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Abstract
In this paper, we introduce an unrestricted skew-normal generalized hyperbolic (SUNGH) distribution for use in finite mixture
modeling or clustering problems. The SUNGH is a broad class of flexible distributions that includes various other well-known
asymmetric and symmetric families such as the scale mixtures of skew-normal, the skew-normal generalized hyperbolic and
its corresponding symmetric versions. The class of distributions provides a much needed unified framework where the choice
of the best fitting distribution can proceed quite naturally through either parameter estimation or by placing constraints on
specific parameters and assessing through model choice criteria. The class has several desirable properties, including an
analytically tractable density and ease of computation for simulation and estimation of parameters. We illustrate the flexibility
of the proposed class of distributions in a mixture modeling context using a Bayesian framework and assess the performance
using simulated and real data.

Keywords Bayesian analysis · Finite mixtures · MCMC · Unrestricted skew-normal generalized hyperbolic family ·
Skew-normal · Generalized hyperbolic distribution

1 Introduction

Statistical models based on finite mixtures of distributions
have been extensively used in a wide variety of applications.
Applying finite mixture models to real datasets allows fitting
different characteristics of the empirical distribution, such as
multimodality, skewness, kurtosis and heterogeneity, across
observations. For general reviews of mixture models and
applications, see Hogan and Laird (1997), Böhning (2000),
McLachlan andPeel (2000), Frühwirth-Schnatter (2006), Lin
(2010) and Mengersen et al. (2011).

While the vast majority of work on mixture models has
focused on Gaussian mixture models, in many applications
the tails of Gaussian distributions are shorter than appro-
priate and the Gaussian shape is not suitable for highly
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asymmetric data. Recent research has thus focused on fit-
ting finite mixture models with more flexible distributional
forms. The Student-t and the contaminated Gaussian distri-
butions are two symmetric members of the scale mixtures
of normal (SMN) family of distributions due to Andrews
and Mallows (1974), which provide attractive heavy-tailed
alternatives to the Gaussian distribution. Building upon this
work is the class of scale mixtures of skew-normal (SMSN)
distributions proposed by Branco and Dey (2001). The
class of SMSN distributions provides location-scale den-
sity functions which depend on additional parameters of
shape and kurtosis, and includes as special cases the normal
and skew-normal (SN) densities, as well as the full SMN
class of symmetric densities. Special symmetric and skew-
symmetric heavier tail members of the SMSN family are,
e.g., the Student-t , Cauchy, skew-t (ST), skew-Cauchy (SC),
skew-contaminated normal (SCN) and skew-slash (SSL)
distributions. Comprehensive coverage of the fundamental
theory andnewdevelopments for SNand related distributions
is given by Azzalini and Capitanio 2014; see also Genton
(2004), Arellano-Valle and Genton (2005, 2010), Arellano-
Valle and Azzalini (2006), Arellano-Valle and Azzalini
(2006).
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Many of the different distributions within the class of
SMSN distributions have been developed, and their perfor-
mance assessed in the context of mixture models. Lin et al.
(2007), Lin et al. (2009) and Pyne et al. (2009) studied mix-
tures of skew-normal distributions. Frühwirth-Schnatter and
Pyne (2010) considered Bayesian inference for finite mix-
tures of univariate and multivariate SN and ST distributions.
Basso et al. (2010) considered the robust mixture modeling
based on the SMSN family. Wang et al. (2009), Lin (2010),
Lee and McLachlan (2014), Vrbik and McNicholas (2012)
and Forbes and Wraith (2014) considered mixtures of mul-
tivariate ST distribution. Maleki and Arellano-Valle (2017)
proposed a time series model based on finite mixtures of
SMSN distributions. For a review of mixtures of SN and ST
distributions, see Lee and McLachlan (2013a, b).

Other distributional formswithin the SMSN family of dis-
tributions have also been examined. Karlis and Santourian
(2009) developed mixtures of multivariate normal inverse
Gaussian distributions. Franczak et al. (2014) examinedmix-
tures of shifted asymmetric Laplace (SAL) distributions.
Morris et al. (2014) proposed mixtures of contaminated SAL
distributions. Browne and McNicholas (2015) and Wraith
and Forbes (2015) examined mixtures of generalized hyper-
bolic distributions.

In the SMSN class of distributions, although the mixing
distribution typically controls the tail behavior, it can also
affect the behavior of skewness (Branco and Dey 2001). A
recent work on this theme providing flexibility in both skew-
ness and heavy tails has been considered byVilca et al. (2014)
in a class of distributions referred to as multivariate SN gen-
eralized hyperbolic (SNGH) distributions. In this setting, the
mixing distribution follows a generalized inverse Gaussian
distribution (GIG), which has previously been demonstrated
to provide considerable flexibility in modeling heavy-tailed
data (Wraith and Forbes 2015).

In other recent works, a broad class of skewed distribu-
tions has been explored by Lee and McLachlan (2016) in
a mixture model context focusing on the unified ST (SUT)
distribution (Arellano-Valle and Azzalini 2006) and the fun-
damental ST distribution (Arellano-Valle and Genton 2005),
including as a special case the location-scale variant of the
canonical fundamental or unrestricted ST (or skew unified t;
SUT) distribution. A particular feature and advantage of the
SUT distribution is that it encompasses as special cases the
canonical fundamental or unrestricted SN (or skew unified
normal; SUN) distribution (Arellano-Valle andGenton 2005)
and other SN or ST variants (e.g., Sahu et al. 2003; Arellano-
Valle et al. 2007; Lachos et al. 2007, 2010), thus providing
considerable flexibility for modeling where the best fitting
distribution can be chosen simply (automatically) through
parameter estimation or use of model choice criteria.

In this paper, we propose a very general class of distribu-
tions which extends the previous work on the SUN and SUT

distributions by considering a mixing distribution for this
class of models which follows a generalized inverse Gaus-
sian (GIG). We refer to this new family of distributions as
an unrestricted skew-normal generalized hyperbolic distri-
bution (SUNGH). The new family provides a very general
framework for a large class of distributions and has several
desirable properties, including an analytically tractable den-
sity and ease of computation for simulation and estimation of
parameters. The family also provides a high degree of flex-
ibility for the modeling of complex multivariate data with
different degrees of asymmetry, kurtosis and heavy tails. A
particular attractiveness of this family of distributions is that
it encompasses as special cases all of the distributions previ-
ously considered in the SMSN family and extensions to the
unrestricted classes (e.g., SUT and SUN). Thus, this class
of distributions provides a much needed unified framework
where the choice of the best fitting distribution can pro-
ceed quite naturally through either parameter estimation or
by placing constraints on specific parameters and assessing
throughmodel choice criteria.We illustrate the advantages of
this new family in the finite mixture modeling context using
a Bayesian framework.

