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Abstract Riemann manifold Hamiltonian Monte Carlo
(RMHMC) has the potential to produce high-qualityMarkov
chain Monte Carlo output even for very challenging tar-
get distributions. To this end, a symmetric positive defi-
nite scaling matrix for RMHMC is proposed. The scaling
matrix is obtained by applying a modified Cholesky fac-
torization to the potentially indefinite negative Hessian of
the target log-density. The methodology is able to exploit
the sparsity of the Hessian, stemming from conditional
independence modeling assumptions, and thus admit fast
implementation of RMHMC even for high-dimensional tar-
get distributions. Moreover, the methodology can exploit
log-concave conditional target densities, often encountered
in Bayesian hierarchical models, for faster sampling and
more straightforward tuning. The proposed methodology
is compared to alternatives for some challenging targets
and is illustrated by applying a state-space model to real
data.
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Monte Carlo · Hessian · MCMC · Metric tensor

1 Introduction

Markov chain Monte Carlo (MCMC) methods have by
now seen widespread use for sampling from otherwise
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intractable distributions in statistical applications for close
to three decades (Gelman et al. 2014). Still the devel-
opment of new and improved MCMC methods for tack-
ling ever more challenging sampling problems is a highly
active field (see, e.g., Andrieu et al. 2010; Girolami and
Calderhead 2011; Calderhead 2014; Hoffman and Gel-
man 2014). The contribution of the present work is a new
metric tensor, deriving directly from the Hessian of the
log-target density that, together with RMHMC (Girolami
and Calderhead 2011), enables fast and robust sampling
from target distributions with strong nonlinear dependen-
cies. Such target distributions arise, for instance, as the
joint posterior distribution of latent variables and parame-
ters in nonlinear and/or non-Gaussian Bayesian hierarchical
models.

Current MCMC strategies for Bayesian inference in such
hierarchical models can informally be split into three cat-
egories (see also Betancourt and Girolami 2013, for a
similar discussion): (1) variants of Gibbs sampling, (2)
pseudo-marginal methods and (3) methods that update latent
variables and parameters jointly. Gibbs sampling (see, e.g.,
Liu 2001; Robert and Casella 2004) is widely used as it is,
in many cases, relatively easy to implement. However, it is
well known that naive Gibbs sampling for hierarchical mod-
els, where, e.g., the latent variables are in one block and the
variance parameter of the latent variables is in another block,
can lead to poormixing due to strong nonlinear dependencies
across the blocks.

Pseudo-marginal methods (see, e.g., Andrieu et al. 2010;
Pitt et al. 2012), on the other hand, seek to avoid such poor
mixing by targeting directly the marginal posterior of the
parameters (i.e., with the latent variables integrated out).
However, such methods hinge on the ability to Monte Carlo
simulate an unbiased, low-variance estimate ofmarginal pos-
terior density of the parameters,which can often be extremely
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computationally demanding (Flury and Shephard 2011), or
even infeasible for larger models.

Finally, methods that update the latent variables and
parameters jointly are attractive in theory as they also
avoid the nonlinear dependency problems of Gibbs sam-
pling, and they do not need computationally demanding
marginal density estimates. However, such methods need
mechanisms for aligning the proposals with the local geom-
etry of the target, in particular for high-dimensional prob-
lems. Currently, popular methods within this category are
Metropolis-adjusted Langevin methods (see, e.g., Roberts
and Stramer 2002; Girolami and Calderhead 2011; Xifara
et al. 2014; Kleppe 2016) and various variants of Hamil-
tonian Monte Carlo (see, e.g., Duane et al. 1987; Neal
1996, 2010; Girolami and Calderhead 2011; Betancourt
2013a; Lan et al. 2015). Both use derivative information
from the target log-density to guide the MCMC propos-
als. However, it has become clear (see, e.g., Betancourt
2013a) that methods based on first-order derivatives only
[as is done in the default MCMC method in the popu-
lar Bayesian computation software Stan (Carpenter et al.
2017)] can be inefficient if one fails to take the local scal-
ing properties of the target into account. This mirrors the
relation between the method of steepest descent and New-
ton’smethod in numerical optimization (Nocedal andWright
1999).

Joint updating of latent variables and parameters in
Bayesian hierarchical models is also the main motivation
of this paper, even though the methodology is applicable
for any continuous target distribution under some regularity
conditions. Here a particular modified Cholesky factoriza-
tion is proposed that, when applied to a potentially indefinite
negative Hessian of the log-target, produces useful scaling
information for RMHMC. In conjunction, RMHMC and the
proposed methodology enables MCMC sampling where the
proposals are far from the current configuration, and that is
robust to significantly different scaling properties across the
support of the target, a property often seen in Bayesian hier-
archical models. It is worth noticing that applying modified
negative Hessians in RMHMC (Betancourt 2013a) or when
scaling MCMC proposals in general (Geweke and Tanizaki
1999, 2003; Qi and Minka 2002; Martin et al. 2012; Kleppe
2016) is not new per se. However, the proposed modified
Cholesky approach is, by exploiting sparsity of the negative
Hessian, computationally fast and scalable in the dimension
of the target.

The exploitation of sparsity is increasingly important in
the numerical linear algebra involved in modern statistical
computing associatedwith hierarchicalmodels, as the dimen-
sion of matrices to be factorized can easily reach ∼105 (see,
e.g., Rue 2001; Rue and Held 2005; Rue et al. 2009). The
sparsity of involved Hessian matrices arises due to con-
ditional independence assumptions used in the modeling.

Examples include block-diagonal structures associated with
nonlinear mixed effect regressions, banded structures for
Markovian dynamic models with unobserved factors such
as state-space models and less structured sparse matrices
for spatial/spatial-temporal models that involve Gaussian
Markov random fields (see, e.g., Lindgren et al. 2011). Cur-
rently, the integrated nested Laplace approximation (INLA)
(Rue et al. 2009) is a widely used methodology for fast
approximateBayesian inference in the latentGaussianmodel
(LGM) subclass of Bayesian hierarchical models. Like the
proposed methodology, INLA relies heavily on exploiting
sparsity in order to speed up computations, and in the con-
text of LGMs, the proposed methodology can also benefit
from the fact that conditional posterior log-densities of the
latents are concave. However, the proposed methodology is
more general with respect to models that can be handled
and in particular does not require the LGM assumption that
the latent variables have a joint Gaussian prior (see Sect. 5),
or the INLA assumption that the number of parameters is
small.

The remainder of the paper is laid out as follows: Sect. 2
fixes notation and reviews RMHMC. Section 3 describes and
discusses the proposedmethodology. In Sect. 4, the proposed
methodology is compared to Gibbs sampling, Euclidian
metric Hamiltonian Monte Carlo (EHMC), The no-u-turn
sampler (NUTS) of Stan and RMHMC based on spectral
decompositions for two challenging target distributions. Sec-
tion 5 describes an application to a nonlinear, non-Gaussian
state-space model, and finally Section 6 provides some dis-
cussion.

2 Riemann manifold HMC

This section fixes notation and reviews RMHMC (Girolami
and Calderhead 2011) in order to set the stage. Denote by
∇y the gradient/Jacobian operator with respect to vector
y, |A| the determinant of square matrix A, and Id denotes
the d-dimensional identity matrix. A natural matrix norm is
denoted by ‖ · ‖ and � is the standard normal cumulative
distribution function.

Let π̃(x) denote a density kernel associated with the tar-
get density π(x) : � → R

+ where � ⊆ R
d . It is assumed

that π̃(x) is continuous and has continuous derivatives up to
order 3. Moreover, let the metric tensor G(x) be a symmetric
positive definite d × d matrix for all x ∈ �, where Gi, j (x) :
� → R are smooth functions for all i, j = 1, . . . , d. Partic-
ular choices of G(x) will be discussed in detail in Sect. 3.

Like for other Hamiltonian Monte Carlo methods,
RMHMC relies on defining a synthetic Hamiltonian dynam-
ical system that evolves over fictitious time τ , where x plays
the role of position variable and p ∈ R

d is the (auxiliary)
momentum variable. The total energy in the system is given
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by the Hamiltonian H(x,p), which for RMHMC is taken to
be

H(x,p) = − log π̃(x)+ 1

2
log(|G(x)|)+ 1

2
pT G(x)−1p. (1)

The time evolutionof (x(τ ),p(τ )) is describedbyHamilton’s
equations

∂

∂τ
x(τ ) = ∇pH(x(τ ),p(τ )) = G(x(τ ))−1p(τ ), (2)

∂

∂τ
p(τ ) = −∇xH(x(τ ),p(τ )). (3)

Let z(τ ) = (x(τ )T ,p(τ )T )T ∈ R
2d be the state of the sys-

tem at time τ and likewise define H(z(τ )) = H(x(τ ),p(τ )).
Moreover, let ϕτ (·) : R× � → � denote the flow of z asso-
ciated with (2, 3) so that z(r + s) = ϕs(z(r)) ∀r, s ∈ R

whenever z(τ ) solves (2, 3). The following properties of the
Hamiltonian flow ϕτ can be established (see, e.g., Leimkuh-
ler and Reich 2004)

– Energy conservation, i.e., H(ϕτ (z)) is constant as a func-
tion of τ for any z ∈ �.

