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Abstract Combinatorial estimation is a new area of appli-
cation for sequential Monte Carlo methods. We use ideas
from sampling theory to introduce new without-replacement
sampling methods in such discrete settings. These without-
replacement samplingmethods allow the addition ofmerging
steps, which can significantly improve the resulting estima-
tors. We give examples showing the use of the proposed
methods in combinatorial rare-event probability estimation
and in discrete state-space models.

Keywords Sequential Monte Carlo · Sampling theory ·
Rare-event simulation · Network reliability

1 Introduction

Importance sampling is awidely usedMonteCarlo technique
that involves changing the probability distribution under
which simulation is performed. Importance sampling algo-
rithms have been applied to a variety of discrete estimation
problems, such as estimating the locations of change-points
in a time series (Fearnhead and Clifford 2003), the perma-
nent of a matrix (Kou and McCullagh 2009), theK-terminal
network reliability (L’Ecuyer et al. 2011) and the number of
binary contingency tables with given row and column sums
(Chen et al. 2005).
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Sequential importance resampling algorithms (Doucet
et al. 2001; Liu 2001; Del Moral et al. 2006; Rubinstein
and Kroese 2017) combine importance sampling with some
form of resampling. The aim of the resampling step is to
remove samples that have an extremely low importance
weight. In the case that the random variables of interest take
ononlyfinitelymanyvalues, formsof resampling that involve
without-replacement sampling can be used (Fearnhead and
Clifford 2003).

The resulting algorithms are similar to particle-based algo-
rithms with resampling, but the sampling and resampling
steps are replaced by a single without-replacement sampling
step. In the approach of Fearnhead and Clifford (2003), the
authors use what we characterize as a probability propor-
tional to size sampling design. These ideas have recently been
incorporated into quasi Monte Carlo (Gerber and Chopin
2015), as sequential quasi Monte Carlo. The stochastic enu-
meration algorithm of Vaisman and Kroese (2015) is another
without-replacement sampling method, based on simple ran-
dom sampling.

Use of without-replacement sampling has a number of
advantages. This type of sampling tends to automatically
compensate for deficiencies in the importance sampling den-
sity. If the importance sampling density wrongly assigns
high probability to some values, then the consequence of
this mistake is limited, as those values can still only be sam-
pled once. This type of sampling can in principle reduce
the effect of sample impoverishment (Gilks and Berzuini
2001), as there is a lower limit to the number of distinct
particles.

The first contribution of this paper is to highlight the links
between the field of sampling theory and sequential Monte
Carlo, in the discrete setting. In particular, we view the use
of without-replacement sampling as an application of the
famous Horvitz–Thompson estimator (Horvitz and Thomp-
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son 1952), unequal probability sampling designs (Brewer
and Hanif 1983; Tillé 2006) and multistage sampling. The
links between these fields have received limited attention in
the literature (Fearnhead 1998; Carpenter et al. 1999; Douc
et al. 2005), and the link with the Horvitz–Thompson esti-
mator has not been made previously.

Our application of methods from sampling theory would
likely be considered unusual by practitioners in that field. For
example, in theMonte Carlo context, physical data collection
is replaced by computation, so huge sample sizes become
quite feasible. Also, it has traditionally been unusual to apply
multistage methods with more than three stages of sampling,
but in the Monte Carlo context we apply such methods with
thousands of stages.

The second contribution of this paper is to describe a
new method of without-replacement sampling, using results
from sampling theory. Specifically, we use the Pareto design
(Rosén 1997a, b) as a computationally efficient unequal prob-
ability sampling design. Our use of the Pareto design relies
on results from Bondesson et al. (2006).

The rest of this paper is organized as follows. Sec-
tion 2 describes importance sampling and related particle
algorithms. Section 3 gives an overview of sampling the-
ory. Section 4 introduces the new sequential Monte Carlo
method incorporating sampling without replacement, and
lists some advantages and disadvantages of the proposed
methodology. Section 5 gives some numerical examples of
the effectiveness of without-replacement sampling. Section
6 summarizes our results and gives directions for further
research.

2 Sequential importance resampling

2.1 Importance sampling

Let Xd = (X1, . . . , Xd) be a random vector in R
d , having

density f with respect to a measure μ, e.g., the Lebesgue
measure or a counting measure. Let Xt = (X1, . . . , Xt )

be the first t components of Xd . We wish to estimate
the value of � = E f [h (Xd)], for some real-valued
function h.

The crude Monte Carlo approach is to simulate n iid
copies X1

d , . . . ,Xn
d according to f , and estimate � by

n−1∑n
i=1 h

(
Xi

d

)
. However, there is no particular reason to

use f as the sampling density. For any other density g such
that g(x) = 0 implies h(x) f (x) = 0,

� =
∫

h (xd)
f (xd)

g (xd)
g (xd) dμ (xd)

=
∫

h (xd) w (xd) g (xd) dμ (xd) ,

where w (xd)
def= f (xd )

g(xd )
is the importance weight. If

X1
d , . . . ,Xn

d are iid with density g, then the estimator

�̂ub = n−1
n∑

i=1

h
(
Xi

d

)
w
(
Xi

d

)
(1)

is unbiased. This estimator is known as an importance sam-
pling estimator (Marshall 1956), with g being the importance
density.

The quality of the importance sampling estimator depends
on a good choice for the importance density. If h is a non-
negative function, then the optimal choice is

g (x) ∝ h (x) f (x) , (2)

and the estimator has zero variance.
If the normalizing constant of f is unknown, then we can

replace the weight functionw with the unnormalized version
wr (x) = c f (xd )

g(xd )
, where c f is a known function but c and f are

unknown individually. In that case we use the asymptotically
unbiased ratio estimator

�̂ratio =
∑n

i=1 h
(
Xi

d

)
wr
(
Xi

d

)

∑n
i=1 wr

(
Xi

d

) . (3)

2.2 Sequential importance sampling

Let xt = (x1, . . . , xt ). We adopt Bayesian notation, so that
the interpretation of f (. . .) depends on its arguments, e.g.,
f (x3 | x2) is the density of X3 conditional on X2 = x2. It
can be difficult to directly specify an importance density on
a high-dimensional space. The simplest method is often to
build the distributions of the components sequentially. We
first specify g (x1), then g (x2 | x1) , g (x3 | x2), etc. If g is
then used as an importance density, the importance weight is

w (x) = f (x1) f (x2 | x1) . . . f (xd | xd−1)

g (x1) g (x2 | x1) . . . g (xd | xd−1)
.

Early applications of this type of sequential build-up include
Hammersley andMorton (1954) and Rosenbluth and Rosen-
bluth (1955). More recent uses include Kong et al. (1994),
Liu and Chen (1995). See Liu et al. (2001) for further details.

It is often convenient to calculate the importance weights
recursively as u1 (x1) = f (x1)

g(x1)
and

ut (xt ) = ut−1 (xt−1)
f (xt | xt−1)

g (xt | xt−1)
, t = 2, . . . , d. (4)

It is clear that ud (xd) = w (xd). Note that computing
ut requires the factorization of f (xt ) in order to compute
f (xt | xt−1), which can be difficult. An alternative is to use a
family { ft (xt )}d

t=1 of auxiliary densities, where it is required
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that fd = f . Using these densities, we can compute the
importance weights as v1 = f1(x1)

g(x1)
and

vt (xt ) = vt−1 (xt−1) ft (xt )

ft−1 (xt−1) g (xt | xt−1)
, t = 2, . . . , d. (5)

Note that ud (xd) = vd (xd) = w (xd). We obtain ut

as a special case of vt , where the auxiliary densities are
the marginals of f . As vt is more general, we use it to
define our importance weights (unless otherwise stated). If
the auxiliary densities are only known up to constant fac-
tors, then the unnormalized version of (5) involves setting
v1 (x1) = c1 f1(x1)

g(x1)
and

vt (xt ) = vt−1 (xt−1) ct ft (xt )

ct−1 ft−1 (xt−1) g (xt | xt−1)
, t = 2, . . . , d,

(6)

where the functions {ct ft (xt )} are known, but the normalized
functions { ft (xt )} may be unknown.

