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Abstract Belief propagation (BP)has been applied in avari-
ety of inference problems as an approximation tool. BP does
not necessarily converge in loopy graphs, and even if it does,
is not guaranteed to provide exact inference. Even so, BP is
useful inmanyapplications due to its computational tractabil-
ity. In this article, we investigate a regularized BP scheme by
focusing on loopy Markov graphs (MGs) induced by a mul-
tivariate Gaussian distribution in canonical form. There is a
rich literature surrounding BP on Gaussian MGs (labelled
Gaussian belief propagation or GaBP), and this is known
to experience the same problems as general BP on graphs.
GaBP is known to provide the correct marginal means if it
converges (this is not guaranteed), but it does not provide the
exact marginal precisions.We show that our adjusted BPwill
always converge, with sufficient tuning, while maintaining
the exact marginal means. As a further contribution we show,
in an empirical study, that our GaBP variant can accelerate
GaBP and compares well with other GaBP-type competitors

B Francois Kamper
15339017@sun.ac.za

Johan A. du Preez
jadupreez@gmail.com

Sarel J. Steel
sjst@sun.ac.za

Stephan Wagner
swagner@sun.ac.za

1 Department of Statistics and Actuarial Science, University of
Stellenbosch, Stellenbosch, South Africa

2 Department of Electrical and Electronic Engineering,
University of Stellenbosch, Stellenbosch, South Africa

3 Department of Mathematical Sciences, University of
Stellenbosch, Stellenbosch, South Africa

in terms of convergence speed and accuracy of approximate
marginal precisions. These improvements suggest that the
principle of regularized BP should be investigated in other
inference problems. The selection of the degree of regular-
ization is addressed through the use of two heuristics. A
by-product of GaBP is that it can be used to solve linear
systems of equations; the same is true for our variant and we
make an empirical comparison with the conjugate gradient
method.

Keywords Belief propagation · Approximate inference ·
Gaussian distributions · Regularization · Convergence

1 Introduction

Belief propagation (BP) is amessage-passing algorithm used
to marginalize distributions to variables contained in nodes
of a graph. BP operates by sending messages between nodes
which are linked in a graph and these messages are updated
iteratively. At initialization each node receives a set of ran-
dom variables and an associated distribution function (often
called the potential of the node). At any stage of BP we
can instruct nodes to collect all incoming messages, these
messages are processed and used by nodes to update their
potentials. From this point onwards,we refer to these updated
potentials as posterior distributions. Amessage from a node i
to a neighbour j is updated by node i collecting all incoming
messages, excluding the message from node j , computing
the posterior distribution and then processing this posterior
distribution as a message to node j . The way posterior dis-
tributions are converted to messages depends on the type of
the graph and the goal of the propagation procedure (usually
marginalization or determining the mode).
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When applied to loopy graphs BP may not converge
and if it does, it does not necessarily converge to the cor-
rect marginals. Even though BP does not necessarily supply
true marginal distributions, it is still useful as an approx-
imate inference tool due to its computational tractability.
In this article, we propose a regularized message-passing
scheme on general Markov graphs (MGs). The goal here is
to improve on the performance of message passing in loopy
graphs. The performance of a message-passing scheme in
the BP context can be measured by whether or not it con-
verges, the rate at which it converges and the accuracy of
the converged posterior distributions as approximations to
the true marginals. We illustrate how regularized message
passing can be used to address all three of these issues
by implementing the scheme on a Gaussian MG under
canonical parametrization. This type of belief propagation
is often referred to as Gaussian belief propagation (GaBP).
For GaBP involving synchronousmessage passing, each iter-
ation can be performed in at most O(p2) computations,
assuming p variables distributed among p nodes. The num-
ber of computations can be substantially lower than O(p2)
depending on the degree of sparsity in the precision matrix
and further acceleration can be obtained through distributive
computing.

A by-product of this inference algorithm is the implicit
solving of linear systems, Sμ = b, where S : p × p is the
precision matrix and b the potential vector of a multivari-
ate Gaussian in canonical form. In the literature (Bickson
2008), GaBP has been compared favourably to the Jacobi
and Gauss-Seidel methods as a solver of large and sparse lin-
ear systems, but faces tough competition from other methods
such as the conjugate gradient (CG) and preconditioned con-
jugate gradient (PCG) algorithms. GaBP does not converge
for all positive definite precision matrices and, in the case
of convergence, the posterior precisions are not necessar-
ily equal to the marginal precisions (Malioutov et al. 2006).
However, if GaBP converges, the posterior means are equal
to the marginal means (Weiss and Freeman 2001). We label
the application of our regularizedmessage passing on aGaus-
sianMG in canonical form slowGaussian belief propagation
(sGaBP). We show that sGaBP will converge given suffi-
cient regularization and provide posterior means equal to the
marginal means. This article includes empirical comparisons
with other GaBP variants as well as with the CG solver. The
results indicate that sGaBP converges faster than variants of
GaBP and provides more accurate approximations to the true
marginals. Our simulations show that sGaBP can be com-
parable to CG (which provides no precision estimates); we
make some suggestions on how to further accelerate sGaBP
and comment on the use of preconditioning for bothmethods.
In our concluding remarks, we discuss regularized message
passing in a broader class of optimization and marginaliza-
tion problems (beyond the Gaussian context).

2 Literature review

In the context of error-correcting codes, the roots of BP
can be traced back to the development of the sum-product
algorithm as a decoding algorithm for LDPC codes (Gal-
lager 1963). Belief propagation (Probability propagation) for
Bayesian networks was introduced by Pearl (1988), Shachter
(1988), Shafer and Shenoy (1990), Lauritzen and Spiegelhal-
ter (1988) and later found to be equivalent to the sum-product
algorithm (Aji and McEliece 2000; Frey and Kschischang
1996). BP is known to provide exact inference on tree-
structured graphs but may fail to converge or may converge
to incorrect marginals in the case of loop graphs (Pearl 1988;
Weiss 2000). However, BP can still be a useful tool as an
approximate inference algorithm on loopy structures (Weiss
2000). Early work on GaBP in loopy graphs can be found
in Weiss and Freeman (2001). Important contributions made
here include:

1. If GaBP converges, the posterior node potentials contain
the correct marginal means.

2. An interesting representation of the computations in
loopy GaBP as GaBP applied on a tree-structured preci-
sion matrix (known as unwrapped or computation trees).

3. A precision matrix S : p × p is called diagonally dom-
inant if Sii >

∑
j �=i |S ji | for i = 1, 2, . . . , p. Diagonal

dominance of a precision matrix is a sufficient condition
for the convergence of GaBP.

The spectral radius of a matrix, S : p × p, with eigenvalues
τi : i = 1, 2, , p is defined to be,

ρ(S) = max
i

{|τi |}. (1)

Suppose S is symmetric, positive definite and normalized to
have only ones along its diagonal, that is S = I − R where
diag(R) = 0. Let |R| be the matrix with entries equal to the
absolute values of the entries of R. The matrix S is walk-
summable if and only if the spectral radius of |R| is less than
one. The class of precision matrices for which GaBP con-
verges was expanded to include positive definite symmetric
matrices which are walk-summable, but may still converge
for other precision matrices (Malioutov et al. 2006). In gen-
eral, the converged posterior distributions do not give the
exact marginal precisions. In the walk-summable case, this
is because the computation trees do not cover all the walks
present in the expansion S−1 = (I − R)−1 = ∑∞

k=0 R
k

(Malioutov et al. 2006). The posterior precisions can still
be useful approximations for the marginal precisions. Sev-
eral variants of GaBP have been proposed in the literature
(Johnson et al. 2009; El-Kurdi et al. 2012a) to improve on
the convergence performance of the original GaBP. These
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methods are aimed at accelerating GaBP and/or achiev-
ing convergence in cases where ordinary GaBP diverges.
These variants emphasize the distributive implementation of
GaBP for solving large systems of linear equations. A vari-
ety of sufficient conditions for the convergence of GaBP has
been proposed in the literature (Weiss and Freeman 2001;
Malioutov et al. 2006). A recent work provides necessary
and sufficient conditions for the convergence of synchronous
GaBP under a specified initialization set (Su and Wu 2015).
Furthermore, necessary and sufficient conditions are estab-
lished for damped synchronous GaBP and they include the
allowable range for the damping factor. A further contribu-
tion is the theoretical confirmation that damping can improve
the convergence behaviour of GaBP. Applications of GaBP
include MMSE multi-user detection, equalization and chan-
nel estimation in communication systems (Montanari et al.
2006; Guo and Huang 2011; Guo and Li 2008), a fast
solver for systems of linear equations (El-Kurdi et al. 2012b;
Shental et al. 2008), sparse Bayesian learning in large-scale
compressed sensing problems (Seeger and Wipf 2010), and
estimation on Gaussian graphical models (Chandrasekaran
et al. 2008; Liu et al. 2012).

3 Message update rules

Before turning to our high-level approach, we make some
comments on message update rules within the BP context.
Bickson (2008) describes two conventional types of message
update rules. In synchronousmessage passing, newmessages
are formed using messages from the previous round only
and are therefore not influenced by the message scheduling.
This is in contrast to the asynchronous case where messages
updated in the current round are used to compute new mes-
sages. Although asynchronous updates tend to outperform
the synchronous approach (Koller and Friedman 2009), our
main focus will be on the synchronous case. We do this since
one of the more attractive properties of GaBP is its appli-
cation in distributive settings which is far more compatible
with synchronousmessage updates. Synchronous implemen-
tation also allows us to compare different GaBP algorithms
without considering the effects of different message schedul-
ings. We do, however, include a section with comments on
asynchronous message updates.

