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Abstract
This paper presents a unified framework for regression-based statistical disclosure control for microdata. A basic method,
known as information preserving statistical obfuscation (IPSO), produces synthetic data that preserve variances, covariances
and fitted values. The data are then generated conditionally according to the multivariate normal distribution. Generalizations
of the IPSO method are described in the literature, and these methods aim to generate data more similar to the original
data. This paper describes these methods in a concise and interpretable way, which is close to efficient implementation.
Decomposing the residual data into orthogonal scores and corresponding loadings is an essential part of the framework.
Both QR decomposition (Gram–Schmidt orthogonalization) and singular value decomposition (principal components) may
be used. Within this framework, new and generalized methods are presented. In particular, a method is described by means
of which the correlations to the original principal component scores can be controlled exactly. It is shown that a suggested
method of random orthogonal matrix masking can be implemented without generating an orthogonal matrix. Generalized
methodology for hierarchical categories is presented within the context of microaggregation. Some information can then be
preserved at the lowest level and more information at higher levels. The presented methodology is also applicable to tabular
data. One possibility is to replace the content of primary and secondary suppressed cells with generated values. It is proposed
replacing suppressed cell frequencies with decimal numbers, and it is argued that this can be a useful method.

Keywords Microdata anonymization · Synthetic data · Microaggregation · Hybrid microdata · Cell suppression · Official
statistics

1 Introduction

Microdata are data sets in which each record contains sev-
eral variables concerning apersonor anorganization.Usually
a microdata data set cannot be made publicly available for
reasons of confidentiality. Methods for statistical disclosure
control of microdata aim to create protected data that can be
released (Hundepool et al. 2012). Two main categories are
non-perturbative methods (information reduction, coarsen-
ingdata) andperturbativemethods (changingdata). The latter
category is often divided into perturbative masking methods
and synthetic data generators. In addition, hybrid data gen-
erators combine original and synthetic data. Synthetic data
are data randomly drawn from a statisticalmodel, often under
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constraints such that certain statistics or internal relationships
of the original data set are preserved.

A broad class of masking methods falls into the cate-
gory of matrix masking (Duncan and Pearson 1991), which
consists of replacing the original data matrix, Y , with
M1YM2 + M3. Then, M1 is a record-transforming mask,
M2 is a variable-transforming mask, and M3 is a displacing
mask. A specific masking method is noise addition where
M1 and M2 are identity matrices and M3 contains randomly
generated data. As follows below, when the M-matrices are
allowed to be stochastically generated, it becomes problem-
atic to distinguish between masking methods and synthetic
data generators.

Given a parametric model, making statistical inference
from synthetic data the same way as from original data
requires that sufficient statistics for the joint distribution of
all variables in the data are preserved. This can be achieved
by drawing data jointly from the conditional distribution.
In general, this is difficult, and data may instead be drawn
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with fixed values of uncertain parameters. The distributional
properties are then violated, and variances in particular will
be underestimated.

The problems just described are commonly handled by
using multiple imputation with fully conditional specifica-
tions (Loong and Rubin 2017; Drechsler 2011; Reiter and
Raghunathan 2007). Multiple imputation makes it possible
to correct for the additional variance from imputation. The
use of fully conditional specifications is a way of overcom-
ing the problems of drawing from a multivariate distribution.
Then, the assumed joint distribution is specified indirectly.
The US Census Bureau releases synthetic data products pre-
pared by using multiple imputation (Benedetto et al. 2013;
Jarmin et al. 2014). The conditional specifications of continu-
ous variables involve normality and linear regressionmodels.
These specifications are consistent with the properties of a
joint multivariate normal distribution. Sometimes, the vari-
ables are transformed so that they have an approximately
normal distribution.

When all the variables to be synthesized are continuous
and assuming multivariate normality and a linear regres-
sion model, it is possible to generate synthetic data in
a way that exactly preserves the distributional properties.
Then there is no need for multiple imputation. Such a basic
regression-based synthetic data generator is described by
Burridge (2003) as information preserving statistical obfus-
cation (IPSO). The generated data then constitute a matrix of
independent samples from the multivariate normal distribu-
tion conditioned on parameter estimates. An equivalent data
generation method was described by Langsrud (2005) within
the area of Monte Carlo testing. The simulation-based tests
were referred to as rotation tests since the generated data
can be interpreted as randomly rotated data. This means that
the data can be generated as matrix masking with M1 as
a random rotation matrix and with M2 being identity and
M3 being zero. Strictly speaking, M1 is then a uniformly
(according to the Haar measure) distributed random orthog-
onal matrix restricted to preserving fitted values. Given that
M1 is a restricted orthogonal matrix, this ensures that the
sample covariance matrix is preserved. The specific uniform
distribution ensures that original and generated data are inde-
pendent. Such simulation methodology can be traced back
to Wedderburn (1975) in the only intercept case where fitted
values are the sample means. In this case, Ting et al. (2008)
described generalized methodology called random orthog-
onal matrix masking (ROMM). Their generalization allows
M1 to be generated in other ways so that the similarity to the
original data can be controlled.

Authors of popular software tools for microdata protec-
tion emphasize the importance of low information loss or
high data utility provided that the disclosure risk is accept-
able (Hundepool et al. 2014; Templ et al. 2015). Therefore,
it is beneficial to use information preserving methods that

generate data more similar to the original data than the IPSO
method. In addition to ROMM, such methods are described
in Muralidhar and Sarathy (2008) and in Domingo-Ferrer
and Gonzalez-Nicolas (2010). In these papers the distribu-
tional assumptions are discussed in detail. The IPSOmethod
is made to preserve the sufficient statistics under multivari-
ate normality. Even if the original data are not multivariate
normal, the results of common statistical analyses relying
on (multivariate) normality will be the same regardless of
whether the original or the IPSO-generated data are used.
The results of analyses not relying on normality will, how-
ever, be different.Generating datamore similar to the original
data also means that the results of any analysis will tend to
be more similar to the results based on the original data. The
empirical distribution of the original data will also be much
better approximated.