– Time reversibility, i.e., the inverse of ϕτ is ϕ−τ so that
ϕ−τ (ϕτ (z)) = z for any z ∈ �.

– ϕτ is said to be symplectic, namely for each τ , (∇zϕτ (z))T

J (∇zϕτ (z)) = J where

J =
[

0 Id
−Id 0

]
.

In particular, the symplecticity implies that ϕτ is a
volume-preserving map so that the Jacobian∇zϕτ (z) has
unit determinant.

Based on these properties, it is relatively straightforward to
verify that ϕτ preserves the Boltzmann distribution

π(z) = π(x,p) ∝ exp(−H(x,p)).

Namely, provided that z ∼ π(z), then also ϕτ (z) ∼ π(z)
for any τ ∈ R. Given the particular specification of the
Hamiltonian (1), the Boltzmann distribution admits the tar-
get distribution π(x) as the x-marginal. To see this, observe
that
∫

π(x,p)dp

∝ π̃(x)|G(x)|− 1
2

∫
exp

(
−1

2
pT G(x)−1p

)
dp

∝ π̃(x). (4)

Granted the above constructions, an ideal MCMC algo-
rithm for obtaining (dependent) samples {(xt ,pt )}t ∼

π(x,p) would be to alternate between (1) sample pt−1 ∼
π(p|xt−1) = N (0,G(xt−1)), and (2) compute (xt ,p∗) =
ϕτ ((xt−1,pt−1)) for some τ . However, for most non-trivial
target distributions and metric tensors, such an algorithm is
infeasible as the corresponding ϕτ s do not admit closed form
expressions. Instead, RMHMC relies on approximate numer-
ical simulation of the flow and correcting for the numerical
error using an accept–reject step.

2.1 Numerical simulation of the flow and RMHMC

In order to simulate the flownumerically, the splittingmethod
integrator of Betancourt (2013a) was used. This integra-
tor preserves the time reversibility and symplectic nature of
the flow, but only approximately preserves the total energy.
Though alternative, potentially less computationally inten-
sive, non-symplectic implementations exist (see, e.g., Lan
et al. 2015), a symplectic integrator was chosen, as it admits
stable and accurate numerical simulation of the flow for
large d and potentially long time spans. Moreover, using
a symplectic and time-reversible integrator leads to sim-
ple expressions for the acceptance probability used in the
accept/reject step.

The integrator of Betancourt (2013a) for approximating
ϕε(z(τ )), for some small time step ε, is characterized by

p̂∗ = p(τ ) − ε

2
∇x

[
− log π̃(x(τ )) + 1

2
log(|G(x(τ ))|)

]
,

(5)

p̂∗∗ = p̂∗ − ε

2
∇x

[
1

2
p̂T∗∗G(x(τ ))−1p̂∗∗

]
, (6)

x̂(τ + ε) = x(τ ) + ε

2
G−1(x(τ ))p̂∗∗

+ ε

2
G−1(x̂(τ + ε))p̂∗∗, (7)

p̂(τ + ε) = p̂∗∗ − ε

2
∇xH(x(τ + ε), p̂∗∗), (8)

where x̂(τ ) and p̂(τ ) denote the approximations to x(τ ) and
p(τ ), respectively.Applying the integrator (5–8) sequentially
l = 1, 2, . . . times produces approximations to the flow after
εl time has passed. A single transition xt−1 → xt of the
basic RMHMC algorithm used throughout this paper can be
summarized by the steps:

1. Resample the momentum vector pt−1 ∼ π(p|xt−1) =
N (0,G(xt−1)).

2. Sample l and ε, and perform l integrator steps with step
size ε starting at (xt−1,pt−1). This process results in the
proposal (x∗

t ,p
∗
t ).

3. With probability min(1, exp(−H(x∗
t ,p

∗
t ) + H(xt−1,

pt−1))) set xt = x∗
t , and with remaining probability set

xt = xt−1.
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Other, more complicated and potentially more efficient
variants of the overarchingRMHMCalgorithm, such as algo-
rithms choosing the number of integration steps dynamically
(Betancourt 2013b, 2016), are also conceivable in this frame-
work. Such dynamic selection is likely to be required inmore
automated implementations of the proposed methodology.
However, the basic RMHMC method outlined above was
used, as the focus of the present paper is on the particular
metric tensor advocated.

It is worth noticing that (6, 7) are implicit and there-
fore necessitate computationally costly fixed point iterations
(Leimkuhler and Reich 2004). In fact, the bulk part of the
computation is spent computing the derivatives of H needed
for solving (6, 7), and therefore, implementing the solu-
tion process in an efficient manner is of high importance.
In the present implementation, the fixed point iterations are
continued until the infinity norm of the difference between
successive iterates is<1.0e−6. To meet this tolerance in the
real application with d = 3087 considered in Sect. 5, 5–6
iterations are required in (6) and 3–4 iterations are required
in (7).

3 Metric tensor based on a modified Cholesky
factorization

This section describes the proposed metric tensor, and
thereby the impliedRiemannmanifold intended forRMHMC
and relatedmethods. By now, a rich literature considering the
differential geometric properties of RMHMC has appeared
(see, e.g., Betancourt et al. 2017). In this paper, a slightly less
mathematically inclined approach is taken, and rather focus
lies on some intuition and how to implement RMHMC for a
general target distribution.

3.1 Metric tensor from the negative Hessian

For EHMC, a rule of thumb is that a constant G should
be taken as the precision matrix of the target for near-
Gaussian targets (Neal 2010). For RMHMC, several papers
have argued for a metric tensor deriving from (negative)
second derivative information, specifically the Fisher infor-
mation matrix (Girolami and Calderhead 2011; Lan et al.
2015) or a regularized version of the negative log-target den-
sityHessian (see, e.g., Sanz-Serna 2011;Guerrera et al. 2011;
Jasra and Singh 2011). Modulus regularization, the latter ful-
fills the rule of thumb for EHMC and Gaussian targets. For
a model where the Fisher information matrix is available, it
is likely that the information matrix approach is preferable,
as the information matrix is by construction positive defi-
nite. However, for a general model, the information matrix
is either not available in closed form or requires substantial
analytic calculations for eachmodel instance. In the reminder

of the paper, unavailable Fisher information matrix is taken
as a premise for the discussion.

In deriving the metric tensor directly from the negative
Hessian, computing expectations is no longer needed, but on
the other hand, accounting for the fact that the negative Hes-
sian is often not positive definite in non-negligible subsets
of � is required. Betancourt (2013a) introduced the softmax
metric, which is based on a full spectral decomposition of
the negative Hessian and a subsequent regularization of the
eigenvalues. This method is attractive as it retains the eigen-
vectors of the negative Hessian, but is very computationally
demanding for large models. The present work is similar to
Betancourt (2013a) in deriving G directly from the Hessian,
but the computational details are different.

An additional rationale for choosing G to be a regularized
approximation to the negative Hessian is as follows. It is rel-
atively straightforward to verify that a RMHMC proposal
for x using a single time integration step (using the gener-
alized leapfrog integrator (Girolami and Calderhead 2011;
Leimkuhler and Reich 2004, page 156)), starting at x(0)will
have the mean

E(x̂(ε)|x(0))
= x(0) + ε2

2

[
G−1(x(0))

[∇x log π̃(x(0))
] + 	(x(0))

]

+ O(ε4), (9)

where

	i (x) =
d∑
j=1

∂

∂x j
G−1

i, j (x), i = 1, . . . , d.