If cd = 1 it is possible to evaluate fd , and we can use the
estimator �̂ub defined in (1), regardless of whether ct �= 1
for t < d. Otherwise, if fd is known only up to a constant
factor, we must use �̂ratio. The variance of the corresponding
importance sampling estimator is independent of the choice
of auxiliary densities and of the constants {ct }, but dependent
on g. This will change in Sect. 2.3 with the introduction of
resampling steps.

Sequential importance sampling can be performed by sim-
ulating all d components of Xd and repeating this process
n times. Alternatively, we can simulate the first component
of all n copies of Xd . Then, we simulate the second com-
ponents conditional on the first, and so on. We adopt the
second approach, as it leads naturally to sequential impor-
tance resampling.

2.3 Sequential importance resampling

It is often clear before all d components have been simulated
that the final importance weight will be small. Samples with
a small final importance weight will not contribute signifi-
cantly to the final estimate. It makes sense to remove these
samples before the full d components have been simulated.
One way of achieving this is by resampling from the set of
partially observed random vectors. In this context, the par-
tially observed vectors are known as particles.

Let
{
Xi

t

}n
i=1 be the set of particles for a sequential impor-

tance sampling algorithm, and letW i
t = vt

(
Xi

t

)
be the impor-

tance weights in Sect. 2.2. Let
{
Yi

t

}n
i=1 be a sample of size

n chosen with replacement from
{
Xi

t

}n
i=1 with probabilities

proportional to
{
W i

t

}n
i=1, and let W t = n−1∑n

i=1 W i
t . We

can replace the variables
{(
Xi

t , W i
t

)}n
i=1 by

{(
Yi

t , W t
)}n

i=1

and continue the sequential importance sampling algorithm.
This type of resampling is called multinomial resampling.
The most famous use of multinomial resampling is in the
bootstrap filter (Gordon et al. 1993). There are numerous
other types of resampling, such as splitting or enrichment
(Wall and Erpenbeck 1959), stratified resampling and resid-
ual resampling (Liu and Chen 1995; Carpenter et al. 1999).
See Liu et al. (2001) for a recent overview.

3 Sampling theory

Sampling theory aims to provide estimates about a finite pop-
ulation by examining a randomly chosen set of elements of
the population, known as a sample. The population consists
of N different objects knownasunits, denotedby thenumbers
1, 2, . . . , N .Wewill assume that the size N of the population
is known.

We assume that for each unit i ∈ {1, . . . , N } there is a
fixed scalar value y (i). These values are known only for
the units selected in the sample. We wish to estimate some
function F (y (1) , . . . , y (N )) of the values, most often the
mean y = N−1∑N

i=1 y (i).
In its most abstract form, sampling theory is concerned

with constructing random variables taking values in certain
product sets. For example, a sample chosen with replace-
ment corresponds to a random vector taking values in⋃∞

n=1 {1, . . . , N }n . A sample of fixed size n chosen with
replacement corresponds to a random variable taking values
in {1, . . . , N }n . Define the power set P (X) as the set of all
subsets of the set X . A sample without replacement corre-
sponds to a random variable taking values in the power set
P ({1, . . . , N }), and a sample without replacement of fixed
size n corresponds to a random variable taking values in

Sn = {s ∈ P ({1, . . . , N }) : |s| = n} .

These random variables have some distribution, and these
types of distribution are known as sampling designs.

Units may be included in the sample with equal proba-
bility or unequal probability. Our focus in this section is on
without-replacement samplingwith a fixed sample size n and
unequal probabilities. The probability of including unit i in
the sample is called the inclusion probability of unit i , and
denoted by π (i). We assume that all the inclusion probabili-
ties are strictly positive. The probability that both units i and
j are included in the sample is denoted by π(i, j). This is
referred to as the second-order inclusion probability.

In order to apply unequal probability sampling designs,
we assume that there are positive values {p (i)}N

i=1 (known
as size variables). For reasons specific to the application
domain, these values are assumed to be positively correlated
with the values in {y (i)}N

i=1. In traditional sampling applica-
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tions, {p (i)}N
i=1 might correspond to (financially expensive)

census of the population at a previous time, or estimates of
the {y (i)}N

i=1 which are easily obtainable but highly vari-
able. In our setting, the {p (i)}N

i=1 play a similar role to the
importance density in traditional importance sampling.

Unlike the {y (i)}N
i=1, the {p (i)}N

i=1 are knownbefore sam-
pling is performed.We aim to have {π (i)}N

i=1 approximately
proportional to {p (i)}N

i=1, and therefore approximately pro-
portional to the {y (i)}N

i=1. For these reasons, unequal prob-
ability designs are also known as probability proportional
to size (PPS) designs. Calculation of the inclusion proba-
bilities for these designs is often difficult. See Tillé (2006)
or Cochran (1977) for further details on general sampling
theory.

3.1 The Horvitz–Thompson estimator

Assume that we are using a without-replacement sampling
design with fixed size n, and wish to estimate the total N y of
the population values. If s ∈ Sn is the chosen sample, then the
Horvitz–Thompson estimator (Horvitz and Thompson 1952)
of the total is

ŶHT =
∑

i∈s
y (i) π (i)−1 . (7)

3.2 Sampling with probability proportional to size

In the next section, we discuss some common PPS designs.
In order to apply PPS designs, we often need conditions on
the size variables {p (i)}N

i=1. The most common condition is
0 < p (i) < 1, although some designs are more restrictive.

3.2.1 The Poisson and conditional Poisson designs

For the Poisson design, we require 0 < p (i) < 1, and every
unit i is included independently with probability p (i). We
emphasize that this design selects a sample with a random
size. The density for the Poisson design is

fPoi (s) =
(
∏

i∈s
p (i)

)(
∏

i /∈s
(1 − p (i))

)

,

where s ∈ P ({1, . . . , N }). The inclusion probabilities are
π (i) = p (i). This design is trivial to sample from.

TheConditional Poisson (CP) design is the Poisson design
conditional on the sample having size n.

3.2.2 The Pareto design

The Pareto design was first proposed by Rosén (1997a, b).
Assume that 0 < p (i) < 1. We generate iid random vari-
ables U1, . . . , UN , distributed uniformly on [0, 1]. These are
used to generate the ranking variables

Qi = Ui (1 − p (i))

p (i) (1 − Ui )
, i = 1, . . . , N .

The n units with the smallest ranking variables are selected as
the sample of size n, making this design trivial to implement.
The computational complexity of generating a Pareto sample
is O (N log N ).

The density of this design is given in Bondesson et al.
(2006) as

fPar (s) =
(
∏

i∈s
p (i)

)⎛

⎝
N∏

i=1,i /∈s
(1 − p (i))

⎞

⎠

×
∑

i∈s
c (i) ,

(8)

where s ∈ Sn , and

c (i) =
∫ ∞

0
xn−1

⎛

⎝
N∏

j=1

1

1 − p ( j) + p ( j) x

⎞

⎠

× 1 − p (i)

1 − p (i) + p (i) x
dx .

The inclusion probabilities are much more difficult to com-
pute than for the previous designs.

3.2.3 The Sampford design

Assume that 0 < p (i) < 1 and
∑N

i=1 p (i) = n. This
condition is far more restrictive than the conditions for the
previously mentioned designs, and the {p (i)} cannot nec-
essarily be rescaled to satisfy this condition. The Sampford
design (Sampford 1967) has pdf

fSamp (s) ∝
(
∏

i∈s
p (i)

)(
∏

i /∈s
(1 − p (i))

)

×
∑

i∈s
(1 − p (i)) ,

(9)

where s ∈ Sn . This design has the advantage that π (i) =
p (i), so the inclusion probabilities can be exactly specified.
This design is difficult to sample from.

3.2.4 Systematic sampling

Assume that 0 < p (i), and let K = n−1∑N
i=1 p (i). We

assume that all the p (i) are smaller than K . Simulate U
uniformly on [0, K ]. The sample contains every unit j such
that

∃ integer l ≥ 1, s. t.
j−1∑

i=1

p (i) ≤ U + l K ≤
j∑

i=1

p (i) .
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We have described systematic sampling (Madow andMadow
1944) using afixedordering of units, inwhich case somepair-
wise inclusion probabilities are zero. Systematic sampling
can also be performed using a random ordering, in which
case every pairwise inclusion probability is positive.