There are some computational advantages to using a
Bayesian framework in a mixture model setting. First, allow-
ing for the influence or effect of missing data on parameter
estimates is quite natural in a Bayesian setting as various pat-
terns of missing data (e.g., class-dependent missingness) can
be imputed at each MCMC iteration from the posterior pre-
dictive distribution (e.g., using amixturemodel defined using
open-source software such as JAGS or NIMBLE). In con-
trast, often quite separate and complex methods are needed
for maximum likelihood estimation in these settings (Lin
et al. 2009 and Wang et al. 2004). Further, for the complex
distributions we consider in this paper, previous work using
the EM algorithm has at times relied on approximations (Lee
andMcLachlan 2016) or calculations of derivatives involving
complex functions (Browne and McNicholas 2015) for the
estimation of parameters. This difficulty also extends to the
estimation of the standard errors for parameters (if they are
available) using asymptotic approximations to the observed
information matrix if the sample size is large or resorting
to a bootstrap method which is computationally demand-
ing (Basso et al. 2010). At times, the standard errors for the
parameters are also unavailable (particularly for the GH dis-
tribution) or not mentioned (e.g., Browne and McNicholas
2015). This is not to say that estimation in the Bayesian set-
ting is devoid of potential computational issues, in particular
the issue of label switching is a more prominent issue com-
pared to methods using ML estimation (Mengersen et al.
(2011)).

The paper is organized as follows. In Sect. 2, we provide
some background to the SUN and GIG distributions. Sec-
tion 3 outlines the details and properties of the new SUNGH
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family. In Sect. 4, we present a Bayesian analysis of a finite
mixture model following a SUNGH distribution. In Sect. 5,
we illustrate the performance of the proposed approach on
real and simulated data. Finally, in Sect. 6, we present our
main conclusions and discuss some areas of further research.

2 SUN and GIG distributions

2.1 Preliminaries

FollowingArellano-Valle andGenton (2005),Arellano-Valle
and Azzalini (2006) and Arellano-Valle et al. (2007), we say
that a p × 1 random vector X follows an unrestricted skew-
normal (SUN) with p × 1 location vector μ, p × p positive
definite dispersion matrix � and p × q skewness parameter
matrix �, denoted by X ∼ SUNp,q (μ,�,�), if its proba-
bility density function (pdf) is

f (x|μ,�,�) = 2qφp (x|μ,ψ)�q

(
��ψ−1 (x − μ) |Υ

)
,

x ∈ R p, (1)

where ψ = � + ���, ϒ = Iq − ��ψ−1� =(
Iq + ���−1�

)−1
, and φk (·|μ,ψ) and �q (·|ϒ) are,

respectively, the pdf and cumulative distribution function
(cdf) of the multivariate normal distributions given by
Np (μ,ψ) and Nq (0,ϒ). The SUN class of multivariate dis-
tributions defined by (1) contains various special cases. For
instance, we recover the multivariate normal when � = 0,
the multivariate SN which called here restricted SN (rMSN)
when q = 1, and the multivariate SN of Sahu et al. (2003)
when p = q and � being a diagonal matrix. In fact, the
SUN distribution becomes an important special case of the
unified SN distribution (SUN) studied by Arellano-Valle and
Azzalini (2006).

The random vector X ∼ SUNp,q (μ,�,�) can be
stochastically represented from different ways. According
to Arellano-Valle et al. (2006), the SUN random vector X
has selection representation given by

X = μ + (V 1|V 0 > 0) , (2)

where the condition V 0 > 0 means that each element of V 0

is positive, and
(
V 0

V 1

)
∼ Np+q

((
0
0

)
,

(
Iq ��
� �

))
.

The representation in (2) becomes a selection representation
of the rMSN distribution when q = 1, i.e., when the latent
vector V 0 is replaced by a one-dimensional normal random
variable V0. Also, if we let V 0 = W0 and V 1 = W1+�W0,
whereW0 ∼ Nq

(
0, Iq

)
andW1 ∼ N p

(
0, I p

)
are indepen-

dent, it follows from (2) that the stochastic representation of
X is given by

X = μ + � |W0| + �1/2W1, (3)

where |W0| is the vector formed with the absolute value
of each component of W0. For more details, see Arellano-
Valle et al. (2006), Arellano-Valle and Azzalini (2006) and
Arellano-Valle et al. (2007). In particular, the mean vec-
tor and covariance matrix of X are given by E [X] =
μ + √

2/π�1p and Cov [X] = ψ − 2
π
�1q1�

q ��, respec-
tively, where 1q denotes the vector of ones with length q.

In this work, we consider the extension of the scale mix-
tures of rMSN (SMRSN or SMSN) distributions to the scale
mixtures of SUN (SMSUN) distributions. Specifically, we
consider the family of random vectors defined by

Y = μ + κ (U )1/2 X, (4)

where X ∼ SUNp,q (0,�,�), κ (·) is a positive scale func-
tion andU is a mixing random variable which is independent
of X . For our proposed SUNGHdistribution, we consider the
SMSUNclass of distributions defined by (4)when themixing
random variable U follows a GIG distribution.

2.2 The family of GIG distribution

The GIG class is a rich family of flexible distributions with
positive support that has been studied by several authors. For
instance, see Good (1953), Barndorff-Nielsen and Halgreen
(1977), Jørgensen (1982), among others. Thus, the choice
of a GIG distribution for the scale mixing variable U in (4)
is a natural candidate and provides a highly flexible unified
class of multivariate distributions for multivariate statistical
analysis.

The GIG distribution has several but equivalent represen-
tations in terms of its parameterization. In this paper, and in
order to simplify andhave closed-formposterior distributions
in the Bayesian framework adopted here, we consider (with-
out loss of generality) the following two representations:

First representation GIG∗ (υ, γ, ρ) : A random variable U
has a GIG distribution, denoted by U ∼ GIG∗ (υ, γ, ρ), if
its pdf is given by

GIG∗ (u |υ, γ, ρ ) =
(

γ

ρ

)υ uυ−1

2Kυ (ργ )

exp

(
−1

2

(
ρ2

u
+ γ 2u

))
, u > 0, (5)

where Kr (x) is themodifiedBessel function of the third kind
of order r evaluated at x , and the parameter spaces are given
by γ > 0, ρ > 0 and −∞ < υ < +∞.
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Second representation GIG∗ (υ, ψ, η) : A random vari-
able U follows a GIG distribution denoted by U ∼
GIG∗ (υ, ψ, η), if its pdf is given by

GIG∗ (u |υ,ψ, η ) = (u/η)υ−1

2ηKυ (ψ)

exp

(
−ψ

2

(
u

η
+ η

u

))
, u > 0, (6)

where Kr (x) is defined previously and the parameter spaces
are ψ > 0, η > 0 and −∞ < υ < +∞. This representation
will be used to simplify the posterior representation of the
GIG parameters. In this case, the mth moment of the random
variable U 1/2 is given by

E
(

U m/2
)

= Kυ+m/2 (ψ)

Kυ (ψ)
ηm/2, m = 1, 2, . . . .

