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Abstract
Rank aggregation aims at combining rankings of a set of items assigned by a sample of rankers to generate a consensus
ranking. A typical solution is to adopt a distance-based approach to minimize the sum of the distances to the observed
rankings. However, this simple sum may not be appropriate when the quality of rankers varies. This happens when rankers
with different backgrounds may have different cognitive levels of examining the items. In this paper, we develop a new
distance-based model by allowing different weights for different rankers. Under this model, the weight associated with a
ranker is used to measure his/her cognitive level of ranking of the items, and these weights are unobserved and exponentially
distributed. Maximum likelihood method is used for model estimation. Extensions to the cases of incomplete rankings and
mixture modeling are also discussed. Empirical applications demonstrate that the proposed model produces better rank
aggregation than those generated by Borda and the unweighted distance-based models.

Keywords Ranking data · Latent-scale distance-based model · Rank aggregration · Incomplete ranking

1 Introduction

The problem of rank aggregation is to combine a collec-
tion of rankings of a set of items to obtain a consensus
ranking. It has many applications including combining rank-
ings of sport teams obtained from various sources (Deng
et al. 2014), ranking of webpages using meta-search engines
(Aslam and Montague 2001) and gene ranking in bioinfor-
matics (DeConde et al. 2006). One particular aspect of these
kinds of data is that the number of items being examined is
always fairly large, which makes the problem much harder
to be tackled.

Apopular approach to rank aggregation is to determine the
consensus ranking by minimizing the sum of the distances
from all the observed rankings to the consensus ranking.
This method is actually equivalent to the maximum like-
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lihood (ML) estimation of the consensus ranking under a
distance-basedmodelwhich postulates that the probability of
observing a ranking of items decreases exponentially accord-
ing to its distance to the consensus ranking, or more formally,
called themodal ranking. Such estimation is acceptable only
if the rankings assigned by the rankers are homogeneous, i.e.,
their rankings are identically distributed. However, rankers
with different backgrounds or cognitive levels of examin-
ing the items may generate diverse quality of rankings, and
hence, the rankings collected are likely non-identically dis-
tributed.

Examples of such heterogeneity of ranking abilities are
abound. For instance, in ranking of NBA teams stud-
ied by Deng et al. (2014), some rankers are professional
sport-ranking websites while some others are avid fans or
infrequent watchers. In a meta-search study, Dwork et al.
(2001) found that some search engines are more powerful
than others, and some low-quality search engines referred as
spam may provide a very low-quality ranking of webpages
because of “paid placement” and “paid inclusion”. In bio-
logical system study, Lin and Ding (2009) suggested that
different omic-scale platform ranking data including DNA
variations and RAomics have vast difference of information
value regarding the interested problem.

So far, two methods have been available in the literature
to tackle the heterogeneity problem due to the diverse quality
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of rankings among the rankers. The first method is to allow
different pre-specified weights to different rankers suggested
by Aslam and Montague (2001) and Lin and Ding (2009).
However, it is unclear how to design a suitable weighting
scheme in practice. The second method is to allow differ-
ent latent-scale parameters in the underlying ranking model,
see for example Deng et al. (2014) and Lee et al. (2014)
but they are not designed for distance-based ranking mod-
els. In this paper, we propose a newmodel called latent-scale
distance-basedmodels to tackle the above problem of quality
heterogeneity in ranking.

The article is organized as follows. Section 2 introduces
the class of distance-basedmodels. In Sect. 3, we propose our
latent-scale distance-based models, and adopt an EM algo-
rithm to obtain the ML estimates of the model parameters.
Note that when the number of items to be ranked gets large,
the determination of the modal ranking and the computation
in the E-step may become time consuming. We will devise
efficient methods to overcome these problems. Simulation
experiments will be conducted in Sect. 3 to demonstrate the
performance. Extensions to incomplete rankings and models
with multiple modal rankings are discussed in Sect. 4. Sev-
eral real-world applications are included in Sect. 5. We give
some concluding remarks in Sect. 6.

2 Review of distance-basedmodels

In ranking t items, labeled 1, . . . , t , a rankingπ of the t items
is a permutation function from1, . . . , t to 1, . . . , t . For exam-
ple, π(2) = 3 means that item 2 ranked third and the inverse
π−1(2) = 1 means that the item ranked second is item 1.
To understand people’s perception and preference on items,
various statistical models for ranking data have been devel-
oped over the past few decades. Among them, distance-based
models have the advantages of being simple and elegant.
Distance-based models (Fligner and Verducci 1986) assume
that the probability of observing a ranking π drops expo-
nentially according to its distance from an unknown modal
ranking π0:

Pr (π | λ, π0) = exp [−λd(π, π0)]

C(λ)
, (1)

where λ ≥ 0 is the dispersion parameter,C(λ) is the normal-
izing constant, and d(π, π0) is an arbitrary right invariant1

distance between π and π0. Table 1 lists some popular dis-
tance measures between two rankings. Note that the model
with d = dK (Kendall distance) is called Mallows’ φ-model
(Mallows 1957).

1 A distance d(π, σ ) between two rankings π and σ is said to be right
invariant if and only if for any ranking τ , d(π, σ ) = d(π ◦ τ, σ ◦ τ),
where π ◦ τ(i) = π(τ(i)).

Under the model, the ranking probability is the greatest
at the modal ranking π0 and the probability of a ranking
will decay the further it is away from π0. The rate of decay
is governed by the parameter λ. For a large value of λ, the
distribution of rankings will be more concentrated around
π0. When λ becomes very small, the distribution of rankings
will look more uniform.

It is easy to see that the normalizing constant C(λ) in
(1) can be written as C(λ) = ∑

π∈Pt
exp [−λd (π, e)],

where Pt be the set of all permutations of {1, . . . , t} and
e = (1, 2, . . . , n). The closed form expression of C(λ) only
exists for some distances (Fligner and Verducci 1986), for
instance,

Kendall distance: CK (λ) =
t−1∏

i=1

1 − exp [− (t − i + 1) λ]

1 − exp (−λ)
,

Cayley distance: CC (λ) =
t−1∏

i=1

[
(t − i) exp (−λ) + 1

]
.

If C(λ) does not have a closed form, evaluating C(λ) by
summing over the t ! possible rankings in Pt becomes very
computationally demanding when t becomes very large, say
greater than 10. We will address this problem in Sect. 3.2.

Given a ranking data set Π = {πk, k = 1, . . . , n}, the
log-likelihood function of the distance-based model is:

�(λ, π0) = −λ

n∑

k=1

d(πk, π0) − n ln [C(λ)] . (2)

The maximum likelihood estimate (MLE) of λ can be easily
found because C(λ) is deceasing and convex while the MLE
π̂0 of π0 is determined by minimizing the sum of distances
over Pt :

π̂0 = argmin
π0∈Pt

n∑

k=1

d(π, π0). (3)

As mentioned before, this is equivalent to the solution of the
classical rank aggregation problem. However, such estima-
tion based on sum of equally weighted (weight=1) distances
may not be acceptable if the rankers come from different
backgrounds and have different cognitive levels of exam-
ining the items. This motivates us to develop a new ranking
model in the next section to take the diverse quality of rankers
into consideration.