The complexity of generating a systematic sample is
O (N ) (Fearnhead and Clifford 2003), which is asymptot-
ically faster than generation of a Pareto sample.

3.2.5 Adjusting the population

The existence of units with large size variables may preclude
the existence of a sampling design with sample size n, for
which π (i) ∝ p (i). As

∑N
i=1 π (i) = n, proportionality

would require

π (i) = np (i)
∑N

i=1 p (i)
.

This may contradict π (i) ≤ 1.
More generally, if a population does not satisfy the con-

ditions for a particular design, units can be removed from
the population and the sample size adjusted, until the condi-
tions are satisfied. For example, consider the case where the
Sampford design cannot be applied, because even though the
{p (i)}N

i=1 are positive, they cannot be rescaled to satisfy the
conditions in Sect. 3.2.3.We iteratively remove the units with
the largest size variable from the population, until the Samp-
ford design can be applied with sample size n − k, where
k is the number of units removed. The k removed units are
deterministically included in the sample, and the Sampford
design is applied to the remaining units, with sample size
n − k.

4 Sequential Monte Carlo for finite problems

Our aim in this section is to develop a new sequential Monte
Carlo technique that uses samplingwithout replacement. The
algorithms we develop are based on the Horvitz–Thompson
estimator and can be interpreted as an application of multi-
stage sampling methods from the field of sampling theory.

We begin in Sect. 4.1 by describing our new sequential
Monte Carlo technique without reference to any specific
sampling design. In Sect. 4.2, we argue for the use of the
Pareto design, with the inclusion probabilities being approx-
imated by the inclusion probabilities of a related Sampford
design. Section 4.5 gives some advantages and disadvantages
of without-replacement sampling methods.

4.1 Sequential Monte Carlo without replacement

Assume that Xd = (X1, . . . , Xd) is a random vector in R
d ,

taking values in the finite set Sd and having density f with

respect to the counting measure onSd . We wish to estimate
the value of

� = E f [h (Xd)] =
∑

xd∈Sd

h (xd) f (xd) .

Let Si be a subset of the support of Xi = (X1, . . . , Xi ). For
d ≥ t > i ≥ 1, define St (Si ) as

St (Si )
def=

⋃

xi ∈Si

Support ( f (xt | xi ))

= Support (Xt | Xi ∈ Si ) .

That is, St (Si ) is the set of all extensions of a vector in Si

to a possible value for Xt . For any value xi of Xi , let

St (xi ) = Support (Xt | Xi = xi ) .

It will simplify our algorithms to define

S1 (∅) = S1 = Support (X1) .

We begin by drawing a without-replacement sample from
the set of all possible values of the first coordinate, X1. That
is, we select a sample S1 (of fixed or random size) from S1

according to a sampling design. For any x1 ∈ S1 let π1 (x1)
be the inclusion probability for element x1 under this design.
The specific choice of the sampling design is deferred to
Sect. 4.2.

We now repeat this sampling process by drawing a
without-replacement sample from the possible values of X2,
conditional on the value of X1 being contained in S1. That
is, we select a without-replacement sample S2 fromS2 (S1)
according to a second sampling design. If x2 ∈ S2 (S1), let
π2 (x2) be the inclusion probability of element x2 under this
second design, and so on.

In general,we drawawithout-replacement sampleSt from
St (St−1) according to a sampling design, and calculate the
inclusion probabilities π t (xt ). This process continues until
a sample fromSd (Sd−1) is generated.

Algorithm 1: Sequential Monte Carlo without replace-
ment
input : Density f , function h, sampling designs
output: Estimate of �

1 S0 ← ∅
2 for t = 1 to d do
3 St ← Sample from St (St−1) according to some design
4 ∀xt ∈ St compute the inclusion probability

π t (xt ) of xt

5 return
∑

xd ∈Sd
h (xd ) f (xd )

∏d
t=1 π t (xd )−1
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Abusing notation slightly, if x is a vector of dimension
greater than t , then π t (x) will be interpreted as applying π t

to the first t coordinates. The only way for (x1, . . . , xd) to be
selected as amember ofSd is if x1 is contained inS1, (x1, x2)
is contained in S2, (x1, x2, x3) is contained in S3, etc. The
final sample Sd is generated by a sampling design, for which
the inclusion probability of xd ∈ Sd is

∏d
t=1 π t (xd). The

Horvitz–Thompson estimator [see (7)] of � is therefore

�̂ =
∑

xd∈Sd

h (xd) f (xd)
︸ ︷︷ ︸

y(i)

(
d∏

t=1

π t (xd)

)−1

︸ ︷︷ ︸
π(i)−1

. (10)

Computation of this estimator is described in Algorithm
1. The inclusion probabilities π t depend on the sampling
designs at the intermediate steps and the chosen samples. So
the estimator is a function of the final set Sd and implicitly a
function of S1, . . . ,Sd−1. “Appendix 1” shows that this esti-
mator is unbiased. In practice, Algorithm 1 is implemented
by maintaining a weight for each particle, and updating the
particleweights bymultiplying by f (xt | xt−1)

π t (xt )
every time sam-

pling is performed. That is,

f (xt )
∏t

i=1 π i (xt )
︸ ︷︷ ︸

new weight

= f (xt−1)
∏t−1

i=1 π i (xt )
︸ ︷︷ ︸

old weight

f (xt | xt−1)

π t (xt )︸ ︷︷ ︸
new term

. (11)

Note the similarities between (11) and (4). The only differ-
ence is that the inclusion probabilities replace the importance
density in the formula.

Example 1 To illustrate this methodology, assume that d =
3, that X3 is a random vector in {0, 1, 2}3 with density f
and that all our sampling designs select exactly two units.
One possible realization of our proposed algorithm is shown
in Fig. 1. There are three possible values of X1, and there
are three possible samples of size 2. We select a sample S1
according to some sampling design. Assume that units 0 and
1 are chosen. So the initial sample S1 fromS1 will be S1 =
{0, 1}. We compute the inclusion probabilities π1 (0) and
π1 (1) of each of these units being contained in the sample
S1.

Conditional on these values of X1 there are six possible
values of X2, which are

S2 (S1) = {(0, 0) , (0, 1) , (0, 2) , (1, 0) , (1, 1) , (1, 2)} .

The next step is to select a sample S2 of size 2 from these six
units, according to some sampling design. Assume that the
units (0, 1) and (1, 1) are chosen. We compute the inclusion
probabilities π2 (0, 1) and π2 (1, 1) of each of these units
being contained in the sample S2.

0 1 2

0, 0 0, 1 0, 2 1, 0 1, 1 1, 2

0, 1, 0 0, 1, 1 0, 1, 2 1, 1, 0 1, 1, 1 1, 1, 2

X1

X2

X3

Fig. 1 Illustration of the without-replacement sampling methodology,
in the case that d = 3 and X3 is a random vector in {0, 1, 2}3. The
marked subsets of X1,X2 and X3 are S1, S2 and S3

The final step is to sampleX3 conditional onX2 being one
of the values in S2. In this case, S3 (S2) is

{(0, 1, 0) , (0, 1, 1) , (0, 1, 2) , (1, 1, 0) , (1, 1, 1) , (1, 1, 2)} .

Assume that the sample of size 2 chosen is

S3 = {(0, 1, 1) , (1, 1, 1)} ,

and compute the inclusion probabilities π3 (0, 1, 1) and
π3 (1, 1, 1).

The overall inclusion probabilities of the two units in S3
are

π1(0)π2 (0, 1) π3 (0, 1, 1)

and

π1(1)π2 (1, 1) π3 (1, 1, 1) .

In this case the Horzitz–Thompson estimator of � is therefore

h (0, 1, 1) f (0, 1, 1)
(
π1 (0) π2 (0, 1) π3 (0, 1, 1)

)−1

+ h (1, 1, 1) f (1, 1, 1)
(
π1 (1) π2 (1, 1) π3 (1, 1, 1)

)−1
.

