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Abstract The Integrated Nested Laplace Approximation
(INLA) has established itself as a widely used method
for approximate inference on Bayesian hierarchical models
which can be represented as a latent Gaussian model (LGM).
INLA is based on producing an accurate approximation to
the posterior marginal distributions of the parameters in the
model and some other quantities of interest by using repeated
approximations to intermediate distributions and integrals
that appear in the computation of the posterior marginals.
INLA focuses on models whose latent effects are a Gaus-
sian Markov random field. For this reason, we have explored
alternative ways of expanding the number of possible mod-
els that can be fitted using the INLA methodology. In this
paper, we present a novel approach that combines INLA and
Markov chain Monte Carlo (MCMC). The aim is to consider
a wider range of models that can be fitted with INLA only
when some of the parameters of the model have been fixed.
We show how new values of these parameters can be drawn
from their posterior by using conditional models fitted with
INLA and standard MCMC algorithms, such as Metropolis–
Hastings. Hence, this will extend the use of INLA to fit
models that can be expressed as a conditional LGM. Also,
this new approach can be used to build simpler MCMC sam-
plers for complex models as it allows sampling only on a
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limited number of parameters in the model. We will demon-
strate how our approach can extend the class of models that
could benefit from INLA, and how theR-INLA package will
ease its implementation. We will go through simple exam-
ples of this new approach before we discuss more advanced
applications with datasets taken from the relevant literature.
In particular, INLA within MCMCwill be used to fit models
with Laplace priors in a Bayesian Lasso model, imputation
of missing covariates in linear models, fitting spatial econo-
metrics models with complex nonlinear terms in the linear
predictor and classification of data withmixturemodels. Fur-
thermore, in some of the examples we could exploit INLA
within MCMC to make joint inference on an ensemble of
model parameters.

Keywords Bayesian Lasso · INLA · MCMC · Missing
values · Spatial models · Mixture models

1 Introduction

Bayesian inference for complex hierarchical models has
almost entirely relied upon computational methods, such as
Markov chain Monte Carlo (MCMC, Gilks et al. 1996). Rue
et al. (2009) propose a new paradigm for Bayesian infer-
ence on hierarchical models that can be represented as latent
Gaussian models (LGMs) that focuses on approximating
marginal distributions for the parameters in the model. This
new approach, the IntegratedNested Laplace Approximation
(INLA, henceforth), uses several approximations to the con-
ditional distributions that appear in the integrals needed to
obtain the marginal distributions. See Sect. 2 for details.

INLA is implemented as an R package, called R-INLA.
Model fitting usually takes a fraction of the time as compared
to MCMC methods. R-INLA provides a simple interface to
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implementmodels and it implements a number of likelihoods
(including a few for survival analysis), many types of latent
effects (such as randomwalks or spatial randomeffects) and a
wide range of priors for themodel parameters. Fittingmodels
using INLA is restricted, in practice, to the classes of models
implemented in the R-INLA package.

Despite itsmany features, INLAcannot easily tacklemod-
els with missing values in the covariates, as they are part
of the latent effects. Similarly, INLA cannot handle mix-
ture models (Marin et al. 2005) as they are often defined
using a weighted combination of different distributions. In
addition, INLA focuses on marginal inference of the model
parameters, and it is not able to estimate the joint posterior
distribution of an arbitrary ensemble of parameters and latent
effects. In order to avoid some of the limitations of INLA,
several authors have provided ways of fitting other models
with INLA by fixing some of the parameters in the model
so that conditional models are fitted with R-INLA. We have
included a brief summary below.

Li et al. (2012) provide an early application of the idea
of fitting conditional models on some of the model param-
eters with R-INLA. They developed this idea for a very
specific example on a Poisson model with latent Gaussian
spatiotemporal effects in which some of the model parame-
ters are fixed at their maximum likelihood estimates, which
are then plugged in to the overall model, thus ignoring the
uncertainty about these parameters but greatly reducing the
dimensionality of the model. However, they do not tackle the
problem of fitting the complete model to make inference on
all the parameters in the model.

Bivand et al. (2014, 2015) propose an approach to extend
the type of models that can be fitted with R-INLA and apply
their ideas to fit some spatial models. They note how some
models can be fitted after conditioning on one or several
parameters in the model. For each of these conditional mod-
els, R-INLA reports the marginal likelihood, which can be
combined with a set of priors for the parameters to obtain
their posterior distributions. For the remainder of the param-
eters, their posterior marginal distributions can be obtained
byBayesianmodel averaging (Hoeting et al. 1999) the family
of models obtained with R-INLA.

AlthoughBivand et al. (2014, 2015) focus on some spatial
models, their ideas can be applied in many other exam-
ples. They apply this to estimate the posterior marginal of
the spatial autocorrelation parameter in some models. This
parameter is known to be bounded, and computation of its
marginal distribution is straightforward because the support
of the distribution is a bounded interval.

For the case of unbounded parameters, the previous
approach can be applied, but a preliminary search may be
required to find the region of high probability of the poste-
rior. For example, the (conditional) maximum log-likelihood

plus the log-prior could be maximized to obtain the mode of
the posterior marginal. This will mark the center of an inter-
val giving the values of the parameter where the posterior
marginal can be evaluated.

In this paper, we will propose a different approach based
onMarkov chainMonteCarlo techniques. Instead of trying to
obtain the posterior marginal of the parameters we condition
on, we show how to draw samples from their posterior dis-
tribution by combining MCMC techniques and conditional
models fitted with R-INLA. This new INLA within MCMC
algorithm provides several advantages, as described below,
and will increase the number of models that can be fitted
using INLA and its associated R package R-INLA. In par-
ticular, models that can be expressed as a conditional LGM
could be fitted. The implementation of MCMC algorithms
will also be simplified as only the important parameters will
be sampled, while the remaining parameters are integrated
out with INLA and R-INLA.

In the examples provided in Sect. 6, we discuss important
applications. Firstly, we have considered an implementation
of a Bayesian Lasso in which Laplace priors on the coeffi-
cients of the covariates are used. This example can be easily
extended to other priors, such as objective, improper or mul-
tivariate priors. Next, a linear model with missing covariates
is fitted in a way that imputation and model fitting are car-
ried out at the same time. The third example considers a
spatial econometrics model with complex nonlinear terms in
the linear predictor. The last example focuses on classifica-
tion of data using mixture models. All these examples have
in common that the models involved can be expressed as a
conditional LGM and they are susceptible to be fitted using
INLA within MCMC.

