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Abstract
The present paper develops a probabilistic model to cluster the nodes of a dynamic graph, accounting for the content of
textual edges as well as their frequency. Vertices are clustered in groups which are homogeneous both in terms of interaction
frequency and discussed topics. The dynamic graph is considered stationary on a latent time interval if the proportions of
topics discussed between each pair of node groups do not change in time during that interval. A classification variational
expectation–maximization algorithm is adopted to perform inference. A model selection criterion is also derived to select
the number of node groups, time clusters and topics. Experiments on simulated data are carried out to assess the proposed
methodology. We finally illustrate an application to the Enron dataset.

Keywords Dynamic random graph · Model based clustering · Stochastic block model · Topic modeling · Latent Dirichlet
allocation

1 Introduction

One of the main goals in network analysis consists in clus-
tering the nodes of a graph into groups of homogeneous
interactivity behavior. The clustering techniques can be used
to study various types of data recorded, namely the pres-
ence/absence of interactions between nodes, the frequency
of such interactions, the number of neighbors of nodes, etc.
However, the increasing volume of communication in social
networks such as Linkedin, Twitter and Facebook, has being
motivating researches on new techniques accounting for both
the graph connectivity and the textual contents on the edges.
When dealing with time evolving networks, it is of interest to
be able to detect deep changes in the graph structure (struc-
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tural changes) that can affect either the groups composition
or the way existing groups interact. As shown in this paper,
a joint analysis of both the text contents and the interaction
dynamics can provide important insights.

1.1 Statistical approaches for dynamic network
analysis

The interactions between nodes are assumed to occur over
the time interval [0, T ], each interaction being represented
by a triplet (i, j, u) if i connects with j at time u ≤ T . Such
datasets are considered in Guigourès et al. (2012, 2015) and
Corneli et al. (2018) to develop probabilistic models to group
the vertices into time invariant groups and to detect change
points in the graph structure.

Although this continuous time approach has the advan-
tage of preserving time information (e.g. the exact order in
which interactions occur), statistical models in dynamic net-
work analysis are usually in discrete time: a time partition up
to time T is considered and interactions are aggregated on
the time intervals of such partition to obtain a sequence of
static graphs. In the binary case, for example, two nodes are
connected if an interaction between them occurs in the corre-
sponding time frame. Notice that, following this approach, a
dynamic graph is synonymous of sequence of static graphs.
In such a framework, several clustering methods have been
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proposed, based on the stochastic block model (SBM, Wang
and Wong 1987; Nowicki and Snijders 2001). This model
assumes that the vertices are clustered in hidden groups and
that the probability of interactions between two nodes only
depends on the clusters they belong to. Yang et al. (2011)
proposed a dynamic extension of SBM, allowing nodes to
switch from their cluster at time t to another cluster at time
t + 1, according to a transition probability matrix. Hence,
the stochastic process that assigns one node to a group, at
each time step, is an homogeneous Markov chain. An alter-
native approach, based on non-homogeneous Markov chains
is proposed in Xu and Hero III (2013). The two approaches
described so far are generalized in Matias and Miele (2017).
Moreover, in their paper, they also show that restrictions on
the connectivity behaviour of groups are needed to ensure
parameter identifiability. Two dynamic extensions of SBM,
relying on conditional non-homogeneous Poisson processes
(NHPPs) were independently developed by Matias et al.
(2015) andCorneli et al. (2016a). The former introduced con-
ditionally independent NHPPs to count interactions between
all pair of nodes in a dynamic graph. Nodes are clustered in
hidden, not time-varying groups and the intensity functions
of the NHPPs only depend on the groups of the corre-
sponding pair of nodes. The authors relied on a variational
expectation–maximization algorithm (VEM) to cluster ver-
tices and proposed two non parametric techniques to estimate
the intensity functions of the NHPPs. In order to avoid
over-fitting problems, a further hypothesis is introduced in
Corneli et al. (2016a). They assume that the Poisson intensity
functions associated with each pair of nodes are piecewise
constant on hidden time clusters that are common to the
whole graph. In that paper, the inference procedure to cluster
both nodes and time intervals relies on a greedy maximiza-
tion of the exact-ICL (see Biernacki et al. 2000; Côme and
Latouche 2015). It also allows them to select the number of
clusters and time clusters.

We finally review some important contributions to cluster
analysis (and sometimes change point detection) in dynamic
graphs based on probabilistic models alternative to SBM.
The dynamic random subgraph model (dRSM, Zreik et al.
2017) extends the RSMmodel (Jernite et al. 2014) to uncover
time varying clusters of nodes within subgraphs provided
a priori. The generalized hierarchical random graph model
(GHRG, Peel and Clauset 2014) decomposes the vertices of
a graph into a series of nested groups, whose relationships
are represented in a dendrogram where the original nodes
are the leaves and the probability of interaction between two
nodes is located at their lowest common ancestor. Moreover,
the authors developed a statistical test to detect structural
changes in the dynamic network based on a sliding window
of fixed length and the posterior Bayes factor (Aitkin 1991).
The temporal exponential random graph model (TERGM)
of Hanneke et al. (2010) generalizes the exponential ran-

dom graph model (ERGM) (see Robins et al. 2007, for
instance), which is often considered in real applications. In
this framework, the evolution of the graph snapshots is mod-
eled through a Markov chain whose transition probabilities
depend on some user-defined functions. A similar technique
is adopted byKrivitsky andHandcock (2014)who introduced
an hypothesis of separability (i.e. conditional independence)
between appearing and disappearing connections in two con-
secutive snapshots of a dynamic graph. This assumption
justifies the name separable TERGM (STERGM) and allows
the model to gain in ease of specification and tractability.
Finally, the popular latent position model (LPM, Hoff et al.
2002) and latent position cluster model (LPCM, Handcock
et al. 2007) were also extended by Sarkar and Moore (2005),
Friel et al. (2016) and Sewell and Chen (2015, 2016) to deal
with dynamic, binary or weighted interactions. In a recent
work, Durante et al. (2016) allow the node coordinates to
evolve in continuous time, via nested Gaussian processes, in
order to account for non stationarity in real networks.

1.2 Statistical approaches for the joint analysis of
texts and networks

Among probabilistic methods for text analysis, the latent
Dirichlet allocation (LDA, Blei et al. 2003) is quite popu-
lar. The basic idea of LDA is that documents are represented
as random mixtures over latent topics, where each topic is
characterized by a distribution over words. The topic pro-
portions are assumed to follow a Dirichlet distribution. The
author-topic (AT, Steyvers et al. 2004; Rosen-Zvi et al. 2004)
and the author-recipient-topic (ART, McCallum et al. 2005)
models partially extend LDA to deal with textual networks.
Although providing authorships and information about recip-
ients, thesemodels do not account for the graph structure, e.g.
the way vertices are connected. A first attempt to take into
account the graph structure, along with the textual content of
edges is due to Zhou et al. (2006). The authors propose two
community-user topic (CUT) models: CUT1, modeling the
communities basedon thegraph structure only and theCUT2,
modeling the communities based on the textual informa-
tion alone. More recently, Pathak et al. (2008) extended the
ARTmodel by introducing the community-author-recipient-
topic (CART) model. In this context, authors and recipients
are assigned to latent communities and they are clustered
by CART based on homogeneity criteria, both in terms of
graph structure and textual content. Interestingly, the nodes
are allowed to belong to multiple communities and each
pair of nodes is associated with a specific topic. Although
flexible, the models illustrated so far rely on Gibbs sam-
pling for the inference procedure, which can be prohibitive
when dealing with large networks. An alternative model, that
can be fitted via variational EM inference, is the topic-link
LDA (Liu et al. 2009) performing both community detection
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and topic modeling. This model employs a logistic transfor-
mation based on topic proportions as well as author latent
features. A family of 4 topic-user-community models was
proposed by Sachan et al. (2012). These models, accounting
for multiple community/topic memberships, discover topic-
meaningful communities in graphs with different types of
edges. This is of particular interest in social networks like
Twitter where different types of interactions exist: follow,
tweet, re-tweet, etc.

