximum likelihood, even in extreme settings charac-
terized by high-dimensional nuisance parameters. Particular
focus is given on special cases, like estimation of odds ratios
from logistic regression models and estimation of log odds
ratios from multinomial baseline category models.

All methods and algorithms discussed in this paper are
implemented in the brglm2 R package (Kosmidis 2018),
which has been used for all numerical computations and sim-
ulation experiments (see Supplementary Material).

The remaining of the paper is structured as follows. Sec-
tion 2 gives a brief introduction to estimation using IWLSand
shows how IWLS can be readily adjusted to perform mean
or median BR. In particular, Sects. 2.1 and 2.2 review known
results of ML estimation and explicit mean bias correction
in generalized linear models. These subsections are useful to
set up the notation and allow the introduction of mean and
median bias-reducing adjusted score functions in Sects. 2.3
and 2.4, respectively. Inferential procedures based on the
bias-reduced estimators are discussed in Sect. 3. Section 4
motivates the need for and introduces the mixed adjustment
strategy for GLMs with a dispersion parameter. All methods
are then assessed and compared through case studies and
simulation experiments in Sects. 5 and 6. Section 6 also dis-
cusses how multinomial logistic regression models can be
easily estimated with all methods using the equivalent Pois-
son log-linear model. Section 7 concludes the paper with a
short discussion and possible extensions.

2 Bias reduction and iteratively reweighted
least squares

2.1 Iteratively reweighted least squares

The log-likelihood function for a GLM is
∑n

i=1 log fYi (yi ;
g−1(ηi ), φ), where g−1(·) is the inverse of the link function.
Suppressing the dependence of the various quantities on the
model parameters and the data, the derivatives of the log-
likelihood function with respect to the components of β and
φ are

123



46 Statistics and Computing (2020) 30:43–59

Table 2 Working variates for ML and additional quantities needed in mean and median BR, for the most popular combinations of distributions and
link functions

Distribution η ML Mean BR Median BR

η + (y − μ)/d φξ dv′/(6v) − d ′/(2d)

Normal μ y 0 0

Binomial log
μ

1 − μ
η + y − μ

μ(1 − μ)

h{eη − e−η}
2m

2(1 − eη)

3(1 + eη)

�−1(μ) η + y − μ

φ(η)
− hη{�(η)(1 − �(η))}

2mφ(η)2

φ(η)(1 − 2�(η))

6�(η)(1 − �(η))
+ η

2

log{− log(1 − μ)} η + y − μ

eη−eη

hμ{1 − eη}
2me2η−eη

−eη−eη + 2eη + 3e−eη − 3

6(1 − e−eη
)

Gamma
1

μ
η − y − μ

μ2 −hηφ

m

2

3η

logμ η + y − μ

μ

hφ

2mηe2η
− 1

6

Poisson
√

μ η + y − μ

2η

hη

2m

3

2η

logμ η + y − μ

μ

h

2meη
− 1

3

sβ = 1

φ
XTWD−1(y − μ) and sφ = 1

2φ2

n∑
i=1

(qi − ρi ),

(1)

respectively, with y = (y1, . . . , yn)�, μ = (μ1, . . . , μn)
�,

W = diag {w1, . . . , wn} and D = diag {d1, . . . , dn}, where
wi = mid2i /vi is the i th working weight, with di = dμi/dηi
and vi = V (μi ). Furthermore, qi = − 2mi {yiθi − b(θi ) −
c1(yi )} and ρi = mia′

i are the i th deviance residual and
its expectation, respectively, with a′

i = a′(−mi/φ), where
a′(u) = da(u)/du.

The ML estimators β̂ of β and φ̂ of φ can be found by
solution of the score equations sβ = 0p and sφ = 0, where
0p is a p-dimensional vector of zeros. Wedderburn (1976)
derives necessary and sufficient conditions for the existence
and uniqueness of the ML estimator of β̂. Given that the dis-
persion parameter φ appears in the expression for sβ in (1)
only multiplicatively, the ML estimate of β can be computed
without knowledge of the value of φ. This fact is exploited
in popular software like the glm.fit function in R (R Core
Team 2018). The j th iteration of IWLS updates the current
iterate β( j) for β by solving the weighted least squares prob-
lem

(
X�W ( j)X

)−1
X�W ( j)z( j) , (2)

where the superscript ( j) indicates evaluation at β( j), and
z = (z1, . . . , zn)� is the vector of “working” variates with
zi = ηi + (yi − μi )/di (Green 1984). Table 2 reports the
working variates for well-used combinations of exponential
family models and link functions. The updated β from the

weighted least squares problem in (2) is equal to the updated
β from the Fisher scoring step

β( j) +
{
i ( j)ββ

}−1
s( j)
β ,

where iββ is the (β, β) block of the expected information
matrix about β and φ

i =
[
iββ 0p
0�
p iφφ

]
=
[

1
φ
X�WX 0p
0�
p

1
2φ4

∑n
i=1 m

2
i a

′′
i

]
, (3)

with a′′
i = a′′(−mi/φ), where a′′(u) = d2a(u)/du2.

2.2 Explicit mean bias reduction

Efron (1975) has shown that under the usual regularity con-
ditions, the asymptotic mean bias of theML estimator γ̂ for a
general parametric modelMγ can be reduced by the explicit
correction of γ̂ as γ̃ = γ̂ − bγ (γ̂ ), where bγ ≡ bγ (γ ) is the
first term in the expansion of the mean bias of γ̂ . Kosmidis
(2014a) provides a reviewof explicit and implicitmethods for
mean BR. The general form of bγ is given in Cox and Snell
(1968) in index notation and in Kosmidis and Firth (2010,
Section 2) in matrix notation. For GLMs, bβ = − i−1

ββ A∗
β

and bφ = − i−1
φφ A∗

φ with

A∗
β = X�Wξ and A∗

φ = (p − 2)

2φ
+

∑n
i=1 m

3
i a

′′′
i

2φ2
∑n

i=1 m
2
i a

′′
i

,

(4)

123



Statistics and Computing (2020) 30:43–59 47

where ξ = (ξ1, . . . , ξn)
T with ξi = hid ′

i/(2diwi ) and
d ′
i = d2μi/dη2i , hi is the “hat” value for the i th obser-
vation, obtained as the i th diagonal element of the matrix
H = X(X�WX)−1X�W , and a′′′

i = a′′′(−mi/φ), with
a′′′(u) = d3a(u)/du3. The derivation of bφ above is done
using Kosmidis and Firth (2010, expressions (4.8) in Remark
3) to write bφ in terms of the first term in the expansion of
the bias of 1/φ̂, which is given in Cordeiro and McCullagh
(1991).

Note here that neither iφφ nor A∗
φ depend on β, and hence,

the bias-reduced estimator for φ can be computed by knowl-
edge of φ̂ only as

φ̂

{
1 + φ̂

∑
m3

i â
′′′
i(∑

m2
i â

′′
i

)2 + φ̂2 p − 2∑
m2

i â
′′
i

}
,

where â′′′
i = a′′′(−mi/φ̂). Some algebra gives that the bias-

reduced estimator for β is

(
X�Ŵ X

)−1
X�Ŵ

(
ẑ + φ̂ξ̂

)
, (5)

where B̂ denotes evaluation of B at theMLestimator. Equiva-
lently, and as also noted in Cordeiro and McCullagh (1991),
the explicit correction β̂ − bβ(β̂, φ̂) can be performed by
IWLS as in (2) up to convergence, and then making one
extra step, where the working variate z is replaced by its
adjusted version z + φξ . Table 2 gives the quantity φξ for
some well-used GLMs.