Hubin and Storvik (2016a) have also effectively combined
MCMC and INLA for efficient variable selection and model
choice. Vanhatalo et al. (2013) have also successfully com-
bined MCMC with the Laplace approximation to estimate
the hyperparameters of a model when fitting Gaussian pro-
cesses. In particular, they have resorted to MCMC when the
space of the hyperparameters was too large for numerical
integration (such as central composite design) to work well.
Joensuu et al. (2014) have used this approach for the analy-
sis of interval censored data, and Vehtari et al. (2016) give
a summary of results when using MCMC and Laplace (and
other methods) for leave-one-out cross-validation.

The paper is structured as follows. The Integrated Nested
LaplaceApproximation is described in Sect. 2.Markov chain
Monte Carlo methods are summarized in Sect. 3. Our pro-
posed combination ofMCMCand INLA is detailed inSect. 4.
Some simple examples are developed in Sect. 5, and some
real applications are provided in Sect. 6. Finally, a discussion
and some final remarks are provided in Sect. 7.
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2 Integrated Nested Laplace Approximation

We will now describe the types of models that we will be
considering and how the INLA method works (for a recent
review, see Rue et al. 2017). We will assume that our vector
of n observed data y = (y1, . . . , yn) is observations from
a distribution in the exponential family, with yi having a
meanμi . We will also assume that a linear predictor on some
covariates plus, possibly, other effects can be related to mean
μi by using an appropriate link function. Note that this linear
predictor ηi may be made of linear terms on some covariates
plus other types of terms, such as nonlinear functions of the
covariates, randomeffects or spatial randomeffects.All these
terms will define some latent effects x.

The conditional distribution of y given the linear pre-
dictors η will depend on a vector of hyperparameters θ1.
Because of the approximation that INLA will use, we will
also assume that the vector of latent effects x will have a
distribution that will depend on a vector of hyperparame-
ters θ2. Altogether, the ensemble of hyperparameters can be
represented using a single vector θ = (θ1, θ2).

In addition, we will assume that observations are inde-
pendent given the values of the latent effects x and the
hyperparameters θ . That is, the likelihood of our model can
be written down as

π(y|x, θ) =
∏

i∈I
π(yi |xi , θ). (1)

Here, i is indexed over a set of indices I ⊆ {1, . . . , n} that
indicates observed responses. Hence, if the value of yi is
missing, then i /∈ I (but the predictive distribution yi could
be computed once the model is fitted).

Under a Bayesian framework, the aim is to compute the
posterior distribution of the model parameters and hyperpa-
rameters using Bayes’ rule. This can be stated as

π(x, θ |y) ∝ π(y|x, θ)π(x, θ). (2)

Here, π(x, θ) is the prior distribution of the latent effects and
the vector of hyperparameters. As the latent effects x have a
distribution that depends on θ2, it is convenient to write this
prior distribution as π(x, θ) = π(x|θ)π(θ).

Altogether, the posterior distribution of the latent effects
and hyperparameters can be expressed as

π(x, θ |y) ∝ π(x|θ)π(θ)
∏

i∈I
π(yi |xi , θ). (3)

The joint posterior distribution, as presented on the left-hand
side in Eq. (3), is seldom available in a closed form. For this
reason, several estimation methods and approximations have
been developed over the years.

Rue et al. (2009) have provided approximations based
on the Laplace approximation to estimate the marginals of
all latent effects and hyperparameters in the model. They
develop this approximation for the family of latent Gaus-
sianMarkov random fields models. In this case, the vector of
latent effects is a Gaussian Markov random field (GMRF).
This GMRF will have zero mean (without loss of generality
as any fixed mean can be introduced as an offset in the linear
predictor) and precision matrix Q(θ).

Assuming that the latent effects are a GMRF will let us
develop Eq. (3) further. In particular, the posterior distribu-
tion of the latent effects x and the vector of hyperparameters
θ can be written as

π(x, θ |y) ∝ π(θ)|Q(θ)|1/2 exp
{

− 1

2
xT Q(θ)x

+
∑

i∈I
log (π(yi |xi , θ))

}
. (4)

With INLA, the aim is not the joint posterior distribution
π(x, θ |y), but the marginal distributions of latent effects
and hyperparameters. That is, π(x j |y) and π(θk |y), where
indices j and k will take different ranges of values depending
on the number of latent effects and hyperparameters.

Before computing thesemarginal distributions, INLAwill
obtain an approximation to π(θ |y), π̃(θ |y). This approxi-
mation will later be used to compute an approximation to
marginals π(x j |y). Given that the marginal can be written
down as

π(x j |y) =
∫

π(x j |θ, y)π(θ |y)dθ, (5)

the approximation is as follows:

π̃(x j |y) =
∑

g

π̃(x j |θg, y) × π̃(θg|y) × Δg. (6)

Here, π̃(x j |θ g, y) is an approximation to π(x j |θg, y), which
can be obtained using different methods (see, Rue et al. 2009,
for details). In addition, θg refers to an ensemble of hyper-
parameters that take values on a grid (for example), with
weights Δg .

INLA is a general approximation that can be applied to
a large number of models. An implementation for the R
programming language is available in the R-INLA pack-
age at www.r-inla.org, which provides easy access to model
fitting. This includes a simple interface to choose the likeli-
hood, latent effects and priors. The implementation provided
by R-INLA includes the computation of other quantities of
interest. The marginal likelihood π(y) is approximated, and
it can be used for model choice. As described in Rue et al.
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(2009), the approximation to the marginal likelihood pro-
vided by INLA is computed as

π̃(y) =
∫

π(θ , x, y)

π̃G(x|θ , y)

∣∣∣∣
x=x∗(θ)

dθ .

Here, π(θ , x, y) = π(y|x, θ)π(x|θ)π(θ), π̃G(x|θ , y) is a
Gaussian approximation to π(x|θ , y) and x∗(θ) is the pos-
terior mode of x for a given value of θ . This approximation
is reliable when the posterior of θ is unimodal, as is often
the case for latent Gaussian models. Furthermore, Hubin and
Storvik (2016b) demonstrate that this approximation is accu-
rate for a wide range of models.

Other options for model choice and assessment include
the Deviance Information Criterion (DIC, Spiegelhalter et al.
2002) and the Conditional Predictive Ordinate (CPO, Pettit
1990). Other features in theR-INLA package include the use
of several likelihoods in the samemodel and the computation
of the posterior marginal of a certain linear combination of
the latent effects and others (see, Martins et al. 2013, for a
summary of recent additions to the software).

3 Markov chain Monte Carlo

In the previous section, we have reviewed how INLA com-
putes approximations of the marginal distributions of the
latent effects and hyperparameters. Instead of focusing on
an approximation to the marginals, MCMC methods could
be used to obtain a sample from the joint posterior distribu-
tion π(x, θ | y). To simplify the notation, we will denote the
vector of latent effects and hyperparameters by z = (x, θ).
Hence, the aim now is to estimate π(z| y) or, if we are only
interested in the posterior marginals, π(zi | y).