�
We refer to the elements of the sets S1, . . . ,Sd as particles.
A particle refers to an object that is chosen in a sampling
step. We refer to elements of the setsS1, . . . ,Sd (Sd−1) as
units to distinguish them from the particles. The term “unit”
is traditional in survey sampling to refer to an element of a
population, from which a sample is drawn.

If h is a nonnegative function and

d∏

t=1

π t (xd) ∝ h (xd) f (xd) , ∀xd ∈ Sd ,

we find that the estimator has zero variance. This formula
is similar to the zero-variance importance sampling density
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given in (2). An alternative method of obtaining a zero-
variance estimator is to choose the d sampling designs, such
that at every sampling step, with probability 1 all the possible
units are sampled. In this case, the estimator corresponds to
exhaustive enumeration of all the possible values of Xd .

We can generalize to the case where c f (xd) is known
but the normalizing constant c is unknown, and the aim is
to estimate c. The final estimator returned by Algorithm 1
should be changed to

∑

xd∈Sd

c f (xd)

d∏

t=1

π t (xd)−1 .

If the aim is to estimate E f [hd (Xd)] but only c f (xd)

is known for some unknown constant c, then as in standard
sequential Monte Carlo, we use the estimator

⎛

⎝
∑

xd∈Sd

h (xd) c f (xd)

d∏

t=1

π t (xd)−1

⎞

⎠

×
⎛

⎝
∑

xd∈Sd

c f (xd)

d∏

t=1

π t (xd)−1

⎞

⎠

−1

. (12)

This estimator is no longer unbiased.

4.2 Choice of sampling design

So far we have not discussed the choice of the sampling
design. Our preferred choice is to simulate from the Pareto
design, due to the ease of simulation. The inclusion proba-
bilities are difficult to calculate, but we use the connections
to the Sampford design, for which the inclusion probabilities
are easy to calculate, to avoid this problem.

The pdfs of the Sampford and Pareto designs [Eqs. (8) and
(9)] differ only in the last termof the product. Bondesson et al.
(2006) shows that if

D =
N∑

i=1

p (i) (1 − p (i)) is large and
N∑

i=1

p (i) = n, (13)

then the constants c (i) in (8) are approximately equal to 1−
p (i),which is the corresponding term in (9). This implies that
the Pareto and Sampford designs are almost identical in this
case. The condition that D be large is generally equivalent to
requiring that n and N − n are not small. More importantly,
if (13) holds then the inclusion probabilities of the Pareto
design are approximately {p (i)}N

i=1.
We normalize the size variables to sum to n, simulate

directly from the Pareto design and assume that the inclusion
probabilities are the normalized size variables. This choice
has very significant computational advantages. It allows for

fast sampling and fast computation of the inclusion proba-
bilities.

In theory, this approximation to the inclusion probabilities
will introduce bias into our algorithms, but empirically this
bias is found to be negligible. We emphasize that it is the
approximation of the inclusion probabilities that is impor-
tant. The fact that the designs themselves are almost identical
is only a means of obtaining this approximation for the inclu-
sion probabilities.

In general, the condition

N∑

i=1

p (i) = n, and 0 < p (i) < 1, ∀1 ≤ i ≤ N (14)

required by the Sampford design will not hold, and this can-
not always be fixed by rescaling the {p (i)}. In these cases,
we take the approach outlined in Sect. 3.2.5.We deterministi-
cally select the unit corresponding to the largest size variable
p (i). If the {p (i)} for the remaining units (suitably rescaled
to sum to n −1) lie between 0 and 1 then the remaining n −1
units are selected according to the Pareto design. Otherwise,
units are chosen deterministically until these conditions are
met, and the design can be applied. The units chosen deter-
ministically will have inclusion probability 1.

Example 2 We let N = 1000 and simulated the size vari-
ables {p (i)}N

i=1 uniformly on [0, 1]. For a fixed value of n,
these size variables were rescaled to sum to n and used as the
size variables for Pareto and Sampford designs. The inclu-

sion probabilities
{
πPareto

n (i)
}N

i=1 of the Pareto design were
computed. Recalling that the inclusion probabilities of the
Sampford design are {p (i)}N

i=1, we calculated

max
1≤i≤N

∣
∣p (i) − πPareto

n (i)
∣
∣

πPareto
n (i)

. (15)

This was repeated for different values of n, and the results
are shown in Fig. 2. It is clear that the inclusion probabilities
for the Pareto design and the Sampford design are extremely
close. Calculating the Pareto inclusion probabilities out to
n = 200 required 1000 base-10 digits of accuracy. As a
result, these calculations were extremely slow. �

It remains to specify the size variables {p (i)} for the
design. If we wish to use an importance sampling density
g to specify the size variables, then for sampling at step t we
propose (with a slight abuse of notation) to use size variables

p (xt ) = g (xt )
∏t−1

i=1 π i (xt−1)
. (16)
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Fig. 2 Maximum relative error [as measured by (15)] when approxi-
mating the Pareto inclusion probabilities by {p (i)}N

i=1. The x axis is the
sample size n.

The size variables can also be written recursively as

p (xt ) = p (xt−1)
g (xt | xt−1)

π t−1 (xt−1)
. (17)

Equation (17) is similar to (4).
These size variables give a straightforward method for

converting an importance sampling algorithm into a sequen-
tial Monte Carlo without replacement algorithm, shown in
Algorithm 2. For simplicity, Algorithm 2 omits the details
relating to the deterministic inclusion of some units if (14)
fails to hold. If the sample size n is greater than the number
N of units, then the entire population is sampled and every
inclusion probability is 1.

Algorithm 2: Sequential Monte Carlo without replace-
ment, using an approximate Sampford design and an
importance density
input : Density f , function h, importance density g, sample size

n
output: Estimate of �

1 S0 ← ∅
2 for t = 1 to d do
3 Compute {p (xt ) : xt ∈ St (St−1)} and

normalize to sum to n
4 St ← Pareto sample of min {n, |St (St−1)|}

from St (St−1) with size variables {p (xt )}
// The approx. inclusion probability of
// xt ∈ St is π t (xt ) = p (xt ) or π t (xt ) = 1

5 return
∑

xd ∈Sd
h (xd ) f (xd )

∏d
t=1 π t (xd )−1

4.3 Merging of equivalent units

When applying without-replacement sampling algorithms,
there are often multiple values which will have identi-
cal contributions to the final estimator. Let h∗ (xt ) =

E [h (Xd) | Xt = xt ]. That is, when the sample is taken on
Line 3 of Algorithm 1, there may be values xt and x′

t in
St (St−1), for which h∗

t

(
x′

t

) = h∗
t (xt ). In such a case, the

units can be merged, reducing the set of units to which the
sampling design is applied. Before continuing, we give a
short example illustrating how this idea works.

Example 3 Consider again the example shown in Fig. 1 of a
random vector taking values in {0, 1, 2}3. For simplicity, we
use the conditional Poisson sampling design. Let

h (0, 1, 0) = 6, h (0, 1, 1) = h (0, 1, 2) = 0.1,

h (1, 1, 0) = 2, h (1, 1, 1) = h (1, 1, 2) = 2.1,

and let h be equal to 2 for all other values of X3. Assume
that f is the uniform density on {0, 1, 2}3, so that the value
we aim to estimate is 2.015. Let g (x1) = 1

3 , g (x2) = 1
9 and

g (x3) = 1
27 . This implies that the inclusion probabilities at

iteration t = 1 are 2
3 , and the inclusion probabilities of all

the units inS2 (S2) are 1
3 .

At iteration t = 2, the sampling design is applied to
S2 (S2), which includes (0, 1) and (1, 1). In this example,
we have

h∗
3 (0, 1) = h∗

3 (1, 1) = 62

30
.

Both units have the same expected contribution to the final
estimator, and if this was known, we could replace the pair
of units by a single unit (0, 1) + (1, 1), where the merged
unit is represented by (0, 1) or (1, 1). After the merging, we
have the situation shown in Fig. 3, where we have chosen
to represent the merged unit as (0, 1). We could choose to
represent the merged unit by (1, 1), in which case the units
underneath the merged unit would be (1, 1, 0), (1, 1, 1) and
(1, 1, 2). The value of the size variable for the merged unit is

g (0, 1)

π1 (0)
+ g (1, 1)

π1 (1)
= 1

3
.