3 Latent-scale distance-basedmodel

Suppose that the ranking data Π consists of rankings
{πk, k = 1, . . . , n} from n rankers. Under the proposed
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Table 1 Some popular distance
measures

Distance Formula

Kendall dK (π, σ ) = ∑
i< j I {[π(i) − σ(i)] [π( j) − σ( j)] < 0}

Spearman dS(π, σ ) = ∑k
i=1 [π(i) − σ(i)]2

Spearman’s Footrule dF (π, σ ) = ∑k
i=1 |π(i) − σ(i)|

Hamming dH (π, σ ) = t − ∑t
i=1

∑t
j=1 I (π(i) = j)I (σ (i) = j)

Ulam∗ dU (π, σ ) = t − L I S(π ◦ σ−1)

Cayley dC (π, σ ) = minimal number of transpositions needed to transform π to σ

Note that L I S(π) is the length of the longest increasing subsequence of π

latent-scale distance-based model, we assume that ranker k
has his/her own dispersion parameter λk , and conditionally
on λk , the probability of observing a ranking πk assigned by
ranker k under the new model is given as:

Pr (πk | λk, π0) = exp [−λkd(πk, π0)]

C(λk)
, k = 1, . . . , n.

Introducing different λk’s can allow that the rankers with
higher cognitive levels of examining the items can have larger
values of λk’s so that their rankings are more likely to be
closer to the modal ranking π0 while those rankers with lit-
tle knowledge about the items can have smaller values of
λk’s and hence their rankings are more likely to be scattered
away from π0. As the background of the rankers are usually
unknown, we assume that under the new model, their disper-
sionparametersλk’s are randomlydrawn fromanexponential
distribution with an unknown mean λ, denoted by Exp(λ).
This setting is inherent in Fligner andVerducci (1990), where
it is introduced in a Bayesian context as the conjugate prior
for the scale.

Note that λ represents the overall mean level of profes-
sionalism of the rankers and π0 represents the consensus
ranking common to all the rankers. In the next subsection,
we will derive an efficient EM-type algorithm to obtain the
ML estimates of the model parameters.

3.1 ML estimation of latent-scale distance-based
model

In this subsection, we aim at developing a Expectation-
Maximization (EM) algorithm of finding the ML estimates
for the latent-scale distance-based model which could work
well for any given distance measure and even for a large
number (t) of items being ranked, say t = 100.

Given the observed data Π = {πk, k = 1, . . . , n}, denote
Λ = {λk, k = 1, . . . , n} be the collection of the latent dis-
persion variables for the n rankers. Let θ = (λ, π0) be the
set of parameters of interest. Augmenting Λ into Π to form
the complete data, the complete-data log-likelihood function
is found to be:

�c(θ | Π,Λ) = −
n∑

k=1

[λkd(πk, π0) + lnC(λk)]

− n ln λ −
n∑

k=1

λk

λ
. (4)

The E-step here only involves computation of the condi-
tional expectation of the λk’s given Π and θ . Note that it
is not required to compute E [ln[C(λk)] | Π, θ ] as it will
not be needed in the M-step. So to compute E [λk | πk, θ ]
(k = 1, . . . , n), we first use the Metropolis–Hastings (MH)
algorithm to obtain random draws of λk from the conditional
distribution of λk given πk and θ :

f (λk | πk, θ) ∝ exp
[−λk

( 1
λ

+ d(πk, π0)
)]

C(λk)
.

By implementing the MH algorithm, we choose an inde-
pendent proposal distribution from Exp(λ) with density g,
where λ is obtained from θ . Given θ and an initial value λ

(0)
k

(say, drawn at random from g), the MH algorithm sample
λ

(s+1)
k at the (s + 1)th iteration is as follows:

λ
(s+1)
k =

{
λ∗
k with probability min

{
1, R(λ

(s)
k , λ∗

k)
}

λ
(s)
k otherwise

(5)

where R(λ
(s)
k , λ∗

k) = f (λ∗
k |πk ,θ)g

(
λ

(s)
i

)

f
(
λ

(s)
k |πk ,θ

)
g(λ∗

i )
. After generating S

random draws
{
λ

(s)
k , s = 1, . . . , S

}
, E [λk | πk, θ ] can be

approximated by taking the average of these random draws,
1
S

∑S
s=1 λ

(s)
k .

The M-step is to update the estimate θ̂ by maximizing the
conditional expectation of the complete-data log-likelihood
�com(θ | Π,Λ) given Π and θ̂ (s), the estimate of θ obtained
at the (s + 1)th EM iteration. It can be seen that the new
estimate θ̂ (s+1) = (λ̂(s+1), π̂

(s+1)
0 ) in M-step is given by:
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λ̂(s+1) = 1

n

n∑

k=1

E
[
λk | πk, θ̂

(s)
]

π̂
(s+1)
0 = argmin

π0∈Pt

n∑

k=1

E
[
λk | πk, θ̂

(s)
]
d(πk, π0). (6)

The new set of θ̂ is then used for calculation of the conditional
expectation of the λk’s in the E-step and the algorithm is
iterated until convergence is attained.Unlike (3), our estimate
ofπ0 minimizes the sum of weighted distances by taking into
consideration the individual differences in the conditional
expectation of the dispersion parameters λk’s.

3.2 Computational problems for large number of
items

When the number (t) of items to be ranked becomes large,
two computational problems will arise. First of all, in cal-
culating Metropolis–Hastings ratio R(λ

(s)
k , λ∗

k) in (5) for
large t , it requires evaluating the ratio of two normaliz-
ing constants, C(λ∗

k) and C(λ
(s)
k ), which is computational

demanding except for a few distances only (See Sect. 2).
Secondly, the exhaustive search algorithm of π̂

(s+1)
0 in the

M-step (see (6)) for large t is practically infeasible because
the number of possible rankings inPt is too large. For exam-
ple, P40 contains around 1047 rankings and enumerating all
possible rankings in P40 is certainly unrealistic. Instead of
using exhaustive search, Busse et al. (2007) suggested a local
neighborhood search algorithm by searching the solution
from the permutationswithin oneCayley distance only.How-
ever, our simulation in later section found that this method
may cause the π̂

(s+1)
0 stuck at a local minimum and cannot

reach the global minimum.

3.2.1 Estimating the ratio of normalizing constants in the
Metropolis–Hastings algorithm

To compute the MH ratio R(λ
(s)
k , λ∗

k) in (5), we need to com-

pute the ratio of two normalizing constants evaluated at λ(s)
i

and λ∗
i :

R(λ
(s)
k , λ∗

k) = C(λ
(s)
k )

C(λ∗
k)

=
∑

π∈Pt
exp

[
−λ

(s)
k d (π, e)

]

∑
π∈Pt

exp
[−λ∗

kd (π, e)
] . (7)

Note that C(λ)/t ! = 1
t !

∑
π∈Pt

exp [−λd (π, e)] can be
treated as an expectation of hλ(π) = exp (−λd (π, e)) over
a uniform distribution over Pt . Using the idea of importance
sampling, R(λ

(s)
k , λ∗

k) is estimated by:

R̂(λ
(s)
k , λ∗

k) =
∑

π∈S exp
[
−λ

(s)
k d (π, e)

]

∑
π∈S exp

[−λ∗
kd (π, e)

] , (8)

where S is a set of rankings drawn uniformly from Pt . In
order to efficiently obtain a set of rankings uniformly dis-
tributed over the huge space Pt when t is moderate or large,
we adopt the quasi-random number generators with low dis-
crepancy (Niederreiter 2010) to generate t × 1 vectors of
numbers uniformly distributed in the t-dimensional unit-
hypercube, and then order the t numbers in each vector to
form a ranking.