It is seen that the O(ε2) term scales the gradient of the
log-target with the inverse of G. Therefore, choosing G
as a regularized version of the negative Hessian will turn
the former part of the O(ε2) term into a modified Newton
(numerical optimization) direction, which is known to be a
well-scaled search direction in the numerical optimization
literature (Nocedal and Wright 1999, Chapter 6). In fact,
modulus the effect of the additional term 	, choosing G in
this manner makes time τ and the time step ε effectively
dimensionless (Girolami and Calderhead 2011, Page 132)
as there is a unit “natural” step length (Nocedal and Wright
1999, Page 23) associated with a Newton step. In the present
setup, this corresponds to τ = O(

√
2) is the time needed to

traverse to the mode from any region close to a mode.
It is also worth noticing that the additional term 	 in (9)

is a correction term that accounts for the non-constant cur-
vature of the implied manifold, while retaining the correct
Boltzmann distribution associated with (1). In particular, the
explicit terms of (9), along with the leading term of
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Var(x̂(ε)|x(0)) = ε2G−1(x(0)) + O(ε4),

are identical to the first two moments of the proposal asso-
ciated with the time discretized position dependent metric
Langevin diffusion (with π(x) as stationary distribution due
to the 	 term in the drift) of Xifara et al. (2014, Equation
9). This observation mirrors the well-known fact that one
(Euclidian metric) Metropolis-adjusted Langevin algorithm
proposal is identical to the proposal of one EHMC time inte-
gration step, but in the general Riemann manifold case, this
correspondence is only asymptotical as ε → 0.

At this point, it is also worth contrasting a variable G(x)
to a constant G, which corresponds to EHMC. The latter
is currently used (either identity, diagonal or dense matrix)
in tandem with the NUTS (Hoffman and Gelman 2014)
as the default sampling algorithm in the widely applied
Bayesian computation software Stan (Carpenter et al. 2017).
In the constant G-case, 	 and the higher-order terms of (9)
vanish, and thus the proposal means are E(x̂(ε)|x(0)) =
x(0)+ ε2

2 G
−1

[∇x log π̃(x(0))
]
. For targetswith close to con-

stant curvature (i.e., in practice close to Gaussian, often seen
for posteriors in non-hierarchical models), this works well
and is substantially faster than the proposed methodology as
explicit integrators may be employed. However, for targets
exhibiting substantial variation in the curvature, such fixed
scaling of the gradient may, for non-negligible subsets of �,
produce either one of:

– Too aggressive proposals, leading to inaccurate sim-
ulation of the flow and subsequent rejections of the
proposals. In turn, this leads in practice to that subsets
of � are left unexplored (Betancourt 2013a).

– Too defensive proposals, leading to slow exploration of
subsets of�. In particular, defensive proposals often lead
to premature termination of the doubling of l process in
NUTS-like algorithms (Betancourt 2013b), which in turn
further slows down the exploration.

In Sect. 4, it is shown that Stan and EHMCmay exhibit such
pathologies when MCMC samples are compared to known
marginals of the target. However, in practice it is difficult
to determine whether such pathologies are active in a given
MCMC simulation.

The remainder of this section is devoted to the particular
form of metric tensor advocated here.

3.2 A smooth modified Cholesky factorization

This section develops ametric tensor in the form of a regular-
ized approximation of the negative Hessian matrix, which is
guaranteed to be positive definite. The approach is similar to
the modified Cholesky factorization approach for modified
Newton optimization algorithms of Gill and Murray (1974)

and Gill et al. (1981). The differences amount primarily to
making sure that each element ofG is a smooth function of x
so that the implied manifold is also smooth. Through a large
number of numerical optimization applications, the modified
Cholesky approach has proven to be a trusted and frequently
used technology (Nocedal andWright 1999), and the approx-
imation has also served as the basis for further refinements
(Schnabel and Eskow 1990, 1999). A further motivation for
working with modified Cholesky factorizations, as opposed
to say methods based on full spectral decompositions, is that
this method can be implemented while exploiting sparsity
patterns (Davis 2006) of the negative Hessian often found in
statistical models (see, e.g., Rue 2001; Rue et al. 2009).

Denote by A a symmetric matrix (e.g., the negative Hes-
sian) for which a positive definite approximation is sought.
The approach for finding G takes as vantage point a square
root free Cholesky factorization which produces the (LDL-
)decomposition

L̄ D̄ L̄T = A. (10)

Here, L̄ is unit lower triangular (i.e., 1s on the diagonal) and
D̄ is a diagonal matrix (Golub and van Loan 1996, section
4). When A is positive definite, the diagonal elements of D̄
are positive, whereas in the indefinite case, the factorization
may not exist or it may be numerically unstable and produce
arbitrary large elements in L̄ and D̄ (Nocedal and Wright
1999, section 6.3). The insight of Gill and Murray (1974)
and Gill et al. (1981) was that D̄ j, j (and consequently the
resulting L̄) can be modified online to produce a square root
free Cholesky factorization L̃ DL̃ = A+ J of the symmetric
positive definite matrix A + J , where J is a diagonal matrix
with nonnegative diagonal elements. Here, L̃, D are equal
to L̄, D̄ when the original decomposition (10) is applied to
A+J . The diagonal elements of J are chosen by themodified
Cholesky algorithm to be large enough to ensure that A + J
is positive definite when A is indefinite. On the other hand,
when A is sufficiently positive definite, J is taken to be the
zero matrix by the modified Cholesky algorithm.

In the present paper, the elements of L̃ and D are chosen by
the modified Cholesky algorithm according to the following
principles

1. If it is known that the upper left sub-matrix A1:K ,1:K , for
some 1 ≤ K ≤ d, is positive definite, then J j, j = 0 for
j = 1, . . . , K and consequently
(L̃ DL̃T )1:K ,1:K = A1:K ,1:K . If no such information is
available, then K = 0.

2. The off-diagonal elements of L̃ DL̃T are identical to those
of A.

3. If the finalized Dj, j , j > K is found to be negative during
themodifiedCholesky factorization,which correspond to
A being negative or indefinite, Dj, j is substituted by a
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smooth approximation to max(|Dj, j |, u j ) where u j is a
tunable lower bound. This approach is analogous to the
flipping of signs of negative eigenvalues used in the soft-
max metric of Betancourt (2013a) (see also Nocedal and
Wright 1999, in the context of numerical optimization),
but dissimilar in that L̃ is only a unit determinant trans-
formation, whereas the corresponding transformation in
the softmax metric is orthonormal.

Gill and Murray (1974) and Gill et al. (1981) included a fur-
ther principle for controlling numerical instabilities that can
occur when {u j } j>K are chosen to be close tomachine preci-
sion (see, e.g., Gill et al. 1981, page 108–109). In the present
context, where {u j } j>K are tunable parameters that typically
take substantially higher values, these numerical instabilities
are not produced. A further rationale for not including the
numerical stability-inducing principle of Gill and Murray
(1974) and Gill et al. (1981) is that it can introduce arti-
ficially high values of Dj, j in situations where the target
exhibits substantially different scales in different directions,
and consequently lead to slow exploration of the target.

Moreover, Gill and Murray (1974) and Gill et al. (1981)
do not include principle 1. This principle is, when appli-
cable, very useful in the context of RMHMC applied for
hierarchical models such as LGMs where the posterior of
the latent variables (x1, . . . , xK ), conditional on parameters
(xK+1, . . . , xd), is log-concave, as unnecessary regulariza-
tion in the form of lower bounds on Dj, j , j ≤ K is not
imposed.

The modified Cholesky factorization is summarized in
Algorithm 1. Steps 0–3 and 5 produce a standard L̄ D̄ L̄T ,
whereas step 4 is specific to the modified Cholesky factor-
ization.Assumefirst that K > 0. Then, after j ≤ min(K , d−
1) iterations are completed, the sub-matrices L̃1: j,1: j and
D1: j,1: j are not written to in the remaining iterations, and
the intermediate values stored in L̃ j+1:d,1:d and Dj+1:d, j+1:d
are not used for calculating L̃1: j,1: j and D1: j,1: j . Thus, after
iteration j ≤ min(K , d − 1), L̃1: j,1: j D1: j,1: j (L̃1: j,1: j )T =
A1: j,1: j , which is in agreementwith principle 1. Further, prin-
ciple 2 is fulfilled as the diagonal elements of A enter only
in step 0,2 and the operations on Dk,k, k > j in step 5 are
strictly additive. Therefore, increasing Dj, j in step 4 effec-
tively adds the difference between after and before step 5 to
the diagonal of the matrix being factorized, i.e., this differ-
ence is identical to J j, j (Gill et al. 1981). Principle 3 follows
directly from the application of the smooth absolute value
function sabs in step 4, as sabs(x; u) ≥ u for |x | < ∞.

In what follows, the metric tensor is taken to be of the
form

Gu(x) = L(x)L(x)T = L̃(x)D(x)L̃(x)T

= −∇2
x log π̃(x) + J (x), (11)

Algorithm 1Modified Cholesky decomposition.