Theequivalencebetweenboth representations of theGIGdis-
tribution considered in (5) and (6) is obtained by observing
the one-to-one relationship between their parameters given
by ψ = ργ and η = ρ/γ . Particular members of the GIG
class lead to a variety of skewed distributions belonging to
the proposed family. The inverse Gaussian is one member
of this class which has been extensively studied by Chhikara
and Folks (1989), Seshadri (1993) and Johnson et al. (1994,
chap. 15). Two additional members of the GIG class are
the hyperbola and the positive hyperbolic distributions, both
of which have been studied by Barndorff-Nielsen (1978)
and Barndorff-Nielsen and Blaesild (1980). The exponen-
tial, gamma and inverse gamma distributions are also special
members of the GIG family. For a recent study on these dis-
tributions, see Vilca et al. (2014) and references therein.

In this paper, we define the multivariate random variable
Y via (4), and by considering a multivariate SUN random
variable X according to (3) and a GIG scale random variable
U distributed according to the second representation in (6).
As mentioned previously, we refer to this proposed family as
SUNGH distributions.

3 The family of SUNGH distributions

An alternative way to define SUNGH distribution follows by
replacing Eq. (3) in Eq. (4). From this, we can say that a p×1
random vector Y follows a SUNGH distribution if

Y = μ + �W + κ (U )1/2 �1/2W1, (7)

whereμ is a p ×1 location vector,� is a p × p scale matrix,
� is a p × q shape matrix, W = κ1/2 (U ) |W0|, W0 ∼
Nq

(
0, Iq

)
, W1 ∼ Np

(
0, I p

)
and U ∼ GIG∗ (υ, ψ, η),

with W0, W1 and U being independent random quantities.
These assumptions also imply that W is also independent of

W1. Note that if we set W = U , κ (u) = u and q = 1 we
obtain the GH distribution proposed by McNeil et al. (2005)
and considered in the mixture model context by Browne and
McNicholas (2015). For this reason, the GH distribution is
more restrictive (less flexible) compared to the SUNGH dis-
tribution. Since the conditional distribution ofY givenU = u
is given by Y | U = u ∼ SUNp,q

(
μ, κ (u)�, κ (u)1/2 �

)
,

the marginal pdf of Y becomes the infinite mixture of the
SUN pdf in (1) given by

f ( y|μ,�,�,� ) = 2q

∞∫

0

φp ( y|μ, κ (u)ψ)�q

(
κ (u)−1/2 ��ψ−1 ( y − μ) |ϒ

)
GIG∗ (u |� ) du, (8)

y ∈ R p, where � = (υ, ψ, η)�, and ψ and Υ defined as
in (1). In what follows, we will refer to the SUNGH random
vector in (7) as Y ∼ SUNGHp,q (μ,�,�,� ).

Note that there are some identifiability issues concerning
the GIG parameters � and skewness matrix �. Using (8)
the density is not identifiable as for any parameter c > 0, the
parameters (μ,�,�, υ, ψ, η) and (μ, c�, c�, υ, ψ/c, cη)

yield the same density. A simple fix which results in an iden-
tifiable density is to set η = 1 and so � = (υ, ψ)�. An
alternative parameterization which can provide for greater
flexibility is discussed in Wraith and Forbes (2015). Fur-
ther, any permutation matrix can be multiplied by W from
the stochastic representations (7) without any changes to the
distribution of Y , so sorting � by the norm of the columns
or some other sorting method is also needed to ensure iden-
tifiability of the proposed model.

Varying the scale mixing function κ (U ) for a given dis-
tribution of U belonging to the GIG∗ (� ) class leads to a
variety of members in the SUNGH family. Alternatively, we
canfix the scale function and vary the distribution ofU within
the GIG∗ (� ) class. In the latter case, a convenient choice
for the scale function is κ (u) = u, for which the pdf in (8)
becomes

f ( y|μ,�,�,� ) = 2qGHp
(
y|μ,ψ, 0, ν′) G Hq

(B|0,Υ , 0, ν
′′
), y ∈ R p, (9)

where ν′ = (
υ,

√
ψ/η,

√
ψη

)�
), ν′′ = (

υ − p/2,
√

ψ/η,

q ′( y))�, q ′ ( y)2 = ( y − μ)� ψ−1 ( y − μ) + ψη, ψ = � +
���, Υ = Iq − ��ψ−1� and B = ��ψ−1 ( y − μ),
GHp and G Hq denote the p-variate pdf and q-variate cdf of
the generalizedHyperbolic distribution, respectively (Wraith
and Forbes 2015).

The flexibility of the SUNGH family proposed in (8) can
also be observed by varying the value of the dimension q. In
fact, for q = 1 (the restricted case) we obtain as a special
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case of (8) the SN generalized hyperbolic (SNGH) distribu-
tions considered in Vilca et al. (2014), and thus some known
SMSN (or SMRSN) distributions, as well the corresponding
symmetrical variant for � = 0.

A special case of the GIG distribution is the gamma dis-
tribution, so the proposed family of distributions covers the
canonical fundamental unrestricted skew-normal (CFUSN)
distribution of Arellano-Valle and Genton (2005), and the
canonical fundamental unrestricted skew-t (CFUST) distri-
bution of Lee and McLachlan (2016). Subsequently, a mix-
turemodel approach covering these distributions contains the
finite mixtures of CFUSN and CFUST. By considering (9) in
the symmetric case, the SUNGH and GH studied by Wraith
and Forbes (2015) and Browne and McNicholas (2015) are
similar, but in the asymmetric case these families are differ-
ent. In particular, a greater degree of flexibility is available
for the SUNGH family by allowing the skewness parameter
to be multivariate (p × q) rather than p × 1. The SUNGH
family also has several desirable properties outlined inPropo-
sitions 2 to 6 below which will allow the family to be used
in a variety of statistical models (e.g., mixed models and
regression).

Known members of the SMSN family contained in the
SNGH family are the SN, ST, SSL and skew-Laplace (SLP),
and their respective symmetric versions. In the unrestricted
case (q > 1), the proposed family contains several subfami-
lies of distributions (symmetric and asymmetric) considered
in the literature. For instance, if in (9) we let q = p,
� = diag

(
λ1, . . . , λp

)
and κ (u) = 1, then the multivariate

skew-normal distribution of Sahu et al. (2003) is obtained.
Finally, if � = 0 (symmetric case) and κ (u) = u, then
(9) becomes the symmetric generalized hyperbolic (GH)
distribution introduced by Barndorff-Nielsen and Halgreen
(1977).

