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Abstract Computer experiments using deterministic simu-
lators are sometimes used to replace or supplement physical
system experiments. This paper compares designs for an
initial computer simulator experiment based on empirical
prediction accuracy; it recommends designs for producing
accurate predictions. The basis for themajority of the designs
compared is the integrated mean squared prediction error
(IMSPE) that is computed assuming a Gaussian process
model with a Gaussian correlation function. Designs that
minimize the IMSPE with respect to a fixed set of correla-
tion parameters as well as designs that minimize a weighted
IMSPE over the correlation parameters are studied. These
IMSPE-based designs are compared with three widely-used
space-filling designs. The designs are used to predict test sur-
faces representing a range of stationary and non-stationary
functions. For the test conditions examined in this paper, the
designs constructed under IMSPE-based criteria are shown to
outperform space-filling Latin hypercube designs and max-
imum projection designs when predicting smooth functions
of stationary appearance, while space-filling and maximum
projection designs are superior for test functions that exhibit
strong non-stationarity.
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interpolator · IMSPE · Latin hypercube design · Maximum
projection design · Space-filling design

Electronic supplementary material The online version of this
article (doi:10.1007/s11222-017-9760-8) contains supplementary
material, which is available to authorized users.

B Erin R. Leatherman
erleatherman@mail.wvu.edu

1 West Virginia University, Morgantown, WV 26506, USA

2 The Ohio State University, Columbus, OH 43210, USA

1 Introduction

A deterministic computer simulator is the implementation, in
computer code, of amathematicalmodel that relates the input
and output variables of a physical system. As mathematical
descriptions of such systems have become more sophisti-
cated, the use of deterministic simulators as experimental
vehicles has become more widespread in many applications:
engineering design (Forrester et al. 2008; Nekkanty 2009;
Villarreal-Marroquín et al. 2013); biomechanics (Ong et al.
2008; Leatherman et al. 2014b); the physical sciences (Mont-
gomery and Truss 2001; Higdon et al. 2004); the life sciences
(Fogelson et al. 2003; Hajagos 2005; Upton et al. 2006).

A computer experiment is performed by varying the inputs
to a computer simulator and observing the effects on the
simulator output. When physical experiments cannot be con-
ducted because of ethical considerations or because they
require a prohibitive budget or excessive time, computer
experiments are sometimes conducted in their place. This
paper evaluates criteria for the initial design of computer
experiments with small to moderate numbers of inputs.

When the simulator is treated as a “black-box” function,
i.e., the relationship between the inputs and outputs is of
unknown form and may be complex, space-filling designs
are often used for the computer experiment. Space-filling
designs spread points over the input space of interest, see
Bates et al. (1995). Two widely-used classes of space-filling
designs are maximin Latin hypercube designs (LHDs) and
minimum average reciprocal distance LHDs (see, for exam-
ple, McKay et al. 1979; Morris and Mitchell 1995; Welch
1985; Johnson et al. 1990; Audze and Eglais 1977; Bates
et al. 2003; Liefvendahl and Stocki 2006).

More recently, there has been an increasing emphasis on
space-filling designs under criteria that also force projections
of the design to be space-filling (e.g., Welch 1985; Draguljić
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et al. 2012). Joseph et al. (2015) introduced maximum pro-
jection (MaxPro) designs which minimize a criterion that
integrates the reciprocal interpoint distance over projections
onto all possible dimensions and which are very economi-
cally computed.

The focus of this paper is on the choice of the initial design
of a computer experiment to enhance the prediction accuracy
of empirical best linear unbiased predictors when applied to
stationary and non-stationary test functions. Some authors
have evaluated designs with respect to criteria not related to
prediction, see, for example, Bursztyn and Steinberg (2006).
However, other studies have compared designs’ prediction
accuracies, either theoretically or empirically. Sacks et al.
(1989a) compared integrated mean squared prediction error
(IMSPE) optimal designs with n = 9 runs in d = 2
dimensions. These designs were constructed to minimize
the IMSPE for a stationary Gaussian process surface with
Gaussian correlation, defined in Eq. (2), using specified val-
ues of the correlation parameters (ρ1, ρ2), thus local IMSPE
optimal designs. The authors concluded that local IMSPE
optimal designs constructed assuming ρ1 = ρ2 = 0.78 were
robust for predicting a range of stationary Gaussian process
surfaces having alternative correlation values. In an empir-
ical comparison of four classes of designs (including local
IMSPE optimal and maximin LHDs), Johnson et al. (2011)
concluded that, for predicting four test functions, the four
design classes had similar empirical prediction errors. In a
comparison of five classes of designs (including local IMSPE
optimal and maximin LHDs), Silvestrini et al. (2013) con-
cluded that all the designs performed similarly with respect
to IMSPE when n ≥ 10d and that the designs’ prediction
accuracy did not improve dramatically when n increased to
15d. These authors also showed that empirical prediction
errors for maximin LHDs and local IMSPE optimal designs
were very similar in a case study example.

This paper presents a more comprehensive comparison of
the empirical prediction accuracy of local IMSPE optimal
designs, three classes of space-filling designs, and a class of
weighted IMSPE optimal designs. These comparisons show
differences in the prediction accuracy of these design classes
and provide exampleswhere IMSPE-based designs are likely
to be preferred to traditional space-filling designs. (Alterna-
tives to space-filling designs may be preferred under other
design criteria, too. See, for example, Pronzato and Müller
2012). Designs having dimensions d = 3, 5, 8, 10, and 20
are assessed in Sects. 6 and 7. Prediction accuracy compar-
isons are made over four test-beds of Kriging-based surfaces
that are constructed with fixed or stochastically selected cor-
relation parameters, and two hard-to-predict non-stationary
test-bed surfaces. Each test-bed contains 100 representative
surfaces.

In contrast to the literature cited above, Sects. 6 and 7 show
that in maximizing prediction accuracy, the local IMSPE

optimal and the weighted IMSPE optimal designs outper-
form the two types of space-filling LHDs and the MaxPro
designs over the wide range of smooth functions of station-
ary appearance examined in this paper. However, for the
strongly non-stationary test surfaces studied, the space-filling
LHDs and MaxPro designs outperform the IMSPE-based
designs.