In order to overcome the limitations of previous meth-
ods in terms of scalability and flexibility, Bouveyron et al.
(2016) proposed the stochastic topic block model (STBM)
alongwith an inference procedure. This approach can exhibit
node partitions that are meaningful both regarding the graph
structure and the topics, in directed and undirected graphs.
The graph structure analysis relies on SBM, allowing the
model to recover a large variety of topological structures (see
Latouche et al. 2012, for SBM clustering properties) whereas
the textual analysis relies on LDA, allowing the model to
characterize the construction of documents. The inference
procedure is based on an original classification variational
EM algorithm.

1.3 Goals and outline of this paper

In this paper, we aim at analysing dynamic graphs, i.e.
sequences of static graphs, where interactions between nodes
involve text data. The starting point is the STBM model of
Bouveyron et al. (2016) and we extend it to the dynamic
framework. In order to motivate the approach described in
the following sections, we rely on the Enron communication
network: a popular data set containing the e-mail exchanges
between 149 employees of the American company. The orig-
inal dataset is available at http://www.cs.cmu.edu/~./enron/
and covers the time horizon 1999–2002. In Bouveyron et al.
(2016), the authors report their analysis of the Enron net-
work on the period September, 1st to December, 31th, 2001.
In particular, they aggregate the data over the whole time
horizon, by coercing all the messages sent from one individ-
ual to another in a single meta-message, by concatenation.
Thus, a static graph is obtained: if an edge between node i
and node j is present then a single meta-message is associ-
ated to it. However, the considered time horizon contains the
following three key dates:

1. September, 11th, 2001: the terrorist attacks in the USA.
2. October, 31st, 2001: the Securities and Exchange Com-

mission (SEC) opened an investigation for fraud concern-
ing Enron.

3. December, 2nd, 2001: Enron failed for bankruptcy,
resulting in more than 4000 jobs lost.

As we shall see these sudden shocks induced a change in the
way the employees communicated with each other. Hence,
aggregating over the whole time horizon leads to a signif-
icant loss of information. In order to tackle this issue, a
possible solution is to aggregate the data over smaller time
intervals like days, weeks, etc. Thus, a time series of graphs
is obtained and it is possible to cluster graphs/time intervals
with specific parameters. The idea is to model the way exist-
ing groups interact with each other through time in order to
answer questions like: how/when does the frequency of the
exchanged emails between two groups change? What is the
main topic of the emails between two groups? Does the main
topic change? When? Section 2 describes a new statistical
model, called dynamic STBM (dSTBM) trying to answer
the questions above. The inference of the model parameters
and the model selection (numbers of node/time clusters and
number of topics) are discussed in Sect. 3. Section 4 focuses
on experiments on simulated data to highlight the main fea-
tures of the proposed approach. Finally, Sect. 5 goes back
to the Enron communication network, which is analysed by
fitting dSTBM to the data.

2 The dynamic STBM (dSTBM)

In the first part of this section we detail a generative model
for the interactions between nodes of a dynamic graph. Then,
in the second part, we describe a generative model for the
textual content associated with graph edges. The last part of
this section links the proposed methodology to the existing
literature.

2.1 Dynamic modeling of edges

A dynamic graph consisting in instantaneous interactions
betweenM nodes, over the time interval [0, T ], is considered.
Interactions are directed and self loops are not allowed. In a
block modeling perspective, nodes are assumed to belong to
Q hidden groupsA1, . . . ,AQ , whose number has to be esti-
mated (see Sect. 3). Let Y be an hidden M-vector denoting
node memberships (Yi = q iff node i is in cluster Aq ). A
multinomial probability distribution is attached to Y

p(Y |ρ) =
Q∏

q=1

ρ
|Aq |
q ,

where ρq := P{Yi = q}, ∑Q
q=1 ρq = 1 and |Aq | is the num-

ber of nodes in cluster Aq . In the following, the zero-one
notation (Yiq = 1 if node i is in cluster Aq , zero otherwise)
will be used interchangeably,whenno confusion arises. Inter-
actions from node i to node j are assumed to be counted by
a non homogeneous Poisson process (NHPP) {I Di j (t)}t≤T

123

http://www.cs.cmu.edu/~./enron/


680 Statistics and Computing (2019) 29:677–695

whose intensity function, λi j (t), positive and integrable on
[0, T ], only depends on the clusters of the two nodes

I Di j (t)|YiqY jr = 1 ∼ P
(∫ t

0
λqr (u)du

)
,

for t ≤ T . The M × (M − 1) NHPPs, associated with all
different pairs (i, j), are assumed to be independent condi-
tionally on Y .

In order to simplify the inference procedure (see Sect.
3), we switch to a discrete time framework (see Sect. 1.1)
introducing a partition of the interval [0, T ] inU subintervals,
Iu := [tu−1, tu[, where

0 = t0 < t1 < · · · < tU = T . (1)

The increments of each counting process on the considered
time partition can be computed

Di ju := I Di j (tu) − I Di j (tu−1), ∀(i, j, u) (2)

and stored in the M × M × U tensor D = {Di ju}i, j,u .
Hence, we focus on the number of interactions from i to
j taking place over the time interval Iu . The time intervals
I1, . . . , IU are assigned to L disjoint hidden time clusters
C1, . . . , CL whose number has to be estimated. Hence, each
cluster contains a certain number of time intervals, not nec-
essarily adjacent and an hidden U -vector X is introduced to
label memberships to time clusters: Xu = l if and only if Iu
belongs to cluster Cl . We stress that the time intervals of the
user defined partition (1) are known whereas the time clus-
ters are not observed and have to be estimated. Then, X is
assumed to follow a multinomial distribution

p(X |δ) =
L∏

l=1

δ
|Cl |
l ,

where δl := P{Xu = l}, ∑L
l=1 δl = 1 and |Cl | denotes the

number of time intervals in Cl . The intensity functions are
assumed stepwise constant on each time cluster Cl , such that

Di ju |YiqY jr Xul = 1 ∼ P(Δuλqrl),

where Δu denotes the size of Iu . In the rest of this paper, the
grid in (2) is assumed to be regular to simplify the notation.
This means that Δu = Δ and the time intervals {Iu}u have
a constant size. It is also possible to consider intervals with
different sizes as is (Corneli et al. 2015). A Q×Q×L tensor
Λ = {λqrl}q,r ,l is finally introduced and the complete-data
likelihood of the model described is given by

p(D,Y , X |Λ,ρ, δ) = p(D|Y , X ,Λ)p(Y |ρ)p(X |δ), (3)

where the random vectors Y and X are independent and

p(D|Y , X ,Λ) ∝
Q∏

q,r

L∏

l

(
Δλqrl

)Sqrl exp(−Δλqrl Pqrl),

(4)

with

Sqrl : =
M∑

j �=i

U∑

u=1

YiqY jr Xul Di ju

Pqrl : =
M∑

j �=i

U∑

u=1

YiqY jr Xul .

(5)

Notice that Δ is a time scale factor and can be set equal to
one without loss of generality, indeed when Δ �= 1, we can
safety define λ̃qrl = Δλqrl and reduce to the previous case.