3.2.2 Searching π̂
(i+1)
0 overPt in the M-step

The minimization problem in (3) and (6) is known to be NP-
hard in the literature of combinatorial optimization (see, e.g.,
Ali and Meilă 2012). To circumvent this difficulty, Aledo
et al. (2013) used genetic algorithms (GA) in the case of
distance-based model based on Kendall distance and found
that GA outperforms existing algorithms such as branch and
bound (BB). However, they reported that the CPU time used
by GA grows with the increasing of t and is 9.6 higher than
that used by the BB algorithm for t = 50 and λ = 0.2. Here,
we propose to use a faster algorithm— simulated annealing,
to find the global solution of the minimization problem.

Simulated annealing (SA) algorithm proposed by Kirk-
patrick et al. (1983) and Černý (1985) is a stochastic search
technique. It begins iterating with a high “temperature” so
that the algorithm is allowed to explore the solution space
so as to move to any candidate position no matter it is better
or worse than the current best solution. At the subsequent
iterations (i.e., cooling to a lower temperature), the algo-
rithm becomes more restrictive to search and is more likely
to accept solutions better than the current best solution. Fig-
ure 1 shows our SA algorithm for the minimization problem
with objective function shown in (3) or (6).

The functionsα andβ used in theSAalgorithm (seeFig. 1)
are designed, respectively, to control the speed of temperature
cooling and the amount of candidate exploration at each fixed

1: Set m ← 0 and j ← 0. Given an initial temperature τ0
and an initial solution π[0].

2: Simulate a candidate solution π∗
0 within the neighbor-

hood of π
[m]
0 , according to a proposal density g[m](· |

π
[m]
0 ).

3: Accept π
[m+1]
0 = π∗

0 with probability:

min 1, exp
f(π[m]

0 ) − f(π∗
0 )

τj
.

Otherwise, set π
[m+1]
0 = π

[m]
0 . Set m ← m + 1.

4: Repeat Steps 2 and 3 a total of mj times.
5: Set j ← j + 1. If j < jmax, update τj = α(τj−1) and

mj = β(mj−1), and go to Step 2.

Fig. 1 SA algorithm for (latent-scale) distance-based models with
objective function f shown in (3) or (6)
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temperature. In this paper, we choose τ j = 0.95τ j−1, m j =
m j−1 with τ0 = 100 and m0 = 200.

As seen from the SA algorithm shown in Fig. 1, a new
candidate solution is definitely accepted when it is superior
to the current solution and possibly accepted even when it
is inferior, particularly in the early iterations. Such stochas-
tic search provides SA an opportunity to escape from local
minima so as to reach the global minimum.

To apply the SA algorithm, we need to simulate the new
candidate solution π∗

0 based on a proposal density g[m](· |
π

[m]
0 ). To do so, we swap two randomly selected elements in

π
[m]
0 . To be sure to reach the global minimum, the cooling

process governed by the function α has to be slow. To avoid
unnecessary iterations of the SA algorithm, the algorithm
ends if π

[m]
0 remains unchanged for five consecutive tem-

perature states. After finishing the SA algorithm, we obtain
π̂

(s+1)
0 , the (s + 1)th EM iterate of π0, and hence the M-

step is completed. The EM algorithm continues by iterating
the E-step and M-step recursively. It is found that the EM
algorithm converges very quickly and it stops in less than 20
iterations in all our simulation experiments and applications.

3.3 Simulation experiments

3.3.1 Simulation study 1: Estimating the ratio of
normalizing constants via the importance sampling

In this section, we conduct a simulation study to evaluate
the performance of important-sampler estimator (8) for the
ratio of normalizing constants in (7). Note that the nor-
malizing constant C(λ) has a closed form for Kendall and
Cayley distances. We here consider four distance measures:
Spearman, Footrule, Hamming and Ulam distances. Due to
different scales for these distances, the distances are nor-
malized to have the same maximum value of t : d∗ (π, e) =
t d (π, e) /max d (π, e) so that we can consider the same set
of the values of λ for different distances in the simulation
study. More specifically, we study the performance of the
ratio estimator

R̂(λ1, λ2) = Ĉ(λ1)

Ĉ(λ2)
=

∑
π∈S exp

[−λ1d∗ (π, e)
]

∑
π∈S exp [−λ2d∗ (π, e)]

,

where S is a set of rankings drawn uniformly from Pt

based on a quasi-random (QR) number method mentioned
in Sect. 3.2.1.

In this simulation study, we consider a set of different
combinations of (λ1, λ2), denoted by Ω f , such that λ1 =
λ2(1 − f ), and λ2 is chosen to be one of the 20 equally
spaced values from 0.1 to 2. Here, f represents the gap (or
percentage difference) between λ1 and λ2 and three different
gaps, f = 0.1, 0.2 and 0.5, are considered.

Instead of comparing the ratio estimatewith its exact value
which is computationally expensive to obtain when the num-
ber (t) of items becomes large (say t > 10), we study its
performance based on the maximum relative change of the
log-ratio estimates by increasing the number of QR samples
in powers of ten. More specifically, between two consecu-
tive QR sample sizes, say old = 10i−1 vs new = 10i , we
calculate the maximum relative change as

max
(λ1,λ2)∈Ω f

{
ln R̂new(λ1, λ2) − ln R̂old(λ1, λ2)

ln R̂old(λ1, λ2)

}

.

Table 2 shows the maximum relative change of the
log-ratio estimates between two normalizing constants for
various distances and gaps. It can be seen that our method
yields a good estimate of the ratio between two normalizing
constants using a number of samples which is much smaller
than the number of terms in the exact sum (20! ≈ 1018 for
t = 20 and 40! ≈ 1048 for t = 40). For the cases of Ham-
ming and Ulam distances, a QR sample size of 106 is enough
to get an accurate estimate of the ratio. For the cases of Spear-
man and Footrule distances, we need a larger sample size, say
107, in order to have a maximum relative change less than
1%. All the computations were performed on a PC, and the
time spent to obtain each value of maximum relative change
in Table 2 for t = 40 took less than three minutes.

3.3.2 Simulation study 2: Searching overPt via the SA
algorithm

In this section, we conduct a simulation to compare the effi-
ciency of the simulated annealing (SA) algorithm proposed
in Sect. 3.2.2 with the local neighborhood search method in
determining the MLE of π0 in (3).

First of all, ranking data are simulated from a distance-
based model with λ∗ = 0.3 and π∗

0 = e. Three distance
measures are considered and they are Kendall, Spearman
and Footrule. See Appendix for the procedure of simulat-
ing ranking data from distance-based model. Then we apply
both the SA and local neighborhood search (NS) methods
to obtain the MLE π̂0 based on the same initial π0 esti-
mate generated uniformly at random. For each method, we
can compute the average log-likelihood difference, ALD =
(�(λ∗, π̂0) − �(λ∗, π∗

0 ))/n, where �(λ, π0) is defined in (2),
and n is the size of data. The more the value of ALD is closer
to zero, the better is the searching method.