The specific local IMSPE optimal designs investigated in
this paper minimize the IMSPE for a stationary Gaussian
process surface having a given Gaussian correlation param-
eter ρ = (ρ1 , . . . , ρd)

T , where ρi is the parameter for the
i th input, d is the number of simulator inputs, and T denotes
transpose.

Even if the surface to be predicted arises from a stationary
Gaussian process, the process’s exact value of ρ is unlikely
to be known in advance. Consequently, a second group of
designs to be compared are those that minimize a weighted
average of IMSPE values for a given distribution of ρ val-
ues; such designs are called Weighted IMSPE (W-IMSPE)
optimal designs. While these designs may be regarded as
Bayesian, our emphasis is to regard the weighting as sim-
ply an alternative methodology for design construction (in
the spirit of Efron (2014)). We show that the computational
time to construct W-IMSPE designs is substantial and that,
perhaps surprisingly, little benefit in prediction accuracy is
obtained over local IMSPE optimal designs.

This paper is organized as follows. Section 2 presents
the Gaussian process model for simulator output and the
corresponding best linear unbiased predictor of the out-
put at untested inputs. Section 3 states the local IMSPE
and W-IMSPE objective functions and gives an example
of each design. Section 4 describes the computational algo-
rithms used to construct local IMSPE optimal andW-IMSPE
optimal designs and provides details for the numerical
computation of theW-IMSPEdesign objective function. Sec-
tion 5 describes the designs and stationary surfaces used for
the simulation study of Sect. 6. This simulation study com-
pares the prediction accuracy of several local IMSPE optimal
and W-IMSPE optimal designs with that of three types of
space-filling designs for stationary surfaces. An additional
comparison of the prediction accuracy of these designs, but
for non-stationary surfaces, is shown in Sect. 7. Design
recommendations are made from both simulation studies.
Section 8 gives a summary of the paper and discusses limi-
tations and extensions of the results.

2 The Gaussian process model

Let y(x) denote the real-valued output of a computer sim-
ulator when run at a d × 1 input vector x. The input space
is assumed to be a d-dimensional rectangle that is scaled to
[0, 1]d . Assume that y(x) can be modeled as a realization of
the Gaussian process
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Y (x) =
p∑

i=1

fi (x)βi + Z(x) = f T (x)β + Z(x), (1)

where f T (·) = [
f1(·), f2(·), . . . , f p(·)

]
are known regres-

sion functions, β = [
β1, β2, . . . , βp

]T is a vector of
unknown regression coefficients, and the regression devia-
tions are described by a stationary Gaussian process, Z(x),
x ∈ [0, 1]d . The Z(x) process is assumed to have zero mean,
variance σ 2

Z , and separable Gaussian correlation function

R(xu − xv | ρ) =
d∏

j=1

ρ
4(xu j−xv j)

2

j , (2)

for xu, xv ∈ [0, 1]d which have j th elements, 1 ≤ j ≤ d,
xu j and xv j , respectively, ρ = (ρ1, ρ2, . . . , ρd)

T , and ρ j ∈
(0, 1) (see, for example, Sacks et al. 1989a, b; Currin et al.
1991; Higdon et al. 2004). The parameter ρ j is the corre-
lation between the outputs at inputs xu and xv for which
|xu j − xv j | = 0.5, and xu� = xv� for � �= j . The equiva-
lent parameterization θ j = −4 ln(ρ j ) of ρ j is often used so
that θ j > 0 and ρ4

j = e−θ j , 1 ≤ j ≤ d. The parameteriza-
tion used here is one of several that have been proposed in
the literature for providing an increase in numerical stabil-
ity for extreme values of the correlation parameters (see, for
example, Higdon et al. 2004; MacDonald et al. 2015). The
methodology in this paper can be implemented similarly for
other separable but non-Gaussian correlation functions.

Suppose yn = [y(x1), y(x2), . . . , y(xn)]T is the n × 1
vector of simulator (training) outputs computed at the n
inputs which are the rows of the n × d design matrix
X = [x1, x2, . . . , xn]T . When ρ is known, Sacks et al.
(1989a) show that the best linear unbiased predictor of y(x0),
x0 ∈ [0, 1]d , is

ŷ(x0) = f T0 β̂ + rT0 R
−1( yn − Fβ̂), (3)

where f 0 = f (x0) = [ f1(x0), . . . , f p(x0)]T is the p × 1
vector of known regressors at x0; F is the n × p matrix
of known regressors having (i, j)th element f j (xi ) for 1 ≤
i ≤ n, 1 ≤ j ≤ p. Also, β̂ = (FT R−1F)−1FT R−1 yn is the
generalized least squares estimator ofβ; r0 is the n×1 vector
(R(x0 − x1 | ρ), . . . , R(x0 − xn | ρ))T and R is the n×n
matrix

(
R

(
xi − x j | ρ

))
whose elements are defined by the

correlation function (2).
Because ρ is assumed known, ŷ(x0) is an idealized pre-

dictor which has many positive features. First, the overall
mean structure is specified by a regression while local devia-
tions from the trend are described by a flexible stationary
Gaussian process. Second, because ŷ(x0) is the mean of
the conditional distribution of (Y (x0) | Yn = yn) where
Yn = [Y (x1),Y (x2), . . . , Y (xn)]T , it is straightforward

to calculate the uncertainty, and hence the mean squared
prediction error (MSPE), of ŷ(x0) using the variance of
(Y (x0) | Yn = yn). Finally, ŷ(x0) interpolates the train-
ing data. Assuming ρ is known, the MSPE of ŷ(x0) will be
used to construct local IMSPE optimal and W-IMSPE opti-
mal designs (see Sect. 3 for the design criteria and Sect. 4
for the construction methods). An empirical version of (3)
that uses an estimate of ρ will be utilized in Sects. 6 and 7 to
study the prediction accuracy of various designs.