4 High-level approach

Our high-level approach is based on the max-product belief
propagation algorithm.Wewill restrict our discussion to syn-
chronousmessageupdates. Supposewewant tofind themode
of a density function f (x) with the expansion,

f (x) = eK
p∏

i=1

δi (xi ) ×
p∏

i �= j

gi j (xi , x j ), (2)

where x = (x1, x2, . . . , xp), xi may be higher dimensional
and eK is a normalization constant. The max-product algo-
rithm operates on

l(x) = log( f (x)) = K +
p∑

i=1

φi (xi ) +
p∑

i �= j

hi j (xi , x j ), (3)

where φi = log(δi ) and hi j = log(gi j ). Equations 2 and
3 correspond to a Markov graph with p nodes Hi : i =
1, 2, . . . , p. We assign to nodeHi the vector xi . Node i and
node j are linked if hi j (xi , x j ) is not zero for certain xi , x j .
Let Ni be the set containing the neighbours of node i (we
do not include i in this set), that is all nodes to which i has
a link. Suppose we are at stage n of a synchronous max-
product belief propagation algorithm with messages m(n)

i j (.)

for i = 1, 2, . . . , p and j ∈ Ni . The updated messages are

m(n+1)
i j (x j ) = max

xi

⎧
⎨

⎩
φi (xi ) + hi j (xi , x j )

+
∑

k∈Ni /j

m(n)
ki (xi )

⎫
⎬

⎭
, (4)

where by Ni/j we mean the set Ni with j removed. Sup-
pose at stage n − 1, the posterior mode is μ(n−1) =
(μ

(n−1)
1 ,μ

(n−1)
2 , . . . ,μ

(n−1)
p )′. By node regularization, we

mean that the optimization problem in Eq. 4 is replaced by,

m(n+1)
i j (x j ; λ) = max

xi

{

φi (xi ) + hi j (xi , x j )

+
∑

k∈Ni /j

m(n)
ki (xi )

− λ

2

[

‖ xi − μ
(n−1)
i ‖q

]q}

, (5)

with λ a scalar and ‖ . ‖q the Lq norm of a vector. The use of
μ(n−1) instead of μ(n) when propagating messages at stage
n (that is computing the stage n + 1 messages) is impor-
tant. To understand the rationale behind node regularization,
one needs to understand one of the fundamental problems
in belief propagation, that is the problem of loopy graphs.
Consider a node i in a Markov graph and suppose there is at
least one path Pi through the graph back to node i . Sending
messages through this path means that the prior potential of
node i is cycled back to this node. This causes node i to con-
tinuously increase belief in its prior mode and this may cause
either divergence or incorrect convergence. The idea behind
the penalty in (5) is to slowdown this increase in belief, hence
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the name slowGaussian belief propagation.Although the for-
mulation in (5) seems to make sense for λ ≥ 0 there is also a
role for negative values. Negative values of λ correspond to a
relaxation effect on themessage propagationwhere nodes are
encouraged to favour their own prior beliefs. In the context of
GaBP, negative values of λ relate sGaBP to RGaBP (relaxed
GaBP). In the empirical section, we provide an indication
of when it is appropriate to use a negative λ and provide a
comparison of RGaBP and sGaBP in this context.

5 Slow Gaussian belief propagation message
updates

We use (5) to derive the message updates in the Gaussian
context. It is natural to use q = 2 in (5) since this preserves
the conjugacy of themessages. For the Gaussian distribution,
we have

φi (xi ) = −1

2
x′
iSi ixi + x′

i bi .

hi j (xi ) = −xiSi jx j . (6)

We assume that the messages are of the form,

m(n)
i j (x j ) = −1

2
x′
jQ

(n)
i j x j + x′

jv
(n)
i j + C (n)

i j , (7)

for all i �= j and C (n)
i j is a constant. Applying (7) to (5) we

obtain,

m(n+1)
i j (x j ; λ) = max

xi

{

− 1

2
x′
i (Si i +

∑

k∈Ni /j

Q(n)
ki )xi

+ x′
i (bi − Si jx j +

∑

k∈Ni /j

v(n)
ki )

− λ

2
(xi − μ

(n−1)
i )′(xi − μ

(n−1)
i )

+
∑

k∈Ni /j

C (n)
ki

}

. (8)

Since λ
2 (xi − μ

(n−1)
i )′(xi − μ

(n−1)
i ) = λ

2x
′
ixi − λx′

iμ
(n−1)
i

+ 1
2 ||μ(n−1)

i ||2,

m(n+1)
i j (x j ; λ) = max

xi

{

− 1

2
x′
i (λI + Si i +

∑

k∈Ni /j

Q(n)
ki )xi

+ x′
i (bi + λμ

(n−1)
i − Si jx j

+
∑

k∈Ni /j

v(n)
ki ) + C̃i j

}

, (9)

where C̃i j is a constant. For convenience we setA
(n)
i j = λI+

Si i +∑
k∈Ni /j Q

(n)
ki and a(n)

i j = bi +λμ
(n−1)
i +∑

k∈Ni /j v
(n)
ki .

We now need to compute

m(n+1)
i j (x j ; λ)

= max
xi

{

− 1

2
x′
iA

(n)
i j xi + x′

i (a
(n)
i j − Si jx j ) + C̃i j

}

. (10)

It is easy to show that substituting xi = [A(n)
i j ]−1(a(n)

i j −
Si jx j ) into − 1

2x
′
iA

(n)
i j xi + x′

i (a
(n)
i j − Si jx j ) + C̃i j gives (10).

We now make the assumption that Q(n)
i j is symmetric for all

i �= j . We have,

m(n+1)
i j (x j ; λ) = 1

2
(a(n)

i j − Si jx j )
′[A(n)

i j ]−1(a(n)
i j − Si jx j )

+ C̃i j

= 1

2
x′
jS j i [A(n)

i j ]−1Si jx j

− x′
jS j i [A(n)

i j ]−1a(n)
i j + C (n+1)

i j

= −1

2
x′
jQ

(n+1)
i j x j + x′

jv
(n+1)
i j + C (n+1)

i j ,

(11)

whereQ(n+1)
i j =−S j i [A(n)

i j ]−1Si j ,v
(n+1)
i j =−S j i [A(n)

i j ]−1a(n)
i j

andC (n+1)
i j does not depend on x j . In the literature, it is com-

monpractice to ignore the update of the constant-components
of messages since they are not needed to update Q(n+1)

i j and

v(n+1)
i j and we will follow this convention. We note that all
the assumptions made in this section are recurring and can
therefore be ensured by appropriate initialization. Our focus
will be on one-dimensional nodes. Here, all the matrices are
replaced by scalars and our message updates are performed
by

Q(n+1)
i j = −S2i j

λ + Sii + ∑
k∈Ni /j Q

(n)
ki

. (12)

V (n+1)
i j = Q(n+1)

i j

Si j

⎡

⎣λμ
(n−1)
i + bi +

∑

k∈Ni /j

V (n)
ki

⎤

⎦ . (13)

In order to ensure the convergence of sGaBP, while preserv-
ing the exactness of the posterior means, the implementation
of the algorithm requires some additional steps (beyond the
message passing). The implementation of these steps and the
convergence properties of sGaBP are discussed in the next
section.
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6 Convergence analysis

The synchronous implementation of sGaBP is given in Algo-
rithm 1 where certain steps are discussed in this section. We
start by discussing the computation of the posterior distribu-
tions after each iteration. These computations are important
since they are sufficient to ensure convergence of sGaBP (for
large enough λ) while preserving the posterior means as the
exact marginal means. This is followed by a study of the
convergence behaviour of the precision components of the
messages, i.e. the behaviour ofQ(n) in Algorithm 1. We then
proceed to themean/potential components of themessages by
assuming convergence of the precision components. In our
convergence analysis, we assume that the precision matrix
has been preconditioned to have 1 on the diagonals. If the
precision matrix is S (before preconditioning), this can be
achieved by setting D = diag( 1√

S11
, 1√

S22
, . . . , 1√

Spp
) and

computingDSD. This type of preconditioning does not entail
any loss of information in the sense that both the marginal
means and precisions of the distribution in its original scale
can be recovered.

6.1 Computation of posterior distributions

In order to ensure convergence of sGaBP and to have the pos-
terior means (at convergence) equal to the correct marginal
means, it is necessary to adjust the manner in which posterior
distributions are computed. Consider the computation of the
posterior distribution of node i at stage n. As a first step, we
instruct node i to collect all incomingmessages,which can be
characterized by the parameters

∑
t �=i Q

(n)
ti (precision com-

ponents) and
∑

t �=i V
(n)
ti (mean/potential components). We

suggest keeping the posterior precisions as in normal belief
propagation, that is 1+∑

t �=i Q
(n)
ti . Later, we investigate the

role of λ in the tuning of the posterior precisions to better
approximate the marginal precisions. The posterior mean of
node i at stage n is given by

μ
(n)
i = λμ

(n−1)
i + z(n)

i

λ + q(n)
i

= γ
(n)
i μ

(n−1)
i + (1 − γ

(n)
i )

z(n)
i

q(n)
i

(14)

where z(n)
i = bi + ∑

t �=i V
(n)
ti , q(n)

i = 1 + ∑
t �=i V

(n)
ti and

γ
(n)
i = λ

λ+q(n)
i

. Note that
z(n)
i

q(n)
i

is the posterior mean we would

have computed if no adjustment was made to the computa-
tion of the posterior distribution. Hence, we can interpret (14)
as damping between the posterior mean, under normal belief
propagation, and the posterior mean computed in the previ-
ous round. What is nice here is that these damping factors
are computed automatically (using λ and the current poste-
rior precisions) and no additional parameters are required.

Algorithm 1 Synchronous sGaBP.
1. Provide S : p× p, b : p× 1, λ, m and ε as inputs to the algorithm.

Here, we wish to solve Sμ = b where S is positive definite and
symmetric. The parameters λ, m and ε denote the degree of diag-
onal loading, the maximum number of iterations allowed and the
tolerance used to define convergence, respectively.

2. InitiateQ(0) = diag(1, 1, . . . , 1),V(0) = diag(b1, b2, . . . , bp) and
μ(−1) = 0.

3. Set Err = Inf and n = 0.
4. while Err > ε

(a) Compute q(n)
i = 1+∑

j∈Ni
Q(n)

j i and z(n)
i = bi +∑

j∈Ni
V (n)
j i

for i = 1, 2, . . . , p.

(b) Set μ(n)
i = λμ

(n−1)
i +z(n)

i

λ+q(n)
i

for i = 1, 2, . . . , p.

(c) For all i and all j ∈ Ni , set Q(n+1)
i j = −S2i j

λ+q(n)
i −Q(n)

j i

and

V (n+1)
i j = Q(n+1)

i j
Si j

(λμ
(n−1)
i + z(n)

i − V (n)
j i ).

(d) Set Err =
√∑

k (μ
(n)
k −μ

(n−1)
k )2

∑
k (μ

(n)
k )2

and increment n.

(e) If m = n break.

5. End.

The values, γ
(n)
i : i = 1, 2, . . . , p, can also be relaxation

factors which correspond to negative λ. We now show that
these adjustments are sufficient for the convergence and the
preservation of the (converged) posterior means as the exact
marginal means.