The simulation is repeated 30 runs and in each run, the
MLE estimates of π0 obtained by the SA and NS methods
are recorded and their ALD results are listed in Table 3.
It can be seen that our simulated annealing method always
performs better than the local neighborhood search method
even when the number of items t becomes large. The local
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Table 2 Maximum relative change of the log-ratio estimator between two normalizing constants for various distances and gaps

Gap Spearman distance Footrule distance Hamming distance Ulam distance

10% 20% 50% 10% 20% 50% 10% 20% 50% 10% 20% 50%

t = 20

103 0.031 0.141 0.067 0.155 0.029 0.044 0.013 0.021 0.010 0.037 0.027 0.026

104 0.100 0.048 0.021 0.055 0.064 0.010 0.012 0.024 0.004 0.010 0.002 0.006

105 0.011 0.007 0.009 0.003 0.003 0.009 0.007 0.005 0.002 0.004 0.000 0.003

106 0.002 0.004 0.001 0.002 0.002 0.003 0.007 0.000 0.000 0.001 0.003 0.001

107 0.001 0.001 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000

t = 40

103 0.033 0.036 0.017 0.087 0.066 0.047 0.012 0.009 0.011 0.039 0.014 0.010

104 0.007 0.066 0.013 0.010 0.126 0.013 0.008 0.013 0.004 0.080 0.020 0.005

105 0.036 0.037 0.013 0.060 0.039 0.017 0.003 0.007 0.002 0.129 0.008 0.004

106 0.011 0.008 0.027 0.016 0.023 0.013 0.008 0.008 0.001 0.008 0.006 0.001

107 0.008 0.003 0.009 0.019 0.003 0.008 0.008 0.006 0.000 0.006 0.003 0.010

Note that the row for 10i represents the maximum relative change of the log-ratio estimator between two normalizing constants estimated based on
10i and 10i−1

Table 3 Results of ALD for the simulated annealing (SA) algorithm and the local neighborhood search (NS) method for various sample sizes n
and the number of items t

Number of items, t Sample size, Kendall Spearman Footrule

n SA NS SA NS SA NS

10 100 0.00 −0.01 0.21 −0.24 0.38 −2.19

300 0.00 0.00 0.03 −0.53 0.00 −1.32

500 0.00 0.00 0.01 −0.49 0.00 −2.95

20 100 0.04 −12.61 0.42 −2.96 2.00 −20.94

300 0.00 0.00 0.33 −1.43 0.57 −20.19

500 0.00 0.00 0.18 −1.41 1.54 −18.71

50 100 0.01 −107.07 7.65 −9.35 36.41 −165.60

300 −0.05 −81.62 2.69 −11.00 13.39 −202.12

500 −0.11 −78.70 1.19 −9.92 10.43 −199.48

100 100 −0.50 −613.21 33.86 −27.44 30.93 −940.31

300 −0.93 −483.94 16.86 −40.92 26.90 −899.08

500 −0.91 −22.06 10.27 −44.14 8.67 −924.08

neighborhood searchmethod generally performs satisfactory
for small t but its performance deteriorates heavily when t
gets large.

Note that the determination of the MLE of π0 requires
minimizing the sum of distances

∑n
k=1 d(π, π0) over Pt .

Figure 2 shows the iteration details of the minimization
of the average Kendall distance 1

n

∑n
k=1 d(π, π̂0) based on

two randomly chosen initial estimates of π0, where the data
are simulated from the Kendall distance-based model with
t = 20 or 50, n = 100, and π∗

0 = e. It can be seen that
regardless of the choice of initial estimate of π0, simulated
annealing algorithm can achieve the global optimal solution
(labeled by the green line) but the local neighborhood search
method can sometimes converge to a local optimal solution.

It is not surprising to see that the average Kendall distance
for the simulated annealing may increase slightly during the
iteration as the simulated annealing allows to have some
probability to adopt some inferior candidates so that it is
more likely to reach the global minimum.

4 Model extensions to incomplete rankings
andmodels withmultiple modal rankings

4.1 Incomplete rankings

Incomplete (or partial) ranking data are commonly seen par-
ticularly when assessing an item takes much effort and time.
Instead of ranking all t items, individuals may be asked to

123



Statistics and Computing (2019) 29:335–349 341

Iteration
0 200 400 600 800 1000

A
ve

ra
ge

 K
en

da
ll 

di
st

an
ce

 fr
om

 p
i0

 to
 S

am
pl

e

40

45

50

55

60

65

70

75

80

85

90

Neighborhood Search 1(Blue)

Neighborhood Search 2(Red)

Simulated Annealing 2(Red)

Simulated Annealing 1(Blue)

True(Green)

Two methods to find pi0, Kendall Distance case,t=20,n=100

Iteration
0 500 1000 1500 2000

A
ve

ra
ge

 K
en

da
ll 

di
st

an
ce

 fr
om

 p
i0

 to
 S

am
pl

e

100

150

200

250

300

350

400

450

500

550

600

Neighborhood Search 1(Blue)

Neighborhood Search 2(Red)

Simulated Annealing 2(Red)

Simulated Annealing 1(Blue)

True(Green)

Two methods to find pi0, Kendall Distance case,t=50,n=100

Fig. 2 The iteration details of the minimization of the average Kendall
distance based on two randomly chosen initial estimates of π0 (blue and
red lines), where the data are simulated from theKendall distance-based
model with t = 20, 50, n = 100, and π∗

0 = e. The minimization is done
using the simulated annealing algorithm and the local neighborhood
search method. The green line represents the average Kendall distance
with π0 = π0 true . (Color figure online)

rank the top few items only (called top-q rankings) or to rank
the items within a subset of the t items only (called subset
rankings). Note that discrete choices and paired compar-
isons are special cases of the incomplete ranking data. Let us
first extend the notation for incomplete ranking. For instance
π∗ = (3, 1, 2, 3) represents a top two ranking with item 2
ranked first and item 3 ranked second, π∗ = (−, 1, 2,−)

refers to a subset ranking with item 2 more preferred than
item 3 and items 1 and 4 unranked, and π∗ = (1, 1, 2,−) is
a combination of these two types.

The incomplete rankings can be treated as a missing data
problem, which can be solved by augmenting the miss-
ing ranks in Gibbs sampling in the Monte Carlo E-step.
Let

{
π∗
1 , . . . , π∗

n

}
be the observed data of n incomplete

rankings, and let {π1, . . . , πn} be their corresponding com-
plete rankings. What we need to do is to include one
more step in the Gibbs sampling by sampling πk from its
full-conditional distribution f (πk |π∗

k , λk, π0) and all the
other steps will be unchanged as if the complete rank-
ings are observed. To sample from f (πk |π∗

k , λk, π0), we
have to introduce the concept of compatibility for an
incomplete ranking. Let S(π∗

k ) be the set of complete
rankings compatible with π∗

k so that the rank orders are
preserved. For example for π∗ = (2,−, 3, 4, 1), S(π∗) =
{(2, 5, 3, 4, 1) , (2, 4, 3, 5, 1) , (2, 3, 4, 5, 1) , (3, 2, 4, 5, 1) ,

(3, 1, 4, 5, 2)}. Notice that

f (πk |π∗
k , λk, π0)) ∝ f (πk |λk, π0), πk ∈ S(π∗).