3 IMSPE-based and space-filling designs

Local IMSPE andW-IMSPE optimal designs are constructed
in this paper to predict well for a givenρ or in repeated use for
a distribution of ρ values. The predictor ŷ(x0) in (3) depends
on the design X and on the model parameters through r0 and
R (defined in Sect. 2). For fixed X , ρ, and σ 2

Z , one measure
of prediction accuracy of ŷ(x0) at x0 is the MSPE

MSPE
(
x0, X | σ 2

Z , ρ
)

= EY

{
(Y (x0) − ŷ(x0))2

}
(4)

= σ 2
Z

(
1 − [

f T0 rT0
] [

0 FT

F R

]−1 [
f 0
r0

])
, (5)

where 0 is a p× p matrix of zeros and the expectation in (4)
is taken over the joint distribution of (Y (x0), Yn).

For known ρ and σ 2
Z , a local IMSPE optimal design is an

n × d design matrix X that minimizes

IMSPE
(
X | σ 2

Z , ρ
)

=
∫

[0,1]d
MSPE

(
x0, X | σ 2

Z , ρ
)
dx0

= σ 2
Z

(
1 − tr

([
0 FT

F R

]−1 ∫ (
f 0 f

T
0 f 0r

T
0

r0 f T0 r0rT0

)
dx0

))
, (6)

which is the MSPE in (5) averaged over the input space
[0, 1]d . Here tr(A) is the trace of matrix A and the inte-
gration in (6) is performed element-wise over [0, 1]d (see
Sacks et al. 1989a, b).

An important special case of (6) (cf. Sacks et al. 1989b)
that is used here to construct both local and weighted IMSPE
optimal designs is when the Gaussian process has constant
mean, say β0. In this case f 0 = 1, F = 1n , and Eq. (6)
reduces to

IMSPE
(
X | σ 2

Z , ρ
)

= σ 2
Z

(
1 − tr

([
0 1Tn
1n R

]−1 ∫ (
1 rT0
r0 r0rT0

)
dx0

))
.
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For the Gaussian correlation function (2), the integral of the
i th element, R(x0 − xi |ρ), of r0 is

[∫

[0,1]d
r0dx0

]

i

=
∫

[0,1]d

d∏

k=1

ρ
4(x0k−xik )2

k dx0k

=
d∏

k=1

(√
π

γk

(
Φ

(√
2γk (1 − xik)

)

− Φ
(
−√

2γk xik
)))

,

for 1 ≤ i ≤ n where γk = −4 ln(ρk) and Φ(·) denotes
the cumulative distribution function of the standard normal
distribution. The integral of the (i, j)th element of r0rT0 is

[∫

[0,1]d
r0rT0 dx0

]

i j

=
∫

[0,1]d

d∏

k=1

ρ
4(x0k−xik )2

k ρ
4(x0k−x jk)

2

k dx0k

=
d∏

k=1

(
exp

{
−1

2
γk

(
xik − x jk

)2
}√

π

2γk

×
(

Φ

(√
4γk

(
1 − xik + x jk

2

))

− Φ

(
−√

4γk
xik + x jk

2

)))
,

for 1 ≤ i, j ≤ n. Because IMSPE
(
X | σ 2

Z , ρ
) = σ 2

Z ×
IMSPE

(
X | σ 2

Z = 1, ρ
)
, a design that minimizes

IMSPE
 (X | ρ) ≡ IMSPE (X | 1, ρ) (7)

equivalently minimizes IMSPE
(· | σ 2

Z , ρ
)

for all σ 2
Z > 0.

Thus a local IMSPE optimal design depends only on the
model correlation parameters ρ and not the process variance
σ 2
Z .
If ρ is not known, but either information about the ranges

of its components or detailed subject matter knowledge of
the possible values of the components is available, then the
minimization of an average of IMSPE
 with weights π (ρ) is
an appropriate design criterion. From aBayesian perspective,
the weight π (ρ) is a prior distribution on ρ. An n×d design
matrix X that minimizes

W (X | π) =
∫

[0,1]d
IMSPE
 (X | ρ) π (ρ) dρ (8)

is called a weighted IMSPE (or W-IMSPE) optimal design.
As an example when d = 3 and n = 30, Fig. 1a shows the

3-d scatterplot of a local IMSPE optimal design over [0, 1]3,
denoted Xa , for ρ = (0.75, 0.75,0.75)T . Figure 1b shows

the scatterplot of the W-IMSPE optimal design, denoted Xb,
corresponding to the weight function

π(ρ1, ρ2, ρ3) ∝
3∏

k=1

ρ4
k (1 − ρk)

12. (9)

From a Bayesian perspective, (9) states that ρ1, ρ2, ρ3 are
independent and identically distributed (i.i.d.) as beta (5,13)
random variables. The beta (5,13) distribution has mode 0.25
and standard deviation 0.10. Thus π(ρ) accounts for (small)
differences from equality of ρ1, ρ2, and ρ3 and may predict
better for slightly less uniform training/test surfaces.

The minimum interpoint (average reciprocal) distance is
0.2803 (1.4613) for Xa and 0.2975 (1.6631) for Xb. Thus,
while the local IMSPE optimal design has two points in the
design that are slightly closer than any two points in the
W-IMSPE optimal design, it is more space-filling “on aver-
age” than the W-IMSPE optimal design under the average
reciprocal distancemeasure. It also includes points nearer the
edge of the design space than the W-IMSPE optimal design.
This illustrates the difficulty of selecting designs by space-
fillingness, since itwill be shown that the design in Fig. 1a has
prediction accuracy inferior to that of the design in Fig. 1b.

For comparison, Fig. 1c shows the 3-d scatterplot of the
maximin LHD, denoted Xc, for (n, d) = (30, 3) obtained
from van Dam et al. (2013). Its minimum interpoint dis-
tance is 0.3600 (by construction, larger than those of either
IMSPE-based design), and its average reciprocal distance
(1.5969) falls between the corresponding distance for the
other two designs.

The next section will discuss computational methods for
constructing IMSPE-based designs. Sections 6 and 7 will
present the results of an empirical comparison of predic-
tion accuracy using the IMSPE-based, maximum projection,
and space-filling designs that are listed in Sect. 5. It will
be shown that the (less space-filling) local IMSPE optimal
and W-IMSPE optimal designs result in smaller empirical
prediction errors than the space-filling LHDs for the sta-
tionary test-beds studied, while the opposite is true for the
non-stationary test-beds studied.