The present paper describes several information pre-
serving methods under a common matrix decomposition
framework. The aim is twofold: first, to describe existing
regression-basedmethods in a concise and interpretable way,
which is close to efficient implementation, and second, to
develop new techniques and generalizedmethodologywithin
the framework. All in all, an important class of tools within
the area of statistical disclosure control is described. Dis-
closure risk and information loss are not investigated in
this paper, but both are important when the methodology
is applied in practice. We believe that the methodology is
well suited to controlling these properties, since the flexibil-
ity enables targeted changes.

A requirement that fitted values must be preserved means
that we can only change the residual data. In Sect. 2, the
residual data are decomposed into scores and loading using
an optional decomposition method (QR or SVD/PCA). Gen-
erating data with preserved information can be performed by
generating new scores, and Sect. 2 formulates an algorithm
for the IPSO method.

Section 3 considers the addition of synthetic values
to preliminary residuals from arbitrarily predefined data.
According to Muralidhar and Sarathy (2008) in particular,
it is possible at the variable level to select the degree of
similarity to the original data. We will also suggest another
and related method that makes it possible to control exactly
the correlation between generated and original scores. This
method can be viewed as a modified and extended variant of
the principal component approach in Calvino (2017).

Section 4 describes an approach in which the IPSO algo-
rithm ismodified by using scores fromarbitrary residual data.
In Sect. 5, we look into the topic of ROMM and discuss how
other methods can be viewed within this context. We show
that simulations according to Sect. 4 can be an efficient and
equivalent alternative to doing computations via an orthogo-
nal matrix.
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Section 6 considers the generation of microdata within
the context of microaggregation. This means that the IPSO
method is applied to several clusters/categories as described
by Domingo-Ferrer and Gonzalez-Nicolas (2010). New
generalized methodology for hierarchical categories is pre-
sented. Some information can then be preserved at the lowest
level and more information at higher levels.

The methodology is also directly applicable to tabular
data obtained by crossing several categorical variables. Sta-
tistical disclosure control for tabular data is an important
field and several methods exist (Hundepool et al. 2012;
Salazar-Gonzalez 2008). In Sect. 7, we assume that a table
suppression method has been applied. It is then possible to
replace the content of suppressed (primary and secondary)
cells by generated/synthetic values. In particular, it is sug-
gested replacing suppressed cell frequencies with decimal
numbers and it is argued that this can be a useful method.

2 Information preserving statistical
obfuscation (IPSO)

Assume a multivariate multiple regression model defined by

Y = XB + E (1)

where Y is a n × k matrix containing n observations of k
confidential variables and where the n × m matrix X con-
tains corresponding non-confidential variables including a
constant term (column of ones). The standard assumptions
are that the rows of E are independent multivariate normal
with zero means and a common covariance matrix.

We now want to generate, Y∗, a synthetic variant of Y ,
so that the fitted values and the sample covariance matrix
are preserved. Equivalently, we impose the restrictions that
Y∗TY∗ = Y TY and XTY∗ = XTY . The synthetic data
can be drawn from the multivariate regression model con-
ditioned on the restrictions. Burridge (2003) described such
simulations as information preserving statistical obfuscation.
Langsrud (2005) considered the same problem within the
area of Monte Carlo testing, and the simulation-based tests
were referred to as rotation tests. He described an algorithm
based on QR decomposition which is very similar to the
algorithm in Burridge (2003). Here we formulate a similar
algorithm using a general decomposition:

Y = Ŷ + Ê = Ŷ + TW (2)

Ys = Ŷs + Ês = Ŷs + T∗Ws (3)

Y∗ = Ŷ + Ê
∗ = Ŷ + T∗W (4)

The data are split into fitted values and residuals. Some
method is used to decompose the residuals as a matrix, T ,

of orthonormal scores and a matrix, W , of loadings (2). A
simulated data matrix, Ys , whose elements are independent
standard normal deviates, is decomposed similarly (3) to
obtain the matrix T∗ of synthetic scores orthogonal to X .
The synthetic data are obtained by replacing T by T∗ (4).

The fitted values are computed according to the regression
model (1). We allow collinear columns in X . The fitted val-
ues are uniquely defined independently of how this problem
is handled. Two obvious candidates for the decomposition
method are QR decomposition (Gram–Schmidt orthogonal-
ization) and singular value decomposition (SVD) (Strang
1988). In the present paper, we refer to a generalized QR
decomposition as described in “Appendix 1” (T = Q and
W = R). This decomposition is unique, and dependent
columns are allowed. When using SVD as dealt with in
“Appendix 2”, we are essentially performing principal com-
ponents analysis (PCA) (Jolliffe 2002), but the scores are
scaled differently (T =U and W =ΛV T ).

The properties of the synthetic data are independent of the
choice of a decomposition method, but this choice is impor-
tant in some of the modifications below. Note that Burridge
(2003) formulated the algorithm using the Choleski decom-
position (see “Appendix 1”). Then, W is calculated from the
covariance matrix estimate and Ê

∗
is found as ÊsW−1

s W .
In the only intercept case, Mateo-Sanz et al. (2004) formu-
lated another algorithm where W is calculated by Choleski
decomposition and T∗ is generated by an orthogonalization
algorithm.

Note that in the special case of a single confidential vari-
able (k = 1), then T is simply the vector of residuals scaled
to unit length and W is the scale factor (scalar). Thus, Y∗
is obtained by replacing the original residuals by residu-
als obtained from simulated data, scaled so that the sum of
squared residuals is preserved. This yields a simplified pro-
cedure compared to the one recently published in Klein and
Datta (2018).

A logical question is: Why not simply release the regres-
sion coefficients and the covariance matrix? Since X is
released, there is no more information in the IPSO-generated
data than in these estimates. A good reason for releasing syn-
thetic data is that this is a user-friendly product. Most users
would prefer a data set which can be analyzed by ordinary
tools. Sophisticated userswhowould prefer estimates instead
can easily calculate them. Anyway, this question is relevant
for IPSO, but not for the other methods described below.