Obviously, direct sampling from this distribution will be
tedious when the size of the compatible set S(π∗) becomes
large. Instead, we can use theMetropolis–Hastings algorithm
to draw samples from this distribution with the proposed
candidates generated uniformly from S(π∗). The idea of
introducing compatible rankings allows us to treat different
kinds of incomplete rankings easily. It is easy to sample uni-
formly from the compatible rankings since we just need to
sample the missing ranks under different situations without
listing our all members in S(π∗). For instance, sampling a
complete ranking based on an observed subset ranking of q
items can be done by drawing (t − q) integers at random
from {1, 2, . . . , t} for the missing ranks and then placing the
observed subset ranking back to the complete ranking with
the order preserved.

When the distance is chosen to beKendall distance and the
data is top-q rankings, Fligner and Verducci (1986) suggests
that the Kendall distance can be extended as d(π, π0) =∑t−1

i=1 Vi (π ◦ π−1
0 ), where Vi (π) = ∑

j>i I {π−1(i) −
π−1( j) > 0} and π ◦ π−1

0 = π(π−1
0 ). For top-q rank-

ings, V1, V2, . . . , Vq only depend on π∗. So the probability
of observing π∗ can be written as

Pr(π∗
k ) = exp

⎡

⎣−λk

q∑

i=1

Vi (π ◦ π−1
0 )

⎤

⎦

×
∑

π∈S(π∗
k )

exp[−λk
∑

i>q Vi (π ◦ π−1
0 )]

C(λk )

= exp[−λk
∑q

i=1 Vi (π ◦ π−1
0 )]

Cnew(λk , q)
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where Cnew(λk, q) = ∏q
i=1[1− exp{−(q − i +1)λk}]/[1−

exp(−λk)]. For Cayley distance, this rearrangement also
exists and similar methods can be applied to the partially
ranked data. The EM algorithm of this induced model can
be easily derived. Note that the EM algorithm in this special
case ismuch faster, sincewe don’t need to sampling complete
rankings in the S(π∗

k ).

4.2 Models withmultiple modal rankings

So far, we assume that there is a single modal ranking
π0. However, it is natural to have different views for dif-
ferent groups of rankers and hence, we need to adopt a
mixture modeling framework to allow clusters with distinct
modal rankings. Inspired by Murphy and Martin (2003) who
extended the use of mixture models to simple distance-based
models, we extend our latent-scale models to mixture of
latent-scale distance-based models for ranking data.

Given a ranking data set Π = {πk, k = 1, . . . , n}, denote
Λ = {λkg, k = 1, . . . , n, g = 1, . . . ,G} be the collection of
all latent dispersion variables. The probability of observing
ranking data πk under a mixture of latent-scale distance-
based models with G clusters is:

P(πk |Λ) =
G∑

g=1

pg
exp[−λkgd(πk, π0g)]

C(λkg)
,

where pg is the proportion of cluster g, and the rankings in
cluster g follows a latent-scale distance-based model with
modal ranking π0g and latent-scale parameters λkg’s gener-
ated independently from Exp(λg).

Let θ = {λg, π0g, pg, g = 1, . . . ,G} be the set of param-
eters of interest of this mixture model. To obtain the MLE
of θ using the EM algorithm, we need to augment into the
complete data stated in Sect. 3.1 an additional latent variable
zk = (zk1, . . . , zkG), the membership variable for ranker i
which is defined as: zkg = 1 if ranker i belongs to cluster g,
otherwise zkg = 0.

The steps of implementing the EM algorithm for this mix-
ture model is similar to the EM algorithm used in Sect. 3.1.
At the E-step of the (s + 1)th EM iteration, we need to eval-
uate E(zkg | πk, θ(s)) and E(zkgλkg | πk, θ(s)) which can
be determined similarly using the Gibbs sampling. First we
consider sampling from the full-conditional distribution of
zk = (zk1, . . . , zkG), k = 1, . . . , n:

P(zkg = 1 | Λ, πk, θ(s)) =
p(s)
g exp(−λkgd(πk ,π

(s)
0g ))

C(λkg)

∑G
g′=1

p(s)

g
′ exp(−λ

kg
′ d(πk ,π

(s)

0g
′ ))

C(λ
kg

′ )

.

Then we consider sampling λkg from its full-conditional dis-
tribution. For zkg = 1, the full-conditional density of λkg ,

k = 1, . . . , n, g = 1, . . . ,G is

f (λkg | zkg = 1, πk) ∝
exp

[

−λkg

(

1

λ
(s)
g

+d(πk ,π
(s)
0g )

)]

C(λkg)

and λkg can be simulated using similar MH algorithm stated
in Sect. 3.1 while for zkg = 0, it is easy to see that λkg can
be simulated from Exp(λg).

At theM-step of the (s+1)th EM iteration, we can update
θ = {λg, π0g, pg, g = 1, . . . ,G} as follows: λ̂

(s+1)
g =

∑n
i=1((ẑλ)

(s+1)
kg )

∑n
i=1 ẑ

(s+1)
ig

,

π̂
(s+1)
0g = argmin

n∑

k=1

(
ẑλ

)(s+1)
kg d(πi , π0),

and p̂(s+1)
g = 1

n

∑n
k=1 ẑ

(s+1)
kg , where ẑ(s+1)

kg = E(zkg |
πk, θ(s)) and

(
ẑλ

)(s+1)
kg = E(zkgλkg | πk, θ(s)) can be

computed by the Monte Carlo integration from the above
Gibbs sampling. Given the initial parameters for θ(0), we
alternatively run the E-Step and M-Step until the estimates
converge. It is found that our EM algorithm converges very
quickly within 20 iterations in our gene application.

5 Applications

5.1 Aggregating people’s rankings

Consider the data collected in five ranking experiments by
Lee et al. (2014) in the University of California Irvine.
The participants of these experiments were undergraduates
recruited from the human subjects pool of the university. In
the experiments, the participants were asked to rank differ-
ent items according to their knowledge. These items could be
US presidents, NFL Superbowl teams, NBA teams, 10 Com-
mandments, etc. The ranking assignments for US Presidents
was to put them in chronological order; for NFL Superbowl
teams and NBA teams, to put them in the order of their per-
formances of the season; for the Ten Amendments to the
Constitution, to put them in the order they appear; and for the
Ten Commandments, to put them in the order adhered to by
the Jewish and most Protestant religions. Note that for a spe-
cific task there are different ranking skills among the rankers
in the experiments. All the data are downloaded from http://
webfiles.uci.edu/mdlee/LeeSteyversMiller2014Data.zip.