2.3 Mean bias-reducing adjusted score functions

Firth (1993) shows that the solution of the adjusted score
equations

sβ + A∗
β = 0p and sφ + A∗

φ = 0 (6)

with A∗
β and A∗

φ as in (4) result in estimators β∗ and φ∗ with
mean bias of smaller asymptotic order than theML estimator.

A natural way to solve the adjusted score equations
is through quasi-Fisher scoring (see Kosmidis and Firth
2010, for the corresponding quasi-Newton–Raphson itera-
tion), where at the j th step the values for β and φ are updated
as

β( j+1) ← β( j) +
{
i ( j)ββ

}−1
s( j)
β − b( j)

β ,

φ( j+1) ← φ( j) +
{
i ( j)φφ

}−1
s( j)
φ − b( j)

φ . (7)

The term “quasi-” here reflects the fact that the expectation
of the negative second derivatives of the scores, instead of
the adjusted scores, is used for the calculation of the step
size. Setting φ( j+1) − φ( j) = 0 in the above iteration shows

that it has the required stationary point. Furthermore, if the
starting values β(0) and φ(0) for iteration (7) are the ML esti-
mates, then β(1) and φ(1) are the estimates from explicit BR,
because s(0)

β = 0p and s(0)
φ = 0. Figure 1 illustrates the

quasi-Fisher scoring iterations for an one-parameter prob-
lem, starting from the ML estimate.

A similar calculation to that in Sect. 2.2 can be used to
show that (7) can be written in terms of an IWLS step for β

and an appropriate update for φ. In particular,

β( j+1) ←
(
X�W ( j)X

)−1
X�W ( j)

(
z( j) + φ( j)ξ ( j)

)
,

φ( j+1) ←φ( j)

⎧⎪⎨
⎪⎩1 + φ( j)

∑(
q( j)
i − ρ

( j)
i

)
∑

m2
i a

′′( j)
i

+φ( j)

∑
m3

i a
′′′( j)
i(∑

m2
i a

′′( j)
i

)2 +
(
φ( j)

)2 p − 2∑
m2

i a
′′( j)
i

⎫⎪⎬
⎪⎭ .

(8)

Expression 8 makes apparent that, in contrast to ML, solving
the mean bias-reducing adjusted score functions in GLMs
with unknown dispersion parameter involves updating β and
φ simultaneously. This is because bβ generally depends on
φ.

Despite that the stationary point of the iterative scheme (8)
is the mean BR estimates, there is no theoretical guarantee
for its convergence for general GLMs. However, substan-
tial empirical studies have shown no evidence of divergence,
even in cases in which standard IWLS (2) fails to converge.
Some of those empirical studies are presented in Sects. 4, 5
and 6 of the present paper.

2.4 Median bias-reducing adjusted score functions

Kenne Pagui et al. (2017) introduce a family of adjusted score
functions whose solution has smaller median bias than the
ML estimator. Specifically, the solution γ † of sγ + A†

γ = 0 is
such that each of its components has probability 1/2 of under-
estimating the corresponding component of the parameter γ

with an error of order O(n−3/2), as opposed to the error of
order O(n−1/2) for γ̂ . A useful property of the method is that
it is invariant under component-wise monotone reparameter-
izations in terms of the improved median bias properties of
the resulting estimators.

Some tedious but straightforward algebra starting from
Kenne Pagui et al. (2017, expression (10)) gives that the
medianbias-reducing adjustments A†

β and A
†
φ forGLMshave

the form
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Fig. 1 Illustration of the
quasi-Fisher scoring iterations
for a model with a scalar
parameter β, starting at the
maximum likelihood estimate β̂.
One step gives the explicit mean
reduced-bias estimator
β̂ − bβ(β̂) of Sect. 2.2, and
iterating until convergence
results in the solution β∗ of the
mean bias-reducing adjusted
score equation

sβ(β)/iββ(β) bβ(β)

β̂β∗β̂ − bβ(β̂)

A†
β = X�W (ξ + Xu) and

A†
φ = p

2φ
+

∑n
i=1 m

3
i a

′′′
i

6φ2
∑n

i=1 m
2
i a

′′
i

, (9)

where u = (u1, . . . , u p)
� with

u j = [(X�WX)−1]�j X�

⎡
⎢⎣
h̃ j,1

{
d1v′

1/(6v1) − d ′
1/(2d1)

}
...

h̃ j,n
{
dnv′

n/(6vn) − d ′
n/(2dn)

}

⎤
⎥⎦.

(10)

In the above expressions, [B] j denotes the j th row of matrix
B as a column vector, v′

i = dV(μi )/dμi , and h̃ j,i is the i th
diagonal element of XK j XTW , with

K j = [(X�WX)−1] j [(X�WX)−1]�j /[(X�WX)−1] j j ,

and where [B] j j denotes the ( j, j)th element of a generic
matrix B.

Similarly to the case of mean BR, the median bias-
reducing adjusted score equations can be solved using
quasi-Fisher scoring or equivalently IWLS, where at the j th
iteration

β( j+1) ←
(
X�W ( j)X

)−1
X�W ( j)

(
z( j) + φ( j)ξ ( j)

)

+ φ( j)u( j) ,

φ( j+1) ← φ( j)

⎧⎪⎨
⎪⎩1 + φ( j)

∑(
q( j)
i − ρ

( j)
i

)
∑

m2
i a

′′( j)
i

+φ( j)

∑
m3

i a
′′′( j)
i

3
(∑

m2
i a

′′( j)
i

)2 +
(
φ( j)

)2 p∑
m2

i a
′′( j)
i

⎫⎪⎬
⎪⎭ .

(11)

Note here that the working variate for median BR is the
one for mean BR plus the extra term φXu. Equivalently, and
since the extra term is in the column space of X , the median
BR IWLS update for β consists of a mean BR update for β as
in (8), and a translation of the result byφu. Figure 2 illustrates
that procedure. The core quantities in the definition of u are
div′

i/(6vi )−d ′
i/(2di ) in expression (10), andTable 2 includes

their expressions for some well-used GLMs.
Similarly to (8), there is no theoretical guarantee for the

convergence of the iterative scheme (11) for general GLMs.
However, even in this case, our extensive empirical studies
have produced no evidence of divergence.
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φξ

C C

z

z + φξ

φXu
Xβ†

Xβ∗ Xβ∗

Fig. 2 Illustration of the IWLS update for computing the iterates of β

for a given φ when performingmean BR andmedian BR . All quantities
in the figure should be understood as being pre-multiplied byW 1/2. The
left figure shows the addition of φξ to the maximum likelihood working

variates z and the subsequent projection onto C (the column space of
W 1/2X ) that gives the updated value for the mean BR estimates β∗.
The right figure illustrates the addition of φu on β∗ to give the updated
value for the median BR estimates β†

3 Inference withmean andmedian bias
reduction

3.1 Wald-type inference by plug-in

According to the results in Firth (1993) and Kenne Pagui
et al. (2017), both θ∗ and θ† have the same asymptotic distri-
bution as the ML estimator and hence are all asymptotically
unbiased and efficient. Hence, the distribution of those esti-
mators for finite samples can be approximated by a normal
withmean θ and variance–covariancematrix {i(θ)}−1, where
i(θ) is given in (3). The derivation of this result relies on the
fact that both A∗

θ and A†
θ are of order O(1) and hence domi-

nated by the score function as information increases.
The implication of the above results is that standard errors

for the components of θ∗ and θ† can be computed as for the
MLestimator, using the square roots of the diagonal elements
of {i(β∗, φ∗)}−1 and {i(β†, φ†)}−1, respectively. As a result,
first-order inference like standard Wald tests and Wald-type
confidence intervals and regions are constructed in a plug-in
fashion, by replacing the ML estimates with the mean BR
or median BR estimates in the usual procedures in standard
software.