3 Arbitrary residual data with a synthetic
addition

Instead of drawing synthetic data directly from the model,
we may start with an arbitrary data set Yg and add a syn-
thetic matrix to preserve the required information. However,
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since we want to preserve the fitted values, we will only use
the residuals from the arbitrary data set. Then, we generate
synthetic data according to

Yg = Ŷg + Êg (5)

Y∗ = Ŷ + Êg + T∗C (6)

Here we make use of a synthetic T∗ similar to the one gen-
erated in (3). In this case, we will generate T∗ in a manner
that it is orthogonal to both X and Yg . In practice, the QR
decomposition of a composite matrix (27) may be used. The
matrix C is calculated from an equation (see below), but a
solution may not exist.

With reference to the decomposition of Y (2), two impor-
tant special cases of this approach can be expressed as

Y∗ = Ŷ + Ê D + T∗C (7)

Y∗ = Ŷ + T DW + T∗√I − D2W (8)

where D is a diagonal matrix whose i’th diagonal element
(di ∈ [0, 1]) controls how much information from the i’th
column of Ê (7) or T (8) is reused. The first method (7)
was introduced by Muralidhar and Sarathy (2008) and is
described in a different way in their paper. Equation (8) is
written without C since, in that case, the expression for C is
known. The square root of a diagonal matrix means that we
take the square root of each diagonal element. Hence, we cal-

culate new unit score vectors as di Ti +
√
1 − d2i T

∗
i where Ti

denotes the i’th column of T . With a constant term included
in X , it is easy to show that di is a correlation coefficient in
both equations. That is, in (7), for each variable, we control
exactly the correlation between the original and the gener-
ated residuals. And in (8) we control exactly the correlation
between the original score vector and the score vector of the
generated data. Note that if all diagonal elements of D are
set to be equal, (7) and (8) become equivalent.

Using (8) in the cases where all di ’s are either zero or
one, we are keeping some score vectors and simulating oth-
ers. If in addition the decomposition method used in (2) is
SVD, the method is very similar to the one described in
Calvino (2017), where some PCA score vectors are swapped
(randomly permuted). Using swapping instead of the above
simulation leads to an approximate instead of an exact preser-
vation of the covariance matrix. Our approach is also more
general than the one in Calvino (2017) since we allow regres-
sion variables beyond the constant term. Thus, within our
framework, PCA means PCA of residuals. In any case, we
preserve regression fits and preserving some PCA scores is
one way of generating data that are even more similar to the
original data.

Working with PCA score vectors can be very useful when
there are many highly correlated variables, especially when

a few components account for most of the variabilities in
the data. One may want to rotate the components for bet-
ter interpretability, however. Understanding the components
is of particular interest when some variables are considered
more sensitive than others. Then, the correlations (di ’s) can
be specified accordingly. Possible rotation of components
fits into the general framework of this paper. In fact, going
from PCA to QR is a rotation. If the aim is to have good con-
trol of the relationship to a few important y-variables, the QR
approachwould be easier. Onemay choose the column order-
ing of the y-variables to correspond to the importance. Then
d1 is the correlation between the original and the generated
residuals for the first y-variable, similar to (7). Also note that,
when using QR, setting some of the first di ’s equal to one is
equivalent to reclassifying those y-variables as x-variables.
In general, the method based on controlling components (8)
is more reliable than (7) because it avoids the problem of a
possible nonexistent C .

To discuss the calculation of C in general, we will intro-
duce a scalar parameter α and we rewrite Eq. (6) as

Y∗ = Ŷ + α Êg + T∗C (9)

The matrix C can now be found from the equation

CTC = Ê
T
Ê − α2 Ê

T
g Êg (10)

and the Cholesky decomposition may be used to compute
C when possible. An alternative is to find C via the eigen
decomposition (see “Appendix 2”). But a solution may not
exist since negative eigenvalues of the computed right side
can occur (not positive definite).

However, we will present here a way of computing the
largest α that makes the equation solvable. By manipulat-
ing the characteristic eigenvalue equation, it turns out that
the limit is found as the square root of the smallest eigen-

value of Ê
T
Ê(Ê

T
g Êg)

−1. A modification is needed when

(Ê
T
g Êg) is not invertible. One possibility is to find the limit

as the square root of the inverse of the largest eigenvalue of

(Ê
T
Ê)−1 Ê

T
g Êg . The calculation of the limit can be useful

in combination with the method (7) originally described by
Muralidhar and Sarathy (2008). In practice, one may choose
the limit if α = 1 cannot be chosen. Using α < 1 means that
the initial residual data are downscaled. In (7), this means
that all the required correlations are multiplied by α and that
the similarity to the original data is not as high as expected.

4 Using scores from arbitrary residual data

To generate Y∗ in a way that preserves the information with-
out considering its distributional properties, Ys (3) can be
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replaced by anything as long as the residual data have the
desired dimension. Necessary scores can then be computed.
Using an arbitrary data setYg , synthetic data can be generated
by

Yg = Ŷg + Êg = Ŷg + T gWg (11)

Y∗ = Ŷ + T gW (12)

with W as above (2).
A possible application is when Yg is a preliminary data set

in some sense. In particular, the methodology can be used
in combination with another method for anonymization of
microdata. If the result of such a method (Yg) preserves the
information approximately, the method here can be used as
a correction to achieve exactness (Y∗). In such cases, one
would expectY∗ to be close toYg . This is the casewhenQR is
used as the decomposition method in (2), but not necessarily
so when SVD is used. The problem is that SVD is unstable
when the difference between two singular values is small.
Therefore, QR decomposition is preferable.

Another possible application is to combine original and
randomly generated data, and one may generate Yg by

Yg = Y D + Ys (I − D) (13)

using a diagonalmatrix, D, as earlier. Tomake the parameters
in D interpretable in this case, the variables in the randomly
generated data, Ys , should be scaled to have variances similar
to those of the original variables.When all diagonal elements
are close to one this means that Yg is close to Y . Again, it is
important to use QR decomposition to avoid instability.

Since the aim is to generate scores, Yg may be created by
using original scores instead of original data. This is the case
for the ROMM method described below in (17).