6.2 The precision components

The convergence analysis of the precision components is the
simpler of the two since we can apply results found in the
literature (Malioutov et al. 2006; Bickson 2008). Suppose
Q(n)(λ) holds the precision components of the messages at
iteration n. The analysis ofQ(n)(λ) is simple since it is iden-
tical to the precision components provided by ordinaryGaBP
applied on thematrixλI+S. Therefore,weonly need to select
λ large enough such that λI+S is walk-summable (although
smaller selections of λ can also suffice). From this point
onwards, we use the symbol ρ̃(S) = ρ(I − S), we also refer
to ρ̃(S) as the zero-diagonal spectral radius of S. Selecting
λ > ρ̃(|S|)− 1 = ρ(|R|)− 1, where S = I−R, is sufficient
for the precision components in Algorithm 1 to converge. In
addition to this, we prove Theorem 1 in “Appendix 1”.

Theorem 1 The following properties recur indefinitely (as
a set) in sGaBP.

1. Q(n)
i j ≤ 0 for all i , j ∈ Ni .

2. |Q(n)
i j | > |Q(n−1)

i j | for all i , j ∈ Ni .

3. δ
(n)
i = ∑

t∈Ni
|Q(n)

ti | ≤ δi for a 0 ≤ δi < 1 + λ and
all i .

4.
∑

t∈Ni

S2ti
1+λ−δt+|Q(n)

i t | ≤ δi for all i .
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If these conditions hold, then Q(n)
i j are monotone decreas-

ing and bounded from below by
−S2i j

1+λ−δi
and will therefore

converge. Consider the case where δi = δ for all i and sup-
pose we want the conditions in Theorem 1 to hold from
n = 0. Since Q(0)

i j = 0 we need a 0 ≤ δ < 1 + λ satisfying
∑

i �= j
S2i j

1+λ−δ
≤ δ for all j . This inequality is equivalent to a

quadratic inequality with roots,

(1 + λ) ±
√

(1 + λ)2 − 4
∑

i �= j S
2
i j

2
. (15)

If we select (1 + λ)2 − 4 × max j

{
∑

i �= j S
2
i j

}

≥ 0 or λ ≥

2

√

max j

{
∑

i �= j S
2
i j

}

− 1, then we can select δ = 1+λ
2 to

guarantee monotone convergence of all the precisions. For
this selection, the bounds on the precisions are

− 2S2i j
1 + λ

≤ Q(n)
i j ≤ 0. (16)

An important consequence of (16) is that

lim
λ→∞ Q(n)

i j = 0, (17)

for all i �= j . Here, we emphasize the role of λ in the
tuning of the posterior precisions. Note that we can tune
the converged precisions, Qi j , to any value in the inter-

val [− 2S2i j
1+λ0

; 0] (this interval can be much larger) where

λ0 = 2

√

max j

{
∑

i �= j S
2
i j

}

− 1, although there is depen-

dence among the Qi j ’s in terms of λ. This can in turn be
used to tune the posterior precisions, 1 + ∑

t �=i Qti , under
certain restrictions. The tuning can be made more flexible by
introducing multiple tuning parameters.

6.3 The mean components

In the previous section,we saw that the precision components
of the messages will converge for sufficiently large choices
of λ. In this section, we proceed under the assumption that
the precision components have converged. We denote the
converged precision message-components, posterior preci-
sions and damping factors by Qi j , qi and γi , respectively.
The updates of the mean components are

V (n+1)
i j = Qi j

Si j

[

λμ
(n−1)
i + bi +

∑

t∈Ni /j

V (n)
ti

]

. (18)

We define θ (n+1) to be the vector obtained by stacking
the columns of V(n+1), removing the diagonal entries and

appending μ(n) (after the columns of V(n+1)). This vector
can be expressed as,

θ (n+1) = θ + Lθ (n), (19)

for a matrix L : p2 × p2 and a vector of constants θ : p2 ×1.
The first p2 − p entries of θ can be obtained by construct-
ing the matrix C = [ Qi j

Si j
bi ], with the understanding that the

diagonals are zero, and stacking the columns in the sameway
as we did with the mean precision components. The final p
entries of θ are 1−γi

qi
bi in order i = 1, 2, . . . , p. The con-

struction of L is more complex. Consider,

L : p2 × p2 =
[
L11 : l × l L12 : l × p
L21 : p × l L22 : p × p

]

, (20)

where l = p2 − p. Consider one of the first l elements of
θ (n+1), say m. This element corresponds to an entry in the
matrix V(n+1), say V (n+1)

i j . The next step is to identify the
neighbours of i , that is the set Ni . For each k ∈ Ni/j , we
find the element in θ (n) corresponding to V (n)

ki and note its

position. The entry in rowm of L in this position is
Qi j
Si j

. This
accounts for the matrix L11 with the understanding that all
elements not accessed are zero.Continuingwith this notation,
the entry in row m of L12 in position i is

λQi j
Si j

and all other
elements in this row are zero. We see that L22 is a diagonal
matrix with entries γi in order i = 1, 2, . . . , p. Consider the
matrixL21. The first step is to identify the neighbours of node
i , that isNi . We then move along the vector θ (n) and identify
all the positions corresponding to V (n)

ti : t ∈ Ni . In row i of

L21, we place the value
1−γi
qi

in the identified positions, the
rest of the entries are zero.

Our goal is to analyse the spectral radius of L. We note
that the eigenvalues ofL can possibly be complex. In the case
of complex eigenvalues, the spectral radius of L is defined
to be the largest modulus among the eigenvalues of L. If
the spectral radius of L is less than 1, sGaBP will con-
verge (assuming that the precisions converge). The value
of the spectrum has a heavy influence on the convergence
speed of sGaBP and can play a role in deciding on how
to select λ. A natural way to select the amount of regular-
ization is to seek λ such that the spectral radius (of L) is a
minimum.Wemake some comments on the form of the spec-
trum later in this section. For the purpose of this article, we
consider the asymptotic behaviour of the spectral radius and
show that the spectral approaches 1 from below as λ → ∞.
The selection of λ is considered in the section on heuristic
measures. Theorem 2 provides information on the asymp-
totic behaviour of the spectrum, the proof is given in
“Appendix 1”.
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Fig. 1 Plot of the spectral radius of the linear-update matrix as a function of λ for a simulated 10× 10 matrix with a zero-diagonal spectral radius
equal to one. The red solid line corresponds to a complex spectral radius. The black broken line corresponds to a real spectral radius

Theorem 2 Consider sGaBP applied to a multivariate
Gaussian with potential b and precision matrix S. The eigen-
values of the linear-update matrix can be characterized as,

1 − σi

λ
+ O

(
1

λ2

)

; i = 1, 2, . . . , p (21)

±Si j
λ

+ O
(

1

λ2

)

; i �= j, (22)

where σi , i = 1, 2, . . . , p represent the eigenvalues of S.

In particular, we see that if S is positive definite, the maxi-
mum of the eigenvalues in Theorem 2 tends to 1 from below
as λ → ∞. We see that the precisions will converge for
λ large enough and will eventually generate a linear-update
matrix with a spectral radius less than 1, that is sGaBP will
converge for large enough λ. In “Appendix 1”, we show that
the posterior means provided by sGaBP (under the assump-
tion of convergence) provide the exact marginal means.

We now make some comments on the behaviour of the
spectrum (eigenvalues) of L. One interesting aspect of the
spectrum is when sGaBP is applied to tree-structured pre-
cision matrices. We generated a few of these and in each
case we found the matrix L to be nilpotent when λ = 0.
This relates to BP as an efficient and exact marginalization
algorithm on tree structures. The use of values of λ other
than zero is nonsensical in this case. A typical plot of the
spectral radius as a function of λ is given in Fig. 1. In this
case, the spectral radius has a global minimum at a value of
λ just under 0.4. The spectral radius can correspond to either

a complex or a real eigenvalue and the graph of the spec-
tral radius seems to change curvature when the eigenvalue
responsible for the spectral radius changes from real to com-
plex (and vice versa). This can be seen in Fig. 1 with the red
solid line corresponding to a complex spectral radius and the
black broken line to a real spectral radius. We also see that
the spectral radius eventually becomes real, which is consis-
tent with Theorem 2. Another important observation is that
the value of λ which minimizes the spectral radius seems to
occur at a point where the eigenvalue responsible switches
from real to complex or vice versa. Furthermore, there can
be more than one point where this change occurs. Our sim-
ulations show similar results for other precision matrices.
The interaction between complex and real eigenvalues could
prove useful in the minimization of the spectral radius and
should be considered in further research.

6.4 The converged posteriors

Having proved convergence of sGaBP, we now turn to the
posterior distributions as approximations of the marginal
distributions. In Theorem 3, we prove that the posterior
means are the exact marginal means, the proof is provided in
“Appendix 1”. A consequence of Theorem 3 is that sGaBP
can be used to solve linear systems, Sμ = b, as long as S is
a valid precision matrix. Unfortunately, the posterior preci-
sions are not necessarily equal to the truemarginal precisions.
In the experimental section, we show that the posterior pre-
cisions provided by sGaBP can be useful as approximate
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Algorithm 2 Heuristic Selection of λ.
1. In Algorithm 1, step 1, add the specification of a lag (d) and a step

size (α).
2. In Algorithm 1, step 2, add the initialization ebest = maxi |bi |.
3. Before Algorithm 1, step 4a, add the following.

(a) If mod(n,d) = 0
– If ebest > Err then λ ← λ − α and ebest ← Err , else

λ ← λ + α.

quantities in the sense that the KL distance between the pos-
terior andmarginal distributions can be small. Included in our
empirical study are two variants of GaBP namely Relaxed
Gaussian belief propagation (RGaBP) and Convergence Fix
Gaussian belief propagation (CF). All threemethods (sGaBP,
RGaBP and CF) require the specification of at least one
hyper-parameter. We compare the precisions provided by
these 3methods byfinding the values of the hyper-parameters
yielding the fastest convergence. For RGaBP, the value of
the hyper-parameter is irrelevant in terms of comparing pre-
cisions since the posterior precisions provided are identical
to those provided by ordinary GaBP. Within this set-up, we
show empirically that sGaBP can provide substantially more
accurate approximations of the marginal precisions (com-
pared to RGaBP and CF) while also converging at faster
rates.

7 Heuristic measures

In this section, we propose some heuristic measures for the
selection of λ. These measures vary in degree of complexity
and we discuss some of their advantages and disadvantages.