Of course, for finite samples, Wald-type procedures based
on the use of ML, mean and median bias reduction will yield
different results. Such differences will disappear as the sam-
ples size increases. Sect. 3.2 explores those differences in
normal linear regression models.

3.2 Normal linear regressionmodels

Consider a normal regression model with y1, . . . , yn real-
izations of independent random variables Y1, . . . ,Yn where

Yi has a N (μi , φ/mi ) (i = 1, . . . , n) with μi = ηi =∑p
t=1 βt xi t . The adjustment terms A∗

β and A†
β are zero for

this model. As a result, the ML, mean BR and median BR
estimators of β coincide with the least squares estimator
(X�MX)−1X�My, where M = diag {m1, . . . ,mn}. On the
other hand, the ML, mean BR and median BR estimators for
φ are φ̂ = ∑n

i=1(yi −μ̂i )
2/n, φ∗ = ∑n

i=1(yi −μ̂i )
2/(n− p)

and φ† = ∑n
i=1(yi − μ̂i )

2/(n − p − 2/3).
The estimator φ∗ is mean unbiased for φ, and for this

reason, it is the default choice for estimating the precision
parameter in normal linear regression models. On the other
hand, and as shown by Theorem 3.1, the use of φ† for Wald-
type inference about β j based on asymptotic normality leads
to inferences that are closer to the exact ones, based on the
Student tn−p distribution, than when φ∗ is used, for all prac-
tically relevant values of n − p and α.

Let Î1−α = {β̂ j ± z1−α/2 (κ j φ̂)1/2}, I ∗
1−α = {β̂ j ±

z1−α/2 (κ j φ
∗)1/2} and I †1−α = {β̂ j ± z1−α/2 (κ j φ

†)1/2} be
the Wald-type confidence intervals for β j of nominal level
1 − α, based on the asymptotic normal distribution of β̂,
β∗ and β†, respectively, where zα is the quantile of level α

of the standard normal and κ j = [(X�MX)−1] j j . Let also
I E1−α = {β̂ j ± tn−p;1−α/2 (κ j φ

∗)1/2} be the confidence inter-
val of exact level 1 − α for β j , where tn−p;α is the quantile
of level α of the Student t distribution with n − p degrees of
freedom, and define Len(I ) to be the length of interval I .

Theorem 3.1 For n− p ≥ 1 and α ∈ (0, 1), Î1−α ⊂ I ∗
1−α ⊂

I E1−α and I ∗
1−α ⊂ I †1−α . Moreover, for n − p ≥ 1 and 0 <

α < 0.35562, I †1−α ⊂ I E1−α .
Finally, for n − p > 1 and α ∈ (0, 1)

∣∣∣Len(I †1−α) − Len(I E1−α)

∣∣∣ <

∣∣∣Len(I ∗
1−α) − Len(I E1−α)

∣∣∣ .
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Table 3 Alternative, equivalent
parameterizations of a gamma
regression model with
independent responses
Y1, . . . , Y12 where,
conditionally on covariates,
each Yi has a gamma
distribution with mean
μi = exp(ηi ) and variance φμ2

i

Parameterization Predictor ηi Dispersion φ Parameter vector

I β1xi1 + β2xi2 + β3xi3 + β4ti φ (β1, β2, β3, β4, φ)�

II β1xi1 + β2xi2 + β3xi3 + β4ti eζ (β1, β2, β3, β4, ζ )�

III γ1 + γ2xi2 + γ3xi3 + β4ti φ (γ1, γ2, γ3, β4, φ)�

The covariates xi1, xi2 and xi3 encode the levels of a three-level categorical covariate si as follows: xi1 is 1
for i = 1, 2, 3, 4 and 0, otherwise, xi2 is 1 for i = 5, 6, 7, 8 and 0, otherwise, and xi3 is 1 for i = 9, 10, 11, 12
and 0, otherwise. The covariate values t1, . . . , t12 are generated from an exponential distribution with rate 1

If n − p = 1, the latter inequality holds for any 0 < α <

0.62647.

The proof of Theorem 3.1 is given in Appendix.
Exact inferential solutions are not generally available for

other GLMs with unknown dispersion parameter. It is there-
fore of interest to investigate whether the desirable behaviour
of inference based on the median BR estimator, as demon-
strated in Theorem 3.1 for the normal linear regression
model, is preserved, at least approximately, in other models.
Section 5.2 considers an example with gamma regression.

4 Mixed adjustments for dispersionmodels

In contrast to ML, mean BR is inherently not invariant to
general transformations of the model parameters, in terms
of its smaller asymptotic mean bias properties. This imposes
a level of arbitrariness when carrying out inference on β in
GLMswith unknown dispersion parameters, mainly because
φ appears as a factor on the variance–covariance matrix
{i(β, φ)}−1 of the estimators. For example, standard errors
for β∗ will be different if the bias is reduced for φ or 1/φ. The
mean BR estimates are exactly invariant under general affine
transformations, which is useful in regressions that involve
categorical covariateswhere invariance under parameter con-
trasts is, typically, required. On the other hand, median BR is
invariant, in terms of smaller asymptotic median bias, under
component-wise monotone transformations of the parame-
ters, but it is not invariant under more general parameter
transformations, like parameter contrasts.

In order to best exploit the invariance properties of each
method, we propose the default use of a mixed adjustment
that combines the mean bias-reducing adjusted score for β

with the median bias-reducing adjusted score for φ by jointly
solving

sβ + A∗
β = 0p and sφ + A†

φ = 0

with A∗
β and A†

φ as in expressions (4) and (9), respectively.
For GLMs with known φ, like Poisson or Binomial models,
themixed adjustment results inmeanBR.On the contrary, for
the normal linear models of Sect. 3.2 the mixed adjustment
results in median BR because A∗

β = A†
β = 0p.