5 Random orthogonal matrix masking
(ROMM)

Data generated according to ROMM (Ting et al. 2008) can
be expressed as

Y∗ = M∗Y (14)

where M∗ is a randomly generated orthogonal matrix. As
described by Langsrud (2005), the basic IPSO method in
Sect. 2 can equivalently be formulated as such a ROMM
method with

M∗ = UXUT
X + UE P∗UT

E (15)

where the columns of UX form an orthogonal basis for the
column space of X andUE form an orthonormal basis for the

complement so that [UX UE ] is an orthogonal matrix. The
matrix P∗ is drawn as a uniformly distributed orthogonal
matrix. Ting et al. (2008) stated that all methods that preserve
means and the covariancematrix are special cases of ROMM.
This also holds beyond the only intercept case. Regardless of
the method, as long as the generated data preserve informa-
tion as above, we can always write Y∗ = Ŷ +T∗W = M∗Y
where

M∗ = [
UX T∗ U∗

A

]
[ UX T UA ]T (16)

Here, UA and U∗
A are additional orthogonal columns con-

structed so that the composite matrices are square.
A ROMM approach to generalizing the IPSO method can

be expressed by (15) and by letting P∗ be the result of orthog-
onalizing I + λH where H is a matrix filled with standard
normal deviates. Sincewe are referring to a regressionmodel,
this is an extended version of the method (only intercept)
originally proposed in Ting et al. (2008). However, in that
paper, such an extension is indicated in “Appendix”. The QR
decomposition will be used to orthogonalize I + λH , and
SVD will not work. The identity matrix is obtained when
λ = 0 and the original data are then unchanged. An ordinary
uniformly distributed orthogonal matrix is obtained when
λ → ∞, and thus, we have the IPSO method. Since QR
decomposition is sequential, the diagonal elements of P∗
will have a decreasing tendency to approach one (sequen-
tially phenomenon). This is probably not an intention of the
method. This means that the choice of the basis, UE , mat-
ters. To avoid this phenomenon, a possibility is to generate
the basis randomly. To discuss this further, we look at the spe-
cial case without a constant term or any other x-variables.We
also assume that T has full rank (or is temporary extended to
have full rank). Now it is possible to use P∗ directly as M∗ so
that T∗ = P∗T . Thus, the above sequentially phenomenon
means that the similarity to the original data is highest for
the first observation. Another possibility is to make use of
(15) without UX and with UE = T . Then it follows that
T∗ = T P∗ and now the sequentially phenomenon means
that the similarity to the original data is highest for the first
score vector. Since T is orthogonal, it turns out that we can
perform the QR needed to create P∗ from I + λH after
left multiplication with T . In addition, we have that TH
is distributed exactly like H . That is, we can find T∗ by
orthogonalizing T + λH . If we only need the first columns
of T∗ (others were included temporarily), we can simplify
the method, without changing the result, by only generating
as many columns of H as needed.

The discussion when we have x-variables is similar, but a
little trickier.We need to “work” in the correct subspace. One
possibility is to generate H so that it is orthogonal to X . This
can be performed by left-multiplying a preliminarily gener-
ated matrix by UE . An easier and equivalent approach is to
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generate H straightforwardly and instead enforce orthogo-
nality to X afterward. Thus, we obtain a method that is a
special case of the one in Sect. 4 with

Yg = T + λH (17)

where H is a matrix filled with standard normal devi-
ates. This method is more efficient than generating the
orthogonal matrix, M∗. In particular, in cases with a large
number of observations, ROMM will be very time- and
memory-consuming. Using (11), (12) and (17) now solves
this problem.

Note thatTing et al. (2008) havedescribed anotherROMM
approach that makes use of special block diagonal matrices.
Wewill not discuss this topic in detail. But when IPSO is per-
formed separately within clusters, as described in the section
below, this can be interpreted according to (14) where M∗
is a block diagonal matrix where the blocks are independent
random orthogonal matrices.

6 Generalizedmicroaggregation

A particular method for statistical disclosure control is
microaggregation (Domingo-Ferrer and Mateo-Sanz 2002;
Templ et al. 2015). Then, a method is first used to group the
records into clusters. The aggregates within these clusters are
released instead of the individual record values. Equivalently,
the microdata records can be replaced by averages within the
clusters.

The clustered data can also be the starting point for the
IPSO method in Sect. 2, and one may proceed in two ways:

MHa: Run the IPSO procedure separately within each clus-
ter.

MHb: Add dummy variables to X corresponding to the clus-
tering before running IPSO.

The first method is described by Domingo-Ferrer and
Gonzalez-Nicolas (2010) as a hybrid method that combines
microaggregation with generation of synthetic data. The
notation, MHa, is chosen since this method is known as
MicroHybrid. The alternativemethod introduced here,MHb,
is also useful in combination with microaggregation. In both
methods, sums within clusters, the overall fitted values and
the overall sample covariance matrix are preserved. In MHa,
the fits and the covariance matrix estimates within each clus-
ter are also preserved. An extended variant of MHb is to
cross all the original x-variables with the clusters. Then all
the fits will be preserved within clusters, but not the covari-
ance matrix estimates.

To discuss this more generally, we will present an algo-
rithm in which some regression variables are crossed with

clusters and some are not. For this purpose, we assume two
data matrices of x-variables, XA and XB . Thematrix XA con-
sists of all the variables to be crossed with clusters (including
the intercept). As before, we let X denote the full regression
model matrix. We will now extend and partition this matrix
as

Xext = [ X X3 ] = [ X1 X2 X3 ] (18)

– X1 is the regression variable matrix obtained by crossing
XA with clusters.

– X2 contains XB adjusted for (made orthogonal to) X1.
– X3 contains the regression variable matrix obtained by
crossing XB with clusters followed by adjustment for X1

and X2.

Fitted values obtained by regressing Y onto X and the
corresponding residuals are two orthogonal parts of Y .
According to (18), we also divide each of these parts into
two orthogonal parts.

Y = Ŷ + Ê =
(
Ŷ1 + Ŷ2

)
+

(
Ê3 + Ê4

)
(19)

Here Ŷ1, Ŷ2 and Ê3 are the regression fits obtained by using
X1, X2 and X3, respectively.