Several methods to estimate or approximate the posterior
distribution have been developed over the years (Gilks et al.
1996). In the case of MCMC, the interest is in obtaining
a Markov chain whose limiting distribution is π(z| y). We
will not provide a summary of MCMC methods here, and
the reader is referred to Gilks et al. (1996) for a detailed
description.

The values generated usingMCMC are (correlated) draws
from π(z| y) and, hence, can be used to estimate quantities
of interest. For example, if we are interested in marginal
inference on zi , the posterior mean can be estimated using

the empirical mean of
{
z( j)i

}N

j=1
. Similarly, estimates of the

posterior expected value of any function on the parameters
f (z) can be obtained using that

E[ f (z)| y] � 1

N

N∑

j=1

f (z( j)). (7)

Multivariate inference is possible by using the multivariate
nature of vector z( j). For example, the posterior covariance
between parameters zk and zl could be computed by consid-

ering samples
{
(z( j))k , z( j)l )

}N

j=1
.

3.1 The Metropolis–Hastings algorithm

This algorithmwas first proposed byMetropolis et al. (1953)
and Hastings (1970). The Markov chain is generated by
proposing new moves according to a proposal distribution
q(·|·). A new point z∗ is accepted with probability

α = min

{
1,

π(z∗| y)q(z( j)|z∗)
π(z( j)| y)q(z∗|z( j))

}
. (8)

If the proposed point is accepted, then z( j+1) will become
z∗. Otherwise, z( j+1) will be equal to z( j). In the previous
acceptance probability, the posterior probabilities of the cur-
rent point and the proposednewpoint appear asπ(z( j)| y) and
π(z∗| y), respectively. These two probabilities are unknown,
in principle, but using Bayes’ rule they can be rewritten as

π(z| y) = π( y|z)π(z)
π( y)

. (9)

Hence, the acceptance probability α can be rewritten as

α = min

{
1,

π( y|z∗)π(z∗)q(z( j)|z∗)
π( y|z( j))π(z( j))q(z∗|z( j))

}
. (10)

This is easier to compute as the acceptance probability
depends on known quantities, such as the likelihood π( y|z),
the prior on theparametersπ(z) and theproposal distribution.
Note that the term π( y) that appears in Eq. (9) is unknown,
but that it cancels out as it appears both in the numerator and
denominator.

In Eq. (10), we have described the move to sample from
the joint ensemble of model parameters. However, this can
be applied to individual parameters one at a time, so that
acceptance probabilities will be

α = min

{
1,

π( y|z∗i )π(z∗i )q(z( j)i |z∗i )
π( y|z( j)i )π(z( j)i )q(z∗i |z( j)i )

}
. (11)

However, this expression is seldom used because of the dif-
ficulty in computing π( y|zi ).

4 INLA within MCMC

In this section, we will describe how INLA and MCMC can
be combined to fit complex Bayesian hierarchical models. In
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principle, wewill assume that themodel cannot be fitted with
R-INLA unless some of the latent effects or hyperparameters
in themodel are fixed. This set of parameters is denoted by zc
so that the full ensemble of latent effects and hyperparameters
is z = (zc, z−c). Here z−c is used to denote all the parameters
in z that are not in zc. The posterior distribution of z can be
split as

π(z| y) ∝ π( y|z−c, zc)π(z−c|zc)π(zc). (12)

Note that integrating over z−c conditional on zc in the pre-
vious expression, we obtain

π(zc| y) ∝ π( y|zc)π(zc). (13)

This means that conditional models (on zc) can still be fitted
withR-INLA, i.e., we can obtainmarginals of the parameters
in z−c given zc. The conditional posterior marginals for the
k-th element in vector z−c will be denoted by π(z−c,k |zc, y).
Also, the conditionalmarginal likelihoodπ( y|zc) can be eas-
ily computed with R-INLA.

4.1 Metropolis–Hastings with INLA

We will now discuss how to implement the Metropolis–
Hastings algorithm to estimate the posterior marginal of zc.
Note that this is a multivariate distribution and that we will
use block updating in the Metropolis–Hastings algorithm.
This means that at each step a new value for the ensemble
zc is proposed and these values will be accepted or rejected
altogether.

Say that we start from an initial point z(0)c ; then, we can
use the Metropolis–Hastings algorithm to obtain a sample
from the posterior of zc.

Wewill drawanewproposal value for zc, z∗c , using the pro-
posal distribution q(·|·). The acceptance probability, shown
in Eq. (10), becomes now:

α = min

{
1,

π( y|z∗c)π(z∗c)q(z( j)c |z∗c)
π( y|z( j)c )π(z( j)c )q(z∗c |z( j)c )

}
. (14)

Note that π( y|z( j)c ) and π( y|z∗c) are the conditional marginal

likelihoods on z( j)c and z∗c , respectively. All these quantities
can be obtained by fitting a model with R-INLA with the
values of zc set to z( j)c and z∗c . Hence, at each step of the
Metropolis–Hastings algorithm only a model conditional on
the proposal needs to be fitted.

Furthermore, π(z( j)c ) and π(z∗c) are the priors of zc eval-
uated at z( j)c and z∗c , respectively, and they can be easily
computed as the priors are known in the model. Values
q(z( j)c |z∗c) and q(z∗c |z( j)c ) can also be computed as the pro-
posal distribution is known. If the proposed point is accepted,

then z( j+1)
c = z∗c , and z( j+1)

c = z( j)c otherwise. Hence,
the Metropolis–Hastings algorithm can be implemented to
obtain a sample from the (joint) posterior distribution of zc.
Themarginal distributions of the elements of zc can be easily
obtained as well.

Regarding the marginals of z−c,k , it is worth noting that
at step j of the Metropolis–Hastings algorithm a conditional
marginal distribution on z( j)c (and the data y) is obtained:
π(z−c,k |z( j)c , y). The posterior marginal can be approxi-
mated by integrating over zc as follows:

π(z−c,k | y) =
∫

π(z−c,k |zc, y)π(zc| y)dzc

� 1

N

N∑

j=1

π(z−c,k |z( j)c , y), (15)

where N is the number of samples of the posterior distribution
of zc. That is, the posterior marginal of z−c,k can be obtained
byBayesianmodel averaging (BMA, seeHoeting et al. 1999,
for a summary) the conditional marginals obtained at each
iteration of the Metropolis–Hastings algorithm.

Given an approximation to the posterior marginal of z−c,k

computed using BMA, π̃BMA(·| y), point estimates and other
quantities of interest can be estimated numerically. This is
implemented in functions inla.emarginal (for the pos-
terior expected value) and inla.zmarginal (for several
posterior statistics) available in the R-INLA package. The
numerical approximation is based on using Simpson’s rule
to approximate the different integrals that need to be com-
puted. For example, the approximation to the posterior mean
of z−c,k is

E[z−c,k | y] �
∫

z · π̃BMA(z| y)dz,

where the integral on the right-hand side is approximated
using Simpson’s rule.