In the following propositions, we present some necessary
and useful properties of the SUNGH family for the next sec-
tions.Theproofs of these results are presented in “Appendix.”

Proposition 1 Let Y ∼ SUNGHp,q (μ,�,�,� ). Then, the
following results hold:

(a) if k1 = E
[
κ (U )1/2

]
< ∞, then E [Y ] = μ +√

2
π

k1�1q ,
(b) if k2 = E [κ (U )] < ∞, then Var [Y ] = k2ψ −

2
π
�

[
k2 Iq − (

k2 − k21
)
1q1�

q

]
��.

Proposition 2 Let Y ∼ SUNGHp,q (μ,�,�,� ). Then,
Y ∼ SUNGHp,q+m

(
μ,�,�∗,�

)
for each m = 1, 2,…,

where �∗ = (
�p×q 0p×m

)
or �∗ = (

0p×m �p×q
)
.

Proposition 3 Let Y ∼ SUNGHp,q (μ,�,�,� ). Then, for
each b ∈ Rn and full row rank matrix B ∈ Rn×p we have

X = b + BY ∼ SUNGHn,q

(
b + Bμ, B�B�, B�,�

)
.

Proposition 4 Let Y ∼ SUNGHp,q (μ,�,�,� ). Partition

Y = (
Y�
1 ,Y�

2

)�
, where the first and second sub-vectors are

of dimensions p1×1 and p2×1, respectively, with p1+ p2 =
p. The corresponding partition of the parameters (μ,�,�)

is

μ =
(

μ1
μ2

)
,� =

(
�11 �12

�21 �22

)
,� =

(
�1

�2

)
,

whereμi ,�i i and�i have dimensions pi ×1, pi×pi and pi×
q, respectively, for i = 1, 2. Then, the marginal distribution
of Y i is SUNGHpi ,q

(
μi ,�i i ,�i ,�

)
, i = 1, 2.

Proposition 5 If under the same conditions of Proposition 4,
we have �12 = �21 = 0 then a necessary and sufficient
condition to have null correlation between Y1 and Y2 is that
�1 = 0 or �2 = 0.

Proposition 6 Consider the same conditions of Proposi-
tion 4 with the partition of shape matrix �=

(
�i j

)
i, j=1,2,

where �i j has dimension pi × q j , with q1 + q2 = q.
If �12 = ��

21 = 0 and �12 = 0 or �21 = 0,
then Y i ∼ SUNGHpi ,qi

(
μi ,�i i ,�i i ,�

)
, i = 1, 2, and

Cov (Y1,Y2) = − 2
π

k21�121q11
�
q2�

�
21.

4 Finite mixtures of SUNGH family

4.1 FM-SUNGHmodel

In this section, we consider finite mixtures of the proposed
SUNGH family of distributions (hereafter FM-SUNGH).
To establish notation, we consider the usual mixture model
defined as

f ( y;�, p) =
∑K

k=1
pk f ( y;�k) , (10)

where � = (
�1, . . . ,�K

)
, with �k = (

μk,�k,�k,

υk,ψk, ηk
)
, k = 1, . . . , K , p = (p1, . . . , pK )� (for

which pk > 0, k = 1, . . . , K and
∑K

k=1 pk = 1), υk =(
υk1, . . . , υkp

)�, ψk = (
ψk1, . . . , ψkp

)�, ηk = (
ηk1,

. . . , ηkp
)� and f ( y;�k) given by (8). This model hereafter

will be called FM-SUNGH. The identifiability of mixtures
of distributions has been studied by Teicher (1963) and
Holzmann et al. (2006) to ensure that the FM-SUNGH is
identifiable.

The SUNGH family is a rich class of distributions, and
various particular forms from this family have been consid-
ered over the last few years in the case of mixture models. In
Table 1, we outline details of some of the distributions and
the corresponding parameters within the SUNGH family.

Using the mixture model representation in (10), for each
i.i.d. sample in the form of Y1, . . . ,Yn , we can utilize
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an (latent) indicator (allocation) variables Z1, . . . , Zn , to
assign observations to belong to different components of
the mixture (k = 1, . . . , K ). The standard assumption for
the allocation random variables Z1, . . . , ZK is that they fol-
low a multinomial joint distribution: Zi = (Z1, . . . , ZK ) ∼
Multinomial (K , p1, . . . , pK ), so that P (Zi = k) = pk;
i = 1, . . . , n, k = 1, . . . , K . In terms of Zi , we can con-
clude that

Y i | Zi = k
ind.∼ SUNGH (�k) , P (Zi = k) = pk .

Let C = {Y,U,W, Z} denote the complete data, where

Y = (
Y�
1 , . . . ,Y�

n

)�
is the observed variable and U =

(U11, . . . , U1K , . . . , Un1, . . . , UnK )�, W = (
W�

11, . . . ,

W�
1K , . . . ,W�

n1, . . . ,W
�
nK

)� and Z = (Z1, . . . , Zn)� are
the latent or unobservedvariables. Ifwe consider theSUNGH
stochastic representation (7) in terms of a finite mixture
model for i = 1, . . . , n and k = 1, . . . , K , a hierarchical
representation is

Y i |W ik = wik, Uik = uik, Zi = k
ind.∼ Np(

μk + �kwik, κ (uik) �k
)
, (11)

W ik | Uik = uik, Zi = k
ind.∼ H Nq

(
0, κ (uik) Iq

)
, (12)

Uik | Zi = k
ind.∼ GIG∗ (υk, ψk, ηk) , (13)

Z ∼ Multinomial(K , p1, . . . , pK ), (14)

where H Nq denotes the q-variate right half-normal distribu-
tion.

The model’s complete data likelihood function is then
given by

L (� |C ) =
n∏

i=1

K∏
k=1

(
φp

(
yi |μk + �kwik, κ (uik) �k

)

Hφq
(
wik |0, κ (uik) Iq

)GIG∗ (uik |υk, ψk, ηk)

P (Zi = k)) , (15)

where Hφq (w|0, ·) = φq (w|0, ·) I (w > 0) is the q-variate
right half-normal pdf.