2.2 Dynamic modeling of documents

The model described in the previous section can easily be
extended to deal with textual communication networks, by
assuming that a directed interaction characterizing the pair
(i, j) corresponds to a document sent from i to j . With the
previous notations, Di ju is the number of documents sent
from i to j over the time interval Iu and more generally
I Di j (t) is the number of documents sent from i to j up to time
t . The documents counted by Di ju are considered as a unique
document obtained by concatenation and Ni ju denotes the
number of words of such document. Note that Ni ju = 0
if no message is sent from i to j during the time interval
Iu (Di ju = 0). In the following, a dictionary containing V
words will be considered and each word in a document is
extracted from the dictionary:Wi ju

n will denote the n-th word
(in the aggregated document) sent from i to j during the time
interval Iu and, using a zero-one notation, Wi ju

nv = 1 if the
word Wi ju

n is the v-th in the dictionary, 0 otherwise.
In line with the LDA model (Blei et al. 2003), a list of K

topics is introduced and each word of a document is associ-
ated with one topic through a latent Ni ju-vector, noted Zi ju .

In more details, Zi ju
n = k if and only if the word Wi ju

n is
associated with the k-th topic. We stress that, from a genera-
tive point of view, the vectors Zi ju and Wi ju are drawn only
in case Di ju �= 0.

For each pair of clusters (Aq ,Ar ) and a time cluster Cl , a
vector of topic proportions θqrl := (θqrlk)k≤K is assumed to
follow a Dirichlet distribution

θqrl ∼ Dir(α = (α1, . . . , αK )),

such that
∑K

k=1 θqrlk = 1. Hence, if existing, the n-th word
in the document associated with the triplet (i, j, Iu), namely
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Wi ju
n , is extracted from the latent topic k according to the

following conditional probability distribution

P(Zi ju
nk = 1|Di ju �= 0,Y , X , θ) =

Q∏

q,r

L∏

l

θ
YiqY jr Xul
qrlk

corresponding to a multinomial distribution of parameter
θqrl . The following full conditional distribution is obtained

p(Z |D,Y , X , θ)

=
Q∏

q,r

L∏

l=1

K∏

k=1

θ

∑M
j �=i

∑U
u=1

∑Ni ju
n=1 YiqY jr Xul Z

i ju
nk

qrlk , (6)

where the exponent counts the total occurrences, in the
dynamic graph, of words associated with the k-th topic, sent
from clusterAq to clusterAr , during the time cluster Cl and
Z := (Zi ju)i, j,u . Thus, only the existing (exchanged) docu-
ments contribute to the above likelihood. Given Z , the word
Wi ju

n is finally assumed to be drawn from a multinomial dis-
tribution

Wi ju
n |Zi ju

nk = 1 ∼ M(1, βk = (βk1, . . . , βkV )).

Hence,β denotes a K×V matrixwhose k-th line isβk . Notice
that, unlike the topic proportions θ , thematrix β depends nei-
ther on node clusters nor on time clusters. In particular, this
means that the mean number of occurrences of each word in
each topic is time invariant. Denoting by W = (Wi ju)i, j,u
the whole set of documents appearing in the dynamic net-
work, the following conditional distribution is obtained by
independence

p(W |Z , D, β) =
K∏

k=1

V∏

v=1

β

∑M
j �=i

∑U
u=1

∑Ni ju
n=1 Wi ju

nv Zi ju
nk

kv , (7)

where the exponent counts the total occurrences, in the
dynamic graph, of the v-th word of the dictionary associ-
ated with the k-th topic.

The complete-data conditional distribution for the textual
part of the model is finally obtained by conditioning

p(W , Z , θ |D,Y , X , β) = p(W |Z , D, β)

× p(Z |D,Y , X , θ)p(θ)

and the joint distribution of the whole dSTBM model is

p(D,Y , X ,W , Z , θ |Λ,ρ, δ, β) = p(W , Z , θ |D,Y , X , β)

× p(D,Y , X |Λ,ρ, δ).

Agraphical representation of the dynamic STBMcan be seen
in Fig. 1.

D ZΛ

Y

X

ρ

δ

θ α

W β

Fig. 1 Graphical representation of the dynamicSTBMmodel (dSTBM)

2.3 Link with existingmodels

First of all, let us clarify the relation between dSTBM and
LDA. Assuming that Y and X are known, the set of docu-
mentsW can be reorganized such thatW = (W̃qrl)qrl where

W̃qrl = {Wi ju |YiqY jr Xul = 1}

is the set of all documents sent from any vertex inAq to any
vertex in Ar , during the time cluster Cl . By marginalization
over Z , it can easily be seen that eachwordWi ju

n has amixture
distribution over topics which only depends on the clusters of
i and j and the time cluster of Iu . As a consequence, all words
in W̃qrl share the same mixture distribution over topics and
removing the knowledge of (q, r , l), W̃qrl can be seen as one
of Q2×L independent documents. Thismeans that, if the pair
(X ,Y ) is known, the generative model described so far is the
one of a LDA model with Q2 × L independent documents.
Each documents has its own vector of topic proportions and
shares a matrix β of word probabilities.

More generally we can highlight the following relations
between dSTBM and some of the existing models mentioned
so far.

1. Single time cluster (L = 1). In this case both Λ and
θ are constant in time and dSTBM reduces to STBM
(Bouveyron et al. 2016).

2. Single topic (K = 1). When a single topic is used in
the whole network, there is no additional information
that can be extrapolated relying on text analysis. In this
case, dSTBM reduces to the dSBMmodel (Corneli et al.
2016a).

3. Single cluster (Q = 1). When all vertices are clustered
in a single group, the set of documents can be reorga-
nized as W = (W̃l)l≤L corresponding to L documents.
Each one corresponds to a time cluster and has its own
topic proportions (θl)l≤L . This could be seen as an orig-
inal dynamic extension of the LDA model (Blei et al.
2003) inwhich the topic proportions evolve in time. From
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a generative point of view, we stress that only L i.i.d.
topic proportion vectors, θ1, . . . , θL , are generated. With
respect to the original time partition (1), all documents
sent in time intervals belonging to the same time cluster
share the same (previously) extracted topic proportion
parameter. Notice that the dynamic approach described
so far is completely different from the one adopted by
Blei and Lafferty (2006). In that paper, sequentially orga-
nized corpus of documents are taken into account and
both the Dirichlet parameter (α) and the topic parameter
(β) change in time according to (unit-root) autoregressive
models combined with multinomial-logit probabilities.
Hence, from a generative point of view, at each time
step t , a new vector of topic proportions is drawn based
on αt .

4. Case Q = L = 1. In line with the previous case, the
set W can now be considered as a single document with
its own topic proportions. The dSTBMmodel reduces in
this case to the LDA model.

5. Case K = L = 1. In presence of a single topic discussed
in the whole network (i.e. text analysis is useless), withΛ

constant in time, the dSTBMmodel reduces to SBMwith
weighted Poisson distributed links (see e.g. Nouedoui
and Latouche 2013).

3 Estimation

This section focuses on the inference procedure adopted to
learn the model parameters and provide estimates for X ,Y
and Z . In the last part of the section, a model selection crite-
rion is developed to select Q, L and K .

3.1 Variational inference

Let us assume for now that the number of clusters (Q), time
clusters (L) and the number of topics (K ) are known.