7.1 Search heuristic

This heuristic is basically the same as the one proposed by
El-Kurdi et al. (2012a), adjusted for sGaBP, and is given in
Algorithm 2. The main advantage of this heuristic is that it is
easy to implement. There are some drawbacks to this mea-
sure arising from the monotone way in which the tuning is
adjusted. When the current tuning provides posterior means
with a smaller (larger) error, the heuristic will always decre-
ment (increment) the tuning. The heuristic seeks tuning for
which the spectral radius of L is less than one and not nec-
essarily tuning for which the value of the spectral radius is a
minimum.

7.2 Gradient descent heuristic (GDH)

GDH is more complex to implement, but does not have the
monotonicity of SH as described in Sect. 7.1. The heuristic
is aimed at determining the direction in which the tuning
needs to be adjusted to achieve the smallest possible spectral

radius. The tuning is then adjusted in this direction in step
sizes which should not be overly large.

Suppose we have completed iteration n of sGaBP and we
are preparing to perform the next round of updates. We wish
to adjust the valueof the tuningparameter in a directionwhich
yields faster convergence. At this point, we have the posterior
precisions q(n)

i : i = 1, 2, . . . , p and posterior means μ
(n)
i .

The posterior means were computed using

μ
(n)
i = q(n)

i

λ + q(n)
i

bi + ∑
j∈N j

V (n)
j i

q(n)
i

+ λ

λ + q(n)
i

μ
(n−1)
i

= [1 − γ
(n)
i (λ)]μ̃(n)

i + γ
(n)
i (λ)μ

(n−1)
i . (23)

Although this is not technically correct, we assume that
q(n)
i , μ

(n−1)
i and μ̃

(n)
i are constant and do not depend on

λ. The GDH starts by instructing each node to send its
posterior mean to its neighbours, each node then computes
e j = ∑

i∈Ñ j
S jiμ

(n)
i − b j , where Ñ j is N j with node j

included. Let k = argmax j {|e j |}. The node k and each of its
neighbours are instructed to compute the derivative of their
own mean (can be done in parallel) by differentiating (23)
relative to λ and evaluating this at the current value of the tun-
ing, say λ0. The neighbours of node k send these derivatives
to node k and this node computes dk = ∑

j∈{k,Nk } Skj �μ
(n)
j ,

where �μ
(n)
j is the derivative received from node j . Node k

is then instructed to adjust the tuning λ0 ← λ0 − αsign(dk),
for a specified step size α, and to send this new tuning value
to the other nodes.

7.3 Comparing SH and GDH: a concrete example

We use simulation to illustrate the possible benefits of using
GDH instead of SH.We start by simulating a 100×100 preci-
sion matrix, S, and potential vector, b. We use the method in
“Appendix 2” to regulate the zero-diagonal spectral radius of
the precision matrix to 1. We defined convergence to occur
when the error is less than 10−14. Using a line search in
increments of 0.01, we observed that initializing the tuning
of sGaBP with values 0.33, 0.34 and 0.35 yielded the fastest
convergence and that this occurred after 28 iterations. We
found that the spectral radius of L is 1 when λ = 0 (this
is typical when the zero-diagonal spectral radius of S is 1).
The values of the spectral radius (of L) corresponding to
λ = −0.01 andλ = 0.01 are 1.029343 and 0.971501, respec-
tively. Assuming convergence of the precision components
of the messages, we observed the error to be increasing for
negative tuning and decreasing for positive tuning. If SH is
used, there is the risk that the heuristic tuningwill vary around
the tuning corresponding to a spectral radius of one. This is
because SH seeks tuning for which the spectral radius ofL is
less than one and not necessarily tuning which minimizes the
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Fig. 2 Comparison of SH andGDH for a simulated data structure. The
precision matrix was regulated to have a zero-diagonal spectral radius
equal to one. Some relevant quantities are given in the display. We see
that the tuning provided by SH is stuck around λ = 0. Selecting λ = 0 a

priori gives a spectral radius equal to one. GDH provides tuning closer
to the values yielding the fastest convergence (determined using a line
search in increments of 0.01). GDH converges faster than SH

spectral radius of L. This is illustrated in Fig. 2. The y-axis
shows the level of tuning used at the iteration number given
on the x-axis. Figure 2 contains two lines for each of GDH
and SH. The two lines for each of GDH and SH correspond
to the step sizes 0.01 and 0.05. The tuning suggested by SH
varies around λ = 0, the level of tuning corresponding to a
spectral radius of 1. GDH is not restricted around a spectral
radius of one and is able to make better adjustments on the
tuning. Notice that the two graphs corresponding to GDH
are terminated at iteration 45 and 32 corresponding to step
sizes 0.01 and 0.05, respectively. This was done to indicate
that sGaBP has converged after these numbers of iterations.
Both applications of SH failed to converge after 100 itera-
tions. This is not to say that SH cannot be effective, indeed
the simplicity of implementation is an advantage over GDH,
but rather that SH is more sensitive to the initialization of λ,
particularly when this starting value is close to the level of
tuning yielding a spectral radius of one.

8 Asynchronous message updates

Wehave referred to the use of asynchronousmessage updates
as opposed to the synchronous version. In general, it is
believed that asynchronous message updates can provide
better convergence behaviour in applications of BP in the
sense that they may induce convergence where synchronous
updates diverge or require the passing of a smaller num-

ber of messages to converge (Koller and Friedman 2009).
The major shortcoming of asynchronous updates is loss of
distributive applicability. Another problem posed by asyn-
chronous updates is the problem of deciding upon the order
inwhichmessages are passed, since this canhave a significant
effect on the convergence speed. In the context of GaBP, this
problem is compounded by the fact that synchronous mes-
sages operate in iterations with O(p2) computations, which
discounts complicated heuristics used in other applications
of BP to decide on the message scheduling. Progress can
be made by deciding on the message scheduling in advance.
There are other considerations as well, such as deciding on
the degree of regularization. This should be considered from
the viewpoint that the degree of regularization yielding opti-
mal convergence should naturally provide useful posterior
precisions. An example of the advantages of asynchronous
message passing can be found in the diabetes data (Efron
et al. 2004). The diabetes data were used to illustrate the
advantages of the least angle regression algorithm in settings
involving a high degree of collinearity among the explanatory
variables. Estimating the linear coefficients of the diabetes
data is challenging for GaBP since:

1. The number of explanatory variables is small.
2. The zero-diagonal spectral radius of the sample correla-

tion matrix is high (3.024214).
3. There is significant variation among the sample correla-

tions.
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Algorithm 3 Asynchronous sGaBP.
1. Provide S : p× p, b : p× 1, λ, m and ε as inputs to the algorithm.

Here, we wish to solve Sμ = b where S is positive definite and
symmetric. The parameters λ, m and ε denote the degree of diag-
onal loading, the maximum number of iterations allowed and the
tolerance used to define convergence, respectively.

2. Initiate Q = diag(1, 1, . . . , 1), V = diag(b1, b2, . . . , bp) , μ =
0,q = (1, 1, . . . , 1)′ and z = b.

3. Set Err = Inf and n = 0.
4. while Err > ε

(a) For i = 1, 2, . . . , p set μold
i = μi .

(b) For j = 1, 2, . . . , p
For i = 1, 2, . . . , p
i. If j = i or Si j = 0 then next.
ii. Set a1 = Qi j , a2 = Vi j .

iii. Update Qi j = −S2i j
λ+qi−Q ji

and Vi j = Qi j
Si j

(λμi + zi −
Vji ).

iv. Update q j = q j −a1 +Qi j and z j = z j −a2 +Vi j .

v. Update μ j = λμ j+z j
λ+q j

.

(c) Set Err =
√∑

k (μk−μold
k )2

∑
k (μk )

2 and increment n.

(d) If m = n break.

5. End.

A line search in increments of 0.01 revealed that λ =
1.29 yields the fastest convergence for synchronous sGaBP
(using a tolerance of 10−10) and convergence occurred after
574 iterations. The 574 iterations required for convergence
is substantial when compared to the number of explana-
tory variables (which is 10). A further complication is that
synchronous sGaBP with λ = 1.29 yields negative poste-
rior precisions for certain variables, although this can be
addressed by increasing λ at the cost of slower convergence.
We now apply asynchronous sGaBP, which is formulated
in Algorithm 3. Notice that the outer-loop of the message
updates iterates over j indicating that the inner-loop iter-
ates over messages to node j . This was done because we
found that iterating over incoming messages first was more
efficient in our simulations. Each round of message updates
requires O(p2) computations (fewer with sparsity) as in the
synchronous case. Unlike the synchronous case, it is not
necessary to store old messages and Algorithm 3 performs
damping throughout the double-loop (instead of after). The
optimal tuning value was determined as 2.01 (line search as
for the synchronous case) and convergence occurred after
131 iterations. All posterior precisions were positive. We see
that asynchronous message passing improved on the conver-
gence speed and accuracy of the posterior distributions in the
case of the diabetes data. In general, our simulations showed
that asynchronous outperforms synchronous sGaBP in terms
of convergence behaviour. This is further compounded by the
fact that the asynchronous message passing does not require
old messages to be stored, resulting in a lower computational
burdenon each iteration and lowermemory requirements.We

leave further aspects of asynchronous sGaBP, such as proof
of convergence and heuristic measures, for further research.

9 Empirical work

In this section, we provide empirical comparisons of sGaBP
with other GaBP variants in the literature as well as with the
CG solver. Our empirical workwill be summarized using two
quantities, that is the number of iterations required by a spec-
ified method to converge and, if relevant, the KL distance of
the posterior distributions to the true marginal distributions.
All quantities are summarized using boxplots , the blue box-
plots representing sGaBP and the red boxplots the method
it is being compared with. Each figure corresponds to a set
of zero-diagonal spectral radii which is indicated on the x-
axis. For every zero-diagonal spectral radius indicated on
the x-axis, we generate 100 data structures each consisting
of a precision matrix and potential vector.We use the method
described in “Appendix 2” to regulate the zero-diagonal spec-
tral radius of the precision matrix to the appropriate value.
We then apply sGaBP and the method it is being compared
with on these data structures. With the exception of the CG
solver all other methods require the specification of hyper-
parameter(s). We initialize these methods by finding the
value(s) of the hyper-parameter(s) yielding the fastest con-
vergence through a line (grid) search in increments of 0.01.
We refer to sGaBP (for instance), initialized with the opti-
mal hyper-parameter determined through the line search, as
optimal sGaBP. Similar labels are used for the othermethods.