For general GLMswith unknown φ, themixed adjustment
provides the estimators β‡ and φ‡, which are asymptotically
equivalent to third order to β∗ andφ†, respectively. The proof
of this result is a direct consequence of the orthogonality
(Cox and Reid 1987) between β and φ and makes use of
the expansions in Appendix of Kenne Pagui et al. (2017).
Specifically, parameter orthogonality implies that terms up
to order O(n−1) in the expansion of β‡ − β are not affected
by terms of order O(1) in sφ+A†

φ . As a result, and up to order

O(n−1), the expansion ofβ‡−β is the same as that ofβ∗−β.
The same reasoning applies if we switch the roles of β and
φ, i.e. the expansion of φ‡ − φ is the same to the expansion
of φ† − φ, up to order O(n−1). Hence, β‡ has the same
mean bias properties as β∗ and φ‡ has the same median bias
properties as φ†. For this reason, we use the term mixed BR
to refer to the solution of adjusted score functions resulting
from the mixed adjustment.

In order to illustrate the stated invariance properties of the
estimators coming from the mixed adjustment, we consider a
gamma regression model with independent response random
variables Y1, . . . , Y12, where, conditionally on covariates
si and ti , each Yi has a gamma distribution with mean
μi = exp(ηi ) andvarianceφμ2

i . Thepredictorηi is a function
of regression parameters and the covariates, si is a categori-
cal covariate with values L1, L2 and L3, and t1, . . . , t12 are
generated from an exponential distribution with rate 1. Con-
sider the three alternative parameterizations in Table 3. The
identities β1 = γ1, β2 = γ1 + γ2 and β3 = γ1 + γ3 follow
directly.

We simulate 1000 independent response vectors from the
parameter value (β1, β2, β3, β4, φ)� = (− 1,− 0.5, 3, 0.2,
0.5)� and estimate the three parameter vectors in Table 3
for each sample using the ML estimator, and the estimators
resulting from the mean, median and mixed bias-reducing
adjusted scores. The estimates for parameterizations I and III
are used to estimate the probability P(|β̃2 − γ̃1 − γ̃2| > ε1),
and those for parameterizations I and II are used to estimate
the probability P(|φ̃ − exp(ζ̃ )| > ε2) for various values of
ε1 and ε2, using the various estimators in place of β̃2, γ̃1, γ̃2,
φ̃ and ζ̃ . The results are displayed in Table 4. As expected,
the probability P(|β̃2 − γ̃1 − γ̃2| > ε1) is zero for ML and
mean BR, but not for median BR. Similarly, the probability
P(|φ̃ − exp(ζ̃ )| > ε2) is zero for ML and median BR, but
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Table 4 Probability
P(|β̃2 − γ̃1 − γ̃2| > ε1) for
parameterizations I and III, and
P(|φ̃ − exp(ζ̃ )| > ε1) for
parameterizations I and II for
various values of ε

ε1 P(|β̃2 − γ̃1 − γ̃2| > ε1) ε2 P(|φ̃ − exp(ζ̃ )| > ε2)

ML Mean BR Median BR Mixed BR ML Mean BR Median BR Mixed BR

0.01 0 0 0.656 0 0.02 0 0.978 0 0

0.02 0 0 0.162 0 0.04 0 0.771 0 0

0.03 0 0 0.034 0 0.06 0 0.454 0 0

0.04 0 0 0.010 0 0.08 0 0.181 0 0

0.05 0 0 0.003 0 0.10 0 0.061 0 0

The ML estimator, the estimators from the mean, median and mixed bias-reducing adjusted scores are used
in place of the tilded quantities. The figures are based on 1000 simulated response vectors from the gamma
regression model of Table 3 with (β1, β2, β3, β4, φ)� = (− 1,− 0.5, 3, 0.2, 0.5)�

not for mean BR. In contrast, the mixed adjustment strategy
inherits the relevant properties of mean and median BR, and
delivers estimators that are numerically invariant under linear
contrasts of the mean regression parameters, and monotone
transformations of the dispersion parameter.

Section 5.2 further evaluates the use of the mixed adjust-
ment in the estimation of gamma regression models.

5 Illustrations and simulation studies

5.1 Case studies and simulation experiments

In this section, we present results from case studies and
confirmatory simulation studies that provide empirical sup-
port to the ability of mean and median BR to achieve their
corresponding goals, i.e. mean and median bias reduction,
respectively. In particular, in Sect. 5.2 we consider gamma
regression, in which we also evaluate the mixed adjustment
strategy of Sect. 4, while in Sect. 5.3 we consider logistic
regression, showing how both mean and median BR provide
a practical solution to the occurrence of infinite ML esti-
mates. Finally, Sect. 5.4 evaluates the performance of mean
and median BR in a logistic regression setting characterized
by the presence of many nuisance parameters. In this case,
ML estimation and inference are known to be unreliable,
while both mean and median BR practically reproduce the
behaviour of estimation and inference based on the condi-
tional likelihood, which, in this particular case, is the gold
standard.

All numerical computations are performed in R using the
brglm2R package (Kosmidis 2018). The brglm2R pack-
age provides the brglmFitmethod for the glm R function
that implements mean and median BR for any GLM using
the quasi-Fisher scoring iteration introduced in Sect. 2.

5.2 Gamma regressionmodel for blood clotting
times

The regression model for the clotting data in Example 1.1
is fitted, here, using the mean, median and mixed bias-

Table 5 Clotting data

Method β1 β2 β3 β4 φ

ML 5.503 −0.584 −0.602 0.034 0.017

(0.161) (0.228) (0.047) (0.066)

Mean BR 5.507 −0.584 −0.602 0.034 0.022

(0.183) (0.258) (0.053) (0.075)

Median BR 5.505 −0.584 −0.602 0.034 0.024

(0.187) (0.265) (0.054) (0.077)

Mixed BR 5.507 −0.584 −0.602 0.034 0.024

(0.187) (0.265) (0.054) (0.077)

Estimates and estimated standard errors (in parentheses) for the param-
eters of the model in Example 1.1

reducing adjusted score functions of Sects. 2.3, 2.4 and 4,
respectively. The estimates and the corresponding estimated
standard errors are reported in Table 5. The estimates of
regression parameters are practically the same for all meth-
ods. More marked differences between ML and the three
adjusted score methods are noted in the estimates of the
dispersion parameter. In particular, the estimates from the
adjusted score methods result in notable inflation of the esti-
mated standard errors for the regression parameters, with the
median andmixed bias-reducing adjustments resulting in the
largest inflation.

In order to assess the quality of the estimates in Table 5,
the simulated data sets in Example 1.1 are used to esti-
mate the bias, the root mean squared error, the percentage of
underestimation, and the mean absolute error of the various
estimators, and the coverage of nominally 95% Wald-type
confidence intervals. Table 6 reports the results. A compar-
ison with the results of ML in Table 1 shows that the ML,
meanBR,medianBRandmixedBRestimators ofβ1, . . . , β4

have similar bias and variance properties. On the other hand,
the mean BR estimator of the dispersion parameter almost
fully compensates for the mean bias of the ML estimator,
while median BR and mixed BR give almost exactly 50%
probability of underestimation. Furthermore, all BRmethods
deliver marked improvements in terms of empirical coverage
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Table 6 Clotting data
Method Parameter B RMSE B2/SD2 PU MAE C