We must also double the contribution of the merged unit to
the final estimator, as it represents two units.

0 1 2

0, 0 0, 2 0, 1 + 1, 1 1, 0 1, 2

0, 0, 0 0, 0, 1 0, 0, 2 0, 1, 0 0, 1, 1 0, 1, 2

X1

X2

X3

Fig. 3 Illustration of merging of units in Example 3. Here d = 3 and
X3 is a random vector in {0, 1, 2}3. The merged unit is represented by
(0, 1), but could also be represented by (1, 1). The marked subsets of
X1,X2 and X3 are S1, S2 and S3
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If units (0, 1, 0) and (0, 1, 1) are chosen in the third step,
the value of the estimator is

12
27

(
π1 (1) π2 ((0, 1) + (1, 1)) π3 (0, 1, 0)

)−1

+ 0.2
27

(
π1 (1) π2 ((0, 1) + (1, 1)) π3 (0, 1, 0)

)−1
.

The bolded values are 2h (0, 1, 0) f (0, 1, 0) and
2h (0, 1, 1) f (0, 1, 1), where the factor of 2 accounts for the
merging.

Assume that units 0 and 1 are initially selected. If nomerg-
ing is performed, then the variance of estimator is 0.52. If
the merging step is performed, and the merged unit is repre-
sented by (0, 1), then the variance of the estimator is 1.04. If
the merged unit is represented by (1, 1), then the variance of
the estimator is 0.0048. �

As in Sect. 4.2, let g be the importance function, for sim-
plicity assumed to be normalized. In order to formalize the
idea of merging equivalent units, we add additional informa-
tion to all the sample spaces and the samples chosen from
them. The new units will be triples, where the first entry xt

represents the value of the unit, the second entry w can be
interpreted as the importance weight, and the third entry p
can be interpreted as the size variable.

With slight abuse of notation, we redefine the sets
S0, . . . ,Sd to account for this extra structure. Let

T1 = T1 (∅) = {(x1, f (x1), g(x1)) : x1 ∈ S1} .

The initial sample S0 is chosen from T1, with probability
proportional to the third component. Assume that sample
St−1 has been chosen, and let

Tt (St−1) =
{(

xt , w
f (xt | xt−1)

π t−1 (xt−1)
, p

g (xt | xt−1)

π t−1 (xt−1)

)

:
(xt−1, w, p) ∈ St−1, xt ∈ Support (Xt | Xt−1 = xt−1)} .

(18)

Note that (18) incorporates the recursive equations in (11)
and (17). Using these definitions, we can sample S2 from
T2 (S1) , S3 from T3 (S2), etc. We can now state Algorithm
3. If the merging step on Line 4 is omitted, then this algo-
rithm is in fact a restatement of Algorithm 1 using different
notation. The merging rule on Line 4 is given in Proposition
1.

Proposition 1 If units (xt , w, p) and
(
x′

t , w
′, p′) in

Tt (St−1) satisfy h∗ (xt ) = h∗ (x′
t

)
, they can be removed and

replaced by the unit

(
xt , w + w′, p + p′) or

(
x′

t , w + w′, p + p′) .

The final estimator is still unbiased.

Algorithm 3: Sequential Monte Carlo without replace-
ment, with merging
input : Density f , function h, sampling designs
output: Estimate of �

1 S0 ← ∅
2 for t = 1 to d do
3 U ← Tt (St−1)

4 Modify U by merging pairs according to Proposition 1
5 St ← Sample from U according to some design, with size

variables {p : (xt , w, p) ∈ U }
6 ∀xt ∈ St compute the inclusion probability

π t (xt ) of xt

7 return
∑

(xd ,w,p)∈Sd

h(xd )w

πd (xd )

Proof See “Appendix 2.”

The value p + p′ in the third component of the merged
unit can be replaced by any positive value, without biasing
the resulting estimator. We gave an example of this type of
merging in Example 3. Example 3 is unusual, as it merges
units for which the function h takes very different values. A
more common way for h∗ (xt ) = h∗ (x′

t

)
to occur is if

h (Xd) | Xt = xt
d= h (Xd)

∣
∣ Xt = x′

t . (19)

Example 4 We now continue Example 3, using the new defi-
nitions ofT1 andTt (St−1). As shown in Fig. 3, the six units
in T2 (S1) become five after the merging step. Of these, two
units are chosen to be in S2; these units are
(

(0, 0) ,
f (0, 0)

π1 (0)
,

g (0, 0)

π1 (0)

)

=
(

(0, 0) ,
1

6
,
1

6

)

and
(

(0, 1) ,
f (0, 1)

π1 (0)
+ f (1, 1)

π1 (1)
,

g (0, 1)

π1 (0)
+ g (1, 0)

π1 (1)

)

=
(

(0, 1) ,
1

3
,
1

3

)

.

The other possible value for themerged unit is
(
(1, 1) , 1

3 ,
1
3

)
.

�
Algorithm 3 does not specify a sampling design. We

suggest the use of a Pareto design, with the inclusion proba-
bilities being approximated by those of a Sampford design, as
discussed in Sect. 4.2. However, these types of merging step
can applied with any sampling design, including the system-
atic sampling suggested in Fearnhead and Clifford (2003).

4.4 Links with the work of Fearnhead and Clifford
(2003)

Carpenter et al. (1999) and Fearnhead and Clifford (2003)
propose a resampling method which they name “stratified

123



642 Stat Comput (2018) 28:633–652

sampling.” This method is systematic sampling (Sect. 3.2.4)
with probability proportional to size,with largeunits included
deterministically. This method has a long history in sampling
theory (Madow andMadow 1944;Madow 1949; Hartley and
Rao 1962; Iachan 1982). That large units must be included
deterministically in a PPS design is well known in the sam-
pling theory literature (Sampford 1967; Rosén 1997b; Aires
2000).

From a sampling theory point of view, the optimality
result of Fearnhead and Clifford (2003) can be paraphrased
as “sampling with probability proportional to size is opti-
mal.” As the optimality criteria relates only to the inclusion
probabilities, the Sampford design satisfies this condition
just as well as systematic sampling. The conditional Poisson
and Pareto designs will approximately satisfy this condition,
especially when n is large.

In the approach of Fearnhead and Clifford (2003), units
with large weights are included deterministically, and their
weights are unchanged by the sampling step. All other units
are selected stochastically, and are assigned the same weight
if they are chosen.

This can be interpreted as an application of the Horvitz–
Thompson estimator. With these observations, the approach
of Fearnhead and Clifford (2003) can be interpreted as an
application of Algorithm 1 using systematic sampling.

4.5 Advantages and disadvantages

Like many methods that involve interacting particles (e.g.,
multinomial resampling algorithms), the sample size used
to generate the estimator is fixed at the start and cannot
be increased without recomputing the entire estimator. By
contrast, additional samples can be added to an importance
sampling estimator and some sequential Monte Carlo esti-
mators (Brockwell et al. 2010; Paige et al. 2014), if a lower
variance estimator is desired.

Without-replacement sampling allows the use of particle
merging steps, which can dramatically improve the variance
of the resulting estimators,while also lowering the simulation
effort required. Such merging steps are not possible with
more classical types of resampling.

If particle merging is used then the resulting estimator is
specialized to the particular function h, as the units that can be
merged depend on the function h. By contrast, the weighted
sample generated by an importance sampling estimator can,
in theory, be used to estimate the expectation of a different

function h. In practice, even importance sampling estimators
can be optimized by discarding particles as soon as they are
known to make a contribution of zero to the final estimator.
In such cases, even the importance sampling algorithm is
specialized to the function h.

The choice of the sample size is far more complicated
than for traditional importance sampling algorithms. A large
enough sample size will return a zero-variance estimator,
but this sample size is generally impractical. However, it is
unclear whether the variance of the estimator must decrease
as n decreases. This is particularly true when merging steps
are added to the algorithm. The following simple example
illustrates this.

Example 5 Take the example shown inFig. 4,whereX2 takes
on eight values and the values of h (x2) are as given. Assume
that f (x2) = 1

8 for each of these values. Let the size variables
be p (x1) = p (x2) = 1. if n = 1 the estimator has zero
variance. However, with n = 2 the estimator has nonzero
variance; the value to be estimated is 18

8 , but if units (0, 0)
and (0, 1) are selected, the estimator is 2.8125 �= 18

8 . So
increasing the sample size has increased the variance from
zero to some nonzero value.