We now have 100 data structures for every zero-diagonal
spectral radius given on the x-axis of the figures. We apply
optimal sGaBP and the (optimized) competitor and record
the number of iterations required by each method to con-
verge. The blue boxplot is constructed from the number of
iterations required by sGaBP to converge and the red boxplot
from the number of iterations required by the competitor. The
KL distances are slightly more complicated since for each
precision matrix we get multiple marginals. For each appli-
cation of sGaBP (and its competitor), we determine the KL
distance of all the posterior distributions to their respective
marginals, a given data structure is represented by the mean
of all these distances. Boxplots are then constructed in a sim-
ilar way to those of the iterations. To account for differences
in the scaling of quantities provided by different methods, it
may be necessary to focus (or zoom in) on certain parts of a
figure.

9.1 Relaxed Gaussian belief propagation

El-Kurdi et al. (2012a) illustrate the advantages of RGaBP on
large ill-conditioned andweakly diagonally dominant inverse
covariance matrices. RGaBP does not allow tuning of the
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precision components and can therefore only be applied in
settings where the precision components of ordinary GaBP
converge. The relaxation is applied on the mean components
by setting z(n)

i = γ (bi +∑
j∈N j

V (n)
j i )+ (1− γ )q(n)

i μ
(n−1)
i .

Setting γ = 1 gives ordinary GaBP (similar to setting
λ = 0 for sGaBP). Although El-Kurdi et al. (2012a) focus on
relaxation factors (γ > 1), RGaBP can also be used to per-
form damping (γ < 1). There is an interesting relationship
between RGaBP and sGaBP with regard to how posterior
means are computed:

RGaBP : μ
(n)
i = γ

(bi + ∑
j∈N j

V (n)
j i )

q(n)
i

+ (1 − γ )μ
(n−1)
i

(24)

sGaBP : μ
(n)
i = q(n)

i

λ + q(n)
i

bi + ∑
j∈N j

V (n)
j i

q(n)
i

+ λ

λ + q(n)
i

μ
(n−1)
i . (25)

We see that γ = 1 − λ

λ+q(n)
i

. In contrast to RGaBP, sGaBP

computes adaptive damping/relaxation factors using the tun-
ing parameter λ and the posterior precisions. In particular, we
see that relaxation, γ > 1, and damping, γ < 1, correspond
to negative and positive λ, respectively. This would imply
that there is a role to play for negative λ. Part of our compar-
ison is to give an indication of when to use relaxation versus
damping. It is alsoworthwhile to emphasize that the posterior
precisions provided by RGaBP are the posterior precisions
provided by ordinary GaBP. Another important contribution
in this regard is to provide empirical evidence that sGaBP
can provide posterior precisions closer to the true marginal
precisions when compared to ordinary GaBP.
In Fig. 3, the convergence speed of optimal sGaBP and opti-
malRGaBPare compared. For smaller zero-diagonal spectral
radii, the methods are very comparable with sGaBP hold-
ing a slight advantage. As the zero-diagonal spectral radius
approaches 1.5, the convergence speed of RGaBP starts to
destabilize. When considering the boxplot corresponding to
a zero-diagonal spectral radius of 1.5 we see that sGaBP
can converge up to 16 times faster than RGaBP. It is also
worthwhile to note that outliers were suppressed in these
boxplots.

In Fig. 4, the KL distances of optimal sGaBP and optimal
RGaBP are compared. In the simulations, sGaBP provided
far more accurate posterior distributions. The simulations
provide evidence, even in cases where the optimal conver-
gence speeds are comparable, that it is better to use sGaBP
instead of RGaBP, since sGaBP provides posterior precisions
closer to the true marginal precisions.
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Fig. 3 Comparison of the convergence speed of optimal sGaBP and
optimal RGaBP over different zero-diagonal spectral radii. sGaBP out-
performed RGaBP in these simulations, the relative convergence speed
of RGaBP tending to decrease as the zero-diagonal spectral radius
increases. (Color figure online)
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Fig. 4 This is similar to Fig. 3, but the boxplots now represent the
mean KL distance between the posterior marginals (provided by each
method) and the true marginals. In these simulations, sGaBP provided
more accurate approximations to the true marginals

An interesting sub-plot is the role of relaxation versus damp-
ing in the acceleration of GaBP. Relaxation corresponds to
γ > 1, or negative λ, while damping occurs when γ < 1,
or positive λ. The zero-diagonal spectral radius of a pre-
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Fig. 5 This is similar to Figs. 3 and 4, however comparisonsweremade
over different zero-diagonal spectral radii. In contrast to the previous
figures, the smallest eigenvalue was used to regulate the zero-diagonal
spectral radius. In these simulations, the optimal relaxation factor is
greater than one and this corresponds to negative λ in the case of sGaBP.
In these simulations, sGaBP converged faster and provided more accu-
rate posterior marginals

cision matrix can be determined by one of two quantities,
these being either the largest or the smallest eigenvalue of
the precision matrix. In our simulations, we found that opti-
mal convergence occurs with relaxation factors when the
zero-diagonal spectral radius is determined by the smallest
eigenvalue and otherwise damping. This indicates that relax-
ation can only be applied when the spectral radius is less than
one, because if the zero-diagonal spectral radius is at least
one and caused by the smallest eigenvalue the (standardized)
precision matrix will either be singular or negative definite.
Figure 5 is constructed by considering zero-diagonal spectral
radii less than one and determined by the smallest eigenvalue
of the precision matrix. Each application of optimal sGaBP
and optimal RGaBP involved the use of relaxation factors.
In terms of performance, we can make similar observations
to those made on Figs. 3 and 4. In these simulations optimal
sGaBP outperforms optimal rGaBP, both in terms of conver-
gence speed and KL distances, with the relative performance
improving as the zero-diagonal spectral radius approaches
one. One can argue that the comparisons made in Fig. 5 are
more relevant than the othersmade in this section since, as the
name suggests, the focus of RGaBP is on relaxation factors.

Another method proposed in the literature to improve on
the convergence behaviour of GaBP is based on the principle

Algorithm 4 Compressed Inner-Loop Convergence Fix.
1. Provide S : p × p, b : p × 1, λ, m, ε and s as inputs to the algo-

rithm. Here, we wish to solve Sμ = b where S is positive definite
and symmetric. The parameters λ, m , ε and s denote the degree
of diagonal loading, the maximum number of iterations allowed,
the tolerance used to define convergence and the damping factor,
respectively.

2. InitiateQ(0) = diag(1, 1, . . . , 1),V(0) = diag(b1, b2, . . . , bp) and
μ(−1) = 0.

3. Set Err = Inf and n = 0.
4. while Err > ε

(a) Compute q(n)
i = 1 + λ + ∑

j∈Ni
Q(n)

j i and z(n)
i = Vii +

∑
j∈Ni

V (n)
j i for i = 1, 2, . . . , p.

(b) Set μ(n)
i = μ

(n−1)
i + z(n)

i

q(n)
i

for i = 1, 2, . . . , p.

(c) For all i �= j set Q(n+1)
i j = −S2i j

q(n)
i −Q(n)

j i

and V (n+1)
i j =

Q(n+1)
i j
Si j

(z(n)
i − V (n)

j i ).

(d) Set e(n+1)
i = bi − ∑

j Si jμ
(n)
j , Err =

√∑
k (μ

(n)
k −μ

(n−1)
k )2

∑
k (μ

(n)
k )2

,

V (n+1)
i i = s × V (n)

i i + (1 − s)e(n+1)
i and increment n.

(e) If m = n break.

5. End.

of message damping (Malioutov et al. 2006). As is men-
tionedbyMalioutov et al. (2006),we found inour simulations
that the convergence/divergence of the precision components
is independent of the degree of damping applied. Further-
more, when the precisions do converge, we found that the
degree of damping does not influence the actual converged
posterior precisions. We also observed that RGaBP tends to
outperform the message damping approach, based on opti-
mal comparisons, and therefore did not include this in our
empirical comparisons.

9.2 Compressed inner-loop convergence fix

The convergence fix (CF) method has been proposed in the
literature as a method of solving arbitrary symmetric positive
definite linear systems with GaBP (Johnson et al. 2009). The
basic idea is to solve systems of the form (S + �)μ(n+1) =
b+ �μ(n) using ordinary GaBP. Johnson et al. (2009) show
that if S + � is walk-summable, CF will converge and pro-
vide the correct solution to the system Sμ = b. We restrict
our focus to the case where � = λI. Johnson et al. (2009)
make a quick reference to a compressed inner-loop version
of CF where each application of GaBP is limited to one
iteration. Johnson et al. (2009) report that compressed inner-
loop CF can be more efficient than the original method, but
may require damping on the adjustment of the potential vec-
tor. The closeness of the compressed CF variant to sGaBP
depends heavily on the interpretation of the description in
the literature. Johnson et al. (2009) do not prove conver-
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Boxplots of Number of Iterations required for
              Convergence: sGaBP vs CF
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Fig. 6 Illustration of the iterations required for convergence of optimal
sGaBP (blue) and optimal CF (red). Both methods are relatively stable,
however sGaBP converged faster in the simulations. The relative per-
formance of sGaBP seems to improve with growth in the zero-diagonal
spectral radius. (Color figure online)

gence of compressed CF and do not consider the potential
usefulness of the diagonal loadings of the precision matrix
in the tuning of the posterior precisions. We could not find
any reference to compressed CF in the source code provided
by Bickson (2008) and we formed our interpretation here-of
by considering the source code provided for the original CF
method along with the description by Johnson et al. (2009).
We give this interpretation in Algorithm 4. We now compare
our interpretation of compressed CF to sGaBP.
The visual summaries of the iterations required for con-
vergence and the KL distances are given in Figs. 6 and 7,
respectively. In the simulations, sGaBP outperformed CF in
terms of convergence speed. Both methods were relatively
stable in terms of the number of iterations required for con-
vergence. The performance of CF in terms of KL distances
to the true marginals was poor relative to the performance
of sGaBP. In our simulations, we found that the degree of
diagonal loadings required by CF to converge optimally was
substantially higher than the tuning parameter required by
optimal sGaBP. These simulations provide empirical evi-
dence that sGaBP should be used instead of our interpretation
of CF, both in terms of convergence speed and accuracy of
the posterior distributions.