Mean BR β1 − 0.04 16.15 < 0.01 49.65 12.87 93.12

β2 0.36 23.09 0.02 49.59 18.46 92.69

β3 0.02 4.69 < 0.01 49.92 3.74 93.08

β4 − 0.11 6.71 0.03 50.50 5.36 92.26

φ < 0.01 0.67 < 0.01 55.00 0.53

Median BR β1 − 0.15 16.15 0.01 49.93 12.87 93.67

β2 0.36 23.09 0.02 49.60 18.46 93.27

β3 0.03 4.69 0.01 49.88 3.74 93.73

β4 − 0.11 6.71 0.03 50.50 5.36 93.05

φ 0.09 0.71 1.67 49.99 0.55

Mixed β1 − 0.02 16.15 < 0.01 49.65 12.87 93.66

β2 0.36 23.09 0.02 49.59 18.46 93.28

β3 0.02 4.69 < 0.01 49.95 3.74 93.71

β4 − 0.11 6.71 0.03 50.50 5.36 93.06

φ 0.09 0.71 1.68 49.93 0.55

Simulation results based on 10,000 samples under the ML fit. The quantities in the table are described in the
caption of Table 1. The estimators considered are those from mean BR (Sect. 2.3), median BR (Sect. 2.4) and
mixed BR (Sect. 4). All reported figures are ×100 of their actual value and < 0.01 is used for a value that is
less than 0.01 in absolute value

over ML, and the confidence intervals based on the estimates
from the median and mixed bias-reducing adjustments are
behaving the best. Finally, all confidence intervals appear to
be liberal in terms of coverage, most probably due to the
small sample size and the need to estimate the dispersion
parameter. Note here that the superior coverage when using
estimates frommedian and mixed bias-reducing adjustments
of the scores are similar to what is expected in the case of the
normal linear model; see Sect. 3.2.

5.3 Logistic regression for infant birthweights

We consider a study of low birthweight using the data given
in Hosmer and Lemeshow (2000, Table 2.1), which are also
publicly available in the MASS R package. The focus here is
on the 100 births for which the mother required no physician
visits during the first trimester. The outcome of interest is a
proxy of infant birthweight (1 if ≥ 2500g and 0 otherwise),
whose expected valueμi is modelled in terms of explanatory
variables using a logistic regression model with log{μi/(1−
μi )} = ∑7

t=1 βt xi t , where xi1 = 1, xi2 and xi3 are the age
and race (1 if white, 0 otherwise) of the mother, respectively,
xi4 is themother’s smoking status during pregnancy (1 if yes,
0 if no), xi5 is a proxy of the history of premature labour (1
if any, 0 if none), xi6 is history of hypertension (1 if yes, 0
if no) and xi7 is the logarithm of the mother’s weight at her
last menstrual period.

Table 7 gives the parameter estimates from ML, mean
BR and median BR. Both mean BR and median BR deliver
estimates that are shrunken versions of the correspondingML

estimates, with mean BR delivering the most shrinkage. This
shrinkage translates to smaller estimated standard errors for
the regression parameters.Kosmidis andFirth (2018) provide
geometric insights for the shrinkage induced by mean BR in
binary regression and prove that the mean BR estimates are
always finite for full rank X .

The frequency properties of the resulting estimators are
assessed by simulating 10,000 samples at the ML estimates
in Table 7, with covariates fixed as in the observed sample,
and re-estimating the model from each simulated sample. A
total of 103 out of the 10,000 samples result in ML estimates
with one or more infinite components due to data separation
(Albert and Anderson 1984). The detection of infinite esti-
mates was done prior to fitting the model using the linear
programming algorithms in Konis (2007), as implemented
in the detect_separation method of the brglm2 R
package (Kosmidis 2018). The separated data sets were
excluded when estimating the bias and coverage of Wald-
type confidence intervals for the ML estimator. In contrast,
the estimates frommean andmedianBRestimateswere finite
in all cases. For this reason, the corresponding summaries are
based on all 10,000 samples.

Table 8 shows the results. Both mean BR and median BR
have excellent performance in terms of mean bias and proba-
bility of underestimation, respectively. Table 8 also includes

summaries for the estimators ψ̂t = eβ̂t ,ψ∗
t = eβ∗

t ,ψ†
t = eβ

†
t

of the odds ratios ψt = eβt . Estimators of ψt with improved
bias properties have also been recently investigated in Lyles
et al. (2012). The invariance properties of ML and median
BR guarantee that ψ̂ and ψ† are the ML and median BR
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Table 7 Estimates and
estimated standard errors (in
parentheses) for the logistic
regression model for the infant
birthweight data in Sect. 5.3

Method β1 β2 β3 β4 β5 β6 β7

ML −8.496 −0.067 0.690 −0.560 −1.603 −1.211 2.262

(5.826) (0.053) (0.566) (0.576) (0.697) (0.924) (1.252)

Mean BR −7.401 −0.061 0.622 −0.531 −1.446 −1.104 1.998

(5.664) (0.052) (0.552) (0.564) (0.680) (0.901) (1.216)

Median BR −7.641 −0.062 0.638 −0.538 −1.481 −1.134 2.059

(5.717) (0.053) (0.557) (0.568) (0.681) (0.906) (1.228)

Table 8 Simulation results
based on 10, 000 samples under
the ML fit of the model for the
birthweight data in Sect. 5.3

Method β1 β2 β3 β4 β5 β6 β7

B ML − 1.42 − 0.01 0.09 − 0.03 − 0.20 − 0.12 0.34

Mean BR − 0.08 < 0.01 0.01 < 0.01 − 0.01 < 0.01 0.02

Median BR − 0.38 < 0.01 0.03 − 0.01 − 0.07 − 0.04 0.09

Bψ ML 183.50 < 0.01 0.75 0.12 0.02 0.18 57.50

Mean BR 47.17 < 0.01 0.41 0.11 0.05 0.17 18.75

Median BR 56.66 < 0.01 0.50 0.11 0.04 0.21 23.74

RMSE ML 6.86 0.06 0.66 0.66 0.82 1.11 1.49

Mean BR 5.94 0.05 0.58 0.59 0.72 0.94 1.28

Median BR 6.11 0.06 0.60 0.61 0.78 1.01 1.32

PU ML 56.1 53.3 46.4 51.4 57.8 53.5 43.1

Mean BR 48.2 49.2 51.3 49.6 48.1 48.9 52.2

Median BR 50.0 49.6 49.9 49.9 50.6 50.3 50.0

C ML 94.8 94.8 94.5 94.7 96.4 96.6 94.5

Mean BR 96.3 96.2 96.0 96.2 97.2 98.1 96.1

Median BR 96.1 96.0 95.8 95.9 97.0 97.8 96.0

All reported summaries, described in the caption of Table 1, for ML are conditional to the finiteness of the
estimates. Bψ is the estimated bias in the ψ parameterization, and < 0.01 is used for a value that is less than
0.01 in absolute value

estimators of ψ , respectively. As a result, ψ
†
t preserves its

improved median bias properties. On the other hand, ψ∗
t is

not, formally, the mean BR estimator of ψ . Nevertheless, it
behaves best in terms of bias. The improved estimation and
inference provided by mean and median BR become even
more evident in more extreme modelling settings, as shown
by the example in the next section.