Input:
-A d × d symmetric matrix A,
-A d-vector of regularization parameters u,
-Optionally a positive integer K ≤ d indicating that A1:K ,1:K

is positive definite.
If no such information is present, then K = 0.

step 0,1: L̃ ← Id .
step 0,2: Dj, j ← A j, j , j = 1, . . . d.
for j = 1 to d

step 1: if( j > 1) L̃ j,k ← L̃ j,k/Dk,k , k = 1, . . . , j − 1.
step 2: if( j < d) L̃ j+1:d, j ← A j+1:d, j .
step 3: if(1 < j < d) L̃ j+1:d, j ← L̃ j+1:d, j − (L̃ j+1:d,1: j−1)

(L̃ j,1: j−1)
T .

step 4: if( j > K ) Dj, j ← sabs(Dj, j ; u j ). (See below for
explanation of the sabs function.)

step 5: if( j < d) Dk,k ← Dk,k − (L̃k, j )
2/Dj, j , k = j+1, . . . , d.

end for
Return L̃ and D (so that L̃ DL̃T = A + J ) or L = L̃

√
D

(so that LLT = A + J ).

The specific soft absolute value function sabs used here is given as

sabs(x; u) = u

log(2)
log

(
exp

(
x
log(2)

u

)
+ exp

(
−x

log(2)

u

))
,

Note that sabs(x; u) ≥ u with equality only for x = 0. Moreover,
sabs(x; u) > |x | ∀ |x | < ∞.

and

L(x) = L̃(x) diag
(√

D(x)1,1, . . . ,
√
D(x)d,d

)

where L̃(x), D(x) originate from applying Algorithm 1
to −∇2

x log π̃(x) with regularization parameter u. Notice
in particular that the log-determinant log |Gu(x)| required
in (1) is easily found as

∑d
j=1 log D(x) j, j . The result-

ing RMHMC method is referred to as modified Cholesky
RMHMC (MCRMHMC).

3.3 Low-dimensional illustration

To illustrate the proposed methodology, consider a bivariate
version of the Neal (2003) funnel distribution, given as

log π̃(x) = − x21
2 exp(x2)

− x2
2

− x22
18

. (12)

Namely, x1|x2 ∼ N (0, exp(x2)), x2 ∼ N (0, 32). This model
displays substantially different scales in x1 depending on the
value of x2 and therefore illustrates how joint sampling of
variables alongwith the variance parameter of these variables
(e.g., latent field and the variance of the latent field) poses
substantial problems for MCMC methods that do not adapt
to local scaling properties.
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Fig. 1 Illustration of the effect of modified Cholesky manifold scaling
on RMHMC proposals for the bivariate funnel distribution (12). The
MCRMHMC uses the tuning parameters K = 1, u2 = 1.0, ε = 0.15.
Only the right half-plane is considered due to symmetry. Contours of
the log-target (12) are indicated by gray lines.Dots indicate initial states
x(0), and closed black curves indicate corresponding 95% probability
regions for x̂(ε)|x(0). The negative Hessian −∇2

x log π̃(x) is positive
definite in the region shaded with light gray. Note that corresponding
95% probability region curves for EHMC methods (such as the Stan
NUTS) would have the same (elliptical) shape for all initial states

Methods based on mode and (negative inverse) Hessian
at the mode (Gelman et al. 2014, Chapter 13.3) for scaling
MCMCproposals are not reliable for such targets. That is, the
target has mode at [0,−4.5]T , whereas E(x) = [0, 0]T . The
negative inverse Hessian at themode variance approximation
yields diag(0.0111, 9), whereas Var(x) = diag(90.01, 9).
It is seen that the mode is shifted in the x2-direction toward
the smaller scale region (negative x2) as smaller scales yield
higher values of p(x1|x2). The variance in x1-direction indi-
cated by the inverse negative Hessian at the mode is also
very different from Var(x1), but one can argue that none
of these variances are very informative for globally scaling
MCMC proposals due to the different scales in x1-direction
determined by x2.

Since x1|x2 is Gaussian, it is clear that (−∇2
x log π̃(x))1,1

> 0, and therefore, K = 1 is used to implementMCRMHMC
for this model. Figure 1 shows 95% probability regions for
single (time integration) step proposals of MCRMHMC, for
a selection of initial configurations (indicated by dots) for
target (12). It is seen that the metric tensor of MCRMHMC
appropriately scales the proposals and aligns the proposal
distributions to the local geometry of the target. The nega-
tive Hessian is positive definite only in region shaded with
light gray (x1 ∈ (∓(

√
2/3) exp(x2/2))), and it is seen that the

negative Hessian in conjunction with the modified Cholesky
factorization also produces useful scale information when
the Hessian is indefinite. This latter observation is very much

in line with the numerical optimization literature on modi-
fiedNewtonmethods (Nocedal andWright 1999, Chapter 6).
Moreover, due to the relatively high degree of regularization
in the x2-direction (u2 = 1.0), no problems related to close
to zero eigenvalues near boundaries of the shaded region are
seen (Kleppe 2016).

3.4 Discussion of the modified Cholesky factorization

Several issues related to the modified Cholesky factorization
in Algorithm 1 and its application in the RMHMC context
require further clarification at this point. First, it is clear
that Algorithm 1 is not invariant to reordering of the vari-
ables in x, a property that is often imposed in optimization
contexts via symmetric row and column interchanges (Gill
et al. 1981; Nocedal and Wright 1999). Such row and col-
umn interchanges are not applied here as they (1) introduce
discontinuities in ∇xH which in turn makes simulating the
flow associated with (2, 3) more difficult, (2) disturb any
exploitation of (K × K ) positive definite upper left sub-
matrices, (3) make exploitation of sparsity of the negative
Hessian substantially less effective as the sparsity pattern
of the modified Cholesky factorizations changes. Moreover,
a further rationale for including such symmetric row and
column interchanges is to avoid numerical instabilities asso-
ciated with small finalized Dj, j s, but in the present context
such problems can be tuned away by appropriate increases
in u j .

Given that Algorithm 1 is not invariant to reordering
of variables, it is reasonable to ask what is an appropriate
ordering of the variables? The short answer is that this is
a tradeoff between exploiting any possible positive definite
sub-matrices by putting the associated variables first in x, and
using orderings of the variables so that L(x) is as sparse as
possible (Davis 2006). Fortunately, in the context of hierar-
chical models and especially for LGMs, the means to these
two objectives often align well, in the sense that the latent
vector, conditional on parameters, often is both associated
with a positive definite negative Hessian and (possibly after
an appropriate internal reordering using, e.g., the AMD algo-
rithm of Davis 2006, Chapter 7) has a Cholesky factorization
with exploitable sparsity structure (seeRue et al. 2009, where
both of these properties are exploited in the LGM context
in the Laplace approximation used for calculating marginal
posteriors of the parameters). Thus, assuming the above situ-
ation, a rule of thumbwill be to put the latent variables first in
x and let the last elements ofx be the parameters. This strategy
leads to the rows of L(x) corresponding to the latent variables
being sparse, and the remaining (typically few) rows corre-
sponding to parameters being dense. To illustrate this rule of
thumb procedure, Fig. 2 displays the sparsity patterns of the
log-target negative Hessian and associated Cholesky factor
L(x) for the nonlinear state-space model discussed in detail
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Fig. 2 Sparsity patterns for the log-target Hessian and its associated
modified Cholesky factor L(x) for the model considered in Sect. 5.
Nonzero elements are indicated by dots. In order to improve readability,
only the lower right (3050:3087,3050:3087) sub-matrix is shown in both
cases. The patterns repeats along the borders and (sub, sup)-diagonals
in the completematrices. For the Hessian, only 0.4% of the elements are
nonzero, whereas only 0.5% of the lower triangular elements of L(x)
are nonzero

in Sect. 5. The model consists of 3082 latent variables with
first-order (time series) Markov structure (put first in x), and
5 parameters (put last in x). Due to the Markovian struc-
ture, the sub-matrix corresponding to the latent variables is
tri-diagonal, and consequently the Cholesky factor has only
nonzero elements on the diagonal and the first sub-diagonal.
This property is retained for the Cholesky factor of the com-
plete negative Hessian, where only the rows corresponding
to the parameters are dense.

We now turn attention to a discussion of the vector of regu-
larization parameters u. Recall that Algorithm 1 requires d−
K regularization parameters, where the

{
u j

}d
j=K+1 should

reflect the potentially very different scaling of
{
x j

}d
j=K+1.

Including a potentially large number of regularization param-
eters naturally comesbothwith addedflexibility andpotential
for very high-fidelity sampling when tuned properly. On the
other hand, including many regularization parameters may
lead to time-consuming tuning efforts, in particular since the
interpretation of

{
u j

}d
j=K+1 is not as straightforward as in

the softmax metric based on full spectral decompositions
(Betancourt 2013a). Though, of course, all active regulariza-
tion parameters can be set equal and thus reduce to a single
regularization parameter as is the case in the softmax met-
ric of Betancourt (2013a), in many cases this may lead to
suboptimal sampling in a RMHMC context as unnecessary
regularization will lead to slower and more oscillating explo-
ration of the target.