4.2 Bayesian analysis

4.3 Priors

In this section, we choose priors for the parameters � which
will be used in Applications section. By assuming indepen-
dency between the different types of parameters in � and
that the skewness matrix of each mixture component be in
the formof�k = (

λk1| . . .| λkq
)
, prior distributions for some

of the FM-SUNGH model parameters are given by

p ∼ Dir (δ1, . . . , δK ) ,μk ∼ Np (mk, Mk) ,

�k ∼ I Wtk (T k) ,λkt ∼ Np (
kt , Lkt ) , t = 1, . . . , p

for k = 1, . . . , K , and where Dir and I W denote the
Dirichlet and inverse Wishart distributions, respectively. An
alternative representation of the skewnessmatrices priors and
posteriors in the Gibbs updates is provided in “Appendix.”
Prior distributions of the scaled factor variables for k =
1, . . . , K are:

υk ∼ N
(
μk, σ

2
k

)
, ηk ∼ GIG∗ (αk, χk, εk) , ψk ∼ exp (ςk) .

4.3.1 Posteriors

By considering the likelihood function (15) and the priors
specified previously, the joint posterior of � is given by

π (�, u,w, z| y) ∝ L (� |y, u,w, z ) π (�) .

The above joint posterior is intractable, but we can use an
MCMC method such as Gibbs sampling and Metropolis–
Hastings to draw samples using the conditional posterior
distributions. To establish notation, let Bk = {i, Zi = k}
be the set of observation indices for those yi classified into
the kth cluster and nk is equal to the number of observa-
tions allocated to the kth component (cluster). Apart from
the parameters for the scaled factor variables, all conditional
posterior distributions have closed form and are as follows:
(Note that �(−θ) denotes the set of parameters without its
element θ .)

p| �(−p), y, u,w, zi = k ∼ Dir
(
δpos.1, . . . , δpos.K

)
,

where

δpos.k = δk + nk; k = 1, . . . , K . (16)

μk

∣∣�(−μk ), y, u,w,zi = k ∼ Np (μ,�) , k = 1, . . . , K ,
where

μ = �
(
M−1

k mk +
∑

Bk
κ (uik)

−1 �−1
k

(
yi − �kwik

))
,

� =
[
M−1

k +
∑

Bk
κ (uik)

−1 �−1
k

]−1
, (17)

�k | �(−�k ), y, u,w, zi = k ∼ I Wtk+n (T ) , k = 1, . . . , K ,
where

T =
∑

Bk
κ (uik)

−1 (
yi − μk − �kwik

)
(
yi − μk − �kwik

)� + T k, (18)

λkt | �(−λkt ), y, u,w,zi = k ∼ Np (μ,�) ; k = 1, . . . , K ;
t = 1, . . . , p, where

μ = �
(
L−1

kt 
kt +
∑

Bk
κ (uik)

−1 wik(t)�
−1
k

123



Statistics and Computing (2019) 29:415–428 421

Ta
bl
e
1

Su
m
m
ar
y
of

no
n-
no
rm

al
fin

ite
m
ix
tu
re

m
od
el
s
be
lo
ng
in
g
to

th
e
FM

-S
U
N
G
H
m
od
el

Fi
ni
te
m
ix
tu
re

m
od
el
s

C
om

po
ne
nt

de
ns
ity

FM
-S
U
N
G
H

R
ef
er
en
ce
s

FM
of

re
st
ri
ct
ed

sk
ew

-n
or
m
al

(F
M
-r
M
SN

)
f
(x
|μ

,
�

,
δ
)
=

2φ
p
(x
|μ

,
�

)
�

1
( δ

� �
−1

(x
−

μ
)
|ϒ

) ,
ϒ

=
1

−
δ
� �

−1
δ

κ
(u

)
=

1,
q

=
1

Py
ne

et
al
.(
20
09
)

FM
of

un
re
st
ri
ct
ed

sk
ew

-n
or
m
al

(F
M
-C
FU

SN
)

f
(x
|μ

,
�

,
�

)
=

2q
φ

p
(x
|μ

,
ψ

)
�

q
( �

� ψ
−1

(x
−

μ
)
|ϒ

) ,
ψ

=
�

+
�

�
� ,

Υ
=

I q
−

�
� ψ

−1
�

=
( I q

+
�

� �
−1

�
) −

1

κ
(u

)
=

1
L
in

(2
00
9)

FM
of

re
st
ri
ct
ed

sk
ew

-t
(F
M
-r
M
ST

)
f
(x
|μ

,
�

,
δ
,
n )

=
2t

p
(x
|μ

,
�

,
n )

T 1
( δ

� �
−1

(x
−

μ
)

√
n+

p
n+

d
|0

,
ϒ

,
n

+
p) ,

d
=

(x
−

μ
)�

�
−1

(x
−

μ
)
,
ϒ

=
1

−
δ
� �

−1
δ

η
↓0

,
υ

=
ψ

=
n/

2,
q

=
1

Py
ne

et
al
.(
20
09
)
an
d
V
rb
ik

an
d

M
cN

ic
ho

la
s
(2
01
2)

FM
of

un
re
st
ri
ct
ed

sk
ew

-t
(F
M
-C
FU

ST
)

f
(x
|μ

,
�

,
δ
,
n )

=
2t

p
(x
|μ

,
�

,
n )

T q
( �

� �
−1

(x
−

μ
)

√
n+

p
n+

d
|0

,
�

,
n

+
p) ,

�
=

di
ag

(δ
)
,
d

=
(x

−
μ

)�
�

−1
(x

−
μ

)
,
�

=
I

p
−

δ
� �

−1
δ

η
↓0

,
υ

=
ψ

=
n/

2
L
in

(2
01
0)
,L

ee
an
d
M
cL

ac
hl
an

(2
01
4)

an
d
L
ee

an
d
M
cL

ac
hl
an

(2
01
6)

FM
of

m
ul
tiv

ar
ia
te
st
ud
en
t-
t(
FM

-T
)

f
(x
|μ

,
�

,
n )

=
�

((
n+

p )
/
2 )

�
(n

/
2 )

n
p/
2
π

p/
2
| �

|1/
2

( 1
+

1 n
(x

−
μ

)�
�

−1
(x

−
μ

)) −
n+

p
2

η
↓0

,
υ

=
ψ

=
n/

2,
�

=
0,

q
=

1
M
cL

ac
hl
an

an
d
Pe

el
(2
00
0)

FM
of

sc
al
e
m
ix
tu
re
s
of

sk
ew

-n
or
m
al

(F
M
-S
M
SN

)
f
(x
|μ

,
�

,
λ
)
=

2
∞ ∫ 0

φ
p
( y|

μ
,
u

−1
�

) �
1
( u

1/
2
λ

� �
−1

(x
−

μ
)) d

H
(u

)

Se
e
Se

ct
io
n
3
in

V
ilc

a
et
al
.(
20
14
)

B
as
so

et
al
.(
20
10
)
an
d
M
al
ek
ia
nd

A
re
lla

no
-V
al
le
(2
01
7)