4 Computational methods for constructing
IMSPE-based designs

This section describes the optimization methods used to find
the local IMSPE optimal andW-IMSPE optimal designs dis-
cussed in Sect. 3, as well as the methods used to numerically
evaluate W (X | π) in (8).

DefineDn,d to be the class of all designs X with n runs and
d inputs in the transformed space [0, 1]d with each pair of
design points having Euclidean distance at least 0.001 apart.
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Fig. 1 For (n, d) = (30, 3), 3-d scatterplots of a Xa : a local IMSPE optimal design in [0, 1]3 for ρ = (0.75, 0.75, 0.75)T ; b Xb: a W-IMSPE
optimal design in [0, 1]3 for the weight function in (9); and c Xc: a maximin LHD in [0, 1]3

To find the design X inDn,d that minimizes IMSPE
(X | ρ)

in (7) for a given ρ or the design in Dn,d that minimizes
W (X | π) in (8) for a specific π(ρ), this paper used a modi-
fied particle swarm optimization (PSO) algorithm to identify
a design to serve as the starting point for a gradient-based
quasi-Newton search for the best design.

Briefly, PSO begins with a set of Ndes starting designs
spread over the design spaceDn,d . At the start of a given iter-
ation, each design X is moved separately to a new design that
is “between” the global best design among all designs gener-
ated thus far and the best design restricted to those along its
own path. For a detailed description of this heuristic approach
and an illustrative example, see Leatherman et al. (2014a).
For this paper, the PSO parameter settings followed the rec-
ommendations of Kennedy and Eberhart (1995) and Yang
(2010), and the PSO algorithm was run with Ndes = 4nd
starting designs and Nits = 2Ndes iterations. Since, in this
paper, PSO is followed by a quasi-Newton optimizer, these
values of Ndes and Nits are much smaller than the number
of designs and iterations that would have been required for a
search using solely PSO.

The local IMSPE optimal designs described in Sect. 5 and
compared in Sects. 6 and 7 were constructed using PSO fol-
lowed by a quasi-Newton search. In this construction, the
formulas in Sect. 3 allowed for closed-form evaluation of
IMSPE
(X | ρ). However, there is no closed form avail-
able for W (X | π). Thus, this paper used quasi Monte Carlo
numerical integration based on a low discrepancy sequence
to approximateW (X | π). Many low discrepancy sequences
have been used in statistics and other disciplines; two recent
surveys of these methods are given by Kincaid and Cheney
(2002) and Givens and Hoeting (2012). This paper used
the widely-available Sobol´ sequence to integrate (8) (cf.
Morokoff and Caflisch 1995; Niederreiter 1992).

TheW-IMSPE objective functionW (X | π)was approx-
imated by

Wa (X | π) = 1

2k

2k∑

j=1

IMSPE

(
X | ρ j

)
π

(
ρ j

)
, (10)

where ρ j is the j th point of the 2k-point Sobol´ sequence in
d dimensions. The d correlation parameters were taken to be
mutually independent, thus π(ρ) is of the form

∏d
i=1 πi (ρi )

where πi (·) is the probability density of ρi .
Two modifications were used to increase the accuracy of

theWa (X | π) approximation ofW (X | π): a rescaling and
shifting of the {ρ j }2kj=1 points, and a selection of the minimal
k that allows accurate approximation. The first modification
is based on the observation that, for fixed k and the selected
π(·), many terms in (10) can have extremely small π(ρ j )

yielding terms with a wide range of magnitudes. One can
improve the approximation by using only those ρ j having
significant π

(
ρ j

)
contributions to the sum in (10). For this

paper, this is accomplished by transforming the range of
integration of each ρ j from [0, 1]d to

∏d
i=1[ai , bi ], where

0 < ai < bi < 1 are selected so that all component pdfs
πi (ρi ), 1 ≤ i ≤ d, of π(ρ) satisfy πi (ρi ) ≥ 10−10 for
ρi ∈ [ai , bi ].

The second modification is to select the minimal k so that
Wa (X | π) computed with 2k terms provides an accurate
estimate ofW (X | π). The length 2k of the Sobol´ sequence
needed for this purpose depends upon d, the dimension of the
W (X | π) integral. As d increases, longer Sobol´ sequences
are required. For example, the ideal value of kwasdetermined
to be 16 for d = 3 by calculating (10) for several designs
using an increasing sequence of k values, and selecting the
smallest k for which the sum (10) becomes stable.
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Two additional modifications were made in the imple-
mentation of the algorithm. First, since the use of the
ideal k became computationally prohibitive on the compute
machines available for this paper as d increased, an adaptive
number of draws was used in the optimization. The idea is
that initially a smaller k can be used because Wa (X | π)

differences are likely to be larger, while bigger k values
must be used when making the final Wa (X | π) compar-
isons because these values are likely to be more nearly equal.
Specifically, for each initial design with d = 3 inputs studied
in Sect. 5, approximately the first 90% of the Nits iterations
were performed with a ‘cheaply’ estimated W (X | π) by
calculating (10) with 211 Sobol´ draws. The value of k = 11
was chosen because the study of k described in the previous
paragraph showed that k = 11 allowed the Wa (X | π) val-
ues to be reasonably close to their converged value for d = 3.
The remaining 10% of the iterations used the more accurate
k = 16.

A second modification to the algorithm enhanced the
ability of the PSO algorithm to escape from local minima.
After computing 90% of the Nits PSO iterations, a randomly
selected set of 5% of the Ndes designs was replaced by a
space-filling set of alternative designs. Then the remaining
10% of the PSO iterations were conducted starting with this
modified set of designs and using the more accurate k. The
best design constructed by PSO in this way was taken as
the starting design for a single run of a quasi-Newton algo-
rithm (as implemented in the MATLAB code fmincon.m)
to produce the final W-IMSPE optimal design. The quasi-
Newton algorithm used the larger, d-dependent, value of k
to calculate (10).

MATLABcode for constructing the local and theweighted
IMSPE optimal designs, as well as data files of the specific
designs used in this paper are posted on the first author’s
website http://stat.wvu.edu/~erl/CompExpDesgs_Pred/.