4.2 Effect of approximating the marginal likelihood

So far, we have ignored the fact that the conditional marginal
likelihood π( y|zc) used in the acceptance probability α is
actually an approximation. In this section, we will discuss
how this approximation will impact the validity of the infer-
ence.

The situations where a Metropolis–Hastings algorithm
has inexact acceptance probabilities are often called pseudo-
marginal MCMC algorithms (Beaumont 2003). These were
first introduced in the context of statistical genetics where
the likelihood in the acceptance probability is approximated
using importance sampling. Andrieu andRoberts (2003) pro-
vided a more general justification of the pseudo-marginal
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MCMC algorithm, whose properties are further studied in
Sherlock et al. (2015) and Medina-Aguayo et al. (2016).
These results show that if the (random) numerator and
denominator of the acceptance probability are unbiased, then
the Markov chain will still have as stationary distribution the
posterior distribution of the model parameters.

In our case, the error in the acceptance rate is coming from
a deterministic estimate of the conditional marginal like-
lihood; hence, the framework of pseudo-marginal MCMC
does not apply.However, since it is deterministic, ourMCMC
chain will converge to a stationary distribution. This limiting
distribution will be

π̃(zc| y) ∝ π(zc)π̃( y|zc), (16)

where the ‘∼’ indicates an approximation. R-INLA returns
an approximation to the conditional marginal likelihood
term, which implies an approximation toπ(zc| y). This raises
the question as to how good this approximation performs. To
evaluate this, we have to rely on asymptotic results, heuristics
and numerical experience.

The conditional marginal likelihood estimate returned
from R-INLA is based on numerical integration and uses a
sequence of Laplace approximations (Rue et al. 2009, 2017).
This estimate is more accurate than the classical estimate
using one Laplace approximation. The Laplace approxima-
tion has, with classical assumptions, relative error O(n−1)

(Tierney andKadane 1986), where n is the number of replica-
tions in the observations. For our purpose, this error estimate
is sufficient, as it demonstrates that

π̃(zc| y)
π(zc| y) ∝ π̃( y|zc)

π( y|zc) = 1 + O(n−1) (17)

for plausible values of zc. However, as discussed by Rue
et al. (2009, 2017), the classical assumptions are rarely met
in practice due to ‘random effects,’ smoothing, etc. Precise
error estimates under realistic assumptions are difficult to
obtain; see Rue et al. (2017) for a more detailed discussion
of this issue.

Hubin and Storvik (2016b) have studied empirically the
properties and accuracy of the marginal likelihood estimate
provided by INLA for a wide range of latent Gaussian mod-
els. They have compared the estimates with those obtained
using MCMC, and in all their cases the approximates of the
marginal likelihood provided by INLA were very accurate.
For this reason, we believe that the approximate stationary
distribution π̃(zc| y) should be close to the true one, without
being able to quantify this error in more detail.

Although the error in Eq. (17) is pointwise, we do expect
the error would be smooth in zc. This is particularly impor-
tant, as in most cases we are interested in the univariate
marginals of π̃(zc| y). We expect that these marginals will

typically have less error as the influence of the approxima-
tion error will be averaged out integrating out all the other
components. A final renormalization would also remove any
constant offset in the error.

Additionally, we will validate the approximation error in
a simulation study in Sect. 5 where we fit various models
using INLA,MCMCand INLAwithinMCMCand very sim-
ilar posterior distributions are obtained. Furthermore, the real
applications in Sect. 6 also support that the approximations
to the marginal likelihood are accurate.

4.3 Some remarks

Common sense is still not out of fashion; hence, there is an
implicit assumption that our INLA within MCMC approach
should be only formodels for which it is reasonable to use the
INLA approach to do the inference for the conditionalmodel.
The procedure that we have just shown will allow INLA
to be used together with the Metropolis–Hastings algorithm
(and, possibly, otherMCMCmethods) to obtain the posterior
distribution (andmarginals) of zc and the posterior marginals
of the elements in z−c. Hence, this will allow INLA to be
used to fit models not implemented in the R-INLA package
as well as providing other options for model fitting that we
summarize here. Note also that this means that multivariate
inference on the ensemble of parameters zc will be possible
as we will obtain samples from their joint posterior.

Furthermore, the Metropolis–Hastings algorithm will
allow any choice of the priors on the set of parameters zc.
This is an advantage (as shown in the example in Sect. 6.1)
of combining MCMC and INLA because priors that are not
implemented in R-INLA can be used in the model. In par-
ticular, improper flat priors, multivariate priors and objective
priors can be used.

The framework of conditional LGMs that we now can
fit using our new approach is quite rich. It includes models
with missing covariates that are imputed at each step of the
Metropolis–Hastings algorithm (see example in Sect. 6.2),
models with complex nonlinear effects in the linear predictor
(see example in Sect. 6.3) or models that have a mixture of
effects in the linear predictor (Bivand et al. 2015).

5 Simulation study

In this section, we develop simple examples to illustrate the
method proposed in the previous sections, and we investigate
how this new approach works in practice.

5.1 Bivariate linear regression

The first example is based on a linear regression with two
covariates. Our aim is to use our proposed method to obtain
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the posterior distribution of the coefficients of the two covari-
ates and then compare the estimated marginals to the results
obtainedwhen the fullmodel is fittedwithMCMCand INLA.

The simulated dataset contains 100 observations of a
response variable y and covariates u1 and u2. The model
used to generate the data is a typical linear regression, i.e.,

yi = α + β1u1i + β2u2i + εi ; i = 1, . . . , 100. (18)

Here, εi is aGaussian error termwith zeromean andprecision
τ . The dataset has been simulated using α = 3, β1 = 2,
β2 = −2 and τ = 1. Covariates u1i and u2i have also been
simulated using a uniform distribution between 0 and 1 in
both cases.

Thismodel can be easily fitted usingR-INLA, butwe have
chosen to condition on β to show how INLA within MCMC
works.Given thatwe are using aGaussianmodel, inference is
exact in this case (up to integration error). For this reason, we
can compare themarginal distributions of β1 and β2 provided
by INLA and the ones obtained with our combined approach.
Note that theMetropolis–Hastings algorithmwill provide the
joint posterior distribution of β = (β1, β2) that can be used
to obtain the posterior marginals of β1 and β2. Furthermore,
we can also compare the marginals of α and τ that will be
estimated by averaging the different conditional marginals
obtained in the Metropolis–Hastings steps.