FM
of

ge
ne
ra
liz
ed

hy
pe
rb
ol
ic

(F
M
-G

H
)

f
(x
|μ

,
�

,
α
,
λ
,
ω

)
=

e−
α
� �

−1
(x

−μ
)

(2
π

)
p/
2
| �

|1/
2

( ω
+d γ

)λ 2
−

p 4
K

λ
−

p 2
(√ γ

(ω
+d

) )

K
λ
(ω

)
,

γ
=

ω
+

α
� �

−1
α
,
d

=
(x

−
μ

)�
�

−1
(x

−
μ

)

L
et

W
=

U
in

E
q.
(7
),

κ
(u

)
=

u
an
d
q
=
1

M
cN

ei
le
ta
l.
(2
00
5)

an
d
B
ro
w
ne

an
d
M
cN

ic
ho

la
s
(2
01
5)

123



422 Statistics and Computing (2019) 29:415–428

(
yi − μk − �k(−t)wik(−t)

))
,

� =
(
L−1

kt +
∑

Bk
κ (uik)

−1 w2
ik(t)�

−1
k

)−1
, (19)

where �k(−t) denotes the p × (q − 1) skewness matrix �k

with the t th column eliminated,wik(−t) denotes the (q − 1)×
1vectorwik vectorwith the t th element eliminated, andwik(t)

denotes the t th element of the vector wik .
The full conditional posterior distribution for the latent

variables Zi , Uik and W ik , for i = 1, . . . , n; k = 1, . . . , K ,
are given by:

Zi | �, y, u,w ∼ Multinomial
(
K , pp.1, . . . , pp.K

)
,

where

pp.k = pk f
(
yi ;�k

)
∑K

j=1 p j f
(
yi ;� j

) , k = 1, . . . , K , (20)

Uik | �, y,w, zi = k ∼ GIG∗ (au, bu, cu), where κ (u) = u
and

au = υik − p + q

2
,

bu = (ψik/ηik)
1/2 ,

cu =
([

w�
ikwik + (

yi − μk − �kwik
)�

�−1
k

(
yi − μk − �kwik

)] + ψikηik

)1/2
. (21)

W ik | �, y, u, zi = k ∼ H Nq (μ,�), where

μ = κ (uik)
−1 ���

k �−1
k

(
yi − μk

)
,

� = κ (uik)
(
Iq + ��

k �−1
k �k

)−1
. (22)

Finally, the full conditional posterior for the scaled fac-
tor variables υk, ψk, ηk, k = 1, . . . , K , is as follows:
ηk | �(−ηk ), u,w, zi = k ∼ GIG∗ (

aη, bη, cη

)
, where

aη = αk − υknk,

bη =
(
χ2

k + ψk

∑
Bk

1/uik

)1/2
,

cη = (ε2k + ψk

∑
Bk

uik)
1/2. (23)

The full conditional posterior density of υk, k = 1, . . . , K is
proportional to:

π
(
υk | �(−υk ), u,w, Zi = k

) ∼ π1 (υk) N
(
μk, σ

2
k

)
,

(24)

where π1 (υk) = (
Kυk (ψk)

)−nk ∏
Bk

(uik/ηk)
υk .

The full conditional posterior density ofψk, k = 1, . . . , K
is also proportional to:

π
(
ψk | �(−ψk ), u,w, zi = k

) ∼ π2 (ψk)

E
(
ςk +

∑
Bk

(uik/ηk + ηk/uik) /2
)

, (25)

where π2 (ψk) = (
Kυk (ψk)

)−nk and E (ϕ) denotes the den-
sity of the exponential distribution with rate parameter ϕ.

Note that (24) and (25) do not have closed forms, but
a Metropolis–Hastings or rejection sampling step can be
embedded in the MCMC scheme to obtain draws from them.

5 Applications

In this section, we present a simulation study and applica-
tions on two real datasets to evaluate the performance of the
proposed SUNGH model for clustering problems. For illus-
trative purposes, we choose K to be equal to two for all
models presented.

5.1 Simulated data

To illustrate some of the differences between the SUNGH
family of models, we consider the case of two clusters each
sampled from a four-dimensional SUNGH distribution with
known parameters which are slightly separated from each
other. For the first and second cluster

μ1 = (4, 4, 4, 4)� , �1 = �2 =
⎛
⎜⎝

1 · · · 0.5
...

. . .
...

0.5 · · · 1

⎞
⎟⎠ and

�1 =

⎛
⎜⎜⎝

−4 −4
1 3

−4 −4
1 3

⎞
⎟⎟⎠ ,

μ2 = (−1,−1,−1,−1)� and �2 =

⎛
⎜⎜⎝

4 −5
1 2
4 −5
1 2

⎞
⎟⎟⎠ ,

respectively. Both clusters shared the same parameters for
the GIG∗ (υ, ψ, η) distribution, where υ = −0.5, ψ = 1
and η = 1. The sample size for each cluster is 300 and 450,
respectively. A plot of the simulated data is shown in Fig. 1
with the observations belonging to each cluster labeled by
different colors.

For estimation of the different models, largely non-
informative prior distributions were used for each of the
component parameters: μ = (μ1, . . . , μ4)

� ∼ N4 (0,�),
where � = 103 I4, � ∼ I Wτ (T ), where τ = 4 and T = I4

123



Statistics and Computing (2019) 29:415–428 423

-30 -20 -10 0 10

0
5

10
15

20

y1

y 2

Fig. 1 Plot of results for simulated data. Colors indicate the groups to
which observations belong in the first two dimensions. (Color figure
online)

with skewnessmatrix�4×2 with priors of its columns asλt ∼
N4 (
t , Lt ) for which 
t = 0 and Lt = 103 I4 and for t =
1, 2 (and in the matrix variate prior of the skewness matrix
we can consider that �4×2 ∼ M N4,2

(
0, 103 I4, 103 I4

)
),

υ ∼ N
(
0, 103

)
, η ∼ GIG∗ (0.001, 2000, 0), ψ ∼ exp (0.1)

and p ∼ Dir (1, . . . , 1). Also, we chose κ (u) = u for the
scale mixing function. All computations are implemented in
the R software version 3.3.1 (R Core Team 2017) with a core
i7 760 processor 2.8 GHz. The R and Nimble code for the
models are available from the authors upon request. Gibbs
sampling runs of 60,000 iterations with burn-in of 30,000
were used, and convergence criteria were established using
the Gelman–Rubin statistic (Gelman and Rubin 1992) and
by visual inspection. To address the issue of label switch-
ing over the MCMC iterations (Mengersen et al. (2011)), we
used the maximum a posteriori estimate (MAP) to select one
of the k! modal regions and a distance based measure on the
space of parameters to relabel parameters in proximity to this
region (Celeux et al. 2000).