5 Designs compared and test-bed surfaces

This section describes the set of designs to be compared in
Sects. 6, 7, and the Supplementary Material, and the collec-
tion of test functions used to compare them. The sample sizes
n and numbers of inputs d considered in providing design
recommendations were

(n, d) ∈ {(15, 3), (30, 3), (25, 5), (50, 5), (40, 8), (80, 8),
(100, 10), (100, 20)} .

5.1 The designs compared

All local IMSPE optimal and W-IMSPE optimal designs in
this paperwere constructed using the optimizationmethodol-

Table 1 Notation for the local IMSPE optimal and W-IMSPE optimal
designs studied in this paper; the local IMSPE designs use ρ = ρ × 1d ,
and the W-IMSPE designs use common π(·)
Design ρ Design π(·) in ∏d

i=1 π(ρi )

I.25 0.25 W.25W π(ρ) ∝ ρ4 (1 − ρ)12

I.5 0.50 W.25N π(ρ) ∝ ρ14 (1 − ρ)42

I.75 0.75 W.5N π(ρ) ∝ ρ36.96 (1 − ρ)36.96

ogy described in Sect. 4 using a constantmean f T (x)β = β0

for the Gaussian process in (1). The local IMSPE optimal
designs minimized IMSPE
(X | ρ) over X ∈ Dn,d for the
three common-correlation ρ listed in Table 1. TheW-IMSPE
optimal designs were constructed to minimize Wa(X | π)

over X ∈ Dn,d for weight functions π(ρ) of the form∏d
i=1 π(ρi ) where π(ρ) was a common, marginal beta den-

sity for (the independent) ρi , 1 ≤ i ≤ d. W-IMSPE optimal
designs were constructed only for π(ρ) having mode at most
0.5 because a pilot study showed that using π(ρ) with larger
modes resulted in greater prediction errors than the π(ρ)

selected for this study. The three selected weight functions
are denoted W.25W , W.25N , and W.5N (Table 1), where the
numerical subscripts represent the mode of the distribution
and the letterW orN in the subscript denotes whether the dis-
tribution had a “wide” or “narrow” spread, i.e., had standard
deviation 0.10 or 0.057, respectively.

For (n, d) = (15, 3) and (30, 3), local IMSPE optimal
and W-IMSPE optimal designs were constructed for all six
correlation and weight functions listed in Table 1. For d ≥ 5,
only the three local IMSPE optimal designs were constructed
because of their computational feasibility for the larger (n, d)

cases and their good prediction performance for d = 3 (see
Sect. 6).

Sections 6 and 7 compare the local IMSPE optimal andW-
IMSPE optimal designs from Table 1 with maximin LHDs,
minimum average reciprocal distance LHDs, and MaxPro
designs. The LHDs used in this paper were obtained from the
website of van Dam et al. (2013). The MaxPro designs were
constructed using the R package (2016) MaxPro (Ba and
Joseph 2015) based on the software’s default initialization
and update values.

5.2 Test-beds of stationary functions

In all, six test-beds of functions y(·) were constructed to
compare the prediction accuracy of the designs listed in
Sect. 5.1. The construction of four stationary test-bed fam-
ilies is described in this subsection and the construction of
two non-stationary test-bed families is presented in Sect. 7.

Themethod of Trosset (1999)was used to provide families
of stationary Kriging interpolator test surfaces; each such
surface has the form
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ytest(w) = β̂0 + r(w)T R−1
(
Y500 − 1500 β̂0

)
, (11)

for w ∈ [0, 1]d , where Y500 is a 500 × 1 vector drawn
from a Gaussian process Y (x) at x ∈ L, where L is an
(approximate) maximin LHD in [0, 1]d of size 500× d. The
process Y (x) was taken to have mean β0 = 100, variance
σ 2
Z = 10, and the Gaussian correlation function in (2), with

ρ = (ρ1, ρ2, . . . , ρd)
T specified in the next paragraph. From

the description below (3), R is the 500 × 500 matrix of cor-
relations with the given ρ, and r(w) is the 500× 1 vector of
correlations with same ρ. For numerical stability, a nugget of
size 10−6 was added to the diagonal of R when computing
(11).

The following four correlation families were used to gen-
erate the test-bed of response surfaces using (11):

1. Deterministically Common Correlation: Two test-bed
families have ρ1 = ρ2 = . . . = ρd = ρ and are denoted
DC.25 and DC.5, corresponding to ρ = .25 and .50,
respectively.

2. Stochastically Common Correlation: Two test-bed fam-
ilies have ρ1, ρ2, . . . , ρd independently drawn from
a common beta distribution and are denoted SC.25

and SC.5, corresponding to beta(5, 13) and beta(11.34,
11.34), respectively, where the subscript denotes the
mode of the distribution.

The common ρi correlation for each input that is used by
DC.25 and DC.5 when forming Y500, allows each input to
have the same opportunity to influence ytest(w). However,
because ρ1, . . . , ρd need not be equal for SC.25 and SC.5, the
inputs have (stochastically) different influences on ytest(w)

for these two test-beds. Representative draws ytest(w) from
the DC.25 and DC.5 families are shown in Fig. 2.

The four test-bed families described in the previous para-
graph were selected to show clear distinction between the
designs being assessed. Other families such as DC.75, origi-
nally considered but not included here, produced surfaces for
which outputs were nearly constant across the input space,

Fig. 2 Examples of draws ytest(w) from the stationary test-bed (11)
with d = 2 using a ρ = (.25, .25)T , b ρ = (.50, .50)T

so that all designs had similar performance. The four test-
beds used in the current study produced substantial variation
among the draws from ytest(w) in (11).

One hundred surfaces were drawn from each test-bed
family. This number was determined using an approximate
sample size calculation for d = 3 and d = 5 to allow a dif-
ference in the empirical root mean squared prediction error
(to be defined in (13) below) of 0.15 to be detected with
probability .96 if a paired t-test were to be conducted at level
.05 (Bechhofer et al. 1995). (This was based on the fact that
a pilot study showed a typical range of the empirical root
mean squared prediction error was 0.8–1.5.) Thus, in total,
there were 4×100 = 400 surfaces drawn for each input size
d = 3, 5, 8, 10, and 20. The same set of 400 surfaces was
used to evaluate the 15× 3 and 30× 3 designs, and likewise
for the 25 × 5 and 50 × 5 designs, and also the 40 × 8 and
80 × 8 designs.