5.4 Logistic regression for the link between sterility
and abortion

We consider data from a retrospective, matched case–control
study on the role of induced and spontaneous abortions in the
aetiology of secondary sterility (Trichopoulos et al. 1976).
The data are available in the infert data frame from the
datasets R package. The two healthy control subjects
from the same hospital were matched to each of 83 patients
according to their age, parity and level of education. One
of the cases could be matched with only one control; thus,
there are a total of 248 records. Each record also provides the

number of induced and spontaneous abortions, taking values
0, 1 and 2 or more.

As is meaningful for retrospective case–control studies
(see, for example, McCullagh and Nelder 1989, Sect. 4.3.3),
we consider a logistic regression model with one fixed effect
for each matched combination of cases and controls, and the
number of induced and spontaneous abortions as the two
categorical covariates of interest. In particular, the log odds
of secondary sterility for the j th individual in the i th case–
control combination are assumed to be

λi + β1xi j + β2x
′
i j + β3zi j + β4z

′
i j

(i = 1, . . . , 83; j = 1, . . . , ni ), (12)

where ni ∈ {2, 3}, xi j , x ′
i j are indicator variables of 1 and 2

or more spontaneous abortions, respectively, and zi j and z′i j
are indicator variables of 1 and 2 or more induced abortions,
respectively. The parameters λ1, . . . , λ83 are the fixed effects
for each matched combination of cases and controls, and the
parameters of interest are β1, . . . , β4.
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Table 9 Estimates and
estimated standard errors (in
parentheses) for the parameters
of interest in model (12) for the
sterility data in Sect. 5.4

Method β1 β2 β3 β4

ML 3.268 (0.592) 6.441 (0.955) 2.112 (0.587) 4.418 (0.948)

CL 2.044 (0.453) 3.935 (0.725) 1.386 (0.463) 2.819 (0.735)

Mean BR 2.055 (0.472) 3.954 (0.708) 1.305 (0.474) 2.714 (0.744)

Median BR 2.083 (0.478) 3.997 (0.713) 1.330 (0.482) 2.760 (0.754)

Due to the many nuisance parameters, the maximum like-
lihood estimators of β1, . . . , β4 are highly biased leading to
misleading inference. A solution that is specific to logistic
regression is to eliminate the fixed effects by conditioning
on their sufficient statistics and maximize the conditional
likelihood (CL). This can be done, for example, using the
clogit function in the survival R package. As shown
in Table 9, both mean and median BR give estimates that are
close to the maximum CL estimates, practically removing
all the bias from the ML estimates, and resulting also in a
correction for the estimated standard errors.

This desirable behaviour of mean BR and median BR is
in line with published theoretical results in stratified settings
with nuisance parameters. In particular, Lunardon (2018) has
recently shown that inferences based on mean BR in strat-
ified settings with strata-specific nuisance parameters are
valid under the same conditions for the validity of inference
(Sartori 2003) based on modified profile likelihoods (see,
for example, Barndorff-Nielsen 1983; Cox and Reid 1987;
McCullagh and Tibshirani 1990; Severini 1998). The same
equivalence is shown for median BR in Kenne Pagui et al.
(2017).

The advantage of mean and median BR over maximum
CL is their generality of application. As is shown in Table 2
mean and median BR can be used in models where a suffi-
cient statistic does not exist, and hence, direct elimination of
the nuisance parameters is not possible. One such example
is probit regression, which is typically the default choice in
many econometric applications stemming out from prospec-
tive studies. The further algorithmic simplicity for mean and
median BRmakes them also competitive to the various mod-
ified profile likelihoods.

6 Multinomial logistic regression

6.1 The Poisson trick

Suppose that y1, . . . , yn are k-vectors of counts with
∑k

j=1
yi j = mi and that x1, . . . , xn are corresponding p-vectors
of explanatory variables. The multinomial logistic regres-
sion model assumes that conditionally on x1, . . . , xn the
vectors of counts y1, . . . , yn are realizations of independent
multinomial vectors, with yi = (yi1, . . . , yik), where the
probabilities for the i th multinomial vector satisfy

log
πi j

πik
= x�

i γ j ( j = 1, . . . , k − 1), (13)

with
∑k

j=1 πi j = 1. Typically, xi1 = 1 for every i ∈
{1, . . . , n}. The above model is also known as the baseline
category logit (see, for example, Agresti 2002, Sect. 7.1)
because it uses one of the multinomial categories as a base-
line for the definition of the log odds. Expression (13) has
the kth category as baseline, but this is without loss of gener-
ality since any other log odds can be computed using simple
contrasts of the parameter vectors γ1, . . . , γk−1.

Maximum likelihood estimation can be done either by
directmaximizationof themultinomial log-likelihood for (13)
or using maximum likelihood for an equivalent Poisson
log-linear model. Specifically, if y11, . . . , ynk are realiza-
tions of independent Poisson random variables with means
μ11, . . . , μnk , where

logμi j = λi + x�
i γ j ( j = 1, . . . , k − 1) ,

logμik = λi , (14)

then the score equations for λi are mi = ∑k
j=1 μi j , forcing

the Poisson means to add up to the multinomial totals and the
maximum likelihood estimates for γ1, . . . , γk−1 to be exactly
those that result frommaximizing themultinomial likelihood
for model (13) directly.

Kosmidis and Firth (2011) proved that the equivalence of
the multinomial logistic regression model (13) and the Pois-
son log-linear model (14) extends to the mean BR estimates
of γ1, . . . , γk−1, if at each step of the iterative procedure for
solving the adjusted score equations, the current values of
the Poisson expectations μi1, . . . , μik are rescaled to sum
up to the corresponding multinomial totals. Specifically, the
results in Kosmidis and Firth (2011) suggest to prefix the
IWLS update in (8) for the Poisson log-linear model (14)
with the extra step

μ̄
( j)
is ← mis

μ
( j)
is∑k

t=1 μ
( j)
i t

(i = 1, . . . , n; s = 1, . . . , k)

that rescales the Poisson means to sum to the multinomial
totals. Then, W and the ML and mean BR quantities in the
last row of Table 2 are computed using μ̄

( j)
is instead of μ

( j)
is .
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The same argument applies the case of median BR. Given
that the extra term in the IWLS update for median bias reduc-
tion in (11) depends on the parameters only through the
response means, the same extra step of rescaling the Poisson
means before the IWLS update of the parameters will result
in an iteration that delivers the median BR estimates of the
multinomial logistic regression model using the equivalent
Poisson log-linear model.

6.2 Invariance properties

The mean BR estimator is invariant under general affine
transformations of the parameters, and hence, direct contrasts
result in mean BR estimators for any other baseline category
for the response and any reference category in the covari-
ates, without refitting the model. This is a particularly useful
guarantee when modelling with baseline category models. In
contrast, a direct transformation of the median BR estimates
with baseline category k or a specific set of contrasts for the
covariates is not guaranteed to result in median BR estimates
for other baseline categories or contrasts in general.

6.3 Primary food choices of alligators

In order to investigate the extent that non-invariance impacts
estimation and inference,we consider the data on food choice
of alligators analysed in Agresti (2002, Sect. 7.1.2). The data
come from a study of factors influencing the primary food
choice of alligators. The observations are 219 alligators cap-
tured in four lakes in Florida. The nominal response variable
is the primary food type, in volume, found in an alligator’s
stomach, which has five categories (fish, invertebrate, rep-
tile, bird and other). The data set classifies the primary food
choice according to the lake of capture (Hancock, Oklawaha,
Trafford, George), gender (male and female) and size of the
alligator (≤ 2.3 m long, > 2.3 m long).