Despite the previous remarks about choice of sample
size, in practice the variance of the estimator decreases as
n increases. As the variance of the estimator will reach 0
for finite n, it must be possible to observe a better than n−1

decay in the variance of the estimator. This is in some sense a
trivial statement, as there exists a sample size k, such that the
estimator has nonzero variance with this sample size, but for
sample size k + 1 the estimator has zero variance. However,
we observe more rapid decreases in practical applications of
these types of estimators. For an example, see the simulation
results in Sect. 5.2.

5 Examples

In our examples, we compare estimators using their work-
normalized variance, defined as

WNV
(
�̂
) = TVar

(
�̂
)
,

where T is the simulation time to compute the estimator. In
practice, the terms in the definitions of WNRV are replaced
by their estimated values.

Fig. 4 A pathological example,
where increasing the sample
size from 1 to 2 increases the
variance

210

0, 0 0, 1 1, 0 1, 1 1, 2 2, 0 2, 1 2, 2

X1

X2

h (X2) 3 3 2 2 2 2 2 2
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5.1 Change-point detection

We consider the discrete-time change-point model used in
the example in Section 5 of Fearnhead and Clifford (2003).
In this model, there is some underlying real-valued signal
{Ut }∞t=1. At each time-step, this signal maymaintain its value
from the previous time, or change to a new value. The obser-
vations {Yt }∞t=1 combine {Ut }∞t=1 with some measurement
error. This measurement error will sometimes generate out-
liers, in which case Yt is conditionally independent of Ut .
This model is a type of hidden Markov model.

Let Xt = (Ct , Ot ) be the underlyingMarkov chain, where
both Ct and Ot take values in {1, 2}, and let {Vt }∞t=1 and
{Wt }∞t=1 be independent sequences of standard normal ran-
dom variables. Let

Ut =
{

Ut−1 if Ct = 1,
μ + σ Vt if Ct = 2.

If Ct = 2, the signal changes to a new value, distributed
according to N

(
μ, σ 2

)
. Otherwise, the signal maintains the

previous value. Let

Yt =
{

Ut−1 + τ1Wt if Ot = 1,
ν + τ2Wt if Ot = 2.

If Ot = 2, the observed value is an outlier and is distributed
according to N

(
ν, τ 22

)
. Otherwise, the measurement reflects

the underlying signal, with error distributed according to
N
(
0, τ 21

)
.

It remains to specify the distribution of the Markov chain
{Xt }∞t=1. In the example given in Fearnhead and Clifford
(2003), the {Ct }∞t=1 are assumed iid, and {Ot }∞t=1 is aMarkov
chain, with

P (Ot = 2 | Ot = 2) = 0.75,

P (Ot = 2 | Ot = 1) = 1/250

P (Ct = 2) = 1/250.

In this example, there is some integer d > 1, and the aim is to
estimate the marginal distributions of {Ct }d

t=1 and {Ot }d
t=1,

conditional on Yd = {Yt }d
t=1.

For the purposes of this example, we apply a version
of Algorithm 3 that involves some minor changes. See
“Appendix 1” for further details. The final algorithm is given
as Algorithm 6 in “Appendix 3.” This algorithm contains the
merging steps outlined in Fearnhead and Clifford (2003),
which operate on principles similar to those described in
Sect. 4.3.

For this example, we used the well-log data from Ó Rua-
naidh and Fitzgerald (1996) and Fearnhead and Clifford
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Fig. 5 The well-log data from Ó Ruanaidh and Fitzgerald (1996)

(2003), and aimed to estimate the posterior probabilities

P (Ct = 2 | Yd = yd) and P (Ot = 2 | Yd = yd) ,

which are the posterior probabilities that there is a change or
an outlier at time t , respectively. For this dataset d = 4050.
The data are shown in Fig. 5.

We applied twomethods to this problem. The first was the
method of Fearnhead andClifford (2003), and the secondwas
our without-replacement sampling method, using a Pareto
design as an approximation to the Sampford design. Both of
these methods can be viewed as specializations of Algorithm
6, where the method of Fearnhead and Clifford (2003) uses
systematic sampling. Both methods were applied 1000 times
with n = 100. Each run of either method produces 4050
outlier probability estimates and 4050 change-point proba-
bility estimates, sowe provide a summary of the results. Note
that the sample size required to produce a zero-variance esti-
mator is on the order of 24050 in this case, which is clearly
infeasible.

For the 4050 outlier probabilities, our method had a lower
variance for 1656 estimates, and a higher variance for 2393
estimates. For the 4050 change-point estimates, our method
had a lower variance for 1915 estimates, and a higher variance
for 2121. This suggests that systematic sampling performs
better than our approximation. Figure 6 shows the variances
of every outlier probability estimate, under both methods.
This plot suggests that if systematic sampling performs
better, the improvement is small. The results for the change-
points are similar.

Recall from Sect. 4.5 that the optimality condition of
Fearnhead and Clifford (2003) can be paraphrased as “sam-
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Fig. 6 The variances of the estimated posterior outlier probabilities,
using both methods, shown on a log scale

pling with probability proportional to size is optimal.” So,
to the extent that the approximation for the inclusion proba-
bilities of the Pareto design (see Sect. 4.2) holds, we expect
that both methods should have similar performance. This is
reflected in the simulation results. There is some discrepancy
for estimates of the outlier probabilities, where systematic
sampling performs slightly better. This may be due to the
somewhat small sample size.

Fearnhead and Clifford (2003) also applied the mix-
ture Kalman filter (Chen and Liu 2000) and a multinomial
resampling algorithm. They showed that the without-out
replacement sampling approach significantly outperformed
the alternatives. As our approach has equivalent performance
to the method of Fearnhead and Clifford (2003), we do not
consider these alternatives further.

5.2 Network reliability

5.2.1 Without particle merging

Wenowgive an application ofwithout-replacement sampling
to the K-terminal network reliability estimation problem.
Assume we have some known graph G with m edges, which
are enumerated as e1, . . . , em . We define a random subgraph
X ofG, with the same vertex set. Let X1, . . . , Xm be indepen-
dent binary random variables representing the states of the
edges ofG.With probability θi variable Xi = 1, inwhich case
edge ei ofG is included inX. For a fixed setK = {v1, . . . , vk}
of vertices of G, the K-terminal network unreliability is the
probability � that these vertices are not connected; that is,

they do not all lie in the same connected component of X.
As computation of this quantity is in general #P complete,
it often cannot be computed and must be estimated. If the
probabilities {θi } are close to 1 then the unreliability is close
to zero, and the problem is one of estimating a rare-event
probability.

One of the best methods currently available for estimating
the unreliability � is approximate zero-variance importance
sampling (L’Ecuyer et al. 2011). This method is based on
mincuts. In theK-terminal reliability context a cut of a graph
g is a set c of edges of g such that the vertices inK do not all
lie in the same component of g \ c. A mincut is a cut c such
that no proper subset of c is also a cut.

In L’Ecuyer et al. (2011) the states of the edges are
simulated sequentially using state-dependent importance
sampling. Assume that the values x1, . . . , xt of X1, . . . , Xt

are already known. Let G (x1, . . . , xt ) be the subgraph of G
obtained by removing all edges ei where i ≤ t and xi = 0.
Let C (x1, . . . , xt ) be the set of all mincuts of G (x1, . . . , xt )

that do not contain edges e1, . . . , et . Let E (·) be the event
that a set of edges is missing from X. Define

γ + = max {P (E (c)) : c ∈ C (x1, . . . , xt , 1)} ,

γ − = max {P (E (c)) : c ∈ C (x1, . . . , xt , 0)} .

Under the importance sampling density, Xt+1 = 1with prob-
ability

θt+1γ
+

θt+1γ + + (1 − θt+1) γ − ,

instead of θt+1 under the original distribution. We add a
without-replacement resampling step to this importance sam-
pling algorithm by implementing Algorithm 2. We refer to
this algorithm as WOR. As this algorithm is a fairly straight-
forward specialization of Algorithm 2, we do not describe
the details of the algorithm here.