Performing computations via X will be very inefficient
when we have several variables, observations and clusters.
We also want to (partly) preserve the covariance matrix
within clusters. Therefore, some of the computations will
be performed within clusters, and in the following, we will
call this the local level. As opposed to globally, locallymeans
that we perform the computations by looping through all the
clusters. In particular, we can compute the fitted values Ŷ1
locally, and then, we can use the original matrix XA and will
not need X1. Above, X2 was made orthogonal to X1. In this
case, it does not matter whether we do the orthogonalization
globally or locally. In the algorithm below, we perform this
computation locally using XA instead of X1. As mentioned
above, the regression fits obtained by using X2 globally are
contained in Ŷ2. If we instead use X2 to compute regression
fits locally, the result is Ŷ2ext = Ŷ2 + Ê3. This means that
we have sketched how to calculate the four parts in (19). In
order to compute synthetic data, this will be combined with
computations on simulated data. We can use the following
algorithm for all the computations:

1. Globally simulate a datamatrixYs with the same dimen-
sion as Y .

2. Locally calculate Ŷ1, Ŷs1 and X̂B by regressing Y , Ys
and XB onto XA.

3. Locally calculate X2 = XB − X̂B .
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4. Locally calculate Ŷ2ext and Ŷs2ext by regressing Y and
Ys onto X2.

5. Locally calculate Ê4 = Y − Ŷ1 − Ŷ2ext and Ês4 =
Ys − Ŷs1 − Ŷs2ext.

6. Locally decompose Ê4 = T4W4 and Ês4 = Ts4Ws4

and calculate Ê
∗
4 = Ts4W4.

7. Globally calculate Ŷ2 and Ŷs2 by regressing Y and Ys
onto X2.

8. Globally calculate Ê3 = Ŷ2ext − Ŷ2 and Ês3 = Ŷs2ext −
Ŷs2.

9. Globally decompose Ê3 = T3W3 and Ês3 = Ts3Ws3

and calculate Ê
∗
3 = Ts3W3.

10. Globally calculate Y∗ = Ŷ1 + Ŷ2 + Ê
∗
3 + Ê

∗
4.

In addition to this main algorithm, we will discuss five
possible modifications.

(a) Drop item 6 and replace item 9 by: Locally decompose
Ê3 + Ê4 = TW and let Ê

∗
4 = Ts4W and set Ê

∗
3 = 0.

(b) Drop item 6 and instead after item 9: Find locally Ê
∗
4 =

Ts4C where the matrix C satisfies CTC = Ê
T
4 Ê4 +

Ê
T
3 Ê3 − Ê

∗T
3 Ê

∗
3. This is similar to (6).

(c) This is a generalization with (a) and (b) as special cases.
Drop item 6 and modify item 9 by Ê

∗
3 = αTs3W3 and

find Ê
∗
4 as in (b). This is similar to (9).

(d) If we have groups of clusters, we may want some of the
variables in XB to be crossed with these groups. At the
beginning of the algorithm, we then replace XB with a
model matrix that contains such crossing.

(e) If the clusters are partitioned into smaller pieces, we
may want some of the variables in XA (maybe only the
constant term) to be crossed with these pieces. Before
item 2 in the algorithm, we will then locally replace XA

with a model matrix that contains crossing with pieces
that are present in the actual cluster.

The main algorithm preserves the fitted values (or regres-
sion parameters). However, the covariance matrix is parti-

tioned into two terms, Ê
T
3 Ê3 + Ê

T
4 Ê4. The last term is

preserved at the local level, but the first term is only pre-
served at the global level. In the special case, where XB is
empty, the main algorithm simplifies to MHa and Ê3 van-
ishes.

When XB is not empty, we can use modification (a), (b)
or (c) to preserve the covariance matrix at the local level.
In (a), we have a side effect regarding the parameter esti-
mates corresponding to XB . They are preserved globally as
required, but within each cluster these parameter estimates
have become identical to the global estimate. This may or
may not be a required property. Modification (b) avoids this
property.Withmany variables in XB and/or few observations
in each cluster, modification (a) or (b) may not be possible.

An extra problem in (b) is that thematrixC may not be found.
In cases where (a) is possible but not (b), one may choose
(c). Within each cluster, it is possible, using the method in
Sect. 3, to compute the largest α that makes it possible to
find C. The final α can be chosen as the smallest of all these
values.

Using modification (d), we are only changing the input.
Thismethod can be a compromise if one is uncertain whether
a variable should belong to XA or XB .

Modification (e) is especially useful if wewant to preserve
means in groups that are too small to be used as clusters. In
practice, modification (e)may also be used in the special case
of a single cluster. Then XB is not needed and the method
simplifies to MHb. The covariance matrix is only preserved
at the top level.

Modifications (d) and (e) can be combined, and they can
also be combined with (a), (b) or (c). All in all, themain algo-
rithm with the possibility of the modifications is a flexible
approach for generating hybrid microdata within the context
of microaggregation.

We will now exemplify the methodology by discussing
scenarios where the general methodology may be used in
different ways, including the five modifications. We assume
business data where Y consists of sensitive continuous eco-
nomic variables such as employment expenses and taxes.
We have several categorical non-sensitive variables such as
region, industry group and employment size classes. We will
refer to the latter categorical variable as KESC. The data can
be subjected to microaggregation with clusters created from
the non-sensitive variables. We assume that this is performed
in such a way that KESC is unique within each cluster. Syn-
thetic data can be generated by the IPSOmethod in twoways:
MHa and MHb, as described at the beginning of this section.
In both cases, XB is empty. When MHa is used, XA contains
the intercept. The other variant, MHb, means that input to the
method is a single cluster and that XA contains dummy vari-
ables corresponding to the microaggregation clustering. The
choice between MHa and MHb is a question of whether one
wants to reproduce the cluster specific covariances or not. If
the variability in some clusters is very low, the synthetic data
will be close to the original data in those clusters when MHa
is used. When MHa is used, a very high correlation between
some sensitive variables in some clusters will also be repro-
duced. To avoid this property, method MHb may be chosen
instead.