6 Comparison of designs for predicting stationary
surfaces

Because the designs in this paper are constructed specifically
for prediction, the local IMSPE optimal and the W-IMSPE
optimal designs in Table 1 are compared with each other
and then with the space-filling LHDs and MaxPro designs
in terms of their relative prediction accuracy. Prediction is
performed using

ŷ E (x0) = β̂0 + r̂(w)T R̂
−1 (

yn − 1nβ̂0
)
, (12)

which is an empirical best linear unbiased predictor that
is based on a constant-mean Gaussian process with an
unknown process variance σ 2

Z and the Gaussian correlation
function (2) having unknown correlation parameter values
ρ = (ρ1, . . . , ρd)

T . Here yn , r̂(w) = (
R

(
w − x j | ρ̂

))
and

R̂ = (
R

(
xi − x j | ρ̂

))
are defined as in (3) but with ρ̂ esti-

mated using restricted maximum likelihood (REML), while

β̂0 =
(
1Tn R̂

−1
yn

)
/

(
1Tn R̂

−11n
)
. In this paper, all REML

estimates of ρ and ŷ E (x0)were calculated using the software
MATLAB Parametric Empirical Kriging (MPErK) (2013).

Given a design X and a test-bed output function ytest(w),
w ∈ [0, 1]d , training data yn were computed at the design
points x1, . . . , xn in design X , REML estimates of ρ were
calculated, and ŷ E (x) in (12) was evaluated at a space-filling
set of g test points in [0, 1]d . The prediction accuracy of
design X for the test function ytest(w) was quantified by the
empirical root mean squared prediction error defined as

PE(X, ytest(x)) =
√√√√1

g

g∑

i=1

(
ŷ E (xi ) − ytest(xi )

)2
. (13)
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The g test points were formed as follows. For d = 3,
the test points formed an equally-spaced grid having 50
values/input (0, 1/49, 2/49, . . . , 1) yielding a total of g =
503 = 125,000 points. For d = 5, the test points were again
an equally-spaced grid but now containing 10 points/input
(0, 1/9, 2/9, . . . , 1); thus g = 105 = 100,000 total points.
The use of grids became infeasible for d ∈ {8, 10, 20}.
Instead, to ensure adequate coverage of [0, 1]d for these
cases, a d-dimensional Sobol´ sequence of size g = 217 =
131,072 points was used as the test set of inputs. The number
of Sobol´ points was selected based on a pilot study which
showed that, for these three d cases, g = 217 gave accurate
values of PE(X, ytest(x)) (13) for several closed-form func-
tions ytest with known root mean squared prediction errors.

In what follows, we use the notation in Sect. 5.2 for the
test functions, the names in Table 1 for the IMSPE-based
designs (that is, I.25, I.5, I.75 and W.25W , W.25N , W.5N ), and
the notation MmL ,mAL , Max Pro for the maximin LHDs,
the minimum average reciprocal distance LHDs, and the
maximum projection designs, respectively.

For each test-bed T ∈ {DC.25, DC.5, SC.25, SC.5}, 100
random test functions ST,i , i = 1, 2, . . . , 100, were drawn.
Then for each design X in

{I.25, I.5, I.75, MmL ,mAL , Max Pro,

W.25W ,W.25N ,W.5N }, (14)

training data were formed by evaluating each ST,i at X . To
simplify notation, PE(X, ytest(x)) in (13) calculated for ST,i

and using design X is denoted PE(X, T, i).
For d = 3 the designs were compared as follows. For

each fixed n ∈ {15, 30}, test-bed T , and design X in (14),
PE(X, T, i) was determined separately for each of the 100
test functions ST,i , i = 1, 2, . . . , 100, drawn from T . For
each test function ST,i , i = 1, 2, . . . , 100, let X∗

T,i denote
the design having the smallest value of PE(X, T, i) among
the nine designs. Because the test functions ytest(x) can vary
substantially in their complexity, even when drawn from the
same test-bed, the empirical root mean squared prediction
error was normalized by calculating PE(X, T, i) relative
to the best prediction over all the designs evaluated; i.e.,
by

rPE(X, T, i) = PE(X, T, i)/PE(X∗
T,i , T, i) . (15)

Note that while designs can be compared for each fixed
d, n, and T via rPE(X, T, 1), …, rPE(X, T, 100), one can-
not compare designs for different d, n, or T . For example
the empirical root mean squared prediction error is (almost
always) smaller for larger n so that a design which appears
“better” for a larger n compared with a design that uses a

smaller n may only reflect sample size differences. How-
ever, an interesting comparison of the effect of sample size
will be described in the Discussion of Sect. 8.

Returning to the d = 3 comparisons, for each n ∈
{15, 30}, and for each test-bed family T , the values of
rPE(X, T, 1), …, rPE(X, T, 100) were ordered from largest
to smallest, and plotted (see Fig. 3 for the rPE(X, T, i) com-
parisons when n = 30 and the Supplementary Material for
the n = 15 comparisons). All rPE plots group values greater
than 1.4; i.e., rPE values greater than or equal to 1.4 are
shaded with the same intensity. Designs that have the best or
close-to-the-best prediction accuracy of 1.0 have bars with
the large light area. So, for example, for the DC.25 test func-
tions in Fig. 3 (the top left panel), approximately 40% of the
leftmost bar is almost white, indicating that the design I.25
led to the best, or close to the best, predictions across 40 of
the 100 DC.25 test surfaces. Only about 20% of the time did
this design exceed 30% larger prediction errors than the best
design, i.e., only about 20%of the draws from DC.25 resulted
in rPE(X, T, i) values ≥ 1.3.