Let s = 1 for alligator size > 2.3 metres and 0 otherwise,
and let zH , zO , zT , zG be indicator variables for the lakes;
for instance, zH = 1 for alligators on the lake Hancock and
0 otherwise. A possible model for the probabilities of food
choice is

log(πic/πi1) = γc1 + γc2si + γc3z
O
i

+ γc4z
T
i + γc5z

G
i (c = 2, 3, 4, 5) , (15)

where πic is the probability for category c, with values cor-
responding to fish (c = 1), invertebrate (c = 2), reptile
(c = 3), bird (c = 4) and other (c = 5). Model (15) is based
on the choice of contrasts that would be selected by default
in R. In order to investigate the effects of lack of invariance
of median bias reduction, the set of contrasts used in Agresti
(2002, Section 7.1.2) is considered where George is the ref-
erence lake and > 2.3 is the reference alligator size. These

choices result in writing the food choice log odds as

log(πic/πi1) = γ ′
c1 + γ ′

c2s
′
i + γ ′

c3z
H
i

+ γ ′
c4z

O
i + γ ′

j5z
T
i (c = 2, 3, 4, 5), (16)

where s′ = 1 for alligator size≤ 2.3 metres and 0 otherwise.
The coefficients in the linear predictors of (15) and (16) are
related as γc1 = γ ′

c1+γ ′
c2+γ ′

c3, γc2 = −γ ′
c2, γc3 = γ ′

c4−γ ′
c3,

γc4 = γ ′
c5 − γ ′

c3 and γc5 = −γ ′
c3.

Table 10 gives the ML, mean BR and median BR esti-
mates, along with the corresponding estimated standard
errors of the coefficients of model (15). Table 10 shows also
results of median BRγ ′ , which correspond to the median BR
estimates of γ ′ transformed in the γ parameterization. As
in logistic regression, the mean and median BR estimates
are shrunken relative to the maximum likelihood ones with
a corresponding shrinkage effect on the estimated standard
errors.

Themedian BR andmedian BRγ ′ estimates are almost the
same, indicating that median BR, in this particular setting, is
not affected by its lack of invariance under linear contrasts.
The differences between the three methods are more notable
when the observed counts are divided by two, as given in
Table 11. In this case, data separation results in two of the
ML estimates being infinite. This can generally happen with
positive probability when data are sparse or when there are
large covariate effects (Albert and Anderson 1984). As is the
case for logistic regression (see Sect. 5.3), both mean and
median BR deliver finite estimates for all parameters. The
finiteness of the mean BR estimates has also been observed
in Bull et al. (2002).

In order to better assess the properties of the estimators
considered in Tables 10 and 11, we designed a simulation
study where the multinomial totals for each covariate set-
ting in the alligator food choice data set are progressively
increased as a fraction of their observed values. Specifically,
we consider the sets of multinomial totals {rm1, . . . , rmn}
for r ∈ {0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3, 4, 5}, where mi

(i = 1, . . . , n) is the observed multinomial total for the i th
combination of covariate values. For each value of r , we
simulate 10,000 data sets from the ML fit of model (15)
given in Table 10 and then compare the mean BR, median
BR and median BRγ ′ estimators in terms of relative bias and
percentage of underestimation. TheML estimator is not con-
sidered in the comparison because the probability of infinite
estimates is very high, ranging from 1.3% for r = 5 up to
76.4% for r = 0.5. In contrast, mean BR and median BR
produced finite estimates for all data sets and r values con-
sidered.

Figures 3 and 4 show the relative bias and the percent-
age of underestimation, respectively, for each parameter as
a function of r . Overall, mean BR is preferable in terms of
mean bias, while median BR achieves better median cen-
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Table 10 Estimates and
estimated standard errors (in
parentheses) of the multinomial
regression model (15) for the
alligator data in Sect. 6

Method c γc1 γc2 γc3 γc4 γc5

ML 2 −1.75 (0.54) −1.46 (0.40) 2.60 (0.66) 2.78 (0.67) 1.66 (0.61)

3 −2.42 (0.64) 0.35 (0.58) 1.22 (0.79) 1.69 (0.78) −1.24 (1.19)

4 −2.03 (0.56) 0.63 (0.64) −1.35 (1.16) 0.39 (0.78) −0.70 (0.78)

5 −0.75 (0.35) −0.33 (0.45) −0.82 (0.73) 0.69 (0.56) −0.83 (0.56)

Mean BR 2 −1.65 (0.52) −1.40 (0.40) 2.46 (0.65) 2.64 (0.66) 1.56 (0.60)

3 −2.25 (0.61) 0.32 (0.56) 1.12 (0.76) 1.58 (0.75) −0.98 (1.02)

4 −1.90 (0.54) 0.58 (0.61) −1.04 (1.01) 0.40 (0.76) −0.62 (0.74)

5 −0.72 (0.35) −0.31 (0.44) −0.72 (0.71) 0.67 (0.56) −0.78 (0.55)

Median BR 2 −1.71 (0.53) −1.41 (0.40) 2.51 (0.65) 2.69 (0.67) 1.61 (0.61)

3 −2.33 (0.62) 0.34 (0.57) 1.16 (0.77) 1.62 (0.76) −1.12 (1.10)

4 −1.96 (0.54) 0.60 (0.62) −1.20 (1.08) 0.39 (0.77) −0.66 (0.76)

5 −0.73 (0.35) −0.32 (0.44) −0.77 (0.71) 0.67 (0.56) −0.80 (0.55)

Median BRγ ′ 2 −1.70 (0.53) −1.41 (0.39) 2.52 (0.65) 2.70 (0.66) 1.61 (0.61)

3 −2.35 (0.63) 0.34 (0.57) 1.16 (0.77) 1.62 (0.77) − 1.12 (1.11)

4 −1.97 (0.55) 0.60 (0.63) −1.21 (1.09) 0.39 (0.77) −0.66 (0.76)

5 −0.73 (0.35) −0.32 (0.45) −0.78 (0.72) 0.67 (0.56) −0.80 (0.55)

Table 11 Estimates and
estimated standard errors (in
parentheses) of the multinomial
regression model (15) for the
alligator data in Sect. 6 after
halving the frequencies, and
rounding them to the closest
integer

Method c γc1 γc2 γc3 γc4 γc5

ML 2 −1.83 (0.76) −1.55 (0.59) 2.66 (0.94) 2.81 (0.95) 1.64 (0.87)

3 −3.39 (1.25) 1.40 (1.19) 1.13 (1.29) 1.44 (1.29) −∞ (+ ∞)

4 −2.31 (0.86) 0.66 (1.03) −∞ (+ ∞) 0.58 (1.16) −0.78 (1.29)

5 −0.82 (0.49) −0.04 (0.67) −1.35 (1.18) 0.28 (0.81) −1.25 (0.88)

Mean BR 2 −1.64 (0.72) −1.43 (0.59) 2.40 (0.91) 2.54 (0.92) 1.46 (0.84)

3 −2.76 (1.00) 1.08 (0.96) 0.93 (1.15) 1.22 (1.15) −1.24 (1.71)