Now assume that the exact number of employees, NESC,
is a non-sensitive variable. Then, one objective might be
to preserve the correlations (or equivalently regression fits)
between NESC and the sensitive variables. This could be per-
formed by including NESC in XA even though KESC is already
a variable used within the microaggregation clustering. This
way of doing it is still a possibility within MHa since IPSO,
in general, can include x-variables (beyond the intercept).
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This means that the correlations to NESC will be preserved
within each cluster. If one company has a value of NESC very
different from the others in a cluster, the sensitive values of
this company will influence the correlations a lot and another
method may be preferred. One possibility is to include NESC
in XB instead. The correlations between NESC and the sensi-
tive variables will be preserved, but not within each cluster.

A possibility between including NESC in XA and includ-
ing NESC in XB is to preserve the correlations within
each employment size class (each KESC category). Since
the employment size classes are groups of clusters, this
means that we use modification (d). A related method is
to use the employment size classes as the clusters within
the method and include NESC in XA. Again the correlations
are preserved within the employment size classes. This time
covariances of the sensitive variables are preservedwithin the
employment size classes, but notwithin the originalmicroag-
gregation clustering. We can still preserve the means within
themicroaggregation clusters by usingmodification (e). This
means that the original microaggregation clusters are cluster
pieces within the description of (e).

Modifications (a), (b) and (c) are relevant when XB is in
use. This was the case in the example above when NESC was
included directly in XB andwhenmodification (d)was in use.
In these cases, the standard method does not preserve covari-
ances exactly within each cluster (as required), but this can
be achieved by means of (a), (b) or (c). In the case of (a), this
means that the relations, in terms of regression coefficients,
between NESC and the sensitive variables are made identical
in each cluster. The data may seem strange, because identical
regression coefficients will never occur in real data. There-
fore, the method is probably not preferable and one would
prefer (b). Since relations are preserved at the global level,
there is some information about this in each cluster.When (b)
is used, one can imagine that someone may misunderstand
this and may use the data to analyze how relationships differ
between clusters. Method (a) will prevent someone publish-
ing misleading results about differences. Although method
(b) is the preferable choice, method (b) may not be possible
and (c) is chosen instead.

At the end of this section, we note that an alternative
approach is to set all the residuals to zero. If we consider
only intercepts in XA and XB , we obtain ordinary microag-
gregation. The original values are replaced by means within
clusters. Beyond the only intercept cases, we obtain a form
of generalized microaggregation which, in some cases, can
be a useful alternative to ordinary microaggregation. Based
on the above exemplification, one could imagine including
NESC in XA or XB . One reason could be as follows. Suppose
many users always divide all numbers by NESC to obtain per
employee data. From their perspective, it would be better
to divide all data by NESC before microaggregation so that
means per employee are preserved within clusters. Produc-

Table 1 Example frequency table where cells to be suppressed are
marked with *

col1 col2 col3 col4 Total

row1 3* 11* 32 30 76

row2 1* 9* 13* 8 31

row3 12 22 2* 2* 38

row4 18* 19 16 3* 56

Total 34 61 63 43 201

ing two data sets is not an alternative, but including NESC in
the method may be a solution. Means per employee will be
closer to the truth at the same time as ordinary means are
preserved.

7 Suppressed tabular data

It is possible to combine the IPSO methodology in Sect. 2
with statistical disclosure control for tabular data. As
described in Sect. 6, X may be composed of dummy vari-
ables corresponding to a categorical variable. Sums within
the categories will then be preserved. Instead of just a single
categorical variable, we may have several variables, which
can be used to tabulate the data in various ways. When play-
ing around with which dummy variables are to be included
in X , one is playing around with which sums are to be pre-
served. Thus, we can include in X only those variables that
correspond to cells that are found to be safe by means of a
cell suppression method.

Instead of using microdata as a starting point, we can use
the sums obtained by crossing all the categorical variables
(cover table). This often means that most of the input data
are preserved and only some new data are generated (the sup-
pressed cells). In the following, we apply the methodology to
cell frequencies as a y-variable. Even if all the original val-
ues are counts, we will generate synthetic values that are not
whole numbers. As will be discussed, this can be considered
as a nice property.

An example of a frequency table is given in Table 1. We
assume that values below 4 cannot be published. This means
that five cells in the table are primarily suppressed. To prevent
the possibility of these values being calculated from other
cell values, four additional cells are secondarily suppressed.
These additional cells are found using cell suppression
methodology. Here we have 16 inner cell frequencies (totals
excluded) and 16 publishable cell frequencies (suppressed
cells excluded).

Generally, we let Y be n × k consisting of all the n inner
multivariate cell elements in a cover table. Furthermore, we
let Z be m × k consisting all the m multivariate elements of
the publishable cells.

123



Statistics and Computing (2019) 29:965–976 973

We focus in particular on the univariate special case (k =
1) where the values are frequencies. In Table 1, we have
n = m = 16.

Obviously Z can be calculated from Y and this can be
performed via a n × m dummy matrix X :

Z = XTY (20)

We have one column in X for each publishable cell. Each
publishable cell is either an inner cell or a sum of several
inner cells. In the first case, this means that the corresponding
column of X has only one element that is one (others are
zero). By regressing Y onto X , we can calculate fitted values
by

Ŷ = X
(
XT X

)†
XTY = X†T XTY = X†T Z (21)

Since the columns of X are collinear, we use the Moore–
Penrose generalized inverse here (see “Appendix 2”). It is
clear that the fitted values can be calculated directly from the
published cell values. We also have that Z is preserved in the
sense that Z = XT Ŷ . Many elements of Y are also elements
of Z, and they are reproduced exactly in Ŷ . Elements of Y
that are suppressed are replaced in Ŷ by estimates computed
from the publishable cells. Estimates of possible suppressed
cells not included in Y can be calculated from Ŷ . To be more
specific, we extend (20) to all elements and not only the
publishable ones and let ZAll = XT

AllY . Now we can compute
corresponding estimates by

ẐAll = XT
AllŶ (22)

Even though the starting point is different from ordinary
regression, synthetic data can be generated by the same
method. The IPSO method in Sect. 2 preserves XTY and
Y TY . We can generate synthetic residuals, Ê

∗
, to obtain

Y∗ = Ŷ + Ê
∗
. Then the synthetic variant of ZAll is

Z∗
All = XT

AllY
∗ (23)

It is worth noting that

– The method can be simplified by working with reduced
versions of Y and X . Rows corresponding to publishable
cells can be removed, and then, redundant columns of X
can also be removed.