9.3 Conjugate gradient

One of the attractive properties of GaBP as a solver of
large and sparse systems of linear equations lies in distribu-
tive computing. In general, BP algorithms are well suited
to distributive implementation, under synchronous message
scheduling, since no communication is required between
nodes not linked in the graph. Like GaBP the CG method

Boxplots of mean KL distances: sGaBP vs CF
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Fig. 7 Illustration of the accuracy of the posterior distributions of opti-
mal sGaBP (blue) and optimal CF (red) to the true marginals. In the
simulations, sGaBP provided more accurate approximations. The poor
performance of CF is due to the high values of the diagonal loadings it
requires to converge optimally. (Color figure online)

is a solver of linear systems and can be applied in distribu-
tive settings. A description of the CG solver can be found in
Shewchuk (1994). Unlike GaBP, CG is guaranteed to con-
verge for all symmetric and positive definite linear systems.
Furthermore, CG is guaranteed to converge in at most p iter-
ations where p is the number of variables in the system. This
causes sGaBP to compare unfavourably with CG in small
linear systems and hence our focus will be on systems with
a large number of variables. In practice, the CG method con-
verges much faster than p iterations and the convergence
becomes faster for linear systemswith a smaller conditioning

123



666 Stat Comput (2018) 28:653–672

Boxplots of Number of Iterations required for 
             Convergence: sGaBP vs CG
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Fig. 8 Comparison of the conjugate gradient solver with sGaBP. The
CG method does not give approximations to the marginal precisions,
but we do include the mean KL distances for sGaBP. In our simulations,
these methods are comparable in terms of iterations required for con-
vergence. The boxplots corresponding to each method are reasonably
stable. TheCG boxplots have a slight advantage for larger zero-diagonal
spectral radii. Note that for each zero-diagonal spectral radius the box-
plots corresponding to sGaBP and CG were plotted adjacent to each
other

number. One of the contributions of this paper is a message-
passing scheme which guarantees convergence and therefore
we include a comparison with the CG method. We note here
that the sGaBP and CGmethods come from different areas of
mathematics, those being approximate inference and linear
algebra, respectively. The main advantage of the CG method
is that it does not require any regularization, while sGaBP
provides approximate precisions.

We now compare CG with optimal sGaBP in linear sys-
tems with 700 variables. The results are given in Fig. 8. In
these simulations, we see that both methods are quite stable
and very comparable, although CG has a small advantage
in the simulations involving larger zero-diagonal spectral
radii. The bottom plot of Fig. 8 shows the mean KL dis-
tances obtained for sGaBP. We see that these distances are
small and therefore the posterior precisions can be useful as
approximations of the true marginal precisions.

There are strategies which can be used to accelerate
sGaBP. One approach would be to consider asynchronous

message passing. The main drawback with this strategy is
the loss of distributive applicability. Another approach is to
use multiple tuning parameters, that is one tuning parameter
for each node. This will not only improve on convergence
speed, but could also be used to obtain (even) more accurate
approximations to themarginal precisions. The disadvantage
is that the complexity of deciding on the amount of tuning
is amplified. Another interesting strategy is to increase the
dimension of nodes, that is assigning more than one variable
to each node. The difficulty here is deciding on which vari-
ables to cluster together in nodes and that communication
between higher dimensional nodes is computationally more
expensive. In certain situations, we found that the GDH can
improve on optimal sGaBP in terms of convergence speed. It
is also possible to extend GDH to allow for multiple tuning
parameters which (hopefully) will accelerate convergence.
The main problem surrounding GDH is the specification of
the step size.

There are strategies to accelerate CG as well, the most
prominent being that of preconditioning. Consider solving
the system Sμ = b. The idea behind preconditioning is to
select a matrix P, solve PSP′μ̃ = Pb and transform back to
the original system using μ = P′μ̃. The matrix P should be
selected such that the conditioning number ofPSP′ is smaller
than that of S and the computational cost of computing PSP′
must be low.Here, wewish to emphasize that sGaBP can also
benefit substantially from this type of preconditioning, even
more so because it makes the selection of tuning parameters
easier. Themajor loss is in terms of the accuracy of the poste-
rior precisions as approximates for the marginal precisions.
This is because the posterior precisions now approximate
the marginal precisions of PSP′ and transformation back to
S cannot (directly) be donewithout knowing the off-diagonal
entries of [PSP′]−1. Finding a method to sensibly transform
the approximate precisions back to the original scale will be
very rewarding.

10 Concluding remarks and further research

We proposed an adjusted BP method on general MGs to
address some of the problems underlying general BP. We
took this high-level approach and applied it to a Gaussian
MG, this type of BP is referred to as Gaussian belief prop-
agation. We showed that sGaBP (our variant of GaBP) will
always converge, with sufficient regularization, and showed
how to compute posterior distributions to preserve the poste-
rior means as exact marginal means. We provided empirical
evidence that the posterior precisions provided by sGaBP
are better approximations of the true marginal precisions
when compared to two other variants of GaBP where hyper-
parameters were initialized to yield the fastest convergence.
This seems to indicate that our high-level approach should
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be investigated in other MGs and perhaps also other graph
structures (such as cluster graphs). Within the GaBP context,
there are some questions that should be the subject of further
research. The use of asynchronous message updates needs
attention. The ranges of λwhich guarantee convergence need
to be specified and work needs to be done on methods seek-
ing the value of λ which yields the fastest convergence.
Some theoretical bounds on the proximity of the posterior
precisions to the marginal precisions at the value of λ corre-
sponding to the fastest convergence would be useful. Further
improvements on convergence and the accuracy of poste-
rior distributions can be obtained through the use of multiple
regularization parameters and this should be investigated.
Another natural extension of our work is a generalization
to multivariate nodes. Another interesting prospect is con-
sidering other loss functions in Eq. 5. For instances setting
μ

(n−1)
i = 0 and using q = 2 relates to ridge regression under

the linear model while q = 1 relates to the Lasso. The sGaBP
implementation of the Lasso can be done without loss of the
conjugacy of the messages by majorization of the L1-norm
by a L2-norm. To ensure general convergence in the case of
the Lasso it may be necessary to use a penalty of the form
τ ||xi ||1 + λ

2 ||xi − μ
(n−1)
i ||22 while applying a working-set

method on the messages being updated. The latter is nec-
essary since majorization of an absolute with a quadratic
function is not possible at the origin.
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Appendix 1: Proofs

Proof of Theorem 1

Proof The proof is contained in the following list.

1. From 1, all the precision components are negative at stage

n, hence Q(n+1)
i j = −S2i j

1+λ+∑
t∈Ni /j

Q(n)
ti

= −S2i j

1+λ−∑
t∈Ni /j

|Q(n)
ti | .

From 3 we have that
∑

t∈Ni /j |Q(n)
ti | ≤ ∑

t∈Ni
|Q(n)

ti | <

δ
(n)
i < 1+λ and 1+λ−∑

t∈Ni /j |Q(n)
ti | > 0 from which

1 follows for iteration n + 1.

2. |Q(n+1)
i j | = S2i j

1+λ−∑
t∈Ni /j

|Q(n)
ti | ≥ S2i j

1+λ−∑
t∈Ni /j

|Q(n−1)
ti | =

|Q(n)
i j | since |Q(n)

ti | > |Q(n−1)
ti |, t ∈ Ni from2 for iteration

n and hence 2 is also true for n + 1.

3. δ
(n+1)
i = ∑

t∈Ni
|Q(n+1)

ti | = ∑
t∈Ni

S2ti
1+λ−δ

(n)
t +|Q(n)

i t | ≤
∑

t∈Ni

S2ti
1+λ−δt+|Q(n)

i t | ≤ δi < 1 + λ by 4 and therefore 3

is true for n + 1.

4. From the above we have,
∑

t∈Ni

S2ti
1+λ−δt+|Q(n+1)

i t |
≤ ∑

t∈Ni

S2ti
1+λ−δt+|Q(n)

i t | ≤ δi , hence 4 holds for n + 1.

�

Proof of Theorem 2

Let S be a symmetric, positive definite matrix with diagonal
entries equal to 1, and let its entries be denoted by Si j . Values
Qi j (λ) are characterized by the system

Qi j = Qi j (λ) = −
S2i j

1 + λ + ∑
t∈Ni /j Qti (λ)

, 1 ≤ i, j ∈ Ni .

We are particularly interested in the behaviour as λ → ∞. A
consequence of Theorem 1 is that limλ→∞ Qi j (λ) = 0. For
convenience, set δ = λ−1, so that δ → 0. The system can be
rewritten as

Qi j

(
− δ

∑

t∈Ni /j

Qti − 1 − δ
)

− δS2i j = 0, 1 ≤ i, j ∈ Ni .

Note that

∂

∂Qkl

(

Qi j

(
− δ

∑

t∈Ni /j

Qti − 1 − δ
)

− δS2i j

)

=

⎧
⎪⎨

⎪⎩

−δ
∑

t �=i, j Qti − 1 − δ (k, l) = (i, j),

−δQi j l = i, k ∈ Ni/j,

0 otherwise.

As δ → 0, we see that the Jacobian of the system tends
to a negative identity matrix, so in particular it is invertible.
This means that the Qi j are analytic functions of δ if δ is in
a suitable neighbourhood of 0. Consequently, the Qi j have
power series expansions in δ:

Qi j = ai jδ + bi jδ
2 + · · ·

Plugging this back into the system, we see that in fact ai j =
−S2i j , so we have

Ci j = Qi j

Si j
= −Si jδ + O(δ2).

Consider again the matrix L given in (20). Let l = p2 − p,
we now define a l× pmatrixG = [

g1 g2 . . . gp
]
. The vector

gi has entries 1 in positions (p−1)(i −1)+1, . . . , (p−1)i .
It can be shown that

L : p2 × p2 =
[
L11 : l × l λ

p−2L11G
1
λ
G′L22 L22 : p × p

]

, (26)
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with the understanding that λ > 0. Let,

D =
[
I : l × l 0 : l × p
0 : p × l λ[I : p × p]

]

, (27)

and set L̃ = DLD−1. It is easy to see that,

L̃ : p2 × p2 =
[
L11 : l × l 1

p−2L11G
L22G′ L22 : p × p

]

, (28)

and that L and L̃ will have the same eigenvalues. As a first
step, we show that the eigenvalues of L̃ are all clustered
around 0 and 1 as δ → 0. We have already discussed the
construction of L11 from the elements Ci j . Using the fact
that Ci j = −δSi j + O(δ2) we see that L11 = δA + O(δ2)

where A does not depend on λ and O(δ2) is of a suitable
dimension each entry being O(δ2). The matrix A is con-
structed exactly as L11; however, −Si j ’s are used instead of
−Ci j ’s. As discussed, the matrixL22 is diagonal with entries

λ
1+λ+∑

t �=i Qti
= λ

1+λ+O(δ)
= 1 − δ + O(δ2) and therefore

L22 = I − δI + O(δ2). We now consider the matrix,

L̃ =
[

δA δ
p−2AG

(1 − δ)G′ (1 − δ)I

]

+ O(δ2), (29)

and the following Lemma.