To further illustrate the advantages of this regulariza-
tion scheme, consider the toy model discussed in detail in
Sect. 4.2, consisting of a Gaussian zero mean AR(1) model
with autocorrelation 0.999 as x1:d−1, and let xd be the log-
arithm of the innovation precision of said AR(1) model.
For d = 1000, xd = −3.0 and x1:d−1 simulated from the
true model, the eigenvalues of the negative Hessian are (in

ascending order) (−0.067, 1.35×10−7, 7.22×10−7, . . . ),
whereas the eigenvalues of the negative Hessian associated
with x1:d−1 are (1.35× 10−7, 7.22× 10−7, . . . ). Given that
x1:d−1 is jointly Gaussian, the negative Hessian of x1:d−1

is by construction positive definite, but with smallest eigen-
value several orders of magnitude smaller than the absolute
value of the single negative eigenvalue associatedwith x. The
modified Cholesky approach, with K = d − 1, will exactly
reproduce the precision matrix of x1:d−1 in G1:d−1,1:d−1 and
only apply regularization in the dimension corresponding to
the log-precision parameter. Regularization in eigenspace, on
the other hand, is likely to disturb the representation of the
precision matrix of x1:d−1 in G substantially, as it is likely
that regularization at least a few orders of magnitude smaller
than the negative eigenvalue needs to be applied. The dis-
turbed representation of these eigenvalues will lead to less
efficient sampling as the resulting RMHMC algorithm will
to a lesser degree align the Hamiltonian dynamics with the
strong dependence among x1:d−1.

3.5 Implementation and tuning

The prototype large-scale code used in the reminder of this
paper is implemented in C++ and uses a sparsity-exploiting
implementation of Algorithm 1 that is derived from the func-
tion cs_chol of the csparse library (Davis 2006). Since
the sparsity pattern of L is identical to that of a conventional
sparseCholesky factorization, the functions of thecsparse
library for calculating sparsity patterns, speeding up compu-
tations (elimination trees) and other numerical tasks such as
triangular solves can be used directly.

The code makes use of the template capabilities of the
C++ language so that a single code is maintained both for
double numerics for calculating H and ∇pH , and with
automatic differentiation (AD) types for calculating ∇xH .
Specifically, the AD tool adept (Hogan 2014) is used for
the latter task. Finally, in the current version,−∇2

x log π̃(x) is
hand-coded. Future work will address the task of automatic
this using AD software capable of exploiting the sparsity of
the Hessian (Griewank 2000).

As discussed above, the methodology involves a number
of tuning parameters, which need to be adjusted for each
particular target distribution. Here, a method for such adjust-
ment during a burn-in phase is provided, which has been used
for the computations described in the reminder of the paper.
Firstly, the ordering of variables and selection of K is done
mainly based on insight into the problem at hand, with K
latent variables typically taken first in x, and parameters, in
particular scales and correlations, put last in x. Subsequently,
too high initial guesses of K can be reduced to j − 1 during
burn-in if Dj, j < 0, j ≤ K at step 4 of algorithm for some
x. If such a situation is encountered during the post-burn-
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in phase, the MCMC simulation needs to be restarted with
reduced K .

Secondly, the joint tuning of ε, l and
{
u j

}d
j=K+1 requires

some more attention. The heuristic strategy adopted here is
based on the following three steps:

– Select some reference ε and l, e.g., ε = 0.5d−0.25 and
E(l) = �1.5/ε�. The expressions for ε, l are informed
firstly by the fact that for any Gaussian target, say
N (μ,
), then G(x) = 
−1 and the integrator (5–8)
reduces to the conventional leap frog integrator for sepa-
rable Hamiltonian systems. In this situation, it is known
that an asymptotic expression for the expected acceptance
probabilities for proposals independent of current config-
uration (εl ≈ π/2) is 2−2�(ε2

√
d/8) (see, e.g., Beskos

et al. 2013;Mannseth et al. 2017), which when solved for
ε with acceptance probability 0.95 yields ε ≈ 0.7d−0.25.
In practice, it is usually the case that slightly smaller
values of ε are needed for models with non-constant cur-
vature and hence ε = 0.5d−0.25 is taken as a reasonable
step size. Secondly, the reference expression for the num-
ber of integration steps is informed by the lε ≈ π/2
needed in the Gaussian case, whereas the connection to
Newton’s method in optimization indicates lε ≈ √

2.
– Tune

{
u j

}d
j=K+1 using the reference values of ε and

l, with the objective of taking
{
u j

}d
j=K+1 as small as

possible while ensuring that the Hamiltonian is well-
behaved enough for the fixed point iterations associated
with (6–7) to converge. In practice, this tuning is imple-
mented by initially setting each active u j to a small
number, say exp(−20), to avoid unnecessary and com-
putationally wasteful regularization, and run a number
of burn-in iterations while increasing the relevant u j

by a factor say exp(1) whenever a divergence in the
fixed point iterations is encountered. Divergences in the
fixed point iterations for both (6) and (7) indicate that
‖J (x,p)‖ > 1 where J (x,p) = ε

2∇2
x,pH(x,p) =

ε
2∇x[G−1(x)p] around the sought fixed point. More-
over, for small |Dj, j |/u j (relative to say 10) and small
u j , d

dz [sabs(z; u j )]−1|z=Dj, j contributes substantially to
‖J (x,p)‖ and an ideal approach for choosing which
u j to increase would be to measure the sensitivity of
‖J (x,p)‖ to each of the active u j s. Rather than com-
puting the norm of the complete Jacobian, a heuristic
approach is taken, which involves increasing u ĵ for

ĵ = argmaxK< j≤d | d
dz [sabs(z; u j )]−1|z=Dj, j |whenever

a divergence is detected. It is worth noticing that, in fail-
ing to take into account the sensitivity of the negative
Hessian on x and the fact that Dj, j is also used in subse-
quent iterations in Algorithm 1, this approach is likely to
be suboptimal with respect to selecting the relevant u j .
This is in particular the case when the target under con-

sideration contains strong dependencies, and thus basing
such a selection mechanism on a more direct approxima-
tion to ‖J (x,p)‖ is scope for future research.

– Tune ε and l for fixed
{
u j

}d
j=K+1, with the objective

of controlling the acceptance probability and producing
low-autocorrelation samples using standard procedures.
In particular, this part of the tuning is readily automated
using dynamic selection of l (Betancourt 2013b; Hoff-
man and Gelman 2014; Betancourt 2016) and tuning ε

toward a given acceptance probability, e.g., using the dual
averaging algorithm of Hoffman and Gelman (2014).

4 Simulation study

To benchmark the proposed methodology against common,
general purpose MCMCmethods, two challenging toy mod-
els are considered. These exhibit, in the first case, strong
nonlinear dependence, and in the second case, a “fun-
nel” effect. The contending methods are chosen as they
are routinely used in diverse high-dimensional applications.
Throughout this section, all methods except Stanwere imple-
mented in C++ and compiled with the same compiler and
with the same compiler settings. The Stan computationswere
done using the R interface rstan, version 2.15.1, running
under R version 3.3.3. The computer used for all computa-
tions in this section was a 2014MacBook Pro with a 2.0GHz
Intel Core i7 processor.

4.1 Twisted Gaussian mean AR(1) model

This first toy model is given by

xi |xi−1, xd ∼ N
(
(x2d − 1) + 0.95(xi−1

−(x2d − 1)),
1 − 0.952

100

)
,

i = 2, . . . , d − 1, (13)

x1|xd ∼ N

(
x2d − 1,

1

100

)
, (14)

xd ∼ N (0, 1). (15)

That is, conditionally on xd , x1:d−1 is a Gaussian AR(1) pro-
cess with autocorrelation 0.95, marginal standard deviation
0.1 andmean x2d −1. Similar specifications, but without auto-
correlation, have previously been considered as test cases for
MCMC algorithms (Haario et al. 1999; Betancourt 2013b).
The model may be considered as a very simple hierarchical
model, where x1:d−1 are latent variables, xd is a parameter,
and no observations aremodeled (in order to retain analytical
marginals).
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Table 1 Results for the twisted Gaussian mean AR(1) model experiment

Method # MCMC iterations CPU time (s) min
1≤i≤d−1

ESS(xi ) ESS(xd )
min

1≤i≤d−1
ESS(xi )

CPU time
ESS(xd )
CPU time

Across replica Min Mean Min Mean Min Mean Min Mean Min Mean

d = 10

MCRMHMC 1000 3.3 3.4 603 813 891 981 177 239 259 289

Gibbs 5, 000, 000 2.3 2.3 33 94 59 146 14 40 25 63

EHMC 5000 4.7 4.8 1056 1182 630 700 220 246 132 146

Stan 5000 1.4 1.4 (4312) (4800) (4465) (4833) (3137) (3355) (3144) (3379)