– If preserving the covariance matrix is not a requirement,
the fitted values (Ŷ and ẐAll) can be an alternative to
synthetic values.

Now we will look at the example in Table 1. All the sup-
pressed cells are inner cells, and therefore, when considering
generated values, we can refer to Ŷ and Y∗. These values are

Table 2 Suppressed values of the example frequency table and corre-
sponding generated values

(row,col) Y Y∗ Ŷ Ŷmod4 Ŷmod10

(2,1) 1 11.1562 4.5217 0.8696 4.0870

(3,3) 2 9.3549 6.6957 1.8261 2.7826

(3,4) 2 −5.3549 −2.6957 2.1739 1.2174

(1,1) 3 0.1986 4.1739 2.9565 0.6957

(4,4) 3 10.3549 7.6957 2.8261 3.7826

(2,2) 9 6.1986 10.1739 8.9565 6.6957

(1,2) 11 13.8014 9.8261 11.0435 13.3043

(2,3) 13 5.6451 8.3043 13.1739 12.2174

(4,1) 18 10.6451 13.3043 18.1739 17.2174

shown in Table 2. The underlying Ê
∗
was generated in the

ordinary way.
When variance is not important, Ŷ may be used. However,

these values are quite far from the true values. One may
wish for values that are closer to the truth and still safe. One
possibility is to do the calculations after a modulo operation.
With 10 as the divisor, this means that we only consider the
last digit of the suppressed values as unsafe. In our example,
this means that we replace the largest unsafe values, 11, 13
and 18, by 1, 3 and 8. After the calculations, 10 is added
back to these cells. The fitted values obtained in this way are
presented in the last column in Table 2. Since the starting
point was that all values below 4 were unsafe, one may try
4 as the divisor. However, in this case, this results in model
fits that are very close to the truth. In fact, the true value is
the closest integer in all cases.

Note that if one combines the modulo operation with
ordinary generation of synthetic values, the variance of the
original values will not be preserved. A solution is to scale
the residuals by a constant to achieve the required variance.
Even if correct variance is not important, synthetic residuals
may still be added. One reason is to increase the differences
from the truth. Another reason is to ensure that none of the
generated values arewhole numbers. Then, a linear combina-
tion of synthetic values using integer coefficients cannot be
a whole number unless it is possible to rewrite the combina-
tion as a combination of publishable values (whole numbers).
Have in mind that the columns XAll are linearly dependent
so that linear combinations can be written in several ways.

Table 3presents the results fromamethod thatmaybeused
in practice. The modulo 10 method is used, and the ordinary
residuals are downscaled by a factor of 10. In general, if we
replace the original suppressed values by values generated
in a manner that includes synthetic residuals, we have the
following characteristics.
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Table 3 Example frequency table with decimal numbers in place of
suppressed values

col1 col2 col3 col4 Total

row1 0.4449 13.5551 32 30 76

row2 4.2102 6.4449 12.3449 8 31

row3 12 22 2.6551 1.3449 38

row4 17.3449 19 16 3.6551 56

Total 34 61 63 43 201

1. The values of all the publishable cells are unchanged.
In particular, the values add up correctly to all totals
and subtotals. In practice, however, we need to take into
account numerical precision error.

2. The values of all the suppressed cells, including possible
subtotals, will not be whole numbers. Obtaining a value
as close to a whole number as the level of the numerical
precision error is very unlikely.

3. If a suppressed cell value is a whole number, this means
that the suppression algorithm has failed. This can be
verified by rerunning the random generation part.

4. Assuming a successful suppression algorithm, any sum
of values resulting in a whole number is a true and pub-
lishable value.

5. Negative values may be generated.
6. After cell suppression and generation of decimal num-

bers, only the inner cells may be stored. Various totals
can be calculated when needed.

7. The methodology can be used when several variables are
involved (not only cell frequency). The ordinary method
(no modulo and ordinary residuals) may then be pre-
ferred.

Asmentioned above, one reason to generate decimal num-
bers may be to generate values to be stored. They may never
be shown and only used technically.After computation of any
requested totals, the whole numbers may be shown and other
numbers hidden. In practice, a numerical precision limit is
needed to define whole numbers. Another reason to gener-
ate decimal numbers is to give more information to users.
Without using the modulo method, there is no extra informa-
tion in fitted values than is already hidden in the published
cells. Methods that assume positive integers and produce
lower and upper bounds will provide more precise informa-
tion about what is hidden in the data. However, presenting
intervals is more complicated and precise information may
not be the goal. Appropriate information may be achieved
by combining the modulo method and scaling of residuals.
A third reason to use the approach presented here may be
to control the result of the suppression method. Suppress-
ing linked tables can be especially challenging (de Wolf and
Giessing 2009), and not all algorithms guarantee protection.

Whenworkingwith linked tables, we need to include all cells
from all tables in ZAll. A fourth reason to calculate decimal
numbers is to permit calculation of arbitrary (user defined)
sums of cells afterward. A sum not included in the suppres-
sion method may be publishable even if suppressed cells are
involved.

The fitted values contain only information available from
publishable cells. When variance is preserved, a piece of
information is provided about the suppressed cells and this
may be a reason to scale the residuals. One problematic spe-
cial case to be aware of is when the rank of X is n − 1.
Normally, the generated score vectors of unit length underly-
ing Ê

∗
are randomly orientated in the subspace orthogonal to

the column space of X . But in this special case, the dimension
of this subspace is one. Thus, given preserved variance, ± Ê
are the only two possible instances of Ê

∗
. This is typically a

problem in small example data sets and not in applications.
In the example here, the subspace dimension is two and this
problem is avoided.