4 −2.02 (0.78) 0.55 (0.90) −1.30 (1.70) 0.57 (1.08) −0.57 (1.12)

5 −0.76 (0.49) −0.03 (0.66) −1.03 (1.06) 0.29 (0.81) −1.08 (0.84)

Median BR 2 −1.76 (0.74) −1.45 (0.59) 2.48 (0.93) 2.62 (0.93) 1.54 (0.86)

3 −3.00 (1.08) 1.23 (1.03) 1.02 (1.18) 1.31 (1.18) −2.04 (2.45)

4 −2.15 (0.81) 0.59 (0.95) −2.17 (2.49) 0.56 (1.11) −0.67 (1.19)

5 −0.79 (0.49) −0.04 (0.66) −1.19 (1.11) 0.28 (0.81) −1.16 (0.86)

Median BRγ ′ 2 −1.74 (0.74) −1.45 (0.58) 2.50 (0.92) 2.64 (0.93) 1.54 (0.85)

3 −3.12 (1.14) 1.24 (1.08) 1.03 (1.24) 1.32 (1.24) −2.05 (2.61)

4 −2.15 (0.81) 0.60 (0.95) −2.20 (2.51) 0.55 (1.11) −0.67 (1.19)

5 −0.79 (0.49) −0.03 (0.66) −1.20 (1.11) 0.27 (0.81) −1.16 (0.86)

tring for all the parameters. We note that even median BRγ ′
has bias and probabilities of underestimation very close to
those obtained directly under the γ parameterization. This
confirms the indications from the observed data that, even if
not granted by the theory, median BR is close to invariant
under contrasts in the current model setting. As expected,
the frequency properties of the three estimators converge to
whatwe expect from standardMLasymptotics as r increases.
In particular, the bias converges to 0 and the percentage of
underestimation to 50%.

7 Discussion

Fisher orthogonality (Cox and Reid 1987) of the mean and
dispersion parameters dictates that the mixed approach to
bias reduction is valid also for generalized linearmodels with
dispersion covariates in Smyth (1989), and that estimation
can be done by direct generalization of the IWLS iterations
in (5) and (11), for mean and median bias reduction, respec-
tively.

Inference andmodel comparison has been based onWald-
type statistics. For special models, it is possible to form
penalized likelihood ratio statistics based on the penalized
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Fig. 3 Empirical relative bias based on 10,000 simulated samples
from the ML fit of model (15) given in Table 10, for each r ∈
{0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3, 4, 5}. The curves correspond to the

mean BR (solid), median BR (dashed) and median BRγ ′ (long dashed)
estimators. The grey horizontal line is at zero

log-likelihood that corresponds to the adjusted scores. A
prominent example is logistic regression where the mean
bias-reducing adjusted score is the gradient of the log-
likelihood penalized by the logarithm of the Jeffreys’ prior
(see Heinze and Schemper 2002, where the profiles of the
penalized log-likelihood are used for inference). In that case,
the estimator from mean BR coincides with the mode of the
posterior distribution obtained using the Jeffreys’ prior (see
also Ibrahim and Laud 1991). The same happens for Pois-
son log-linear models and for multinomial baseline category
models. Even when a penalized log-likelihood correspond-
ing to adjusted scores is not available (see Theorem 1 in
Kosmidis and Firth 2009, for necessary and sufficient con-
ditions for the existence of mean bias-reducing penalized

likelihoods for generalized linear models), the adjustments
to the score can, however, be seen as model-based penalties
to the inferential quantities for maximum likelihood. In this
sense, the adjustments introduce some implicit regularization
to the estimation problem, which is just enough to achieve
mean or median BR.

In this framework, a general alternative to Wald-type
statistics is score-type statistics with known asymptotic dis-
tributions, which can be readily defined as in Lindsay and Qu
(2003). Let (β�, φ)� = (ψ�, λ�)�, with dim(ψ) = p1 and
dim(λ) = p− p1, iψψ(ψ, λ) be a p1 × p1 matrix collecting
the rows and columns of {i(ψ, λ)}−1 corresponding to ψ ,
and λ∗

ψ the estimator of λ resulting from the solution of the
mean bias-reducing adjusted score equations on λ for fixed
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Fig. 4 Empirical probability of underestimation based on 10,000 sim-
ulated samples from the ML fit of model (15) given in Table 10, for
each r ∈ {0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3, 4, 5}. The curves corre-

spond to the mean BR (solid), median BR (dashed) and median BRγ ′
(long dashed) estimators. The grey horizontal line is at 50

ψ . Since the scores have an asymptotic normal distribution
with mean zero and variance–covariance matrix i(ψ, λ) and
the mean bias-reducing adjustment is of order O(1),

{sψ(ψ, λ∗
ψ) + A∗

ψ(ψ, λ∗
ψ)}�iψψ(ψ, λ∗

ψ){
sψ(ψ, λ∗

ψ) + A∗
ψ(ψ, λ∗

ψ)
}

(17)

has an asymptotic nullχ2
p1 distribution. The same result holds

for median BR, by replacing λ∗
ψ and A∗

ψ with λ
†
ψ and A†

ψ .
The adjusted score statistic can then be used for construct-
ing confidence intervals and regions and testing hypotheses
on any set of parameters of the generalized linear models,
including constructing tables similar to analysis of deviance
tables for maximum likelihood.

Finally, as is illustrated in the example of Sect. 5.4 and
shown in Lunardon (2018) and Kenne Pagui et al. (2017),
mean BR and median BR can be particularly effective for
inference about a low-dimensional parameter of interest in
the presence of high-dimensional nuisance parameters, while
providing, at the same time, improved estimates of the nui-
sance parameters.

8 Supplementary material

The supplementary material includes R code and a report to
fully reproduce all numerical results and figures in the paper.
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Appendix

Proof of Theorem 3.1

Proof Since φ̂ < φ∗ < φ† and z1−α/2 < tn−p;1−α/2, we

have Î1−α ⊂ I ∗
1−α ⊂ I E1−α and I ∗

1−α ⊂ I †1−α for any n− p ≥
1 and α ∈ (0, 1). We also have I †1−α ⊂ I E1−α if g(ν, α) =
{(ν − 2/3)/ν}1/2 tν;1−α/2 − z1−α/2 > 0. For fixed natural
ν ≥ 1, the function g(ν, α) is positive when α → 0+ and
has only one zero in α̃(ν). Hence, the condition is satisfied
for α < α̃(ν). Moreover, it can be seen numerically that α̃(ν)

increases with ν, having a minimum in α̃(1) = 0.35562.
Even when I E1−α ⊂ I †1−α , when ν > 1, the absolute dif-

ference between the length of the intervals I †1−α and I E1−α is
smaller than the corresponding difference for I ∗

1−α and I E1−α ,
for any α > 0. Indeed, this is true provided that the function
h(ν, α) = 2tν;1−α/2/

√
ν − z1−α/2/

√
ν − 2/3 − z1−α/2/

√
ν

is positive. This is verified because, for fixed ν > 1, h(ν, α)

is a monotonic decreasing function in α, converging to 0+ as
α → 1−. On the other hand, if ν = 1, h(ν, α) is positive for
α < 0.62647 and negative otherwise. ��
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