Lemma 1 LetM be a square matrix, and let c be a positive
constant that satisfies c > ‖M‖∞ (‖M‖∞ is the ∞-norm of
M, which can be obtained by calculating the row sums of the
absolute values of entries in M and taking the maximum of
these sums). For every x with |x | ≥ c, the matrices xI − M
and I − 1

xM are invertible, and the entries of (I − 1
xM)−1

are bounded by constants that only depend on c andM.

Proof The invertibility follows directly from the fact that
the matrix xI − M is strictly diagonally dominant by our
assumptions. For the second statement, let |M| be obtained
fromM by replacing all entries by their absolute values. Note
that |M| has the same ∞-norm as M. Clearly, the entries of

(
I − 1

x
M

)−1 =
∞∑

j=0

x− jM j

are bounded by the entries of

(
I − 1

c
|M|

)−1 =
∞∑

j=0

c− j |M| j ,

which readily proves the desired statement. �

Lemma 2 There exists a constant K > 0 such that for
sufficiently small δ, each eigenvalue x of L̃ either satisfies
|x | ≤ K δ or |x − 1| ≤ K δ.

Proof We reason by contradiction and assume that there is an
eigenvalue for which |x | > K δ and |x − 1| > K δ. Consider
first ||L11||∞ = ||δA + O(δ2)||∞ ≤ δ||A||∞ + O(δ2). If
we choose K large enough (e.g. K ≥ ‖A‖∞ + 1), then the
matrix xI − L11 = xI − δA + O(δ2) is invertible by the
previous lemma for sufficiently small δ, and the entries of
(I − 1

xL11)
−1 are bounded by absolute constants. Now, we

use the Schur complement on 29:

det(xI − L̃) = det(xI − L11)

× det
(
xI − L22 − 1

p − 2
L22G′(xI − L11)

−1L11G
)
.

(30)

It remains to show that the second determinant is not equal
to 0. We rewrite the matrix as follows:

xI − L22 − 1

p − 2
L22G′(xI − L11)

−1L11G

= (x − 1)I − (L22 − I)

− 1

x(p − 2)
L22G′(I − 1

x
L11

)−1
L11G

= (x − 1)I + H1 + 1

x
H2. (31)

Consider (L22 − I) = −δI + O(δ2) and ||L22 − I||∞ =
|| − δI + O(δ2)||∞ ≤ δ||I||∞ + ||O(δ2)||∞ = δ + O(δ2).
Therefore, ||H1||∞ ≤ κ1δ for a constant κ1 and sufficiently
small δ. The entries of (I − 1

xL11)
−1 are bounded by (I −

1
K δ

|L11|)−1 = I+ |L11|
K δ

+∑∞
j=2

|L11| j
K δ

for sufficiently small

δ by Lemma 1. Since L11 = δA + O(δ2) we have that (I −
1
xL11)

−1 = I + |A|
K + O(δ) = O(1). Furthermore, L22 =

O(1) andL11 = O(δ) fromwhichwe have thatH2 = O(δ)+
O(δ2) and ||H2||∞ ≤ κ2δ for a constant κ2 and sufficiently
small δ. If |x | ≥ 1

2 , we find that

∥
∥
∥H1 + H2

∥
∥
∥∞ ≤ κ1δ + κ2δ

|x | ≤ (κ1 + 2κ2)δ < K δ ≤ |x − 1|,

if K is chosen large enough (greater than κ1+2κ2). If |x | ≤ 1
2 ,

we get

∥
∥
∥H1 + H2

∥
∥
∥∞ ≤ κ1δ + κ2δ

|x | ≤ κ1δ + κ2

K
<

1

2
≤ |x − 1|

if K is chosen large enough and δ is sufficiently small. In
either case, we can apply the previous lemma to see that the
matrix in (31) is in fact invertible. �
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Now, we focus on the eigenvalues that are close to 1, setting
x = 1 − δt for some t with |t | ≤ K . Returning to (30), we
observe that xI − L11 is invertible for sufficiently small δ,
again by Lemma 1. Hence, we consider the second matrix:

xI − L22 − 1

p − 2
L22G′(xI − L11)

−1L11G

= (1 − t)δI − δ

p − 2
G′AG + O(δ2).

The entries of the matrix hidden by theO(δ2) term are in fact
analytic in δ and t , since we proved earlier that the entries of
L̃ are analytic functions. We can take out a factor δ to be left
with the equation

det
(
(1 − t)I − 1

p − 2
G′AG + M

) = 0, (32)

where thematrixM has entries that are analytic functions of δ
and t (if δ is restricted to a sufficiently small neighbourhood
of 0 and |t | ≤ K ). Moreover, M = O(δ). As δ → 0, we
obtain (up to a change of variable 1−t = u) the characteristic
equation of thematrix 1

p−2G
′AG (wewill show later that this

matrix is in fact equal to I−S). Its p solutions (counted with
multiplicity) give rise to p branches t1(δ), t2(δ), . . . , tp(δ)
that solve the implicit equation (32). In the same way, we can
treat the “small” eigenvalues that are close to 0.We set x = δt
for some t with |t | ≤ K , and use the Schur complement with
respect to the other diagonal block:

det(xI − L̃) = det(xI − L22)

× det
(
xI − L11 − 1

p − 2
L11G(xI − L22)

−1L22G′).

(33)

Since

xI − L22 = (x − 1 + δ)I + O(δ2) = −I + O(δ),

this matrix is invertible for sufficiently small δ, again by
Lemma 1. Moreover, we have

xI − L11 − L11G(xI − L22)
−1L22G′

= δ(tI − A + 1

p − 2
AGG′) + O(δ2),

so we can repeat the argument for the “large” eigenvalues.
We obtain p2 − p branches t̄1(δ), t̄2(δ), . . . , t̄ p2−p(δ) that

correspond to the eigenvalues of A − 1
p−2AGG′.

Returning to the large eigenvalues, we consider the prod-
uct G′AG. The matrix A is constructed by taking the first
l rows and columns of L and replacing the Ci j elements
with −Si j . The rows, (p − 1)( j − 1) + 1, . . . , (p − 1) j ,
correspond to messages received by node j (in order) and

hence g j contains ones at the rows corresponding to mes-
sages received by node j and zeros otherwise. Consider a
row corresponding to a message from node i to node j which
requires communication from other nodes (excluding j) to
node i , this row will therefore contain−Si j where gi is equal
to 1, except the element corresponding to the message from
j to i . Now, Agi will be equal to −(p − 2)Si j in the rows
corresponding to the message from i to j and zero otherwise.
The vector g j contains references to rows corresponding to
messages received by node j and since there is only one
message from i to j the nonzero elements of g j will overlap
with the nonzero elements of Agi at one element and hence
g′
jAgi = −(p − 2)Si j for j �= i . Furthermore, since there is

no message from node i to node i we have that g′
iAgi = 0.

We see that 1
p−2G

′AG = I − S. Equation (32) becomes

det
(
S − tI + H

) = 0.

Since S is symmetric, it is diagonalizable. There exists an
orthogonal matrix U such that U−1SU = D is a diagonal
matrix. We have

det
(
S − tI + H

) = det
(
U−1(S − tI + H)U

)

= det
(
D − tI + U−1HU

)
.

Recall that H = O(δ), uniformly in t (for |t | ≤ K ), so we
also have U−1HU = O(δ). Let κ be a constant such that
‖U−1HU‖∞ ≤ κδ (for sufficiently small δ and |t | ≤ K ). If

det
(
D − tI + U−1HU

) = 0,

then we must have |t − dii | ≤ κδ for one of the diagonal
entries dii of D, for otherwise the matrix D − tI + U−1HU
will be strictly diagonally dominant and thus invertible. The
diagonal entries of D are the eigenvalues σ1, σ2, . . . , σp of
S, so it follows that t = σi + O(δ).

We can deal with the small eigenvalues in the same way,
it only remains to determine the entries of A − 1

p−2AG
′G

(thereby verifying that this matrix is also symmetric and thus
diagonalizable). It is easy to verify thatG′G is a block diago-
nalmatrixwhere the blocks are of dimension (p−1)×(p−1)
with all entries equal to one, in factG′G = [B1,B2, . . . ,Bp]
where Bi is gi appended p− 1 times as columns. Consider a
row inA corresponding to a message from i to j , say a′

i j , we
have already verified that this row contains −Si j where gi is
one, except for the 1 corresponding to the message from j to
i . Now, a′

i jG
′G will contain nonzero elements in a′

i jBi and

thesewill all equal−(p−2)Si j . A row,bi j , of 1
p−2AG

′G cor-
responding to a message from i to j will contain −Si j where
gi equals one (even for the message from j to i). Hence, ai j
and bi j will be identical except for the element correspond-
ing to the message from i to j , where ai j is zero and bi j is
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−Si j . Hence, a row of A − 1
p−2AG

′G corresponding to a
message from i to j will have one element (at the message
from j to i) equal to Si j and the rest are zero. Furthermore,
the row corresponding to the message from j to i will have
S ji = Si j as an element in the position corresponding to the
message from i to j . Hence, A − 1

p−2AG
′G is symmetric.

In conclusion, the eigenvalues of L̃ are

– 1−σiδ+O(δ2), whereσ1, σ2, . . . , σp are the eigenvalues
of S, and

– ±Si jδ + O(δ2), 1 ≤ i < j ≤ p.

In particular, the largest eigenvalue of L̃ is connected to the
least eigenvalue σmin of S by

max{μ : μ is an eigenvalue of L̃} = 1 − σminδ + O(δ2).

Since S is a positive definite matrix, we know that σmin > 0.
It follows that

max{μ : μ is an eigenvalue of L̃} < 1

for sufficiently small δ.

Proof of Theorem 3

Theorem 3 Under the assumption that sGaBP converges,
with precision matrix S and potential vector b as inputs, and
setting μ equal to the converged posterior means, we have
that Sμ = b.