Consider the following complete-data integrated log-
likelihood

log p(D,Y , X ,W |Λ,ρ, δ, β)

= log
∑

Z

∫

θ

p(D,Y , X ,W , Z , θ |Λ,ρ, δ, β)dθ.
(8)

We aimatmaximizing itwith respect to themodel parameters
(Λ, ρ, δ, β) and the hidden label vectors (Y , X). Unfortu-
nately, (8) is not tractable due to the sum over all possible
values of Z inside the logarithm. Nonetheless, a variational
decomposition of the above log-likelihood can be employed
to obtain a lower bound which can be directly maximized.
This approach gives

log p(D,Y , X ,W |ζ ) = L(R(·); D,Y , X ,W , ζ )

+ KL(R(·)||p(·|D,Y , X ,W , ζ ))

(9)

where ζ := {Λ,ρ, δ, β}, R(·) is a variational distribution
over the pair (Z , θ),

L(R(·); D,Y , X ,W , ζ )

:= ER(Z ,θ)

[
log

p(D,Y , X ,W , Z , θ |ζ )

R(Z , θ)

]
(10)

and KL(·) denotes the Kullback–Leibler divergence between
the approximate and the true posterior distribution of the pair
(Z , θ) given the data and the model parameters

KL(R(·)||p(·|D,Y , X ,W , ζ ))

:= −ER(Z ,θ)

[
log

p(Z , θ |D,Y , X ,W , ζ )

R(Z , θ)

]
.

Notice that, since the left hand side of (9) does not depend
on R(·), whenmaximizing the lower boundLwith respect to
R(·), the KL divergence is necessarilyminimized.When per-
forming variational inference, a common choice to approx-
imate the true posterior distribution of latent variables (e.g.
Daudin et al. 2008; Blei et al. 2003), consists in assuming
that R(·) factorizes over the latent variables. In this case, this
leads to

R(Z , θ) = R(Z)R(θ) = R(θ)

M∏

j �=i

U∏

u=1

Ni ju∏

n=1

R(Zi ju
n ).

Hence, since the integrated likelihood in (8) cannot be
directly maximized, the idea is to replace it with the lower
bound L and maximize it with respect to the model param-
eters (Λ, π , δ, β), the approximate posterior distribution
R(Z , θ) in the above equation and the hidden vectors Y and
X . Furthermore, as it can be seen in the graphical model in
Fig. 1, the full joint distribution of the dSTBMmodel can be
decomposed into two parts. The component represented by
the red rectangle does not depend on the pair (Z , θ). As a
consequence, the lower bound defined in (10), can be split
into two parts also

L(R(·); D,Y , X ,W , ζ ) = L̃(R(·); D,Y , X ,W , β)

+ log p(D,Y , X |Λ,ρ, δ),
(11)

where

L̃(R(·); D,Y , X ,W , β)

:= ER(Z ,θ)

[
log

p(W , Z , θ |D,Y , X , β)

R(Z , θ)

]
.

(12)
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Note that the joint distribution p(D,Y , X |Λ,ρ, δ) appeared
for the first time in (3) and corresponds to the dynamic SBM
part of the model. Furthermore, given Y and X , the first term
on the right hand side of (11) only involves the pair (R(·), β)

while the second term only involves (Λ, ρ, δ). Hence, the
maximization algorithm that is detailed in the next section
consists in alternating the following two steps, up to conver-
gence

1. VEM step. For a given pair (Y , X), the lower boundL is
maximized with respect to the pair (R(·), β), involving L̃
and the triplet (Λ, ρ, δ) involving the dSBM complete-
data likelihood.

2. Classification step. The lower bound L is maximized in
a greedy fashion with respect to the pair (Y , X).

This algorithm, alternating a variational EM routine with a
clustering step, was first used in Bouveyron et al. (2016) and
is built upon theClassification-EM(CEM) algorithm (Celeux
and Govaert 1991).

3.2 Maximization of the lower bound

In this section, the updating formulas for R(Z , θ) and the
model parameters (Λ, ρ, δ, β) are provided by the follow-
ing propositions. At the end of the section, we discuss the
maximization with respect to the pair (Y , X).

Maximization of L with respect to R(Z , θ). The updating
formulas corresponding to the E step of the VEM algorithm
are given in the following two propositions.

Proposition 1 The VEMupdate step for distribution R(Zi ju
n )

is given by

R(Zi ju
n ) = M(Zi ju

n ; 1, φi ju
n = (φ

i ju
n1 , . . . , φ

i ju
nK ))

where, for all (n, k)

φ
i ju
nk ∝

(
V∏

v=1

β
Wi ju

nv

kv

)

×
Q∏

q,r=1

L∏

l=1

exp

(
ψ(γqrlk)−ψ(

K∑

k′=1

γqrlk′)

)YiqY jr Xul

.

φ
i ju
nk is the approximate posterior probability of word Wi ju

n

being in topic k and ψ(·) denotes the digamma function.

Proof In Appendix A.1. �	

Proposition 2 The VEM update step for distribution R(θ) is
given by

R(θ) =
Q∏

q,r=1

L∏

l=1

Dir(θqrl; γqrl = (γqrl1, . . . , γqrlK ))

where

γqrlk = αk +
M∑

j �=i

U∑

u=1

Ni ju∑

n=1

YiqY jr Xulφ
i ju
nk , ∀(q, r , l).

Proof In Appendix A.2 �	
Maximization ofLwith respect to the model parameters.The
following proposition provides the estimates of the model
parameters (β,Λ, ρ, δ) obtained through maximizing the
lower bound in (10). The lower bound L̃ in (12) is computed
in the “Appendix” section.

Proposition 3 The estimates of (β,Λ, ρ) and δ are given by

βkv ∝
M∑

j �=i

U∑

u=1

Ni ju∑

n=1

Wi ju
nv φ

i ju
nk , ∀(k, v) (13)

λqrl = Sqrl
Pqrl

, ∀(q, r , l) (14)

ρq ∝ |Aq |, ∀q, (15)

δl ∝ |Cl |, ∀l, (16)

where Sqrl and Pqrl were defined in (5).

Proof In Appendix A.4. �	

Maximization of L with respect to the label vectors Other
parameters being fixed, we now attempt to maximize L with
respect to the pair (Y , X). Since this combinatorial problem
cannot be attacked directly, due to the huge number of clus-
ter assignments to test (QMLU ), a greedy search strategy is
employed to look for a local maximum. Greedy search meth-
ods are quite popular in the network analysis literature. They
are employed for community detection problems (Newman
and Girvan 2004; Blondel et al. 2008) or more general clus-
tering purposes, either in static (Côme and Latouche 2015)
or dynamic (Corneli et al. 2016b) graphs.

Consider Y at first and assume that nodes are clustered in
Q initial groups (see Sect. 3.3 for more details about initial-
ization). If node i is currently in cluster Aq , the algorithm
assesses the increase/decrease in the lower bound L due to
switching node i to the cluster Ar for each r �= q. The
switch (if any) leading to the highest increase of the lower
bound is actually performed and the entire routine is itera-
tively applied to all nodes until no further increase of L is
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possible. The maximization with respect to X is performed
similarly: nodes are replaced by time sub-intervals Iu and
node clusters Aq by time clusters Cl .

As previously explained, a greedy search is never guar-
anteed to converge to a global maximum. To deal with this
inconvenient, a possible strategy consists in performing sev-
eral independent greedymaximizations at each classification
step of the C-VEM algorithm. In other words, once the VEM
step is done, several independent greedy searches are run,
randomizing over the node/time intervals moving order and
the value of (Y , X) leading to the highest lower bound is
finally retained.

3.3 Further issues

Initialization. Assuming that Q, L and K are known, the C-
VEM algorithm still needs some initial values of (Y , X), in
order to provide estimates for the model parameters and the
variational posterior distribution R(Z , θ). Since the EM-like
algorithms are only guaranteed to converge to local optima
(see e.g. Wu 1983) it is crucial to provide them with several
initializations. The approach proposed in this paper relies on
a spectral clustering algorithm (von Luxburg 2007) applied
to proper similarity matrices. The initialization of Y is con-
sidered at first. Recalling the definition of D = {Di ju}i ju ,
we proceed as follows

1. The VEM algorithm for the LDAmodel (Blei et al. 2003)
is applied to the collection of documents exchanged from
all pair of nodes in thewhole time horizon.Note that these
documents correspond to the entries of D and the VEM
algorithm provides the majority topic discussed in each
document. Hence anM×M×U tensorMT (main topic)
is obtained, such that MTi ju = k if and only if k is the
main topic discussed in the document sent form i to j ,
during the time interval Iu .