As the ground truth ranking π0 is finally available or
was knowable to the participants when they are assigned
the experiment, we can study the wisdom of the crowd
effect, i.e., whether our proposed model is able to obtain
an aggregated ranking that is close to the ground truth. In
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each of these experiments, we compare ten rank aggrega-
tion methods: Borda count method, Lee’s method (2014),
the MLE π̂0 of simple distance-based models and latent-
scale distance-based models based on Kendall, Spearman,
Footrule and Ulam distances, estimated using the simulated
annealing algorithm in Sect. 3.2.2. Note that the Borda count
method (1781) basically computes the average rank of each
item assigned by all participants, and the aggregated ranking
produced by the Borda count method is then simply gener-
ated by ordering the items according to their average ranks.
Lee’s method is a Bayesian Thurstonian model and the esti-
mated ranking is obtained by ordering the mean ranks of the
1000 posterior utilities simulated by JAGS sampling.

The estimation procedure based on our Monte Carlo EM
method converges very fast even for the case of t = 44.
Usually it takes 5-7 EM iterations to meet the convergence
criteria. Table 4 shows the Kendall distance between the
ground truth ranking and the estimated aggregated ranking
for each rank aggregation method. Of course, other distance
measures can also be used for comparison of the methods.
We choose Kendall distance here as it can be viewed as a
measure of misclassifying the orders of all pairs of items. It
can be seen from Table 4 that the latent-scale distance-based
models always perform better than their corresponding sim-
ple distance-based models and the Borda count method. Our
latent-scale models perform the best in four out of the five
experiments. Lee’s method produces similar performance to
our LS model with Spearman distance. This may be because
the utilities for the items under the Thurstonian model are
independent normally distributed and their log-likelihood
involves a squared Euclidean distance of the utilities to their
means which resembles the Spearman distance used in our
latent-scale distance-based model. Among all the distances
considered, latent-scale models based on Kendall and Spear-
man distances generally perform the best or the second best.

To further illustrate the outstanding performance of the
latent-scaleKendall distance-basedmodel in thesefive exper-
iments, Fig. 3 shows the distribution of the Kendall distances
between people’s rankings (blue histogram) and the true
ranking (green circle). Note that the red circle represents the
worst-possible ranking having the largest Kendall distance,
and the dotted line shows the distribution of Kendall distance
for a ranking generated at random. The aggregated rankings
inferred by the latent-scale Kendall distance-based model,
theMallowsmodel (i.e., the standard Kendall distance-based
model) and the Borda count method are shown by a black cir-
cle labeled “R”, a yellow circle labeled “M” and a blue circle
labeled “B”, respectively.

It can be seen from Fig. 3 that people’s rankings indi-
cated by the blue histograms seem not generated at random
as the histograms are not close to the distribution for ran-
dom rankings (dotted line), and there are large individual
differences in their rankings. In all these experiments, our
latent-scale Kendall distance-based models perform the best
as their aggregated rankings are the closest to their ground
truths, particularly when people have diverse background on
examining the items such as the case of the NBA East 2010
season data. This is because both the Mallows model and
Borda count method unrealistically assume the sameweights
for all rankings.

The diverse background of people is also evidenced by the
inserted scatter plots which show the relationship between
the conditional mean of λk for the kth individual in the final
E-step and his/her Kendall distance from the true ranking.
Recall that λk can be treated as a measure of cognitive level
of examining the items inferred by the latent-scale distance-
based model. It is found that λk is negatively related to the
Kendall distance measure, indicating that people having a
large value of λk are more knowledgeable about the items
as they tend to provide better ranking with smaller Kendall
distance from the ground truth.

Table 4 Performance comparison in terms of Kendall distance from the true rank

Model All US presidents NFL 2010 season NBA east 2010 Ten amendments Ten commandments
t = 44, n = 26 t = 32, n = 40 t = 15, n = 148 t = 10, n = 78 t = 10, n = 78

Borda count 78 158 36 6 12

Lee’s method 59 156 23 2 9

Kendall 69 144 34 4 11

LS-Kendall 56 132 29 2 7

Spearman 68 148 35 3 9

LS-Spearman 66 140 26 1 8

Footrule 68 149 32 4 11

LS-Footrule 66 140 31 2 11

Ulam 117 169 38 2 8

LS-Ulam 91 208 36 0 8

LS is the result of latent-scale distance-basedmodel with various distancemeasures. Number in bold shows the best performance among tenmethods
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Fig. 3 Each of the above panels corresponds to a different ranking
experiment. The distribution ofKendall distances betweenpeople’ rank-
ings and the true ranking (green circle) is shown by the blue histogram.
Note that the red circle represents the worst-possible ranking having
the largest Kendall distance, and the dotted line shows the distribution
of Kendall distance for a ranking generated at random. The aggregated

rankings inferred by the latent-scale Kendall distance-based model, the
Mallowsmodel and the Borda count method are shown by a black circle
labeled “R” , a yellow circle labeled “M” and a blue circle labeled “B”
, respectively. The inserted scatter plots show the relationship between
the conditional mean of λk for the kth individual and his/her Kendall
distance from the true ranking. (Color figure online)

To further explain why our proposed latent-scale Kendall
distance-based model could outperform the Borda method
and the aggregation based on Mallows model, we apply
the multidimensional scaling (MDS) method (see Borg and
Groenen 2005) to the Kendall distance matrix obtained from
the ranking data on ten commandments. Figure 4 shows the
two-dimensional MDS solution. The small blue dots repre-
sent the positions of rankings given by 78 rankers. The green
circle labeled “True” is the true ranking. The rank aggre-
gation results by our latent-scale model, Borda method, the
Mallows model and Lee’s Thurstonian Method are denoted
by black circle labeled “R”, blue circle labeled “B”, yellow
circle labeled “M” and red circle labeled “T” respectively.
Among these methods, the aggregated ranking based on the
estimated modal ranking from our latent-scale model is the
closest to the true ranking. The aggregated rankings based on
Mallows and Borda methods are farther way from the true

ranking since they treat the rankings equally so that theirag-
gregated results are affected by the rankings (blue dots) at
the right hand side of the graph.

5.2 Aggregating incomplete ranking data of NBA
teams

In this application, we consider the NBA power ranking
data studied by Deng et al. (2014) in which 34 judges
ranked 30 NBA teams according to the results of 2011–
2012 season. Six of them, (P1,…, P6), are complete rankings
obtained from professional sports websites, and the other
28 rankings, (S1,…,S28), are collected from a sample of
28 Harvard students in a university survey, in which each
student was asked to rank the best 8 NBA teams (top-
8 rankings) in the 2011–2012 season based on his/her
own knowledge. Each student has classified himself into
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True

BMR

T

Fig. 4 Two-dimensional multidimensional scaling solution for the
ranking data on ten commandments. The aggregated rankings inferred
by the latent-scale Kendall distance-based model, the Mallows model,
the Borda count method and the Lee’s Thurstonian model are shown
by a black circle labeled “R” , a yellow circle labeled “M” , a blue cir-
cle labeled “B” and a red circle labeled “T” respectively. (Color figure
online)

one of the following four groups in the survey: (1) “Avid
fans” who never missed NBA games, (2) “Fans” who
watched NBA games frequently, (3) “Infrequent watch-
ers” who watched NBA games occasionally, and (4) the
“Not interested” who never watched NBA games in the
past season. The true ranking of this task is arranged
based on their performance of the full season: the top 16
teams reached the playoffs, the top eight survived the first
round of the playoffs and so on. The bottom 14 teams
and the tied teams in the playoffs are ranked by their
winning percentages in the regular season games in
2011–2012.