EigenRMHMC 1000 425 432 59 93 59 96 0.14 0.21 0.14 0.22

d = 100

MCRMHMC 1000 65 66 756 873 843 954 11 13 13 14

Gibbs 5, 000, 000 22 22 (7.2) (24) (9.6) (26) (0.32) (1.1) (0.43) (1.2)

EHMC 5000 75 76 460 671 570 775 6.0 8.8 7.6 10

Stan 5000 12 14 (4648) (4868) (4531) (4870) (315) (349) (324) (349)

d = 1000

MCRMHMC 1000 1435 1456 451 723 728 879 0.31 0.50 0.50 0.60

Gibbs 5, 000, 000 223 224 (4.0) (15) (3.9) (12) (0.02) (0.07) (0.02) (0.06)

EHMC 5000 1855 1897 46 214 90 268 0.02 0.11 0.05 0.14

Stan 5000 225 255 (4529) (4786) (4607) (4852) (17) (19) (17) (19)

Each combination of method and d ∈ {10, 100, 1000} was repeated 10 independent times, and the numbers presented are minimum (min) and
means (mean) across these replica. Results for samplers that failed to explore the target properly are given in parentheses. Failures to explore the
target for Gibbs, d = 100, 1000 are indicated by visual inspection of output (Figs. 3, 4, 5). Failures to explore the target distribution in the cases
of Stan d = 10, 100, 1000 are indicated by Kolmogorov–Smirnov tests (Table 2) and also visual inspection of Figs. 4, 5. The results for the Gibbs
sampler are only recorded every 1000th iteration; thus, the maximum ESSs for Gibbs are 5000. Tuning parameters for MCRMHMC are: d = 10:
un = exp(3.5), ε = 0.4, l ∼ U (20, 30), d = 100: un = exp(3.5), ε = 0.15, l ∼ U (60, 80), d = 1000: un = exp(3.5), ε = 0.1, l ∼ U (130, 160).
For Gibbs, tuning parameters are: d = 10: rGibbs = 0.65, d = 100: rGibbs = 0.4 and d = 1000: rGibbs = 0.05. For EHMC, tuning parameters
are: d = 10: ε = 0.02, l ∼ U (700, 1000), d = 100: ε = 0.01, l ∼ U (1500, 2000), and d = 1000: ε = 0.007, l ∼ U (4000, 6000). Finally, for
EigenRMHMC, d = 10: u = exp(3), ε = 0.3 and l ∼ U (50, 100)

The contending methods are chosen as they share scope
with respect to generality. Specifically, Gibbs sampling,
EHMC with identity mass matrix, Stan and RMHMC
using full spectral decomposition (EigenRMHMC) similar
to Betancourt (2013a), in addition to the proposed method-
ology were considered. The Gibbs sampler (Gibbs) was
implemented using single dimension updates in order to
mimic a situation where x1:d−1 are latent variables with
intractable joint conditional posterior. Specifically, for updat-
ing xi |x−i , i = 1, . . . , d − 1, exact Gaussian updates
were used. For updating xd |x1:d−1, a Gaussian random walk
Metropolis Hastings method, with proposal standard devi-
ation rGibbs was used. Here, rGibbs was tuned to produce
update rates of 20–30%. Due to the slow mixing, but low
per iteration computational cost, only every 1000th Gibbs
iteration was recorded.

For EHMC, uniformly distributed numbers of time inte-
gration steps l were used, where the notationU (a, b) denotes
uniform on the integers between a and b including a, b. In
addition, the integration step sizes were jittered with ±15%
uniform noise (Neal 2010). The distributions for l and ε were

tuned to target an acceptance rate around 60% and to produce
MCMC samples that were well separated in the xn-direction.

Stan was run using 10,000 iterations, where the first 5000
burn-in iterations were used for tuning the sampler. The
diag_e metric (i.e., general fixed diagonal scaling matrix)
and otherwise default settings were used. The burn-in itera-
tions are not included in the reported CPU times.

The negative Hessian of the log-density of x1:d−1|xd is
positive definite, which enables K = d−1 forMCRMHMC.
The sparsity patterns of the negative Hessian and modified
Cholesky factor L are similar to those of Fig. 2 with the
exception that this model only has one “parameter” with cor-
responding dense dth row in Hessian and L . The values for
ud were found by successively increasing ud until the iter-
ative solvers in the time integrator no longer diverged for a
reference value of ε. Also here, uniformly distributed num-
bers of time integration steps and 15% jittered step sizes
were used. The integration step size was taken to produce
acceptance rates of around 95%, and the tuning of the distri-
bution of l was again taken to produce high-fidelity samples
for xd .
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Fig. 3 Traceplots (left), sample autocorrelation functions (center) and pdf-scaled histograms (right) of MCMC iterations for xd for d = 10. Under
target characterized by (13–15), xd has a standard Gaussian marginal distribution, which is indicated as a reference for the histograms

EigenRMHMC was implemented using full spectral
decomposition, followed by applying the sabs function (see
Algorithm 1) with parameter u to each eigenvalue to produce
a positive definite metric tensor. Other than the metric tensor,
MCRMHMC and EigenRMHMC are identical. In particu-
lar u was tuned by increasing u until the iterative solvers
no longer diverged and the integration step size was tuned
toward acceptance rates around 95%. For both MCRMHMC
and EigenRMHMC, AD was applied to the complete code
(i.e., includingmodified Cholesky factorization- and spectral
factorization codes).

The experiment was run for each of d ∈ {10, 100, 1000}.
EigenRMHMC was only considered in the d = 10 case, as
very long computing times were required in higher dimen-
sions. In all considered cases, each method was run 10
independent times. For each method except Stan, realiza-
tions from the target distribution were used as initial values
for the MCMC methods, and therefore, no burn-in iterations
was performed. To compare the performances of the MCMC

methods, the effective sample size (ESS) calculated using the
monotone sample autocorrelation estimator of Geyer (1992).

The results are presented in Table 1, and trace plots,
sample autocorrelation functions and histograms for xd
are presented in Figs. 3, 4 and 5. In addition, Table 2,
upper panel, presents median (across replica) p-values from
Kolmogorov–Smirnov tests with null hypothesis being that
the MCMC samples representing xd have the correct stan-
dard Gaussian distribution. The Kolmogorov–Smirnov tests
were only performed for MCRMHMC and Stan, as these
methods produce close to iid MCMC samples.

First, it is seen from Figs. 4 and 5 that the Gibbs samplers,
d = 100, 1000, even after 5million iterations, fail to properly
explore the target distributions. Also Stan appears to produce
samples that do not correspond to the target distributions in
all cases, as seen from Table 2, upper panel, and also quite
clearly from Fig. 5.

Thus, only MCRMHMC, EHMC, and in the d = 10
case, EigenRMHMC and Gibbs, appear to produce accu-
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Fig. 4 Traceplots (left), sample autocorrelation functions (center) and pdf-scaled histograms (right) of MCMC iterations for xd for d = 100.
Under target characterized by (13–15), xd has a standard Gaussian marginal distribution, which is indicated as a reference for the histograms

rate representations of the target distribution. MCRMHMC
produces uniformly highest ESSs and ESSs per computing
time for d = 100, 1000, both in minimum and in mean
across replica. The performance of MCRMHMC is compa-
rable with EHMC, and better than the remaining methods in
the d = 10 case.Moreover, the relative ESS perCPU time for
MCRMHMC and EHMC appears to increase with increas-
ing dimension, with MCRMHMC being a factor 4 faster for
d = 1000. Further, visual inspection of the Hamiltonian
dynamics trajectories (unreported) shows a very coherent and
fast exploration of the target by the MCRMHMC, whereas
the trajectories of EHMC and EigenRMHMC are oscillating
due to the strong dependency structure and therefore lead to a
slow exploration of the target. In the case of EigenRMHMC,
a rather large regularization parameter was needed to make
the fixed point iterations of integrator converge. However,
this choice appears also to disturb the representation of the
AR(1) model precision in the implied G(x), which slows
down the exploration.