2. An M × M similarity matrix Ξ is obtained as follows

Ξ(i, j) =
U∑

u=1

M∑

h=1

δ(MTihu = MTjhu)DihuD jhu

+
U∑

u=1

M∑

h=1

δ(MThiu = MThju)Dhiu Dhju .

The rationale behind the above equation is quite intuitive:
if i and j have a common neighbour and they talk with it
about the same (main) topic, then the similarity between
i and j increases. Two terms appear on the right hand
side of the equality because we are dealing with directed
graphs.

2. The spectral clustering algorithm is applied to the graph
Laplacian associated with matrix Ξ . This allows us to

cluster nodes in Q groups and to produce an initial esti-
mate of Y .

The initialization of X is performed similarly. A U × U
similarity matrix Σ is built such that two time intervals are
similar if they share the same majority topic discussed in the
whole network

Σ(u, v) =
M∑

i=1

M∑

j=1

δ(MTi ju = MTi jv)Di ju Di jv

for all pairs of time intervals (Iu, Iv). The spectral clustering
algorithm if finally applied to the graph Laplacian associated
with the similarity matrix Σ to produce an initial estimate
of X .

Model selection. So far, the parameters Q, L and K were
assumed to be known but in real world datasets this assump-
tion is fairly unrealistic. In order to estimate these parameters,
we rely on the ICL criterion (Biernacki et al. 2000) to approx-
imate the complete-data integrated log-likelihood in (8).

Proposition 4 An integrated classification criterion (ICL) for
the dSTBM is

ICLdST BM = L̃(R(·); D, Y , X ,W , β)

− K (V − 1)

2
log(LQ2)

+ max
Λ,ρ,δ

log p(D, Y , X |Λ, ρ, δ)

− LQ2

2
logMU (M − 1)

− Q − 1

2
logM − L − 1

2
logU .

(17)

Proof In Appendix A.5. �	

4 Numerical experiments

In this section, both dSTBM and the ICL criterion intro-
duced above are tested on simulated data. In order to
highlight some peculiarities, dSTBM is tested in three differ-
ent scenarios and compared with four other models: dSBM
(Corneli et al. 2016a), STBM (Bouveyron et al. 2016),
SBM using the mixer R package https://cran.r-project.org/
web/packages/mixer/index.html and LDA using the topic-
models R package https://cran.r-project.org/web/packages/
topicmodels/index.html.

4.1 Simulation setups

In the following simulation setups, the parameter αk is
assumed to be equal to 1, inducing a uniform distribution
over the topic proportions θqrl . In each setup, 50 dynamic
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graphs are independently simulated and the messages asso-
ciated with graph edges are sampled from four texts from
BBC news. One text is about the birth of Princess Char-
lotte, the second is about black holes in astrophysics, the
third one focuses on UK politics and the fourth on cancer
diseases. Eachmessage, associatedwith one directed interac-
tion, is made of 75 words. We finally stress that, the message
sampling procedure adopted in the following scenarios is
not exactly the one described in the previous sections for
dSTBM. Each setup is detailed in the following.

Scenario A Figure 2a, b. Nodes are grouped in three clus-
ters and time intervals in two time clusters. During the first
time cluster, the graph exhibits a clear community structure:
interactions within groups are more frequent than interac-
tions between groups. An opposite non-assortative structure
characterizes the graph during the second time cluster: inter-
actions between groups are more frequent than interactions
within groups. Each group talks about a single topic and
a fourth shared topic is associated with the interactions
between two different groups. In order to introduce some
noise, 10% of interactions within each group are (randomly)
associated to the shared topic. In this first scenario the topic
proportions do not change in time.

Scenario B In this second scenario, the dynamic graph main-
tains a persistent community structure, whereas a structural
time change occurs in the topic proportions. Nodes are
grouped into two clusters and time intervals into two time
clusters. Two topics are taken into account, corresponding
to two of the four texts from the BBC news. During the
first time cluster, each community talks preferentially about
the same topic (in yellow, say T1) and a second topic T2
(green) is reserved to the interactions between communities
(Fig. 2c). During the second time cluster, the two topics have
the opposite role. Hence T2 is used for the intra-community
interactions whereas T1 is discussed between members of
different groups (Fig. 2d). As in the previous setup, 10% of
interactions inside each group is (randomly) associated with
the shared topic to introduce some noise.

Scenario C This third scenario consists in a dynamic graph
whose nodes are grouped into four clusters. However, only
two of these clusters are real communities,with actors talking
preferentially about a unique topic inside the community. The
other two clusters form a single community and the topic they
discuss about is the only discriminant. Hence, three topics are
considered: two clusters use one topic (green), the other two
clusters use another topic (blue) and a third topic is used
for communications between all different groups (yellow).
In order to induce a relevant time structure, the topics used
within groups change from a time cluster to another as illus-
trated in Fig. 2e, f. A detailed description of each scenario
can be seen in Table 1.

4.2 Benchmark results

The C-VEM algorithm for dSTBM was run on 50 simu-
lated dynamic graphs in each scenario. First, we focus on
the clustering produced by the methodology when the num-
bers of clusters Q, time clusters L and topics K are known.
The adjusted rand index (ARI, Rand 1971) provides a mea-
sure of the accuracy of the realised clustering: it ranges from
0, corresponding to a very poor clustering, to 1, when the
found partitions are the actual ones. The clustering results
for dSTBM, dSBM, and STBM can be seen in Table 2. The
clusteringmeasure “edgeARI” is equal to onewhen themain
topic used in each exchanged document is correctly retrieved
by the model. We recall that one document is uniquely asso-
ciated with a triplet (i, j, Iu) in the dynamic graph: source
node, destination node and time interval. Hence, the number
of exchanged documents coincides with the total degree of
the simulated dynamic graph. It follows that the edge ARI
defined so far is not available for both dSBM and STBM: the
former does not deal with topics, the latter cannot recover
information about the interactions taking place at time Iu
since this information is definitely lost, due to aggregation.
However, STBM can cluster the edges of the aggregated
graph. Namely, it estimates the main topic used by each pair
of nodes during the whole time horizon. Hence, the edge
ARI corresponding to STBM can be calculated by assigning
to all the edges in the dynamic graph associated with the pair
(i, j) the main topic estimated for that pair by STBM (in the
aggregated graph).

Let us discuss the clustering results of the first setup
A. Not surprisingly, dSTBM and dSBM have very similar
performances and dSBM is slightly more accurate in clus-
tering nodes (ARI equal to 1 versus ARI equal to 0.99).
This small difference however is not very significant and
can be explained by the different initializations adopted by
the two approaches. As mentioned above, in this scenario
the proportion of assigned topics (θ ) is constant in time,
hence the structural change in the dynamic graphs can be
fully detected by dSBM and the analysis of documents does
not bring any further information. This is the reason why the
time ARI is equal to one for both the approaches: the time
structure can be recovered with or without the analysis of
documents. Since STBM cannot deal with dynamic graphs,
the C-VEMalgorithm for thismodel is run on the static graph
obtained by aggregating the interactions on the whole time
horizon (September, 2001–January, 2002). Despite of the
structural change (Fig. 2a, b), the topics used for commu-
nications within each community and between communities
remain distinct on the whole time horizon. This is the reason
why STBM can correctly cluster nodes. Similarly to STBM,
the SBM model is run on the aggregated graph. Its perfor-
mance is poor since the community structure in C1 and the
non-assortative structure in C2 cancel each other out when
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(e) (f)

(c) (d)

(a) (b)