In this rank aggregation experiment, we consider five
rank aggregation methods: traditional Borda count aggrega-
tion, Lee’s method (2014), Deng’s method (2014), Mallows
model (distance-based model with Kendall distance) and our
latent-scale Kendall distance-based model. After the 2011–
2012 NBA season, we can obtain the true ranking of 30
teams (Deng et al. 2014). Table 5 shows the Kendall distance
between the ground truth ranking and the estimated aggre-
gated ranking for each rank aggregation method. Among
these methods, our latent-scale model with Kendall distance
performs the best. Deng’s method performs even worse than
Borda count because there are many ties in Deng’s estimated
ranking, whereas Lee’s method performs better than Borda
count but poorer than our latent-scale model.

Fig. 5 Distribution of Kendall distances between participants’ rankings
and the true ranking for the power rankings of 30 NBA teams for 2011–
2012 season. In the inserted scatter plot, the darkest points are data
from the “professional websites” group and the brightest points are
data from “not-interested” group. The darker the point’s color is the
more professional the group is. (Color figure online)

Figure 5 shows the distribution of Kendall distances
between participants’ rankings and the true ranking, together
with the aggregated rankings based on the Borda count
method,Mallowsmodel and LSKendall model. The Kendall
distance here is defined as the average Kendall distance of
the rankings in the compatible set from the true ranking.
It is clearly seen from Fig. 5 that the observed rankings
are not generated at random as the Kendall distribution of
the observed rankings (blue histogram) is far away from
the Kendall distribution of a random ranking (dotted line).
Among the three methods, our latent-scale model (labeled
by R) performs the best as it is the closest to the true ranking
labeled by a green circle. The inserted scatter plot of Fig. 5
shows the plot of the conditional mean of λk for the kth indi-
vidual against its Kendall distance to the true ranking. Note
that the points are colored according to the professionalism
of the five groups of judges in the order: Professional web-
sites (darkest), Avid fans, Fans, Infrequent watchers and Not
interested (brightest). It can be seen that an individual with a
larger conditional mean of λk tends to have a darker point and
a shorter Kendall distance to the true ranking, indicating that
this individual tends to be more professional and understand
better the true ranking.

Figure 6 and Table 6 show the conditional mean of
λk for the five groups of judges. It is reasonable to see
that the conditional means of λk for “Professional web-
sites” group tend to the highest while those for “Not
interested” group tend to be the smallest. In other words,
this conditional mean of λk for the kth individual can

Table 5 Performance
comparison in terms of Kendall
distance from the true rank.
LS-Kendall is the result of
latent-scale Kendall
distance-based model

Aggregating incomplete ranking data of NBA teams task

Methods: Borda count Lee’s method Deng’s method Mallows model LS-Kendall

Kendall distance
from true rank

75 68 114 68 64
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Fig. 6 Estimates of λk for five groups of rankers from the power rank-
ings task of 30 NBA teams for 2011–2012 season

be viewed as his/her professional level. We also observe
some interesting phenomenons in Fig. 6. The professional
level of avid fans S4 and S6 are even higher than some
professional websites. Based on their observed rankings,
these two students almost successfully picked up all the
top-8 teams in the playoffs (top 16). The professional
level of avid fan S5 is much lower than the other stu-
dents in the same group. This precisely reflects the fact
that S5 gave high ranks to the two NBA teams, War-
riors and Wizards, but these two teams failed to enter the
playoffs.

Similar to our latent-scale model, Deng et al. (2014) also
defined a kind of γk as a quality parameter for each ranker in
their Bayesian aggregation approach. In their paper, they find
that the quality parameter indicates the basket knowledge
level of the rankers. However, we find that their estimated
qualities for the NBA power ranking data are fairly different
from our estimates of the λk’s. For example, their estimated
qualities of the professional group are much greater than
those of the avid fans group. Comparing to our results, our
estimates λ̂k’s for the professional group are not greatly larger
than those for the avid fans group as evidenced from the raw
data. Table 6 shows the number of mistakes made in picking
up 8 teams survived in the first round of playoffs in NBA
data. We can find that some rankers in the professional group

(e.g., P2, P3, P4) even made more mistakes than Avid Fans
group (e.g., S1, S2, S4, S6).

Comparing the estimated aggregated ranking of ourmodel
with the true ranking, we found that our latent-scale model
makes only one mistake to pick up 16 teams survived in
the playoffs (Top 16): picking Trail Blazers instead of Jazz
into the playoffs. However, five out of the six professional
websites made two mistakes. Also, our model successfully
picks up the champion and the first runner-up team in the
season but only two professional websites and 5 of the 28
students successfully picked up these two teams.

5.3 Aggregating and classification of disease
subtypes of breast cancer patients based on
their gene expressions

Using rank-basedmethods to solve gene related problems has
seen a growing interest in bioinformatics (Naumeet al. 2007).
In this section, we illustrate the use of our proposed mixture
model to analyze a rankedmRNA expression data set with 96
genes from 121 breast cancer patients who are categorized
into two disease subtypes according to their ER/PgR-status:
estrogen receptor negative (ER−, 41 patients) or positive
(ER+, 80 patients). Our aim is to cluster the breast cancer
patients into two groups based on their ranked gene expres-
sion data and study the classification performance using their
actual disease subtypes. The data for 96 genes selected from
the KEGG estrogen signaling pathway (Kyoto Encyclopedia
of Genes and Genomes: hsa04915) (http://www.genome.jp/
kegg/), are obtained from the Stanford Microarray Database
(http://genome-www5.stanford.edu/). The ranked normal-
ized log 2 transformed gene expression ratios are retrieved
from SMD as our gene ranking data with t = 96 and
N = 121.

We fit a mixture of G = 2 latent-scale Kendall distance-
based models to the gene ranking data (without using the
actual disease subtypes). Table 7 shows the ML estimates
of the model parameters. It can be seen that the estimated

Table 6 Numbers of mistakes made in picking up 8 teams survived in the first round of playoffs in NBA data and λ̂k for different groups of rankers

Group Professional Avid fans Fans

Ranker P1 P2 P3 P4 P5 P6 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Mistakes 2 4 4 4 3 2 2 2 3 2 5 2 6 3 3 3 3 3

λ̂k 0.45 0.58 0.48 0.77 0.60 0.69 0.34 0.46 0.42 0.63 0.14 0.68 0.05 0.10 0.36 0.17 0.19 0.20

Group Infrequent watchers Not interested individuals

Ranker S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28

Mistakes 5 5 5 3 4 4 3 5 4 4 7 6 4 3 5 7

λ̂k 0.09 0.12 0.10 0.12 0.11 0.07 0.23 0.12 0.06 0.09 0.04 0.05 0.07 0.2 0.11 0.05
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Table 7 The ML estimates of the parameters of a mixture of two latent-scale Kendall distance-based models for the gene ranking data