4.2 Funnel AR(1) model

The second toy model considered is a zero mean Gaus-
sian AR(1) model with autocorrelation 0.999 jointly with
the innovation precision parameter, where the latter has a
gamma(1,0.1) prior:

xi |xi−1, xd ∼ N

(
0.999xi−1,

1

exp(xd)

)
,

i = 2, . . . , d − 1, (16)

x1|xd ∼ N

(
0,

1

exp(xd)(1 − 0.9992)

)
, (17)

exp(xd) ∼ gamma(1, 0.1). (18)

This model exhibits a “funnel” nature (Neal 2003; Betan-
court 2013b) as the marginal standard deviation of xi , i =
1, . . . , d − 1 varies by two orders of magnitude between the
0.001 and 0.999 quantiles of xd . Moreover, there are very
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Fig. 5 Traceplots (left), sample autocorrelation functions (center) and pdf-scaled histograms (right) of MCMC iterations for xd for d = 1000.
Under target characterized by (13–15), xd has a standard Gaussian marginal distribution, which is indicated as a reference for the histograms

Table 2 Median (across replica) p-values for Kolmogorov–Smirnov
tests with null hypothesis being that theMCMC output for the indicated
marginals [after appropriate transformations in case of model (16–18)]
is distributed according to the standard Gaussian distribution

d 10 100 1000

xd of model (13–15)

MCRMHMC 0.44 0.35 0.48

Stan 4.6 × 10−12 1.6 × 10−14 9.0 × 10−99

�−1(Fxd (xd )) of model (16–18)

MCRMHMC 0.26 0.26 0.38

Stan 2.1 × 10−11 1.7 × 10−34 4.8 × 10−222

�−1(Fxd−1 (xd−1)) of model (16–18)

MCRMHMC 0.28 0.12 0.50

Stan 2.1 × 10−12 4.8 × 10−35 6.0 × 10−269

Small p-values indicate that the MCMC method does not properly
explore the target distribution. The Kolmogorov–Smirnov tests were
only performed for MCRMHMC and Stan, as these methods produce
close to iid MCMC samples for both considered models

strong dependencies among the xi , i = 1, . . . , d − 1, which
adds further complications for manyMCMCmethods. Thus,
also this target distribution shares many of the features of
the (joint latent variables and parameters) target distribution
associated with hierarchical models.

Also here, four alternatives to the proposed methodology
were considered, namely Gibbs sampling, EHMC, Stan and
EigenRMHMC (only for d = 10). The model allows for
a full set of univariate conditional posteriors with standard
distributions, which are applied in the Gibbs sampler. For
the Gibbs sampler, only every 1000th iteration was recorded
due to the very slow mixing. Also here, the Euclidian met-
ric HMC was implemented using an identity mass matrix.
Due to the substantial “funnel” nature of the target, the inte-
grator step size for EHMC must be chosen quite small to
be able to explore the low-variance region of the target,
which in turn leads to very high acceptance probabilities
(Betancourt 2013a). However, finding a reasonable distri-
bution for l that simultaneously leads to MCMC samples
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Fig. 6 Trace plots and histograms for the funnel AR(1) model experi-
ment, d = 10. Left column displays trace plots of�−1(Fxd (xd )), which
should have a standard Gaussian distribution. The middle column dis-

plays density-scaled histograms of �−1(Fxd−1 (xd−1)), along with a
standard Gaussian density. The right column displays density-scaled
histograms of �−1(Fxd (xd )) along with a standard Gaussian density

with low autocorrelation seems impossible. Also for Stan,
small step sizes were imposed to account for differences in
scales via setting the acceptance rate target adapt_delta
equal to 0.999. For MCRMHMC, again x1:d−1|xd is Gaus-
sian which suggest K = d−1, and the sparsity structure and
tuning strategy are identical as for the model in Sect. 4.1.
For EigenRMHMC, again the regularization parameter u
was chosen in order to produce few divergences in the inte-
grator fixed point iterations. However, for this u, it appears
that the regularization interferes with representation of the
AR(1) process precision and thus precludes finding small
values of l that produce high-fidelity samples (see Sect. 3.4).
The applied values of l are larger than those required for
MCRMHMC. The experimental setup is otherwise identical
to that of Sect. 4.1.

Due to the simple structure of the target, it is clear that
the marginal cumulative distribution functions of xi , say

Fxi , are easily determined from exp(xd) ∼ gamma(1, 0.1)
and

√
0.1(1 − 0.9992)xi ∼ t2, i = 1, . . . , d − 1. This

information can be exploited to determine the quality of
the convergence for the different methods. Results from
the simulation experiment for d ∈ {10, 100, 1000} are pre-
sented in Table 3, Figs. 6, 7 and 8. In addition, the middle
and lower panels of Table 2 present median p-values from
Kolmogorov–Smirnov tests applied to MCMC output repre-
senting�−1(Fi (xi )), i = d−1, d. Lookingfirst at Figs. 6–8,
where the middle and right columns present density-scaled
histograms of the MCMC output for a representative replica,
transformed to have standard Gaussian marginal distribution
via the�−1◦Fxi transformation for xd−1 and xd , respectively.
Firstly, it is seen that EHMC, even with very large E(l) and
very high acceptance rates, is unable to fully explore the tar-
get for all consideredds for thismodel. Secondly, this appears
also to be the case for the Gibbs sampler for d = 100, 1000.
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Fig. 7 Trace plots and histograms for the funnel AR(1) model exper-
iment, d = 100. Left column displays trace plots of �−1(Fxd (xd )),
which should have a standard Gaussian distribution. The middle col-
umn displays density-scaled histograms of �−1(Fxd−1 (xd−1)), along

with a standard Gaussian density. The right column displays density-
scaled histograms of �−1(Fxd (xd )) along with a standard Gaussian
density

Also Stan fails to explore the target fully in all cases, as seen
from Table 2, middle and lower panels (and also seen clearly
from Figs. 7 and 8).

From Table 3 it is seen that MCRMHMC produces
high-fidelity samples in all cases, but that in the d = 10
case, Gibbs sampling produces effective samples faster than
MCRMHMC. EigenRMHMC is four orders of magnitude
slower than MCRMHMC and Gibbs in the d = 10 case.

Overall, the simulation studies for models (13–15) and
(16–18) indicate that MCRMHMC is capable of produc-
ing reliable results for challenging models with diverse
forms of nonlinearities and strong dependency structures.
On the other hand, the contending methods may require
prohibitively long MCMC chains to accurately represent
the target distribution. Having said that, one can argue
that the conditional Gaussian AR(1) models in (13–15)
and (16–18) pose too small challenges for MCRMHMC.

Therefore, also a nonlinear state-space model where the
prior for the latent variables is far from jointly Gaussian is
considered.

5 Application to a state-space model

In this section, a Euler–Maruyama-discretized version of the
Chan et al. (1992) constant elasticity of variance model for
short-term interest rates, observed with Gaussian noise, is
considered. The model is fully specified by

yt = xt + σyηt , ηt ∼ i.i.d. N (0, 1), t = 1, . . . , T, (19)

xt = xt−1 + (α − βxt−1) + σx
√

xγ
t−1εt ,

εt ∼ i.i.d. N (0, 1), t = 2, . . . , T (20)

x1 ∼ N (0.09569, 0.012), (21)
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Fig. 8 Trace plots and histograms for the funnel AR(1) model exper-
iment, d = 1000. Left column displays trace plots of �−1(Fxd (xd )),
which should have a standard Gaussian distribution. Themiddle column

displays density-scaled histograms of �−1(Fxd−1 (xd−1)), along with a
standard Gaussian density. The right column displays density-scaled
histograms of �−1(Fxd (xd )) along with a standard Gaussian density

where  = 1/252 correspond to a daily sampling frequency
for a yearly time scale. Here x1:T models an unobserved
short-term interest rate, which is observed with noise in y1:T .
The prior mean of x1 is set equal to the first observation y1.
Due to the non-constant volatility term in the xt process, the
joint prior for x1:T deviates strongly from being Gaussian.
The model is completed with the following, (improper) prior
assumptions and transformations to prepare forMCRMHMC
sampling:

xT+1 = α ∼ N

(
0,

100

2

)
,

xT+2 = β ∼ N

(
1


,
100

2

)
,

xT+3 = log(σ 2
x ) ∼ uniform(−∞,∞),

xT+4 = γ ∼ uniform(0,∞),

xT+5 = log(σ 2
y ) ∼ uniform(−∞,∞),

(the priors for α, β correspond to N (0, 100) priors on α′, β ′
in the parameterization E(xt |xt−1) = α′+β ′xt−1). Based on
experience, the dataset considered strongly disfavors values
of γ close to zero, and therefore no transformation to R is
introduced (in order to avoid derivative calculations associ-
ated with such transformations).