From the darkness of the bars in Fig. 3 below and Fig.1 of
the Supplement, it is clear that, for d = 3 and both n = 15
and 30, the MmL ,mAL , and Max Pro space-filling designs
have an inferior prediction performance for these stationary
test functions than most of the IMSPE-based designs. Sec-
ond, in searching for designs that perform well for all four
stationary test-beds and for both sample sizes n, no design

Fig. 3 For (n, d) = (30, 3), the ordered rPE(X, T, i) values (15)
for 100 ST,i test functions from T∈{DC.25, DC.5, SC.25, SC.5} when
using training data based on X∈{I.25, I.5, I.75,MmL ,mAL , Max Pro,
W.25W ,W.25N ,W.5N }
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Fig. 4 For (n, d) = (80, 8), the ordered rPE(X, T, i) values (15) for
100 ST,i test functions from T∈{DC.25, DC.5, SC.25, SC.5}whenusing
training data based on X∈{I.25, I.5, I.75, MmL ,mAL , Max Pro}

criterion uniformly dominates all others over all scenarios,
but I.25, I.5,W.25W ,W.5N all have good prediction perfor-
mance, at least for some scenarios. Because designs W.25W

andW.5N do not perform consistently better than I.25 and I.5
but require considerably more time to construct (see Table 1
of the Supplementary Material), the weighted designs will
be omitted from consideration for the larger d cases.

As for d = 3, the d = 5, 8, and 10 input cases use
n = 5 × d and 10 × d training runs, but the d = 20 case
uses only n = 5 × d training runs due to the large number
of inputs. Figures 4, 5, and 6 plot rPE(X, T, i) values (15)
for (n, d) = (80, 8), (100, 10), and (100, 20), respectively.
The additional (n, d) cases are plotted in the Supplementary
Material.

Comparing the sizes of the dark areas of the plots shows
that the DC.5 and SC.5 test-beds are predicted less con-
sistently across designs than test-beds DC.25 and SC.25.
Examining the n = 10 × d cases, the I.25 local IMSPE-
optimal designs have smaller rPE(X, T, i) values than the
other five designs.

In the difficult-to-predict (n, d) = (100, 20) case, Fig. 6
shows that I.25 is again the dominant local IMSPE optimal
design, and I.75 is clearly inferior. The space-filling MmL
and Max Pro designs are at least as effective as I.25 for all
test-beds and dominate I.25 for DC.5 and SC.5.

Fig. 5 For (n, d) = (100, 10), the ordered rPE(X, T, i) values (15)
for 100 ST,i test functions from T∈{DC.25, DC.5, SC.25, SC.5} when
using training data based on X∈{I.25, I.5, I.75,MmL ,mAL , Max Pro}

Fig. 6 For (n, d)=(100, 20), the ordered rPE(X, T, i) values (15) for
100 ST,i test functions from T ∈ {DC.25, DC.5, SC.25, SC.5} when
using training data based on X∈{I.25, I.5, I.75,MmL ,mAL , Max Pro}
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In summary, we recommend using the I.25 design when
predicting smooth functions that are consistent with being a
draw from a stationary process. The situation of effect spar-
sity has not been considered in this paper, and is left for future
work.

7 Comparison of designs for predicting
non-stationary surfaces

This section extends the comparison of the designs’ predic-
tion accuracy to non-stationary functions. Two test-beds of
strongly non-stationary functions are considered. For d = 3
the nine design classes in (14) that are compared in Sect. 6
are also evaluated for these two test-beds; again because of
computational expense, only the first six designs are com-
pared for d ≥ 5. As will be seen, the prediction results are in
striking contrast to those of Sect. 6.

Both test-beds studied in this section start with the base
function

ytest(w) = 10d/2
d∏

i=1

[
sin

(
ai (wi − bi )

4
)
cos (2 (wi − bi ))

+ wi − bi
2

]
,

for w ∈ [0, 1]d , which was proposed initially by Xiong et al.
(2007) and was also used by Ba and Joseph (2012). The test
function ytest(w) has non-stationary activity occurring near
the edges of [0, 1]d . Thefirst non-stationary test-bed, denoted
NSedge, takes a1, a2, . . . , ad to be i.i.d. Uniform(20, 35)
draws andb1, b2, . . . , bd to be i.i.d.Uniform(0.5, 0.9)draws.
The second test-bed, denoted NSmid, uses the function
ytest(|v − .5|), v ∈ [0, 1]d , and the same distributions for
the {ai } and {bi } as does NSedge. The non-stationary activity
in this second formulation occurs near the middle of [0, 1]d .
Panels (a) and (b) of Fig. 7 show, for d = 2, one function
drawn from each of NSedge and NSmid, respectively. One

Fig. 7 Non-stationary ytest(w) draws from aNSedge and from bNSmid

hundred test surfaces were drawn from each of the NSedge
and NSmid families for each d studied.

Sorted rPE(X, T, i) values are shown in Figures 8, 9, 10,
and 11 for the (n, d) = (30, 3), (25, 5), (50, 5), and (80, 8),
respectively; corresponding figures for the remaining design
sizes studied are in the SupplementaryMaterial.When d = 3
and n = 10/input, the space-filling designs mAL and MmL
are among the best of the nine designs considered, together

Fig. 8 For (n, d) = (30, 3), the ordered rPE(X, T, i) val-
ues for 100 ST,i test functions from T∈{NSedge, NSmid}
when using training data based on X∈{I.25, I.5, I.75,
MmL ,mAL , Max Pro,W.25N ,W.25W ,W.5N }

Fig. 9 For (n, d) = (25, 5), the ordered rPE(X, T, i) values for 100
ST,i test functions from T ∈ {NSedge,NSmid} when using training data
based on X ∈ {I.25, I.5, I.75, MmL ,mAL , Max Pro}

Fig. 10 For (n, d) = (50, 5), the ordered rPE(X, T, i) values for 100
ST,i test functions from T ∈ {NSedge,NSmid} when using training data
based on X ∈ {I.25, I.5, I.75, MmL ,mAL , Max Pro}
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Fig. 11 For (n, d) = (80, 8), the ordered rPE(X, T, i) values for 100
ST,i test functions from T ∈ {NSedge,NSmid} when using training data
based on X ∈ {I.25, I.5, MmL ,mAL , Max Pro}

with the locally optimal I.25 design and the weighted W.25W

design. The larger gray areas in the NSmid plots indicate that
the draws from NSmid are less consistently predicted by the
nine designs in (14) than are draws from NSedge.