In order to implement the Metropolis–Hastings algorithm
to obtain a sample from π(β| y), we have chosen a starting
point of β(0) = (0, 0). The proposal distribution to obtain a
candidate β(t+1) at iteration t has been a bivariate Gaussian
kernel centered at β(t) with diagonal variance–covariance
matrix with values 1/0.752 in the diagonal as this provided
a reasonable acceptance rate. The prior distribution of β has
been the product of two Gaussian distributions with zero
mean and precision 0.001 because these are the default priors
for linear effects in R-INLA. Furthermore, α is assigned a
Gaussian prior with zero mean and zero precision and τ a
Gammapriorwith parameters 1 and5e−05 (the default priors
inR-INLA). The prior on α usedwith rjags (Plummer 2016)
has been a uniform between − 1000 and 1000 to provide a
very vague prior as R-INLA does.

Figure 1 summarizes the INLA within MCMC algo-
rithm for this particular problem. Figure 2 shows a summary
of the results. Given that both covariates are independent,
their coefficients should show small correlation and this can
clearly be seen in the plot of the joint posterior distribution
of β. Also, it can be seen how the marginals obtained with
INLA within MCMC for β1 and β2 match those obtained
with INLA and MCMC. In addition, we have included the
estimates of the posterior marginals of the intercept α and
the precision τ . When using INLA within MCMC, these are
obtained by Bayesian model averaging over the fitted mod-
els at every step of theMetropolis–Hastings algorithm, while

when computed with R-INLA these are obtained by using
INLA alone. The three estimationmethods provide very sim-
ilar posterior distributions of the posterior marginals of the
intercept and the precision, which again confirms the accu-
racy of INLA within MCMC.

5.2 Missing covariates

In the next example, we will discuss the case of missing
covariates. In this example, we will consider a linear regres-
sionwith covariate u1 only andwewill assume that a number
of values of the covariates are missing. The aim is to include
the imputation of these variables into the model, so that the
output is a marginal distribution of the missing values. We
will not discuss here the different frameworks under which
the values have gone missing, but this is something that
should be taken into account in the model. In particular, we
have removed the values of nine covariates, which is almost
10% of our data and summary plots can nicely be arranged
in a three by three matrix of figures (as shown in Fig. 3).
Hence, in this case the missingness mechanism is of the type
missing completely at random (Little and Rubin 2002).

Now, we will treat the missing values as if they were
parameters. We will use a block updating scheme as we
can have a large number of missing covariates. The tran-
sition kernel will be a multivariate Gaussian with diagonal
variance–covariance. The mean and variance for all values
are the mean and variance of the observed covariates, respec-
tively. The prior distribution is also a multivariate Gaussian,
but now with zero mean and diagonal variance–covariance
matrix with entries four times the variance of a uniform ran-
dom variable in the unit interval (the one used to simulate
the covariates). This is done so that the prior information is
small compared to the information provided by the observed
covariates.

Figure 3 shows the posterior marginals obtained from the
samples. As it can be seen, most of them are centered at the
actual values removed from themodel. Note that this time the
model with missing covariates cannot be fitted withR-INLA
so that we can only compare the marginals to those obtained
with MCMC. In all cases, the marginals obtained with INLA
within MCMC and full MCMC are very similar.

5.3 Poisson regression

In this example, we consider a Poisson regression with two
covariates:

yi ∼ Po(μi ); log(μi ) = α+β1u1i+β2u2i ; i = 1, . . . , 100.

(19)
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Fig. 1 Algorithm of INLA within MCMC for the bivariate linear regression example

The values of the parameters used to simulate the dataset
are α = 0.5, β1 = 2 and β2 = −2. Covariates have been
simulated as in the first example, using a uniform distribution
between 0 and 1.

As in Sect. 5.1, our purpose is to estimate the joint poste-
rior distribution of (β1, β2). The prior distributions on β and
α used now are the same as in the first example in Sect. 5.1.
Similarly, the posterior marginal of α is obtained by com-
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Fig. 2 Summary of results of model fitting combining INLA andMCMC in the bivariate case. Joint posterior distribution of (β1, β2) and posterior
marginals of the model parameters

bining the different conditional marginals obtained at the
different steps of the Metropolis–Hastings algorithm.

Figure 4 shows the estimates of the marginal distributions
of the three parameters in the model, together with the joint
posterior distribution of β1 and β2. In all cases, there is very
good agreement between the estimates obtained with INLA,
MCMC and INLA within MCMC of the marginals of the
parameters in the model.

5.4 Computational gain

In terms of computational gain, the main advantage of INLA
within MCMC is the ease to implement new and complex
models to fit the data. This will be better illustrated in Sect. 6,
where a few more examples on diverse topics have been

included. In general, our approach allows us to focus on
a reduced number of parameters because inference on the
remainder of the parameters is already done by INLA and
Bayesian model averaging.

In addition, effective sample size appears to be better with
INLA within MCMC. We have compared the effective sam-
ple sizes obtained with INLA within MCMC and MCMC by
computing the effective sample size for each variable given
a fixed number of iterations. In order to make inference, the
minimum effective sample size will give us a lower bound
on the effective sample size of all the parameters involved.

The effective sample size has been computed using func-
tion effectiveSize in package coda (Plummer et al. 2006).
Given an MCMC sample x = (x1, . . . , xN ) of length N , the
effective sample size ESS is computed as
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Fig. 3 Posterior marginals of the missing values in the covariates obtained by fitting a model with INLA within MCMC, and MCMC

ESS = S2

S20/N
,

where S2 is the sample variance of x and S20 is the estimated
spectral density at frequency zero obtained by fitting an
autoregressive model to x (computed using function spec-

trum0.ar in package coda). It is worth noting that S20/N is
an estimate of the variance of the sample mean of x.

Figure 5 shows the minimum effective sample size for
the examples on linear and Poisson regression. As it can be
seen, INLA within MCMC provides higher effective sample
sizes globally than MCMC for these particular examples.
This means that our approach would require less iterations to
achieve the same number of independent observations from
the posterior.

However, we are not claiming that INLAwithinMCMC is
uniformly better than MCMC. This gain in effective sample
size can occur, for example, because of the block updating
strategy that we use or the proposal distributions chosen for

a particular problem. In this regard, it should be mentioned
that rjags is essentially based on Gibbs sampling, so the two
implementations compared are very different and difficult to
compare directly.

Finally, in terms of actual computing time, it is difficult
to make a fair comparison because of the differences in the
actual implementations of the different approaches. MCMC
with rjags is very fast in these examples. However, R-INLA
is very fast to fit each conditionalmodel, but there is a consid-
erable overhead because of the temporary files that it creates
each time a model is run. A tighter integration could be
achieved by linking the part of the model that does MCMC
to the C library GMRFlib, upon which the R-INLA package
is built.