Model performance was assessed by comparing the clas-
sification accuracy and model selection criteria for different
distributions within the family of SUNGH models (see
Table 2). For classification accuracy, we report the adjusted
rand index (ARI) (Hubert and Arabie 1985) which ranges
from 0 (no match) to 1 (perfect match). We also report the
EAIC and EBIC which are variations of the classical AIC
and BIC criteria for use in a Bayesian setting (Carlin and

Louis 2011) (lower values indicate a better fit). In a mixture
setting, it is also possible to compare the DIC values using
one of the measures suggested by Celeux et al. (2006).

As to be expected, from Table 2 we can see quite
clearly that the classification performance of the true model
(SUNGH (q = 2)) is very good with an ARI of 0.87 and
model choice criteria all appear to favor this model. A higher
log-likelihood was found for the model SUNGH (q = 3)
with a similar ARI score to the SUNGH (q = 2) model, but
on other criteria this model was not favored due to the extra
parameters involved. In applied settings, and where the true
labels are unknown, a similar trade-off will be made between
choosing more complex models with extra flexibility in the
skewness matrix (higher q values) and relative improvement
in model choice or goodness-of-fit measures. The perfor-
mance of the SN and SNGH models is also to be expected
given the relative lack of flexibility for the skewness parame-
ter to accommodate the degree of skewness in all dimensions
in this application.

5.2 Real applications

5.2.1 AIS example

In this example, we consider a dataset from the Australian
Institute Sports (AIS) containing measures of physical activ-
ity for 202 athletes (102 male and 100 female) based on
sex, red cell count, white cell count, hematocrit, hemoglobin,
plasma ferritin concentration, body mass index, sum of skin
folds, body fat percentage, lean body mass and finally height
and weight of the athletes (Cook and Weisberg 1994). The
data are available in the R package “sn” (see Azzalini 2015).

To assess the performance of the proposed SUNGH
model, we use BMI and body fat percentage (Bfat) to classify
male and female athletes. Figure 2a shows the observations
for male (in black) and female (in red) athletes according to
these two measures, suggesting a reasonably skewed distri-
bution for both males and females with a particularly strong
skewed and heavy-tailed distribution for male athletes. Fig-
ure 2b–d also shows thefitted contours and assigned labels for
each observation for several of themodels examined (SNGH,
SN and SUNGH).

Table 3 presents the model choice criteria for the different
models examined. The results suggest that the SUNGH has

Table 2 Results for simulated
data example

Model Log-likelihood (max) EAIC EBIC DIC2 ARI

SN −5936.9 12009.3 12198.8 11980.8 0.47

SNGH −5692.1 11504.2 11693.6 11460.1 0.77

SUNGH (q = 2) −5642.8 11458.9 11676.1 11444.3 0.87

SUNGH (q = 3) −5628.5 11487.5 11723.2 11514.1 0.86

The best values are indicated in bold
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Fig. 2 Plots of results for AIS example: a true data, b SNGH, c SN, d SUNGH

Table 3 Model choice criteria
for AIS data example

Model Log-likelihood (max) EAIC EBIC DIC2 ARI

SN −1071.2 2200.6 2266.7 2176.3 0.52

SNGH −1071.8 2205.2 2278.3 2186.8 0.64

(CFUST) SUT (q = 2) −1074.3 2229.8 2309.2 2216.1 0.69

SUNGH (q = 2) −1056.4 2197.8 2277.2 2186.8 0.79

The best values are indicated in bold; SN and SUT denote the restricted skew-normal and unrestricted skew-t
distributions, respectively

the highest log-likelihood and the lowest EAIC, but the SN
model has the lowest values for theEBICandDIC2 measures.
However, the ARI for the SN model (= 0.52) is consider-
ably lower than the SUNGHmodel (= 0.79) suggestingmore
support for the SUNGHmodel in terms of classification accu-
racy. We can also see these results reflected visually in Fig. 2
with theSUNGH(Fig. 2d) able to represent the skewednature
of the distribution for the two groups, particularly for the

male athletes. In contrast, the SNmodel (Fig. 2c) poorly rep-
resents the skewed distribution of the female athletes and the
heavy-tailed nature of the distribution for the male athletes.
As can be expected, the classification results for the SNGH
model (Fig. 2b) are visually similar to the SUNGH; how-
ever, small differences (due to the reduced flexibility of the
skewness parameter for the SNGH) can be observed which
impact greatly on the classification accuracy (ARI = 0.64).
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Fig. 3 Plots of observations and fitted contours for lymphoma example: a plot of observations for CD4 and ZAP70, b SNGH, c SN, d SUNGH

5.2.2 Lymphoma example

In another example, we examine a clustering problem for a
lymphoma dataset analyzed by Lee andMcLachlan (2013b).
The data consist of a subset of data originally presented and
collected byMaier et al. (2007). In Maier et al. (2007), blood
samples from30 subjectswere stainedwith four fluorophore-
labeled antibodies against CD4, CD45RA, SLP 76(pY 128)
and ZAP 70 (pY 292) before and after an anti-CD3 stimula-
tion. To illustrate the performance of different distributions
within the SUNGH family, wewill look at clustering a subset
of the data containing the variables CD4 and ZAP70 (Fig. 3),
which appear to be bimodal and display an asymmetric pat-
tern. In particular, the largest mode appears to show both
strong correlation between the two variables and substantial
skewness in both dimensions.

From Fig. 3, we can see a clear difference between the
SNGH and SUNGHmodels with the latter providing a closer
fit to the two groups visible in the data. This is further
supported by the model choice criteria with all three mea-
sures (EAIC, EBIC and DIC2) favoring the SUNGH model
(Table 4) compared to SNGH. The SUNGH model is also
preferred over the SN model (Fig. 3c) with the latter model
not appearing to fit or represent the larger component in the
data.Overall, the SUNGHmodel appears to fit the twogroups
in these data quite well with the lowest values for two of the
three model choice measures (EAIC and EBIC). Using the
DIC2 criteria, the lowest value appears to be for the SUT
model, so there is some support for this in terms of model
choice. However, the difference betweenDIC2 values for this
model and SUNGH is not great (SUNGH = 7201.3;SUT =
7198.5), suggesting little difference in terms of this measure.
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Table 4 Model choice criteria
for lymphoma example