Fig. 2 Dynamic graphs simulated according to three different setups
(A, B and C). The graph on the left (respectively right) hand side of
each row is obtained through aggregation of the interactions on the first

(second) time cluster. a A. First time cluster (C1). b A. Second time
cluster (C2). c B. First time cluster (C1). d B. Second time cluster (C2).
e C. First time cluster (C1). f C. Second time cluster (C2)
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Table 1 Parametrization in different setups

Scenario A B C

M 100

U 100

Q 3 2 4

L 2

K 4 2 3

ρ (1/Q, . . . , 1/Q)

δ (1/L, . . . , 1/L)

Λ on C1
{

λqq1 = 0.03

λqr1 = 0.0075 r �= q

{
λqq1 = 0.03

λqr1 = 0.0075 r �= q

{
λqq1 = λ141 = λ411 = 0.03

λqr1 = 0.0075 otherwise

Λ on C2
{

λqq2 = 0.0075

λqr2 = 0.03 r �= q

{
λqq2 = 0.03

λqr2 = 0.0075 r �= q

{
λqq2 = λ142 = λ412 = 0.03

λqr2 = 0.0075 otherwise

θ on C1

⎧
⎪⎨

⎪⎩

θ1111 = θ2212 = θ3313 = 1

θqr14 = 1 r �= q

otherwise 0

⎧
⎪⎨

⎪⎩

θ1112 = θ2212 = 1

θqr11 = 1 r �= q

otherwise 0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ1112 = θ3312 = 1

θ2211 = θ4411 = 1

θqr13 = 1 r �= q

otherwise 0

θ on C2

⎧
⎪⎨

⎪⎩

θ1121 = θ2222 = θ3323 = 1

θqr24 = 1 r �= q

otherwise 0

⎧
⎪⎨

⎪⎩

θ1121 = θ2221 = 1

θqr22 = 1 r �= q

otherwise 0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ1121 = θ3321 = 1

θ2222 = θ4422 = 1

θqr23 = 1 r �= q

otherwise 0

Table 2 Clustering results for dSTBM, dSBM, STBM, SBM and LDA
on 50 graphs simulated according to the different setups

Model Node ARI Time ARI Edge ARI

Setup A

dSTBM 0.99 (0.06) 1 (0) 0.99 (0.06)

dSBM 1 (0) 1 (0) –

STBM 1 (0) – 0.66 (0.21)

SBM 0.01 (0.06) – –

LDA – – 0.73 (0.20)

Setup B

dSTBM 1 (0) 1 (0) 1 (0)

dSBM 0.98 (0.03) 0.00 (0.01) –

STBM 0.5 (0.5) – 0.02 (0.03)

SBM 0.99 (0.04) – –

LDA – – 1 (0)

Setup C

dSTBM 1 (0) 1(0) 1 (0)

dSBM 0.67 (0.05) 0.00 (0.01) –

STBM 1 (0) – 0.70 (0.10)

SBM 0.65 (0.04) – –

LDA – – 0.69 (0.15)

The true values of Q, L and K are assumed to be known. The average
ARI values are reported, with standard deviations into brackets

aggregating interactions over time. Looking at the edge ARI,
when aggregating interactions over time information is lost:
this explains the edge ARI of 0.66 for STBM. The edge ARI
is slightly better for LDA which is applied to the whole col-
lection of documents (there is no aggregation).

Consider now the second setup B. Since the topic propor-
tions are the only time varying parameter, dSBM cannot see
any time cluster (null time ARI). Nonetheless, the persistent
community structure allows it to recover the actual node par-
tition most of the time (node ARI of 0.98). A similar result
can be seen for SBM. Conversely, since each topic is alterna-
tively used for intra and inter community interactions (Fig.
2c, d), STBM suffers in recovering the actual node partition
(node ARI of 0.5). As explained before, the LDA model can
be applied to the original set of documents and in this case,
not particularly noised, it performs very well.

The last scenario C is the hardest for dSBM. As in the
previous case, the topic proportions are the only time vary-
ing parameter and the time clusters are not correctly detected
by the model (null time ARI). Moreover, two clusters form
a single community (Fig. 2e, f) and they are only discrimi-
nated by the used topic. Hence the node ARI is never higher
than 0.7 for dSBM (and SBM too). Instead, in contrast with
the previous scenario, the inter-community topic (yellow) is
never employed for intra-community interactions and STBM
can recover the actual node partition. Notice, however, that
both STBM and LDA are performing worse than dSTBM in
clustering the edges.
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Fig. 3 The running times (in seconds) of the C-VEM algorithm for dSTBM are reported versus the number nodes M (3a) and the number of
meta-documents in the dynamic graph (3b). a Running times versus number of nodes. b Running times versus number of meta-documents

4.3 Some remarks about the scalability of the
inference algorithm

A deep understanding of the computational complexity of
the algorithm described in Sect. 3 is outside the scope of
this paper. Assessing the scalability of the C-VEM algo-
rithm for dSTBM would require to check how the algorithm
behaves when M,U , Q, L, K , V (or some combinations of
these parameters) change. Nonetheless, this section reports
an experiment, whose results provide some intuitions that
could be useful for future researches.

Let us consider SetupC introduced in the previous section.
Other things being unchanged, the number of time intervals
U is now set to 50 and the number of nodes M grows from 50
to 500.1 To each value of M correspond a simulated dynamic
graph and a related tensor D. The number of non-null entries
in D is the total number of meta-documents exchanged. The
scope of the experiment is to assess how the running times
of the estimation algorithm change when the size (number of
nodes/edges) of each graph snapshot increases. Thus, the C-
VEM algorithm was run once on each simulated dynamic
graph with the initializations described in Sect. 3.3. The
parameters Q, K and L were fixed to their true values and,
for each value of M , the corresponding running time of the
estimation algorithm was recorded. Results are reported in
Fig. 3. As it can be seen the running times of the algorithm
span from about one second, when M = 50, to one minute
when M = 500. Moreover, the computational complexity
looks (at least) quadratic in M and linear in the number of
non-null entries of D. This could be explained by the fact that
the initial LDA step detailed in Sect. 3.3 dominates over all

1 The values of Λ were slightly changed: λqrl = 0.0025 when r �= q,
λqrl = 0.01 otherwise. Notice that the ratio between the two different
values remains equal to 4.

the other steps of the C-VEM algorithm. This suggests that
a purely random initialisation could dramatically speed up
the algorithm and should maybe be preferred when working
with very large datasets.

4.4 Model selection

So far, the C-VEM algorithm for dSTBMwas run on 50 sim-
ulated dynamic graphs for each setup and the actual number
of groups Q, time clusters L and topics K were assumed to
be known. In real applications, these three parameters must
be estimated and this can be done for dSTBM relying on the
ICL model selection criterion developed in Proposition 4. In
terms of model selection, the third scenario C is by far the
hardest to deal with, due to the quite sophisticated dynamic
graph structure. Hence, we focus on this setup to assess the
ICL criterion. The estimates of Q, L and K , provided by ICL
for dSTBM, are illustrated in Table 3. The actual number of
topics (K = 3) is always detected by ICL and it is therefore
not reported in the table. Tables with K �= 3 would be full
of zeros. As it can be seen, the actual values of Q and L are
recovered in 48 out of 50 cases. Notice also that, when ICL
fails to recover the actual solution, it selects a model very
close to the actual one.