For d ≥ 5, and the NSmid draws, the space-filling design
mAL outperforms the MmL and Max Pro designs which,
in turn, outperform all three local IMSPE optimal designs.
This conclusion is refined by fixing d = 5 and comparing
the results for the smaller data case of n = 5/input in Fig. 9
with the larger data case of n = 10/input in Fig. 10. The
designs mAL , MmL , and Max Pro have nearly equivalent
performance for the smaller data case but mAL is substan-
tially better than the other two types of design once there
are “adequate” runs, here 10/input, to detect mid domain
non-stationarities.

For the large d cases and draws from NSedge, I.25 is a
tiny bit better than I.5 or I.75 while mAL is a better design
than MmL and Max Pro, and becomes comparable to I.25
especially for large d, i.e., say d ≥ 10. The figures in the Sup-
plementary Material confirm this trend. Finally, the d ≥ 5
plots make clear that space-filling designs produce predic-
tion errors which are, on average, 40% smaller than locally
optimal designs for draws from NSmid, i.e., the locally opti-
mal designs have rPE(X, T, i) values ≥ 1.4 for over half the
draws fromNSmid. However, themore easily predicted draws
fromNSedge have predictions using local designs that are vir-
tually comparable to those from the space-filling designs.

8 Summary and discussion

This paper compares the prediction accuracy of two groups
of designs in terms of their empirical root mean squared pre-
diction errors when predicting stationary or non-stationary
simulator output. One group of designs uses IMSPE-based
design criteria and the other group uses space-filling crite-
ria. Three of the IMSPE-based design criteria use (7) with
a fixed and common correlation, and three use (8). Each of

the designs was used to collect training data from test-bed
functions, both stationary and non-stationary, and predictions
were made using the empirical best linear unbiased predictor
at a comprehensive set of additional inputs for these func-
tions. The empirical prediction errors for each function were
compared to determine designs that produced the best pre-
dictions.

Based on the test functions examined in this paper, the
I.25 design is recommended when predicting smooth “sta-
tionary” surfaces. Although, for the small d = 3 case, I.5,
W.25W , and W.5N also perform well. However, not show-
ing any predictive improvement over local IMSPE optimal
designs and requiring substantially greater computational
effort, the W-IMSPE optimal designs are eliminated from
further consideration. Similarly, I.5 can slightly underper-
form I.25 for larger d cases. The stationary test-bed functions
were selected to show clear distinction between the designs
being assessed. Other families, such as DC.75, produced sur-
faces for which outputs were nearly constant across the input
space, so that all designs had similar performance.

For functions having pronounced non-stationary activity
near the “middle” of the input domain, the space-fillingLHDs
andmaximumprojection designswere the best three designs.
The minimum average reciprocal distance LHD, mAL , was
particularly dominant for the “large” d cases. For functions
having non-stationary activity nearer the “edge” of the input
domain, both the mAL and I.25 designs are recommended.

The authors recognize that many additional criteria could
have been applied to form space-filling designs. It has not
been the objective of this paper to provide a comprehensive
review of the predictive performance of every class of space-
filling designs that has been proposed in the literature. Rather,
we have selected designs constructed using three widely-
used space-filling criteria and compared these designs with
two classes of IMSPE-based designs using one important
statistical basis, empirical prediction accuracy. The results
suggest that other space-filling designs will show a simi-
lar dichotomy in their performance, when compared with
IMSPE-based designs.

The situation of effect sparsity has not been considered in
this paper, and is left for future work.

Tables 1 and 2 of the Supplementary Material show the
computation times for constructing the IMSPE-baseddesigns
in this paper. It would be of interest to make a more complete
study of the effect on construction time of increasing the
number of input variables d and the number of runs n.

Figures 12 and 13 provide a quantitative assessment of the
effect on the prediction error of doubling the number of runs
from 15 to 30 when d = 3. For each of the 100 test functions
drawn from the four stationary test-beds DC.25, DC.5, SC.25,
and SC.5 and for each of the nine design types, Fig. 12 shows
side-by-side boxplots of the 100 ratios of the value of the
empirical root mean squared prediction error, PE(X, T, i)
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Fig. 12 For d = 3, boxplots of the ratios of the PE(X, T, i) values
when n = 15 to n = 30 for 100 ST,i test functions drawn from T ∈
{DC.25, DC.5, SC.25, SC.5} when using training data based on X ∈
{I.25, I.5, I.75, MmL ,mAL , Max Pro, W.25W ,W.25N ,W.5N }

Fig. 13 For d = 3, boxplots of the ratios of the PE(X, T, i) values
when n = 15 to n = 30 for 100 ST,i test functions drawn from T ∈
{NSedge,NSmid} when using training data based on X ∈ {I.25, I.5, I.75,
MmL ,mAL , Max Pro, W.25W ,W.25N ,W.5N }

in (13), when n = 15 divided by the corresponding values
when n = 30. Intuition suggests that, if n = 30, PE(X, T, i)
should be smaller than if n = 15; this is true for most test-
bed functions. Figure 12 shows that this is essentially true
for all test-bed function draws from every stationary test-bed
× design combination. The DC.25 and SC.25 panels show
the boxplots of the ratios of PE(X, T, i) for test-beds have a
median of about 2, i.e., there is a 50% reduction in empirical
prediction error when doubling the number of runs. TheDC.5

and SC.5 panels show that doubling the number of runs pro-
duces test-bed median PE(X, T, i) ratios between 2 and 3,
i.e., the prediction error decreases by 50–67%when doubling
the number of runs. Finally, the ratios for these two test-beds
have greater range that those of theDC.25 andSC.25 test-beds.

Figure 13 shows comparative boxplots of the same ratio
for the NSmid and NSedge non-stationary test-beds. Themost

important conclusion that is drawn from Fig. 13 is that the
median ratios of empirical root mean squared prediction
errors for both test-beds and all designs are approximately 1,
i.e., for half the test-bed functions, doubling the number of
runs from 15 to 30 increases the prediction error. For most
test-bed × design cases, all 100 ratios are less than 2 so that
evenwhendoubling the number of runs produces smaller pre-
diction errors, there is never more than a 50% decrease in the
prediction error. This dramatic result emphasizes the critical
importance of the experimental design; designs constructed
for one model can perform poorly when used to predict func-
tions from test-beds that violate the assumptions underlying
the design construction.
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