5.2.2 With particle merging

In order to applyAlgorithm3,weonly need to specify the par-
ticlemerging step.Wedo this bymarking someof themissing
edges in each unit as present, once it has been determined that
this change makes no difference to the connectivity proper-
ties of the graph.

An example of this situation is shown in Fig. 7. In this
case edge {3, 8} is known to be missing, but vertices 3 and 8
are already known to be connected. So whether edge {3, 8} is
present or absent cannot change the connectivity properties
of the final graph, regardless of the states of the remaining
edges.

Assume that we have some unit (xt , w, p), and for some
1 < i < t, xi = 0. Let

{
v, v′} = ei . Assume that v and v′ are
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Fig. 7 Example of the merging approach for network reliability. Thick
edges are known to be present. Dashed edges are known to be absent.
The states of all other edges are unknown

in the same connected component of G (x1, . . . , xt ), so that
these vertices are already connected by a path that does not
include edge ei . Regardless of the states xt+1, . . . , xm of the
remaining edges, setting xi = 1 will never change whether
the vertices inK to lie in the same connected component. So
if

x′
i = (x1, . . . , xi−1, 1, xi+1, . . . , xt ) ,

it can be shown that h∗ (xt ) = h∗ (x′
t

)
. This observation leads

to the particle merging step in Algorithm 4.
It is interesting to note that this algorithm is in some sense

similar to the turnip (Lomonosov 1994), which is a variation
on permutation Monte Carlo (Elperin et al. 1991). In the
case of the turnip, the states of some edges are ignored. In
our case, the merging step also tends to ignore the states of
certain edge.

5.2.3 Results

We performed a simulation study to compare four different
methods, all based on the importance sampling scheme of
L’Ecuyer et al. (2011). This importance sampling scheme by
itself is method IS. Adding without-replacement sampling
(Algorithm 2) is methodWOR.Addingwithout-replacement
sampling and particle merging (Algorithm 3) is method
WOR-Merge. Adding the resampling method of Fearnhead
and Clifford (2003) is method Fearnhead. We used sample
sizes 10, 20, 100, 1000 and 10,000.

We also implemented a residual resampling method (Car-
penter et al. 1999). However, this method was found to
perform uniformly worse than vanilla importance sampling
on all the network reliability examples tested. The resampling

Algorithm4:Merging step for network reliability exam-
ple.
input : Set U of units of the form (xt , w, p).
output: Set M of merged units

1 W, M ← ∅
2 for (xt , w, p) ∈ U do
3 for i = 1 to t do
4

{
v, v′} ← ei

5 if xi = 0 and v, v′ are in the same component of
G (x1, . . . , xt ) then

6 xi ← 1 // Modify entry i of xt

7 Add (xt , w, p) to W // Store modified values

8 W ′ ← {xt : (xt , w, p) ∈ W } // Extract unique
values of the first component

9 for xt ∈ W ′ do
10 w ← ∑

(x′
t ,w

′,p′)∈W,x′
t =xt

w′

11 p ← ∑
(x′

t ,w
′,p′)∈W,x′

t =xt
p′

12 Add (xt , w, p) to M
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Fig. 8 Dodecahedron graph

step has the affect of “negating” the importance sampling
scheme. The results for this method are not shown in the fig-
ures for this section, as they cannot reasonably be shown on
the same scale.

The first graph testedwas the dodecahedron graph (Fig. 8),
with K = {1, 20} and θi = 0.99. Results are given in
Fig. 9. In this case, the true value of � is known to be
2.061891 × 10−6. All the without-replacement sampling
methods have the property that the WNRV decreases as
the sample size increases. Method WOR-Merge clearly
outperforms the other methods. Application of a residual
resampling algorithm to this problem resulted in an estimator
with a work-normalized variance on the order of 10−9, many
orders of magnitude worse than the results for the other four
methods.
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Fig. 9 Work-normalized variance results for the dodecahedron graph,
with edge reliability θi = 0.99

Fig. 10 Modified 9× 9 grid graph. The vertices inK are highlighted

The second graph tested was a modification of the 9 × 9
grid graph (Fig. 10), where K contains the highlighted ver-
tices. The modified grid graph is a somewhat pathological
case for this importance sampling density, as in the limit as
p → 1 one of the 9 minimum cuts has a very low prob-
ability of being selected. Results in Fig. 11 show that the
WOR-Merge estimator significantly outperforms the other
estimators.

The third graph tested was three dodecahedron graphs
arranged in parallel (Fig. 12), with θi = 0.9999. Simulation
results are shown in Fig. 13. It is interesting to see that the
performance of method WOR-Merge does not change sig-
nificantly when increasing the sample size from 20 to 100,
or from 1000 to 10,000.
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Fig. 11 Work-normalized variance results for the modified 9× 9 grid
graph with edge reliability θi = 0.99

Fig. 12 Three dodecahedron graphs arranged in parallel. The vertices
in K are highlighted
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Fig. 13 Work-normalized variance results for three dodecahedron
graphs in parallel, with edge reliability θi = 0.9999
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Fig. 14 Three dodecahedron graphs arranged in series. The vertices in
K are highlighted
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Fig. 15 Work-normalized variance results for three dodecahedron
graphs in series, with θi = 0.9999

The fourth graph tested was three dodecahedron graphs
arranged in series (Fig. 14), with θi = 0.9999. Simulation
results are given in Fig. 15.

6 Concluding remarks

This article has described the incorporation of ideas from
sampling theory into sequential Monte Carlo methods. Tak-
ing a sampling theory approachprovides a newperspective on
the use of without-replacement sampling methods. It shows
how the inclusion probabilities of the sampling designs take
the place of the importance density in a standard importance
resampling algorithm.

This article shows that the sampling method of Fearn-
head and Clifford (2003) is systematic sampling, and that
the optimality result of Fearnhead and Clifford (2003) relates
to probability proportional to size sampling. The stochastic
enumeration algorithm of Vaisman andKroese (2015) is also
a special case of the methods described in this paper. It uses
simple random sampling without importance sampling, and
introduces some merging ideas, which they term tree reduc-
tions.

Adding a resampling step to an importance sampling
algorithm has the potential to increase the variance of the
resulting estimator. If the importance sampling density is
sufficiently different from the zero-variance density, adding a
without-replacement resampling step can result in significant
improvement. We illustrated this with reference to the K-
terminal network reliability problem, and a hidden Markov
model.

In the case of the network reliability example, adding
a without-replacement sampling step improved the vari-
ance of the importance sampling estimator proposed by
L’Ecuyer et al. (2011) by an order ofmagnitude. Thewithout-
replacement algorithms have the property that the work-
normalized variance decreases as the sample size increases;
the importance sampling algorithm on which they are based
do not have this property. In our experience, the importance
sampling estimator was (previously) the best known estima-
tion method for this problem.

We also applied a residual resampling method to the net-
work reliability example, and found that its performance
was an order of magnitude worse than the original impor-
tance sampling scheme. This is because in this case the
resampling step tends to “negate” the importance sampling
step. This highlights an important distinction between the
without-replacement sampling methods we describe, and
more traditional forms of resampling. In themethods we pro-
pose, the true density f does not enter into the resampling
step. This works extremely well, where the importance den-
sity is well designed. The true density could be incorporated
into the sampling step by changing the definition of the size
variables.

In this article, we suggested the use of a Pareto sampling
design,where the inclusionprobabilities are approximatedby
those of a Sampford design. This results in a design which is
easy to simulate from, and which has inclusion probabilities
which are easy to calculate. In this sense, the proposed design
is similar to systematic sampling. The performance of the
Pareto approximation to the Sampford design is found to
be similar to the systematic sampling design suggested by
Fearnhead and Clifford (2003).

The approximation we suggest has the advantage that the
joint inclusion probability of every pair of units is positive.
This condition is known to be desirable in the sampling
design literature, as it allows the estimation of the variance of
the Horvitz–Thompson estimator. In future, this may allow
the estimation of the variance of the without-replacement
sampling estimator, without the need to construct indepen-
dent estimates.