5 Analysis of the Enron scandal

This last section focuses on the famous scandal involving the
energy company Enron Corporation. The scandal was pub-
licized in October 2001. Two moths later, USA experienced
the largest bankruptcy failure up to that time. The first part of
this section describes how the Enron data were preprocessed,
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Table 3 Frequency of selections by ICL for dSTBM (Q, L, K ) on 50
simulated graphs in the third scenario C

Q/L 1 2 3 4 5 6

Scenario C, ICL (dSTBM, K = 3)

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 0

4 0 48 1 0 0 0

5 0 1 0 0 0 0

6 0 0 0 0 0 0

The actual values of (Q, L, K ) are (4, 2, 3), respectively. The true value
for K is always selected by ICL and it is not reported
The number of times the ICL exactly recovers the actual values of (Q,
L, K) is in bold

while the second part illustrates the results obtained through
applying the dSTBM model to the dataset.

5.1 Context and data

The Enron dataset is described in Sect. 1.3. The time window
considered in the present section spans from September, 3rd,
2001 to January, 28th, 2002, including the three key dates
mentioned in Sect. 1.3:

1. September, 11th, 2001: the terrorist attacks to the Twin
Towers and the Pentagon (USA).

2. October, 31st, 2001: the Securities and Exchange Com-
mission (SEC) opened an investigation for fraud concern-
ing Enron.

3. December, 2nd, 2001: Enron failed for bankruptcy,
resulting in more than 4000 lost jobs.

The selected time window is partitioned in weekly subinter-
vals, thus corresponding to U = 21 weeks. As previously
explained, the e-mails sent from i to j during each time
interval Iu (a week) are aggregated into a single document,
obtained by concatenation. Each document is preprocessed in
a classicalway:words are stemmed, less than three characters
words and stop words are removed, punctuation and num-
bers are ignored. Thus, each week is associated with a graph
snapshot and one directed edge from i to j corresponds to the
e-mails sent from i to j during the week. The whole dynamic
graph is made of 4321 directed edges, corresponding to the
same number of exchanged documents. The dictionary asso-
ciated to these documents contains 49,955 words.

5.2 Results

The VEM algorithm for dSTBM was run on this dataset for
all values of Q, K and L varying between 1 and 10. For
each value of (Q, K , L) several initializations were tested
(see Sect. 3.3 for further details) and the clustering results
associated with the highest value of the ICL criterion were
retained. The ICL finally selected nine topics (K = 9), four
time clusters (L = 4) and six node groups (Q = 6).

Topics First of all, we discuss is a few details some topics
that play a crucial role in the dynamic network, as detailed in
the following. Figure 4 shows the most representative words
of each topic and can be used in the attempt to understand
the main theme of each topic.

a. Topic 1 is related to the California electricity crisis, in
which Enron was involved and which almost caused the
bankruptcy of the Southern California Edison Corpora-
tion (SCE-corp).

Fig. 4 The 20 most representative words for each topic
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Fig. 5 Time clustering results with dSTBMon the Enron data set (Sept.
2001–Jan. 2002). The black vertical line marks the day September, 11,
2001, the blue vertical linemarks the dayOctober, 31st, 2001 (investiga-

tion opened by the SEC), the red vertical line marks the day December,
2nd, 2001 (Enron’s bankruptcy). (Color figure online)

b. Topic 3 is a technical topic focusing on gas deliveries
(mmBTU are British thermal units).

c. Topic 4 seems to be related to Netco: a set of trading
activities bought by the Swiss bank UBS after the Enron
bankruptcy.

d. Topic 5 is related to a backup plan developed to face pos-
sible work stoppages. In fact, some areas of the Enron
Center North building were put aside for recovery pur-
poses and backup seats assignments were announced to
employees in November 2001.

e. Topic 7 contains words like “afghanistan” and “taleban”
and it is concerned with Enron activities in Afghanistan:
Enron and the Bush administration were suspected to
work secretly with Talebans before the 9/11 attacks.

f. Topic 8 seems to focus on trader report viewer (TRV), a
project allowing traders to share their reports about par-
ticular issues. For example, an e-mail dating November,
13, 2001 announced to several employees that a report on
West NG (west Virginia natural gas) prices was available.
A “link from Excel” was provided in the e-mail.

g. Topic 9 seems to be related to the company trading activ-
ities, as the words “book”, “transferring” and “bid week”
suggest. The bid week, in particular, is the last week of
the month when producers try to sell their core produc-
tion and consumers seek to buy for their core natural gas
needs for the upcoming month.

Time structure In Fig. 5, an histogram reports the frequency
of exchanged e-mails in the whole network, each rectangle
covers one week. Rectangles/weeks of the same color are
assigned to the same time cluster by dSTBM. Notice that,
although time intervals in the same cluster do not have to be
adjacent in dSTBM, the clustering reported in Fig. 5 clearly

detects four segments of adjacent time intervals and three
corresponding change points, one for each color switch. It is
worth to notice that the last two change points occur some
days after the two key dates mentioned at the beginning of
the present section and they are represented in the figure by
two vertical lines, blue and red, respectively.

Nodes clusteringThemain clustering results are summarized
in Fig. 6. Four graphs are associated with the time clusters
detected by the model. Each node in a graph corresponds to
a cluster of nodes and node sizes are proportional to group
membership probabilities ρ. The edge colors indicate the
most discussed topics in the corresponding (group) interac-
tions (see also Fig. 4). The larger the arrow is, the more
frequent the respective interactions are. Some remarks can
be made by looking at this figure.

1. Consider Group 4 (pink), consisting of 32 agents (mainly
vice presidents, CEOs and managers). The topic used by
this group for internal communications changes on each
time segment: topic 9 in time clusters 1 and 4, topic 7 in
time clusters 2, topic 8 in time cluster 3.

2. It is interesting to observe that Topic 7 appears as a main
topic in the network during the time cluster C2, starting
on September, 24th, 2001, exactly two weeks after the
9/11 attacks.

3. Topic 5 is only used for communications between clusters
during the time cluster C2. Topic 5 (as well as Topic 7) is
no longer a main topic during the other time clusters.

4. Group 6 (yellow), 18 persons, has a similar composition
of Group 4. It is concerned with Topic 1 during the first
three time clusters and switches to Topic 4 after the com-
pany bankruptcy, during the fourth segment.
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(a) (b)

(c) (d)

Fig. 6 Summary of the interaction intensities (Λ, edge widths), group
proportions (ρ, node size) and main topic for group interactions (edge
colors) during each time cluster. a Time cluster C1. b Time cluster C2.
c Time cluster C3. d Time cluster C4. e Legend

5. Group 5 (red), 17 employees, looks like a real persistent
community both in terms of interactivity pattern and used
topic. This group focuses during the whole time horizon
on Topic 3.

Finally, Fig. 7 shows four graph snapshots associated with
the Enron dataset. Each snapshot is obtained by aggregating
the interactions over the corresponding time cluster. Nodes
of the same color are assigned to the same cluster by the
C-VEM algorithm and edges of the same color are associ-
ated with the same majority topic on the considered time
cluster.

6 Conclusion

We proposed in this paper the dynamic stochastic topic block
model (dSTBM), a new probabilisticmodel for the clustering
of both nodes and edges of a textual dynamic network.More-
over, relying on an external time partition, our methodology
allows one to uncover time clusters duringwhich the network
is stationary both in terms interaction frequency (between
groups of nodes) and discussed topics. The inference pro-
cedure relies on a classification VEM approach and an ICL
model selection criterion is derived in order to estimate the
number of node groups, time clusters and discussed topics.
Numerical experiments on simulated data allowed us to high-
light the main features of the proposed methodology, which
proves to generalize several existing approaches. Finally, the
application of dSTBM to the Enron communication network
leaded to likely results.

Future researches could focus on a “clever” way to set
a time partition, either including this partition between the
model parameters or adopting a data driven choice (as done
byMatias et al. 2015, for a dynamic SBM-likemodel). Alter-
natively, the dSTBM model could be extended to deal with
overlapping clusters, allowing individuals to belong tomulti-
ple groups. In this context, a starting point could be themixed
memberships SBM (MMSBM, Airoldi et al. 2008).