6 Applications

In this section, we will focus on some real life applications
that provide a more realistic test of this methodology. In

123



Stat Comput (2018) 28:1033–1051 1043

β1

β 2

 0.2 
 0.4 

 0.6 

 0.8 

 1
 

 1.2 

 1
.4

  1.8 

INLA w/ MCMC
MCMC

True value

β1

β 2

 0.2 

 0.4 

 0.6 

 0.8 

 1 

 1.2 

 1.
4  1.6 

INLA w/ MCMC
MCMC

True value

β1

D
en

si
ty

INLA w/ MCMC
INLA
MCMC

β2

D
en

si
ty

INLA w/ MCMC
INLA
MCMC

1.0 1.5 2.0 2.5

1.0 1.5 2.0 2.5

0.5 1.0 1.5 2.0 2.5 3.0

−3.5 −2.5 −1.5

0.0 0.4 0.8 1.2

−3
.5

−3
.0

−2
.5

−2
.0

−1
.5

−1
.0

−3
.5

−3
.0

−2
.5

−2
.0

−1
.5

−1
.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.
0

0.
5

1.
0

1.
5

α

D
en

si
ty

INLA w/ MCMC
INLA
MCMC

Fig. 4 Summary of results of model fitting combining INLA andMCMC for the Poisson regression example. Joint posterior distribution of (β1, β2)

(left column) and posterior marginals of the model parameters

all the examples, we have run INLA within MCMC and
MCMC for a total of 100,500 simulations and discarded the
first 500. Then, we applied a thinning to keep one in ten
iterations, to obtain a final chain of 10,000 samples. This
includes samples from the missing observations and param-
eters of the fitted models. To fit the model using MCMC
alone, we have used rjags with the same number of iter-
ations and thinning. The implementation of INLA within
MCMCis available as a new functionINLAMH() that has been
added to package INLABMA (Bivand et al. 2015). Bayesian
model averaging will be done with the existing functions in
the same package. Furthermore, the R code to reproduce
the examples (and the simulation study) is freely available
in a github repository (https://github.com/becarioprecario/
INLAMCMC_examples). In order to test the code, usersmay

want to reduce the number of iterations used in the examples
so that the simulations finish in a shorter period of time.

6.1 Bayesian Lasso

The Lasso (Tibshirani 1996) is a popular regression and vari-
able selection method. It has the nice property of providing
coefficient estimates that are exactly zero, and hence, it per-
forms model fitting and variable selection at the same time.
For a linear model with a Gaussian likelihood, the Lasso is
trying to estimate the regression coefficients by minimizing

n∑

i=1

⎛

⎝yi − β0 −
p∑

j=1

β j xi j

⎞

⎠
2

+ λ

p∑

j=1

|β j |.
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Fig. 5 Minimum effective sample size achieved with INLA within MCMC and MCMC

Here, yi is the response variable and xi j are associated covari-
ates. n is the number of observations and p the number of
covariates. Parameter λ is a nonnegative penalty term to con-
trol how the shrinkage of the coefficients is done. If λ = 0,
then the fitted coefficients are those obtained by maximum
likelihood, while higher values of λ will shrink the estimates
toward zero.

The Lasso is closely related to Bayesian inference as it
can be regarded as a standard regression model with Laplace
priors on the variable coefficients. The Laplace distribution
is defined as

f (β) = 1

2σ
exp

(
−|β − μ|

σ

)
, x ∈ R,

whereμ and σ , a positive number, are parameters of location
and scale, respectively. The Laplace prior distribution is not
available for (parts of) the latent field in R-INLA. However,
conditioning on the values of the β-coefficients the model
can be easily fitted with R-INLA.

We will apply the methodology described in this paper
to implement the Bayesian Lasso by combining INLA and
MCMC. We will be using the Hitters dataset described
in James et al. (2013). This dataset records several statistics
about players in theMajor League Baseball, including salary
in 1987, number of times at bat in 1986 and other variables.
Our aim is to build a model to predict the player’s salary in
1987 on some of the other variables recorded in 1986 (the
previous season).

We will focus on a smaller model than the one described
in James et al. (2013) and will consider predicting salary in
1987 on only five variables measured from the 1986 season:
number of times at bat (AtBat), number of hits (Hits), the
number of home runs (HmRun), number of runs (Runs) and
the number of runs batted in (RBI).

For our implementation of the Bayesian Lasso, observa-
tions yi will be assumed to have a Gaussian distribution
with mean β0 + ∑p

j=1 β j xi j and precision τ . We will be
fitting models conditioning on the covariate coefficients
β = (β1, . . . βp). Also, we will assume that β and the error
term precision τ are independent a priori, i.e., π(β, τ ) =
π(β)π(τ). This will provide a simpler way to compare our
results with the Lasso, and it will also make computations a
bit simpler. However, note that it is also possible to choose a
prior so thatπ(β, τ ) = π(β|τ)π(τ) (see, for example, Lykou
and Ntzoufras 2011). The posterior distribution of these vari-
ables will be obtained using MCMC.

Regarding the prior on β, we have assumed that the five
coefficients β1, . . . , β5 are independent a priori. Hence, the
prior is the product of five Laplace distributions with μ = 0
and σ = 1/λ = 1/0.73, because the Lasso provided an
estimate of λ equal to 0.73. The proposal distribution for
β is a multivariate Gaussian with zero mean and precision
4 · XᵀX, with X a matrix that has the covariates as columns.
This proposal distribution resulted on a good acceptance rate.
Finally, the prior on τ is the default in R-INLA, which is a
Gamma distribution with parameters 1 and 5e−05.

The summaryof theLasso estimates is available inTable 1,
and the posterior distributions of the coefficients are shown in
Fig. 6. In all cases, there is agreement between the Lasso and
Bayesian Lasso estimates. Also, the posterior distributions
of the model coefficients are the same for MCMC and com-
bining INLAwith MCMC. For those coefficients with a zero
estimate with the Lasso, the posterior distribution obtained
with the Bayesian Lasso is centered at zero.

6.2 Imputation of Missing Covariates

van Buuren and Groothuis-Oudshoorn (2011) describe theR
package mice that implements several multiple imputation
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Table 1 Summary estimates of theLasso andBayesianLasso (posterior
mean and standard deviation, between parentheses)

Coefficient Lasso INLA w/MCMC MCMC

AtBat 0.00 − 0.01 (0.08) − 0.02 (0.08)

Hits 0.18 0.17 (0.11) 0.17 (0.12)

HmRun 0.00 0.03 (0.06) 0.02 (0.07)

Runs 0.00 0.07 (0.09) 0.07 (0.08)

RBI 0.23 0.20 (0.11) 0.22 (0.11)

methods. We will be using the nhanes dataset to illustrate
how our approach can be used to provide imputation of
missing covariates in a real dataset. This dataset contains
data from Schafer (1997) on age, body mass index (bmi),
hypertension status (hyp) and cholesterol level (chl). Age is
divided into three groups: 20–39, 40–59 and 60+.