Proof In Theorems 1 and 2, we proved convergence to the
following stationary equations:

Qi j = −S2i j
λ + qi − Q ji

Vi j = Qi j

Si j
(λμi + zi − Vji )

μi = λμi + zi
λ + qi

, (34)

for all i and j ∈ Ni . Furthermore, qi = 1 + ∑
t∈Ni

Qti and
zi = bi + ∑

t∈Ni
Vti . Using (34):

zi + λμi = Vji + Si j
Qi j

Vi j ,

for all i and j ∈ Ni . For any k ∈ Ni we can write

Ski (zi + λμi ) = Ski Vji + Ski
Si j
Qi j

Vi j = Ski Vki + S2ik
Qik

Vik .

Furthermore, since
S2ik
Qik

= Qki − (qi + λi ), we have

Ski (zi + λμi ) = Ski Vki + (Qki − (qi + λi ))Vik . (35)

Dividing (35) by qi + λ gives

Skiμi = 1

qi + λ
Ski Vki + Qki

qi + λ
Vik − Vik . (36)

Further simplification can be done by noting that Ski Vki =
Qki (λuk + zk − Vik), and substituting into (36):

Skiμi = Qki

qi + λ
(λμk + zk − Vik) + Qki

qi + λ
Vik − Vik

= Qki

qi + λ
(λμk + zk) − Qki

qi + λ
Vik + Qki

qi + λ
Vik − Vik

= Qki

qi + λ
(λμk + zk) − Vik . (37)

Summing Skiμi over i , substituting (37) for i ∈ Nk , gives

∑

i∈Nk∪k
Skiμi = μk + (λμk + zk)

∑

i∈Nk

Qki

qi + λ
−

∑

i∈Nk

Vik .

(38)

Since Qik(λ + qi − Qki ) = −S2ik = −S2ki = Qki (λ + qk −
Qik),

Qik

λ + qk
= Qki

λ + qi
. (39)

Substituting (39) into (38):

∑

i∈Nk∪k
Skiμi = μk + (λμk + zk)

∑

i∈Nk

Qik

λ + qk
−

∑

i∈Nk

Vik

= μk + μk

∑

i∈Nk

Qik −
∑

i∈Nk

Vik

= μk + μk(qk − 1) − (zk − bk)

= qkμk − zk + bk . (40)

Finally, since μk = λμk+zk
λ+qk

, we have that μk(λ + qk) =
λμk + zk and

qkμk = zk . (41)

Substituting (41) into (40) completes the proof. �
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Appendix 2: Simulation information

Simulation scheme

We briefly describe the simulation scheme (Bach et al. 2011)
used in our empirical work. This simulation scheme also
relates GaBP to least squares estimation under the linear
model. In order to apply sGaBP, we need to generate a pos-
itive definite symmetric precision matrix (S) and potential
vector (b). One way to do this is to generate a data struc-
ture according to the linear model with n observations and p
inputs. This yields a design matrix X : n × p and a response
vector y : n× 1. We then form the sample correlation matrix
S = X′X where we assume the columns of X are standard-
ized to have zero mean and unity L2 norm. We assume the
same for y and form the sample correlation vector b = X′y.
As long as n > p, S will be positive definite and we can use
this as a valid precision matrix for the application of sGaBP.
Explanatory variables are generated from N (0, 1

n Ip), where
n is the number of observations and p the number of explana-
tory variables. The generated explanatory variables are stored
inX. Coefficients are generated, βi ∼ idd N (0, 1), and spar-
sity is introduced by randomly selecting half of the βi ’s and
setting these equal to zero. Observations of the response are
generated, y = Xβ + ε, where εi ∼ idd N (0, σ 2) and

σ 2 = 0.01 × ||Xβ||2
n . All variables were standardized to

have zero mean and unit L2 norm and we form S = X′X
and b = X′y. We used n = p throughout the empirical
section. The matrix, S, was ensured to be positive by reg-
ulating its zero-diagonal spectral radius using the method
discussed in the next section. We then apply sGaBP on a
multivariate Gaussian with precision matrix S and potential
vector b.

Regulating the zero-diagonal spectral radius

Suppose we have a precision matrix S : p × p normalized
to have ones along its diagonal. Set R = Ip − S and let τi :
i = 1, 2, . . . , p be the eigenvalues ofR. Suppose we wish to
find a new precision matrix, S∗, with zero-diagonal spectral
radius set to a specified value (say α). First, we compute the
eigen decomposition of R,

R = VDV′,

where V′V = VV′ = I and D = diag(τ1, . . . , τp). We form
a new diagonal matrix, D∗ = α

ρ̃(S)
D, and set R∗ = VD∗V′,

S∗ = I − R∗. We now show that S∗ is a valid precision
matrix with diagonal entries equal to one if α < 1. Since S is
a normalized precision matrix, the diagonal ofRwill contain
only zeros, the same is true forR∗ (being a scalar multiple of
R) and therefore the diagonal of S∗ will contain only ones.
Suppose λi , i = 1, 2, . . . , p and λ∗

i , i = 1, 2, . . . , p repre-

sent the eigenvalues of S and S∗, respectively. The following
holds:

λ∗
i = 1 − α

ρ̃(S)
(1 − λi )

= 1 − α
1 − λi

max j {|1 − λ j |}
= 1 − α × sign(1 − λi ) × |1 − λi |

max j {|1 − λ j |} .

Since |1−λi |
max j {|1−λ j |} ≤ 1, we have that 1 − α ≤ λ∗

i ≤ 1 +
α. If 0 ≤ α < 1, then S∗ will be positive definite. In our
simulations, when α > 1, we used a check to ensure that S∗
is positive definite.

References

Aji, S., McEliece, R.: The generalized distributive law. IEEE Trans.
Inform. Theory 46, 325–343 (2000)

Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Convex optimization
with sparsity-inducing norms. In: Sra, S., Nowozin, S., Wright, J.
(eds.) Optimization for Machine Learning. MIT Press, Cambridge
(2011)

Bickson, D.: Gaussian Belief Propagation: Theory and Application,
PhD thesis. The Hebrew University of Jerusalem (2008)

Chandrasekaran, V., Johnson, J.K., Willsky, A.S.: Estimation in Gaus-
sian graphical models using tractable subgraphs: a walk-sum
analysis. IEEE Trans. Signal Process. 56, 1916–1930 (2008)

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regres-
sion. Annal. Stat. 32(2), 407–499 (2004)

El-Kurdi, Y., Giannacopoulos, D., Gross,W.J.: Relaxed Gaussian belief
propagation. In: Proceedings of the 2012 IEEE International Sym-
posium on Information Theory (2012a)

El-Kurdi, Y., Gross, W.J., Giannacopoulos, D.: Efficient implemen-
tation of Gaussian belief propagation solver for large sparse
diagonally dominant linear systems. IEEE Trans. Magn. 48, 471–
474 (2012b)

Frey, B., Kschischang, F.: Probability propagation and iterative decod-
ing. In: Proceedings of the 34th Annual Allerton Conference on
Communication, Control, and Computing, Allerton House, Mon-
ticello (1996)

Gallager, R.G.: Low-Density Parity-Check Codes. MIT Press, Cam-
bridge (1963)

Guo, Q., Huang, D.: EM-based joint channel estimation and detection
for frequency selective channels using Gaussian message passing.
IEEE Trans. Signal Process. 59, 4030–4035 (2011)

Guo, Q., Li, P.: LMMSE turbo equalization based on factor graphs.
IEEE J. Sel. Areas Commun. 26, 311–319 (2008)

Johnson, J.K., Bickson, D., Dolev, D.: Fixing convergence of Gaussian
belief propagation. In: International Symposium on Information
Theory (ISIT), Seoul (2009)

Koller, D., Friedman, N.: Probabilistic GraphicalModels Principles and
Techniques. MIT Press, Cambridge (2009)

Lauritzen, S„ Spiegelhalter, D. Local computations with probabilities
on graphical structures and their application to expert systems. J.
R. Stat. Soc. B 50,157–224 (1988)

Liu, Y., Chandrasekaran, V., Anandkumar, A., Willsky, A.S.: Feedback
message passing for inference inGaussian graphical models. IEEE
Trans. Signal Process. 60(8), 4135–4150 (2012)

123



672 Stat Comput (2018) 28:653–672

Malioutov, D.M., Johnson, J.K., Willsky, A.S.: Walk-sums and belief
propagation in gaussian graphical models. J. Mach. Learn. Res. 7,
2031–2064 (2006)

Montanari, A., Prabhakar, B., Tse, D.: Belief propagation based multi-
user detection. In: IEEE Information Theory Workshop, Punta del
Este, Uruguay (2006)

Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, San Francisco (1988)

Seeger, M.W., Wipf, D.P.: Variational Bayesian inference techniques.
IEEE Signal Process. Mag. 27, 81–91 (2010)

Shachter, R.: Probabilistic inference and influence diagrams. Oper. Res.
36, 589–605 (1988)

Shafer, G., Shenoy, P.: Probability propagation. Ann. Mat. Art. Intell.
2, 327–352 (1990)

Shental, O., Siegel, P.H., Wolf. J.K., Bickson, D., Dolev, D.: Gaus-
sian belief propagation solver for systems of linear equations. In:
IEEE International Symposium on Informational Theory (ISIT),
pp 1863–1867 (2008)

Shewchuk, J.R.: An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain. School of Computer Science.
Carnegie Mellon University, Pittsburgh, pp. 15213 (1994)

Su, Q., Wu, Y.: On convergence conditions of Gaussian belief propaga-
tion. IEEE Int. Trans. Signal Process. 63, 1144–1155 (2015)

Weiss, Y.: Correctness of local probability in graphical models with
loops. Neural Comput. 12, 1–41 (2000)

Weiss, Y., Freeman,W.T.: Correctness of belief propagation inGaussian
graphical models of arbitrary topology. Neural Comput. 13(10),
2173–2200 (2001)

123


	Regularized Gaussian belief propagation
	Abstract
	1 Introduction
	2 Literature review
	3 Message update rules
	4 High-level approach
	5 Slow Gaussian belief propagation message updates
	6 Convergence analysis
	6.1 Computation of posterior distributions
	6.2 The precision components
	6.3 The mean components
	6.4 The converged posteriors

	7 Heuristic measures
	7.1 Search heuristic
	7.2 Gradient descent heuristic (GDH)
	7.3 Comparing SH and GDH: a concrete example

	8 Asynchronous message updates
	9 Empirical work
	9.1 Relaxed Gaussian belief propagation
	9.2 Compressed inner-loop convergence fix
	9.3 Conjugate gradient

	10 Concluding remarks and further research
	Acknowledgements
	Appendix 1: Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Appendix 2: Simulation information
	Simulation scheme
	Regulating the zero-diagonal spectral radius

	References