Model Log-likelihood (max) EAIC EBIC DIC2

SN −3657.0 7433.6 7539.8 7473.1

(CFUSN) SUN (q = 2) −3567.8 7507.1 7634.6 7782.6

ST −3577.6 7240.7 7347.0 7246.2

(CFUST) SUT (q = 2) −3404.5 7051.8 7179.3 7198.5

SUNGH (q = 2) −3396.4 7045.0 7172.5 7201.3

SNGH −3578.9 7252.4 7358.7 7266.9

The best values are indicated in bold; SN and SUN denote the restricted and unrestricted skew-normal
distributions, respectively; ST and SUTdenote the restricted and unrestricted skew-t distributions, respectively

6 Conclusion

We have proposed a flexible family of unrestricted skew-
normal generalized hyperbolic (SUNGH) distributions for
application in clustering problems which are capable of
representing distributions of asymmetric and heavy-tailed
forms. The family contains several other well-known sym-
metric and asymmetric families of distributions such as scale
mixtures of the skew-normal family (SMSN) as special cases.
Various properties of the SUNGH family are well defined,
and estimation of the parameters is relatively straightforward
in a Bayesian framework with most of the Gibbs sampling
updates available in closed form. Assessments of the per-
formance of the proposed model on simulated and real data
suggest that the family provides a considerable degree of free-
dom and flexibility in modeling data of varying tail behavior
and directional shape. As this family of distributions and the
parameterization we have adopted preserves several impor-
tant propositions (e.g., closed under linear combinations), the
SUNGH family can be used in a variety of other statistical
models (e.g., linearmultilevel/mixedmodels and regression).

Acknowledgements The authors would like to thank the coordinat-
ing editor and anonymous reviewers for their suggestions, corrections
and encouragement, which helped us to improve earlier versions of the
manuscript.

Appendix

A.1. Proof of Propositions 1 to 6

In this appendix, we prove Propositions 1 to 6.

Proof of Proposition 1 By considering (7),

(a): μY =E[Y ] = EU [EY |U [Y ]]
=EU [EY |U [μ + κ(u)1/2�|W0| + κ(u)1/2�1/2W1]]
=EU [μ + κ(U )1/2�E |W0| + κ(U )1/2�1/2E(W1)]
=μ + k1�E |W0|,

(b): Var[Y ] = E[(Y − μY )(Y − μY )�]
= EU [EY |U [(Y − μY )(Y − μY )�]]
= EU [EY |U [(�[κ(u)1/2|W0| − k1E |W0|]

+ κ(u)1/2�1/2W1)([κ(u)1/2|W�
0 |

− k1E |W�
0 |]�� + κ(u)1/2W�

1 �1/2)]]
= �EU [EY |U {[κ(U )1/2|W0|

− k1E |W0|][κ(U )1/2|W�
0 |

− k1E |W�
0 |]}]��

+ EU [κ(U )�1/2EY |U [W1W�
0 ]�1/2]

= �[k2E |W0||W�
0 | − k21 E |W0|E |W�

0 |]�� + k2�

= �

[
k2

(
2

π
1q1�

q +
(
1 − 2

π

)
Iq

)
− 2

π
k211q1�

q

]

�� + k2�

= k2� + �

[
(k2 − k21)

2

π
1q1�

q − 2

π
k2 Iq

]
��

��

Proof of Proposition 2 By considering the stochastic rep-
resentation (7) and the fact that W0 (and so W ) are
uncorrelated, this subject proved. In the case of �∗ =(
�p×q 0p×m

)
, relation (7) for Y ∼ SUNGHp,q+m(

μ,�,�∗,�
)
is equivalent to Y = μ + �∗W + κ (U )1/2

�1/2W1 = μ + �W (1) + κ (U )1/2 �1/2W1, where W (1)

is the first q components of W , and in the case of
�∗ = (

0p×m �p×q
)
, relation (7) for Y ∼ SUNGHp,q+m(

μ,�,�∗,�
)
is equivalent to Y = μ + �∗W + κ (U )1/2

�1/2W1 = μ + �W (2) + κ (U )1/2 �1/2W1, where W (2) is
the last q components of W ��
Proof of Proposition 3 By considering the stochastic repre-
sentation (7), we have that b + BY = b + Bμ + B�W +
κ (U )1/2

(
B�B�)1/2

W1 ��
Proof of Proposition 4 By considering Proposition 3, with
b = 0 and the matrix B in the form of

(
I p1 0p1×p2

)
or(

0p2×p1 I p2

)
, respectively, this subject proved ��

Proof of Proposition 5 Since Y = (
Y�
1 ,Y�

2

)�
, from part b)

of theProposition1,wehaveVar [Y ] = (
Cov

(
Y i ,Y j

))
i, j=1,2
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=
(
�i j + �i

[(
k2 − k21

) 2
π
1q1�

q − 2
π

k2 Iq

]
��

j

)
. Thus, if

�12 = 0, then Cov (Y1,Y2) = �1
[ (

k2 − k21
) 2

π
1q1�

q

− 2
π

k2 Iq
]
��

2 , thus following that each of the conditions
�1 = 0 or �2 = 0 leads to Cov (Y1,Y2) = 0 ��

Proof of Proposition 6 The first part follows by applying
Proposition 2 in the Proposition 4. For the proof of the second
result, note from the proof of Proposition 5 that

Cov (Y1,Y2) = (
�11 0p1×q2

)
p1×q[(

k2 − k21

) 2

π
1q1�

q − 2

π
k2 Iq

]

q×q

(
0p2×q1 �22

)�
q×p2

.

Thus, using the partitions Iq = diag
(
Iq1, Iq2

)
and 1q =(

1�
q1, 1

�
q2

)�
we obtain the proof ��

A.2. Matrix variate priors for skewness matrix

Considering the matrix variate priors in the form of �k ∼
M Np,q (Nk, Sk, Fk) , k = 1, . . . , K , where M N denotes
the matrix normal distributions, this leads to the following
posteriors instead of (19) as follows:

vec(�k)| �(−�k ), y, u,w, zi = k ∼ Npq (μ,�) ; k =
1, . . . , K , where

μ = �

⎡
⎣(Sk ⊗ Fk)

−1 vec (Nk) +
∑
Bk

κ (uik)
−1

(
M�

ik ⊗ �−1
k

)⎤
⎦ ,

(19a)

� =
⎡
⎣(Sk ⊗ Fk)

−1 +
∑
Bk

κ (uik)
−1

(
�−1

k ⊗ Lik

)
⎤
⎦

−1

,

where Lik = wikw
�
ik and M ik = (

yi − μk
)
w�

ik , for which⊗ denotes the Kronecker product and vec denotes the vector-
ization of a matrix (a linear transformation which converts
the matrix into a column vector).

Using these forms for the Gibbs updates may improve
mixing and convergence to a stationary distribution. How-
ever, they involve the use of matrix variate distributions for
which users may not be familiar; hence, a simpler (compu-
tational) update is provided in the main text.
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