Group 1 Group 2 Actual disease subtype

p̂g 0.35 0.65 Type: ER- ER+

λ̂g 0.074 0.084 Count: 41 80

Patient, k Kendall distance to λ̂k1 λ̂k2 ẑk1 ẑk2 Predictive Actual

π̂01 π̂02 group Subtype

BC-M-003 1089 1037 0.060 0.065 0.01 0.99 2 ER+

BC-M-014 851 721 0.086 0.108 0.00 1.00 2 ER+

BC-M-016 1205 1021 0.052 0.069 0.00 1.00 2 ER+

BC-M-018 1009 1471 0.066 0.035 1.00 0.00 1 ER−
BC-M-020 1061 959 0.072 0.060 1.00 0.00 1 ER−
BC-M-057 1176 1266 0.057 0.048 1.00 0.00 1 ER−
BC-M-066 943 905 0.073 0.080 0.00 1.00 2 ER+

BC-M-080 794 824 0.095 0.088 0.98 0.02 1 ER−
BC-M-100 1649 1569 0.027 0.031 0.05 0.95 2 ER+

BC-M-167 1107 1047 0.062 0.063 0.20 0.80 2 ER−

Breast Cancer Patients Gene Data 96 items 121 Patients

Kendall distanceRef(1) Pi0(1)
Pi0(2)

Breast Cancer Patients Gene Data 96 items 121 Patients

Kendall distanceRef(2)
Pi0(1)Pi0(2)

Fig. 7 Distribution ofKendall distances between patients’ rankings and
a reference ranking (green circle) is shown by the blue histograms. Two
reference rankings are randomly picked. The gray dotted line represents
the distribution of the Kendall distances implied from the fitted model.

The blue circle labeled “Pi0(1)” and the red circle labeled “Pi0(2)” rep-
resent the estimated modal rankings π̂01 and π̂02 for groups 1 and 2
under the fitted model. (Color figure online)

proportions of two groups ( p̂1 = 0.35 and p̂2 = 0.65) are
close to those of the actual disease subtypes. As there are 96
genes, we do not list out the estimated modal rankings π̂01

and π̂02 of two groups. Instead, ten patients are randomly
selected with their Kendall distances to π̂0g , their predictive
estimates of the dispersion variable, λ̂kg , and the member-
ship indicator, ẑkg (g = 1, 2), as shown in Table 7. We also
show the predicted group of each selected patient according
to the one with higher membership probability. Notice that
when the Kendall distance to π̂0g is smaller, the ẑkg becomes
bigger, meaning that the probability that ranking k belongs
to group g is larger. When λ̂kg is smaller, the distribution is
more concentrated at π̂0g and ranking k is more likely to be
closer to π̂0g . From Table 7, patient BC-M-167 is classified
to a wrong group since he has similar distances to π01 and
π02, making him hard to be classified correctly.

To better illustrate our fitting result, Fig. 7 shows the
Kendall distribution of the observed ranking data and the fit-

ted model with reference to two randomly selected rankings.
From the figure, we can find that the mixture model actually
fits the data quite well since the fitted Kendall distribution
fairly fits the observed data. To access the performance of
our model classification, Fig. 8 shows the ROC curve of the
disease subtype classification based on the rule ẑk1 > c for
group 1. For c = 0.5, our model correctly classifies 85.12%
of the patients. Since this is an unsupervised learning,wemay
think the proposed mixture of latent-scale distance-based
models has a relatively powerful classification of disease sub-
types for breast cancer patients based on the gene ranking
data.

6 Concluding remarks

In this paper, we proposed a new class of latent-scale
distance-based models which accounts for the heterogene-
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Fig. 8 ROC curve of the classification of the disease subtypes for breast
cancer patients

ity in the background or expertise among the rankers. Our
simulation experiments demonstrated that our proposed EM
algorithm is computational efficient for any distance mea-
sure and even for a large number of items. Our real-world
applications in Sect. 5 revealed that the proposed latent-scale
distance-based model outperforms existing rank aggregation
methods including Borda and those based on unweighted
distance-based models.

Note that for some existing Bayesian rank aggregation
methods such as Lee et al. (2014), the output of the MCMC
algorithm is a list of rankings sampled from the posterior dis-
tribution. It is still necessary to find a proper rank aggregation
method to combine these rankings. In Deng et al. (2014)’s
method, its rank aggregation result is highly dependent on
the hyper-parameter p, the proportion of relevant entities in
the rankings which is often unknown in practice. Different
choice of p will then end up with different results of rank
aggregation. An improper choice of p might even lead to
many ties in the aggregated ranking. Unlike these methods,
our proposed latent-scale distance-based models can directly
estimate the aggregated rankingwhile taking into account the
diverse quality of rankers.

When applying our rank aggregation method, we need to
choose a distancemeasure for our proposedmodel. Although
there is no universal best rule of choosing a particular
distance, we recommend using Kendall distance or Spear-
man distance as these two distances show consistently good
results in our simulation experiments and applications. Ham-
ming and Ulam distances usually perform poorly since they
tend to be less sensitive to a small change in the number of
items, particularly for large number of items.

Appendix: Sampling fromageneral distance-
basedModel

It is straightforward to simulate rankingdata from theKendall
distance-based model, because of the nice decomposition
of Kendall distance into a set of independent variables

Vi
(
πs ◦ π−1

0

)
(see Sect. 4.1) which can be sampled easily.

The detailed algorithm can be found in Ceberio et al. (2014).
Recently Irurozki et al. (2018, 2014) developed two different
methods to sample from models using Cayley distance and
Ulam distance. Their simulation methods require the knowl-
edge of special properties of the distance measures and they
may not be able to be generalized to other distances. Here
we introduce a general method to sample from any distance-
based model.

We need to sample from f (x) here. The method begins
at s = 0 with the selection of X (0) = x (0) drawn at random
from some stating distribution g, with the requirement that
f
(
x (0)

)
> 0. Given X (s) = x (s) the algorithm generates

X (s+1) as follows:

1. Sample a candidate value X∗ from a proposal distribution
g

(· | x (s)
)
.

2. Compute theMetropolis–Hastings ratio RMH
(
x (s), X∗),

where

RMH

(
x (s), X∗) = f (X∗) g

(
x (s) | X∗)

f
(
x (t)

)
g

(
X∗ | x (t)

) .

3. Sample a random value for X (s+1) as follow:

X (s+1) =
{
X∗ with probability min

{
1, RMH

(
x(s), X∗)}

x(s) otherwise

4. Assign s := s + 1 and go to step 1

Back to our problem, givenπ0, λ, we need to sample from the
distance-based model: f (π) = exp[−λd(π,π0)]

C(λ)
is the distance

function we choose. Note that we don’t need to calculate the
normalizing constant C(λ) in the RMH

(
x (s), X∗) function

because the C(λ) terms cancel. For the proposal distribution
g(·|�) here, we will introduce two proposal distribution and
compare their difference.

The proposal distribution for the algorithm can be chosen
as a symmetric distribution so that g(x∗ | x (s)) = g(x (s) |
x∗). In our case, our choice of g(x∗ | x (s)) imposes small
perturbation of the elements of x (s). Given x (s), we uniformly
picked two elements of x (s) and swap their positions as our
proposalπ∗. Since this swap distribution is symmetric, so the
Hasting corrections in the Metropolis–Hastings ratio cancel,
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and the ratio is given as:

RMH

(
x (s), X∗) = exp (−λd (π∗, π0))

exp
(−λd

(
π(s), π0

))

When we need to sample from the distance-based Latent-
scale Models, we first sample λk from exp(λ). Then we
sample πk from simple distance-based model with λk using
the method above.
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