Our aim is to impute missing covariates in order to fit
a model that explains the cholesterol level through age and
bodymass index. Although the values of age have been com-
pletely observed, there aremissing values in bodymass index
and cholesterol level. INLA can handle missing values in the
response (and will provide a predictive distribution of the
missing response) but, as already stated, is not able to handle
models with missing values in the covariates.

We will consider a very simple imputation mechanism by
assigning aGaussian prior to themissing values of bodymass
index. This Gaussian distribution is centered at the average
of the observed values (26.56) and its variance is four times
the variance of the observed values (71.07). With this, we
expect to provide some guidance on how the imputed values
should be but allowing for a wide range of variation. More
complex imputation mechanisms could be considered (see,
for example, Little and Rubin 2002). As in previous exam-
ples, we will fit the same model using MCMC in order to
compare both results. The model that we will fit is:

chli = β0 + β1bmii + β2age2i + β3age3i + εi
β0 ∝ 1
βk ∝ N (0, 0.001); k = 1, 2, 3
εi ∼ N (0, τ )

τ ∼ Ga(1, 0.00005)

. (20)

Figure 7 shows the posterior marginal distributions of the
imputed values of the bodymass index. BothMCMC and our
approach provide very similar point estimates. Table 2 sum-
marizes the model parameters obtained both with MCMC
and our approach, and Fig. 8 displays the posterior marginals
of the model parameters obtained with our approach and
MCMC. In all cases, the marginals agree, and the point esti-
mates look very similar.
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Fig. 6 Summary of results for the Lasso and Bayesian Lasso
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Fig. 7 Marginal distributions of the imputed values of body mass index

Table 2 Summary of model parameter posterior estimates: posterior
mean and standard deviation (in parentheses), model with missing
covariates

Parameter MCMC INLA w/MCMC

β0 39.760 (61.463) 43.469 (62.603)

β1 4.994 (2.167) 4.864 (2.206)

β2 29.989 (17.542) 29.501 (17.871)

β3 50.049 (23.277) 49.449 (23.207)

τ 0.001 (0.0005) 0.001 (0.0005)

6.3 Spatial econometrics models

Bivand et al. (2014) describe a novel approach to extend the
classes of models that can be fitted with R-INLA to fit some
spatial econometrics models. In particular, they fit several
conditionalmodels by fixing the values of some of the param-
eters in the model, and then, they combine these models
using a Bayesian model averaging approach (Hoeting et al.

1999). Bivand et al. (2015) show a practical implementation
with a spatial statistics model using R package INLABMA.
Someof thesemodels have already been included inR-INLA
(Gómez-Rubio et al. 2017), but are still considered as exper-
imental.

In this example, we will focus on one of the spatial econo-
metrics models described in Bivand et al. (2014) to illustrate
how our new approach to combine MCMC and R-INLA can
be used to fit unimplemented models. In particular, we will
consider the spatial lag model (LeSage and Pace 2009):

y = ρW y + Xβ + u; u ∼ N (0,
1

τu
I).

Here, y is a vector of observations at n areas, W is an
adjacency matrix, ρ a spatial autocorrelation parameter, X
a n × p matrix of covariates with associated coefficients
β = (β1, . . . , βp) and u = (u1, . . . , un) an error term.
ui , i = 1, . . . , n, is Normally distributed with zero mean
and precision τu . This model can be rewritten as follows:
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Fig. 8 Marginal distributions of the model parameters, model with missing values in the covariates

y = (In − ρW)−1Xβ + ε;
ε ∼ N

(
0,

1

τu

[
(In − ρW ′)(In − ρW)

]−1
)

.

This model is difficult to fit with any standard software for
mixed-effects models because of parameter ρ. If the value
of ρ is fixed, then it is straightforward to fit the model with
R-INLA as it becomes a linear term on the covariates plus
a random effects term with a known structure. Hence, by
conditioning on the value of ρ we will be able to fit the
model with R-INLA. In order to use our new approach, we
will be drawing values of ρ using MCMC and conditioning
on this parameter to fit the models with R-INLA.

Note that the adjacency matrix W is often taken to be
row-standardized. This implies that ρ is constrained to the
interval (1/λ, 1), where λ is the minimum eigenvalue of W
(see, Haining 2003, for details). This also means that ρ is not
necessarily restricted to the interval (−1, 1), as it might be
expected.

We have fitted this model to the Columbus dataset avail-
able in R package spdep. This dataset contains information
about 49 neighborhoods in Columbus (Ohio), and we have
considered a model with crime rates as the response and
household income and housing value as covariates. We have
also fitted the spatial lag model using a maximum likeli-
hood approach, the method proposed by Bivand et al. (2014)
and MCMC using an implementation of the model for the

Jags software included in package SEMCMC, which can be
downloaded from Github.

Regarding prior distributions, ρ is assigned a uniform
between − 1.5 and 1, because in this case the inverse of the
minimum eigenvalue of W is − 1.5. Coefficients βi , i =
1, . . . , p, have been assigned Gaussian priors with zero
mean and precision 0.001 (the default in R-INLA), and τu
is assigned a Gamma distribution with parameters 1 and
0.00005 (the default for the precision of a ‘generic0’ latent
class in R-INLA).

The results are shown in Table 3. All Bayesian approaches
have very similar estimates, and these are also very similar
to the maximum likelihood estimates.

6.4 Classification

In the previous examples, we have considered problems in
which the number of latent parameters is small. In this new
example, we will tackle the problem of classifying observa-
tions into a given number of groups. In particular, we will
consider the eruption times of the Old Faithful geyser in Yel-
lowstone National Park (Azzalini and Bowman 1990).

Waiting time since the previous eruption and eruption
times is shown in Fig. 9, where a kernel density estimate
of the eruption times has been displayed. It seems that there
is a strong correlation between the time since the last erup-
tion and eruption time, with longer waiting times leading
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Table 3 Posterior means (and
standard deviation) of the spatial
lag model fitted to the Columbus
data set using three different
methods

Parameter Max. Lik. INLA w/ MCMC MCMC INLA+BMA

Intercept 61.05 (5.31) 60.62 (6.08) 58.53 (6.92) 60.81 (5.33)

βh. income − 1.00 (0.34) − 0.97 (0.37) − 0.91 (0.39) − 0.98 (0.33)

βh. value − 0.31 (0.09) − 0.31 (0.09) − 0.30 (0.10) − 0.31 (0.09)

ρ 0.52 (0.14) 0.55 (0.13) 0.55 (0.16) 0.54 (0.11)

τu 0.01 (–) 0.01 (0.002) 0.01 (0.002) 0.01 (0.00004)

INLAw/MCMC refers to the results using the approach described in this paper, MCMC to the results from an
implementation with Jags and INLA+BMA to the results using the method proposed by Bivand et al. (2014)
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Fig. 9 Waiting times and eruption times of the Old Faithful geyser in Yellowstone National Park

to longer eruptions. Also, it seems that observations can be
grouped into short and long eruptions.