A Proofs

A.1 Proof of Proposition 1

Proof The VEM update step for the distribution R(Zi ju
n ), for

all i, j, u and n, is given by

log R(Zi ju
n )

= ER(Z�i, j,u,n ,θ)[log p(W |Z , D, β)

+ log p(Z |D, Y , X , θ)] + C

=
K∑

k=1

Zi ju
nk

V∑

v=1

Wi ju
nv logβkv

+
Q∑

q,r

L∑

l=1

YiqY jr Xul

K∑

k=1

Zi ju
nk Eθqrl [log θqrl ] + C

=
K∑

k=1

Zi ju
nk

(
V∑

v=1

Wi ju
nv logβkv

+
Q∑

q,r

L∑

l=1

YiqY jr Xul

(
ψ(γqrlk)−ψ

(
K∑

k=1

γqrlk

))⎞

⎠+C,

(18)

where the expectation is taken with respect to the distribution
R(Z , θ) conditional on Zi ju

n to be fixed, C includes all the

123



692 Statistics and Computing (2019) 29:677–695

(a) (b)

(c) (d)

Fig. 7 Clustering results with dSTBM on the Enron data set (Sept. 2001–Jan. 2002). Each graph corresponds to a time cluster. a Time cluster C1.
b Time cluster C2. c Time cluster C3. d Time cluster C4

terms not depending on Zi ju
n and ψ(·) denotes the digamma

function. The functional form of a multinomial distribution
can be recognised

R(Zi ju
n ) = M

(
Zi ju
n ; 1, φi ju

n = {φi ju
n1 , . . . , φ

i ju
nK }

)
,

where

φ
i ju
nk ∝

(
V∏

v=1

β
Wi ju

nv

kv

) Q∏

q,r

L∏

l=1

exp
(
ψ(γqrlk)

−ψ

(
K∑

k=1

γqrlk

))YiqY jr Xul

.

�	

A.2 Proof of Proposition 2

Proof The VEM update step for distribution the distribution
R(θ) is given by

log R(θ) = ER(Z)[log p(Z |D,Y , X , θ)] + C

=
M∑

j �=i

U∑

u=1

Ni ju∑

n=1

Q∑

q,r

L∑

l=1

YiqY jr Xul

K∑

k=1

ER(Z)[Zi ju
nk ] log θqrlk

+
Q∑

q,r

L∑

l=1

K∑

k=1

(αk − 1) log θqrlk + C
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=
Q∑

q,r

L∑

l=1

K∑

k=1

⎛

⎝αk

+
M∑

j �=i

U∑

u=1

Ni ju∑

n=1

YiqY jr Xulφ
i ju
nk − 1

⎞

⎠ log θqrlk

+ C, (19)

where C contains the terms not depending on θ . The func-
tional form of a Dirichlet distribution can be recognized

R(θ) =
Q∏

q,r

L∏

l=1

Dir(θqrl; γqrl = {γqrl1, . . . , γqrlK }),

with

γqrlk = αk +
M∑

j �=i

U∑

u=1

Ni ju∑

n=1

YiqY jr Xulφ
i ju
nk . �	

A.3 Derivation of the lower bound

The functional L̃(R(·); D,Y , X ,W , β) in (12) given in
Propositions 2 and 3, is given by

L̃(R(·); D,Y , X ,W , β)

=
M∑

j �=i

U∑

u=1

Ni ju∑

n=1

K∑

k=1

V∑

v=1

Wi ju
nv φ

i ju
nk log(βkv)

+
M∑

j �=i

U∑

u=1

Ni ju∑

n=1

K∑

k=1

φ
i ju
nk

×
⎛
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Q∑

q,r
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YiqY jr Xul
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logΓ
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αk

)
−

K∑
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logΓ (αk)

+
K∑

k=1

(αk − 1)

(
ψ(γqrlk) − ψ

(
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−
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φ
i ju
nk log(φi ju
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−
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(
logΓ
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)))
.

A.4 Proof of Proposition 3

Proof The maximization of the functional in (12) with
respect to β is considered at first. By isolating the terms
depending on β and introducing K Lagrange multipliers
accounting for the constraints

∑V
v=1 βkv = 1, ∀k, we obtain

the following objective function

f (β) :=
M∑

j �=i

U∑

u=1

Ni ju∑

n=1

K∑

k=1

V∑

v=1

φ
i ju
nk logβkv

+
K∑

k=1

λk

(
K∑

k=1

βkv − 1

)
,

whose gradient can be easily computed and set equal to zero
to find the βkv in (13).

In a similar fashion, when optimizing with respect to ρ,
the following objective function is introduced

f (ρ) :=
M∑

i=1

Q∑

q=1

Yiq log ρq + λ

⎛

⎝
Q∑

q=1

ρq − 1

⎞

⎠ , (20)

and its first derivative with respect to ρq is set equal to zero to
obtain the stationary point in equation (15). The optimization
with respect to δ is analogous and (14) is a consequence of
the likelihood in (4). �	

A.5 Proof of Proposition 4

Proof A factorizing prior distribution being attached to the
model parameters, (Λ, ρ, δ, β), the integrated complete-
data log-likelihood log p(W , D,Y , X |Q, L, K ) can easily
be written as

log p(W , D,Y , X |Q, L, K )

= log
∫

β

p(W |D,Y , X , β, Q, L, K )p(β|K )dβ

+ log
∫

Λ

p(D|Y , X ,Λ, Q, L)p(Λ|Q, L)dΛ

+ log
∫

ρ

p(Y |ρ, Q)p(ρ|Q)dρ

+ log
∫

δ

p(X |δ, L)p(δ|L)dδ,

(21)

where the dependency on (Q, L, K ) is made explicit and
the pair (Z , θ) is integrated out as in Sect. 3.1. Following the
derivation of the ICL criterion (Biernacki et al. 2000) we rely
on a BIC-like approximation of the second term on the right
hand side of the above equation to obtain
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log
∫

Λ

p(D|Y , X ,Λ, Q, L)p(Λ|Q, L)dΛ

≈ max
Λ

log p(D|Y , X ,Λ, Q, L)

− Q2L

2
log(MU (M − 1)).

Similarly the last two terms can be approximated as

log
∫

ρ

p(Y |ρ, Q)p(ρ|Q)dρ

≈ max
ρ

log p(Y |ρ, Q) − Q − 1

2
log(M)

and

log
∫

δ

p(X |δ, L)p(δ|L)dδ

≈ max
δ

log p(X |δ, L) − L − 1

2
log(U ).

Notice that the last three approximations lead to the ICL
criterion for the dSBM model

ICLdSBM := max
Λ

log p(D|Y , X ,Λ, Q, L)

− Q2L

2
log(MU (M − 1))

+ max
ρ

log p(Y |ρ, Q) − Q − 1

2
log(M)

+ max
δ

log p(X |δ, L) − L − 1

2
log(U ).

The exact version of this criterion is maximized relying on a
greedy search approach in Corneli et al. (2016b).

Consider now the first term on the right hand side of
(21). Recalling that the documents W can be organized as
W = (W̃qrl)q,r ,l such that all words in W̃qrl follow the
same mixture distribution over topics, we adopt the BIC-like
approximation obtained in Bouveyron et al. (2016) corrected
by the number of documents in dSTBM

log
∫

β

p(W |D,Y , X , β, Q, L, K )p(β|K )dβ

≈ max
β

log p(W |D,Y , X , β, Q, L, K )

− K (V − 1)

2
log(Q2L).

Since the first term on the right hand side of the above
approximation is not tractable, it is replaced by its variational
approximation L̃(R(·); D,Y , X ,W , β), defined in (12), and
the proposition is proven. �	
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