The dataset considered was T = 3082 observations of
7-day Eurodollar deposit spot rates from January 2, 1983, to
February 25, 1995. The dataset has previously been used in
Aït-Sahalia (1996) and, in the context of model (19–21), in
Grothe et al. (2016). To implement MCRMHMC with d =
T +5, it is first observed that even though p(x1:T |xT+1:T+5)

is not uniformly log-concave, it appears that K = T + 2 is
a suitable choice since the observations are highly informa-
tive with respect to the latent process, and further that α, β

interacts only linearly with x1:T . The remaining active regu-
larization parameters were taken to be uT+3 = exp(6.0),
uT+4 = exp(0.0), uT+5 = exp(6.0), which were deter-
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Table 4 Results for Bayesian
inference for model (19–21)
applied to a dataset of
Eurodollar interest rates with
T = 3082

MCRMHMC Particle Gibbs

CPU time (hours) 4.5 2.0
# MCMC iterations 1000+100 80000+20000

Across replica Min Mean Min Mean

α

Post. mean 0.0099 0.0098

Post. std. 0.0088 0.0089

ESS 1000 1000 36472 60801

ESS/hour CPU time 222 224 17911 29755

β

Post. mean 0.168 0.168

Post. std. 0.172 0.173

ESS 1000 1000 56201 70998

ESS/hour CPU time 222 224 27600 34752

σx

Post. mean 0.41 0.41

Post. std. 0.06 0.06

ESS 405 579 52 79

ESS/hour CPU time 90 130 26 38

γ

Post. mean 1.18 1.19

Post. std. 0.06 0.06

ESS 423 564 53 78

ESS/hour CPU time 94 127 26 38

σy

Post. mean 0.00054 0.00054

Post. std. 2.3 × 10−5 2.2 × 10−5

ESS 495 582 409 557

ESS/hour CPU time 110 131 201 272

x1

Post. mean 0.095 0.095

Post. std. 0.0005 0.0005

ESS 1000 1000 71512 73304

ESS/hour CPU time 222 224 35087 35881

xT

Post. mean 0.061 0.061

Post. std. 0.0005 0.0005

ESS 1000 1000 72415 74206

ESS/hour CPU time 222 224 35519 36324

Posterior mean and posterior standard deviation are denoted by Post. mean and Post. std., respectively.
The numbers reported are the minimum (min) and mean (mean) across 10 independent replications of the
experiments

mined using the heuristic detailed in Sect. 3.5. Moreover,
l ∼ U (90, 180) and ε = 0.03 with 15% jittering of step size
were used, which correspond to integration times ranging
between ≈ 2.3 and ≈ 6.2. The applications of MCRMHMC
were done using 1100 MCMC iterations where the first 100
iterations were discarded as burn-in.

As a reference for the proposed methodology, a Parti-
cle Gibbs sampler (Andrieu et al. 2010) using the Particle
EIS filter (Scharth and Kohn 2016) with Ancestor Sampling
(Lindsten et al. 2014) was used. This methodology is dis-
cussed in detail inGrothe et al. (2016) and should be regarded
as a “state-of-the-art” Gibbs sampling procedure for state-
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Fig. 9 Trace plots, Sample autocorrelation functions and histograms for the CEV model (19–21) based on MCRMHMC. The reported plots are
for a representative replica and depicts only the 1000 post-burn-in samples

space models where the latent state (x1:T in current notation)
is updated in a single Gibbs block with close to perfect mix-
ing. The Gibbs sampler was implemented fully in C++, and
with a Gaussian random walk MH updating mechanism for
γ (with proposal standard deviation 0.025 corresponding to

acceptance rates of 20–30%), but is otherwise identical to
the one described in Grothe et al. (2016). A total of 100,000
Gibbs iterations were performed, with the first 20,000 iter-
ations discarded as burn-in. All experiments in this section
were run on a 2016 iMac with a 3.1GHz Intel Core i5 pro-
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Fig. 10 Trace plots, Sample autocorrelation functions and histograms for the CEV model (19–21) based on particle Gibbs. The reported plots are
for a representative replica and depicts only the 80,000 post-burn-in samples

cessor and 8Gb of RAM, and each experiment was repeated
10 times using different random number seeds.

It is well known that Gibbs sampling for latent variable
models often lead to poor mixing for the parameters deter-
mining the volatility of the latent process. This is at least

partly due to “funnel”-like nonlinear dependencies between
the relevant parameters and the complete latent state. Thus, of
particular interest is whetherMCRMHMC is able to improve
the sampling of these parameters by including both parame-
ters and latents in the same updating block.
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Results for MCRMHMC and Particle Gibbs sampling
for the CEV model are presented in Table 4 and Figs. 9
and 10. It is seen from Table 4 that both methods produce
close to perfect sampling for parameters α, β, x1, xT , and
indeed also the other latents (not reported). However, for
σx , γ and to some degree σy , the performance of the Parti-
cle Gibbs sampler deteriorates substantially, and for σx and
γ , MCRMHMC produces effective samples at a faster rate
than theParticleGibbs (both inmean andminimumacross the
replica). Thus, looking at theminimum(acrossd dimensions)
ESS per computing time, MCRMHMC performs better than
Particle Gibbs, even if the Particle Gibbs updating mecha-
nism for x1:T is both fast and produces close to independent
updates.

From Fig. 9, it is seen that the samples fromMCRMHMC
explores the relevant support extremely fast for all dimen-
sions, and it appears that only a few hundred iterations would
be sufficient to produce a good representation of the joint
posterior. A further, interesting artifact, is that for the condi-
tionally log-concave latents/parameters (x1:T+2), the applied
distributions for l and ε produce mildly negatively autocor-
related MCMC iterations, whereas there is a small positively
correlated dependence for the parameters in need of regu-
larization (xT+3:T+5). This indicates that there is potentially
scope for further improvement of the tuning of the sampler,
where it should be possible to align better the integration
times needed to produce close to zero autocorrelation in all
dimensions at the same time by a more refined selection of
uT+3:T+5.

From Fig. 10, the poor performance of Particle Gibbs for
the volatility-determining parameters σx , γ is clearly seen
from the trace plots and autocorrelation functions, and it is
not mitigated by extremely fast mixing of the latents and the
mean structure of (20). Rather, the poor mixing is an artifact
of handling the model in Gibbs manner. Moreover, it is seen
from the trace plots that σx and γ are strongly correlated a
posteriori (corr(xT+3, xT+4) � 0.99) which is handled very
well by MCRMHMC, but poses problems for Gibbs sam-
pling.

6 Discussion

This paper has presented a modified Cholesky factorization
suitable for turning the log-target Hessian matrix into a suit-
able metric tensor for Riemannmanifold HamiltonianMonte
Carlo. The resulting modified Cholesky RMHMC is shown,
both in a simulation study and in a real data experiment,
to be competitive, in particular for high-dimensional, chal-
lenging sampling problems. The method is in particular well
suited for sampling problems where the Hessian is sparse, as
unlike methods based on spectral decomposition, the modi-
fied Cholesky factorization can exploit sparsity, which holds

the potential for speeding up computations drastically.More-
over, the method can exploit that the conditional posterior
of some subset of the state vector x is log-concave, e.g.,
latents conditional on scale (Shephard and Pitt 1997; Rue
et al. 2009), and thereby forego unnecessary regularization
that slows down exploration of the target.

This paper focusses in particular on how to turn potentially
indefinite Hessian matrices into useful scaling information.
However, to make the proposed methodology more auto-
matic and thus be suitable for inclusion general purpose
softwares (e.g., Stan), further work is in order. In partic-
ular, the methodology would likely benefit from dynamic
selection of integration times (Hoffman and Gelman 2014;
Betancourt 2016) and automatic selection of integration step
sizes (e.g., Hoffman and Gelman 2014). Also a more refined
and automated tuning of the active regularization parame-
ters during burn-in, which takes into account dependencies
in the target, holds scope for further work. One potential such
direction is to measure the sensitivity with respect to the reg-
ularization parameters on the first iterate of the fixed point
iterations for (6–7). Finally, internal reordering of the vari-
ables and selectionof K mayalso bedonemore automatically
provided that a robust selection of the active regularization
parameters is in place, as one may put the variables requir-
ing the largest regularization parameters last in x, whereas
those not requiring regularization could be put first in x and
K could be chosen accordingly. However, such a reorder-
ing must be weighed against the impact it has on exploitable
sparsity of L(x), and therefore, optimal, automatic selection
of K and reordering of the variables for a general target also
holds scope for further work.

In addition, to make the methodology more user friendly,
some form of sparse automatic differentiation for calculating
the Hessian of the log-target should be implemented, while
retaining automatic differentiation of the Hamiltonian with
respect to x. Interestingly, these calculations are similar to
the practice of differentiating Laplace approximations (for
integrating out latents) with respect to parameters (Skaug
and Fournier 2006; Kristensen et al. 2016). In particular,
at least two avenues must be explored: (1) apply first-order
backward AD to both the modified Cholesky code and the
second-order AD code for the Hessian of the log-target by
differentiating the internal Hessian AD computations and (2)
directly compute gradient, sparse Hessian and third-order
sparse derivative tensor of the log-target using AD, and com-
bine these and the differential of the modified Cholesky
factorization to find ∇xH similarly to Betancourt (2013a).
Finding the best method among these requires further work.
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