We will label as ‘group 1’ the eruption times in the group
with the lower mean, so that ‘group 2’ will be observations
with longer eruption times. Furthermore, observationswithin
each group will be assumed to follow a Gaussian distribution
with mean μ j and precision τ j , with j = 1, 2. Classification
will be done through a vector of latent index variables z =
(z1, . . . , zn). zi indicates the group to which observation i
belongs and the values it can take are either 1 or 2.

Hence, the aim is computing the posterior probabilities of
z given the vector of eruption times y, as well as the posterior
distributions of the means and precisions of the Gaussian
distributions that define the groups.

In general, this is a difficult problem (see, Marin et al.
2005, for a summary) where MCMC often struggles. A
known phenomenon is that of label switching, which occurs
when the observations are essentially assigned to the same
groups, but the labels of these groups are swapped. This
makes inference difficult because labels must be reassigned
after theMCMChas been run, increasing computational time
and postprocessing.

For this reason, we will use informative priors on μ1 and
μ2 in order to avoid label switching. In particular, the prior
on μ1 will be a Gaussian distribution centered at 2 and the
prior on μ2 will also be Gaussian centered at 4.5. The pre-
cisions of both prior distributions will be 1. Although label

switching may appear during burn-in, in this particular case
it disappears once groups start to become identified. The pri-
ors on precisions τ1 and τ2 are the default in R-INLA, i.e., a
Gammawith parameters 1 and 5e−05. Regarding index vari-
ables, they will have a prior distribution such as there is no
preference a priori for any group, i.e., π(zi = 1) = π(zi =
2) = 0.5, i = 1, . . . , n.

The proposal distribution will be defined such as the pro-
posed values of the index variables depend on the proportion
of observations allocated into each group and the estimates of
the distributions that define the groups. This will follow the
sampling distribution used by Gibbs sampling (Chib 1995).
In addition, each zi will be sampled separately, but the pro-
posed ensemble value z∗ will be accepted or rejected in a
single movement. Hence, at iteration k + 1 a new value for
zi is proposed using the following probability distribution:

q(z∗i |z(k)i = j) ∝ ŵ
(k)
j N (yi |μ̂(k)

j , τ̂
(k)
j ), j = 1, 2,

where ŵ
(k)
j is the proportion of observations in group j , μ̂(k)

j

and τ̂
(k)
j are the means of π̃(μ j |y, z(k)) and π̃(τ j |y, z(k)),

respectively, at iteration k. That is, μ̂(k)
j and τ̂

(k)
j are estimates

of the parameters of the Gaussian distributions that define the
observations in each group computed using the conditional
marginals obtained at iteration k.
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Fig. 10 Posterior marginals of
the means and precisions of the
Gaussian distributions that
define the two groups
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This model can be easily fitted using the approach that we
have described before because, given z, the model is com-
pletely defined and it can be fitted with INLA. In particular,
this would be a model with two likelihoods, one for each
group, in which each group is defined by a different Gaussian
distribution. Hence, each time a new proposal z∗ is drawn,
observations are reassigned to groups according to z∗ and the
model is refitted.

As a starting point, we have considered the observations
in increasing order and we have assigned one third of the
observations of group 1 and the others to group 2. When
running the algorithms, we have used the same number of
iterations as in the other examples, as described at the begin-
ning of Sect. 6. In this case, the acceptance rate of INLA
within MCMC has been 71.74%. Figure 10 shows the esti-
mates of the posterior marginals obtained with INLA within
MCMC andMCMC. Again, we find that there is a very good
agreement between both approaches. However, we have also
observed that the choice of the initial labeling is important
to achieve a fast convergence.

7 Discussion

In this paper, we have developed a novel approach to extend
the models that can be fitted with INLA. For this, the param-

eters are split into two sets and we have used INLA within
the Metropolis–Hastings algorithm to sample only a small
number of parameters to estimate their posterior distribution.
For the remainder of parameters, the posterior marginals are
estimated using Bayesian model averaging using the condi-
tional posterior marginals obtained at with INLA the steps
of the Metropolis–Hastings algorithm. The idea of dividing
the parameter space of our model into two groups to estimate
them using a combination of different methods has also been
studied by other authors (for example, Vanhatalo et al. 2013).
This is a convenient approach because of the ease to build
and fit very complex models, and it is particularly important
when specific approaches or software are good at a precise
task.

We have shown four important applications of INLA
within MCMC. In the first one, we have implemented a
Bayesian Lasso using Laplace priors on the coefficients of
the covariates. This example shows how other priors not
available in R-INLA could be used on the latent effects and
hyperparameters. This includes not only univariate priors,
but also improper, objective and multivariate priors that are
seldom available in R-INLA.

In our second example, we have tackled the problem
of imputation of missing covariates in model fitting. Here,
we have included a very simple imputation method for the
missing values in the covariates, so that model fitting and
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imputation were done at the same time. Compared to fitting
this model with MCMC, we obtained very similar posterior
estimates. In an ongoing work, we are exploring how this
can be extended to larger problems and how different impu-
tation models and missingness mechanisms can be properly
addressed with INLA and MCMC.

In the third example, we have also shown how other mod-
els not included in the R-INLA software can be fitted with
INLA and MCMC. In particular, we have fitted a spatial
econometrics model by fitting conditional models on the
spatial autocorrelation parameter. This method can be easily
modified to suit any other models. In addition, Gibbs sam-
pling could be used if the full conditionals are available for
a subset of model parameters.

Finally, in the last example we have shown how INLA
within MCMC can be used to fit mixture models with INLA.
Although we have considered a mixture with two compo-
nents, the methodology can be extended to fit mixtures with
any number of components. However, fitting mixture models
with our approach requires further investigation and we will
focus on this particular topic in future research.

To sum up, INLA provides a simple way to reduce the
dimension of the model so that estimation in the resulting
low-dimensional parameter space can be tackled with a vari-
ety of other methods. In our opinion, this approach allows
INLA to fit more complex models and perform multivari-
ate inference on a small set of model paramaters, and it can
also be combined with other MCMC algorithms to develop
simple samplers to fit complex Bayesian hierarchical mod-
els. This method can work well when the conditional models
are hard to explore with current approaches for which INLA
provides a fast approximation, such as geostatistical models.
Furthermore, INLA could be embedded into a Reversible
Jump MCMC algorithm so that once the model dimension
has been set, the resultingmodel is approximatedwith INLA.
See, for example, Chen et al. (2000) for a comprehensive list
of MCMC algorithms that could benefit from embedding
INLA.
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