To summarize, without using the modulo method and
using residuals scaled in a manner unknown to the user,
replacing ordinary suppression (missing value) with decimal
numbers releases no extra information. Decimal numbers
may, however, be a user-friendly alternative. Switching to
modulo should be performed with care as the method has not
been thoroughly studied.

8 Concluding remarks

This paper has focused on information preserving regression-
based methods, which belong to the area of synthetic and
hybrid data. Such an approach to protecting microdata is
sometimes preferred, but in many applications other meth-
ods are used. In the area of statistical disclosure control,
insight into the described methodology is useful regard-
less. Innovative tools are often created by combining aspects
of several methods. In the present paper, combined meth-
ods are described in Sects. 6 and 7. In both cases, another
method is utilized before data are generated by the synthetic
data methodology. In the former case, clusters according to
microaggregation are made and in the latter case table sup-
pression is performed.

Since a requirement for all the methods treated in this
paper is to preserve fitted values, these methods are mostly
about how to generate residuals. In some cases, an alternative
is to set these residuals at zero. Then we are replacing all
the original data with deterministic imputations (in the sense
opposed to random imputations).We discussed this approach
in Sects. 6 and 7.

Regression-based methods have been criticized for not
being able to deal with data with outliers in a satisfactory
way (Templ and Meindl 2008). This criticism can be met by
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combining methods. As with other techniques (Templ and
Meindl 2008), one can start by dividing the data into outly-
ing and non-outlying observations. Thereafter, one proceeds
by generating data within each group. One may use method-
ology described in this paper in either group or only in the
non-outlying observation group. In the case of both groups,
we can say that such methodology is already covered by the
general description in Sect. 6.

The contribution of this paper has mainly been to describe
and develop methods in a concise and interpretable way.
Several questions arise concerning the performance of the
methods and which method to prefer in specific situations.
A wide-ranging comparison of the methods is beyond the
scope of the present paper, but studies and performance
comparisons can be found in the underlying references. The
characteristics of the methods are different, and the preferred
choice would depend on the situation.

However, if we limit the discussion to non-combined
methods (Sects. 2–5), we can make some reflections. The
IPSO method is the basic method to be used when the aim
is only to preserve variances, covariances and fitted values.
Technically, performing the computations via QR decompo-
sition is faster than using SVD. Methodology that controls
the relationship with the original data by means of a single
parameter is easy to understand. The IPSO method and the
original data are thus the two extremes. One such method is
obtained with all diagonal elements equal in (7) or (8). These
two equations are then equivalent. This method is elegant,
and exact control is obtained. Furthermore, this method is a
special case of the one described in Muralidhar and Sarathy
(2008). An easy and efficient implementation is obtained by
(8) and QR decomposition. It is also easy adjustable, so that
the relationship with some x-variables can be controlled bet-
ter. However, the methodology in Sect. 3 makes use of new
scores generated under certain orthogonality restrictions. In
cases with many variables and few observations, this may be
impossible. The single parameter ROMM method may then
be an alternative. This method is efficiently implemented by
(11), (12) and (17) which utilize the theory in Sects. 4 and 5.

Appendix 1: Generalized QR decomposition

The QR decomposition of a n ×m matrix A with rank r can
be written as

A = QR (24)

where Q is a n× r matrix whose columns form an orthonor-
mal basis for the column space of A. This decomposition can
be viewed as the matrix formulation of the Gram–Schmidt
orthogonalization process. The Cholesky decomposition of
ATA can be read from the QR decomposition of A as RTR.

In this paper, in order to allow linearly dependent columns
of A (r < m), we refer to a generalized variant of QR decom-
position. In such cases, a usual decomposition (Chan 1987)
is

AP̃ = QR̃ (25)

where P̃ is a permutation matrix that reorders the columns
(pivoting) in order tomake a decomposition so that R̃ is upper
triangular.

To make the decomposition unique, we require the diago-
nal entries of R̃ to be positive. Furthermore, we require P̃ to
keep the order of the columns as close to the original order

as possible (minimal pivoting). We now have A = QR̃ P̃
T

and in generalized QR decomposition (24) we use

R = R̃ P̃
T

(26)

The QR decomposition of a composite matrix can be writ-
ten as

[A1 A2] = [
Q1 Q2

] [
RT
1 RT

2

]T
(27)

Now Q1 can be computed by QR decomposition of A1. The
matrix Q2 can be computed by QR decomposition of A2 −
Q1Q

T
1 A2, which is the residual part after regressing A2 onto

A1.

Appendix 2: The singular value decomposi-
tion

The singular value decomposition (SVD) of a n × m matrix
A with rank r can be written as

A = UΛV T (28)

whereΛ is a r×r diagonal matrix of strictly positive singular
values in descending order. This is the rank-revealing version
of the decomposition (Demmel et al. 1999). Other variants
of SVD allow some singular values to be zero, but these can
be omitted. The columns of U form an orthonormal basis
for the column space of A and the columns of V form an
orthonormal basis for the row space.

The singular values are the square root of the eigenvalues
of ATA and AAT . The eigen decompositions of these two
symmetric matrices can be read directly from the SVD of A
as VΛ2V T and UΛ2UT . It is also worth mentioning that an
alternative to the ordinary Cholesky decomposition, ATA =
RTR, is to let ΛV T play the role of R.

To make the SVD unique, we can require all column sums
of V to be positive. In cases with equal singular values, the
decomposition is not unique regardless.
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There is a close relationship between SVD and PCA. In
PCA, the variables are usually centered to zero means and in
many cases standardized to equal variances prior to decom-
position. If A is such a centered/standardized matrix, then
UΛ is the matrix of PCA scores and V is the matrix of PCA
loadings.

TheMoore–Penrose generalized inverse of A can be writ-
ten as

A† = VΛ−1UT (29)

We have

A† = (AT A)†AT = AT (AAT )† (30)

When A is invertible, A† = A−1. When AT A or AAT is
invertible, this means, respectively, that A† = (AT A)−1AT

or A† = AT (AAT )−1.
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