Caution is potentially needed when applying an approx-
imation within an iterative procedure, as it is possible that
approximation errors will accumulate. Our numerical results
suggest that such an accumulation of errors is not signif-
icant. Ultimately, such concerns must be balanced against
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the advantages of the proposed methods. Further work in the
field of sampling designmaymake the use of approximations
unnecessary.

When using without-replacement sampling, the merging
of equivalent units can significantly reduce the variance of
the resulting estimators. However, this also has disadvan-
tages. When equivalent units are merged, it becomes even
less certain that the variance of the resulting estimator always
decreases as n increases. Merging also specializes the result-
ing algorithm to the function h; in general, it is not possible
to use the final sample generated by the algorithm to estimate
the expectation of a different function.

Particle merging is a way of incorporating problem-
specific information into a particle filtering algorithm, in a
way that is similar to the design of an importance sampling
density. Proposition 1 is not the only way this can occur.
Another possibility is that h∗ (xt ) = m (xt ) h∗ (x′

t

)
, where

m (xt ) is some known function, but both h∗ (xt ) and h∗ (x′
t

)

are unknown.
Our examples also illustrated the extreme flexibility of

without-replacement sampling algorithms; the importance
density, sampling design and merging steps can all be
changed. In both our examples, this allowed us to use
problem-specific information in the resulting algorithm. The
downside is that customizing these algorithms to this extent
is nontrivial; it essentially requires the design of an entirely
new algorithm for every application.

The sampling theory approach is a promising direction
for future work on without-replacement sampling methods;
there is a large literature which probably contains manymore
relevant ideas. As an example, recall that in order to apply
these types of methods, it must be possible to enumerate all
the possible values of the particles at the next step. In some
cases, this set may so large that this is impractical. In the
field of sampling theory, this is referred to as a case where
the sampling frame (set of all possible units) ismissing.These
types of problems have been studied in the relevant literature,
so solutions to this problem may already exist.

The sampling theory approach also provides some insight
into the optimality result of Fearnhead and Clifford (2003).
The optimality result is given for only a single sampling
step.Whenmultiple such resampling steps are performed, the
variance of the resulting estimator will depend in a compli-
cated way on the joint inclusion probabilities of the sampling
designs which are applied. These joint inclusion probabili-
ties do not enter into the optimality result. While the result of
Fearnhead and Clifford (2003) is the strongest statement that
can be made in the general case, there may be specific cases
where sampling designs that do not satisfy the optimality
condition result in a lower variance estimator.
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Appendix 1: Unbiasedness of sequential without-
replacement Monte Carlo

Let h∗ (xt ) = E [h (Xd) | Xt = xt ]. Note that

∑

xt ∈St (xt−1)

h∗ (xt ) f (xt ) = h∗ (xt−1) f (xt−1) .

Consider the expression

∑

xt ∈St

h∗ (xt ) f (xt )
∏t

i=1 π i (xt )
, (20)

where 1 ≤ t < d. Let I (xt ) be a binary variable, where
I (xt ) = 1 indicates the inclusion of element xt ofSt (St−1)

in St . We can rewrite (20) as

∑

xt ∈St (St−1)

It (xt )
h∗ (xt ) f (xt )
∏t

i=1 π i (xt )
. (21)

Recall that E
[
It (xt ) | St−1

] = π t (xt ). So the expectation
of (21) conditional on S1, . . . ,St−1 is

∑

xt ∈St (St−1)

h∗ (xt ) f (xt )
∏t−1

i=1 π i (xt )

=
∑

xt−1∈St−1

∑
xt ∈St (xt−1)

h∗ (xt ) f (xt )
∏t−1

i=1 π i (xt−1)

=
∑

xt−1∈St−1

h∗ (xt−1) f (xt−1)
∏t−1

i=1 π i (xt−1)
.

So

E

⎡

⎣
∑

xt ∈St

h∗ (xt ) f (xt )
∏t

i=1 π i (xt )

∣
∣
∣
∣
∣
∣
S1, . . . ,St−1

⎤

⎦

=
∑

xt−1∈St−1

h∗ (xt−1) f (xt−1)
∏t−1

i=1 π i (xt−1)
(22)

Applying Eq. (22) d times to

�̂ =
∑

xd∈Sd

h (Xd) f (Xd)
∏d−1

i=1 π i (Xd)
=
∑

xd∈Sd

h∗ (Xd) f (Xd)
∏d−1

i=1 π i (Xd)
.

shows that E
[
�̂
] = �.

123



Stat Comput (2018) 28:633–652 649

Appendix 2: Unbiasedness of sequential without-
replacement Monte Carlo, with merging

The proof is similar to “Appendix 1.” In this case, all the
sample spaces and samples are sets of triples. Consider any
expression of the form

∑

(xt ,w,p)∈Tt (St−1)

h∗ (xt ) w. (23)

It is clear that if the proposed merging rule is applied to
Tt (St−1), then the value of (23) is unchanged. Using the
definition of Tt (St−1), Eq. (23) can be written as

∑

(xt−1,w,p)∈St−1

w
∑

xt ∈St (xt−1)

h∗ (xt )
f (xt | xt−1)

π t−1 (xt−1)

=
∑

(xt−1,w,p)∈St−1

E
[
h∗ (Xt ) | Xt−1 = xt−1

]
w

π t−1 (xt−1)

=
∑

(xt−1,w,p)∈St−1

h∗ (xt−1) w

π t−1 (xt−1)
. (24)

The expectation of (24) conditional on St−2 is

∑

(xt−1,w,p)∈Tt−1(St−2)

h∗ (xt−1) w. (25)

So

E

⎡

⎣
∑

(xt ,w,p)∈Tt (St−1)

h∗ (xt ) w

∣
∣
∣
∣
∣
∣
St−2

⎤

⎦

=
∑

(xt−1,w,p)∈Tt−1(St−2)

h∗ (xt−1) w. (26)

Applying Eq. (26) d − 1 times to

E
[
�̂
∣
∣ Sd−1

] =
∑

(xd ,w,p)∈Td (Sd−1)

h∗ (xd) w

shows that �̂ is unbiased.

Appendix 3: Without-replacement sampling for the
change-point example

We now give the details of the application of without-
replacement sampling to the change-point example in Sect. 1.
Recall that Xd = {Xt }d

t=1 is a Markov chain and Yd =
{Yt }d

t=1 are the observations. Let f be the joint density ofXd

and Yd . Note that

f (xt | yt ) = ct f (xt−1 | yt−1) f (xt | xt−1) f (yt | xt ) ,

(27)

f (x1 | y1) = c1 f (x1) f (y1 | x1) , (28)

for some unknown constants {ct }d
t=1. Define the size vari-

ables recursively as

p (xt ) = p (xt−1)
f (xt | xt−1) f (yt | xt )

π t−1 (xt−1)
, (29)

p (x1) = f (x1) f (y1 | x1) . (30)

This updating rule is slightly different from that given in
(17). Equations (30) and (27) require an initial distribution
for X1 = (C1, O1), which we take to be

P (C1 = 2, O1 = 2) = 1

250
,P (C1 = 2, O1 = 2) = 249

250
.

Define

U1 = U1 (∅) = {(x1, f (x1) f (y1 | x1)) : x1 ∈ S1} ,

and let S1 be a sample chosen from U1, with probability
proportional to the last component. Assume that sample St−1

has been chosen, and let

Ut (St−1) =
{(

xt , w
f (xt | xt−1) f (yt | xt )

π t−1 (xt−1)

)

:
(xt−1, w) ∈ St−1, xt ∈ Support (Xt | Xt−1 = xt−1)} .

We account for the unknown normalizing constants in (27)
by using an estimator of the form (12). This results in
Algorithm 5.

Algorithm 5: Sequential Monte Carlo without replace-
ment, for the change-point problem
input : Density f , function h, sampling designs
output: Estimate of E [h (Xd ) | Yd ]

1 S0 ← ∅
2 for t = 1 to d do
3 St ← Sample from Ut (St−1) according to some design, with

size variables {w : (xt , w) ∈ Ut (St−1)}
4 ∀xt ∈ St compute the inclusion probability

π t (xt ) of xt

5 return
(∑

(xd ,w)∈Sd

h(xd )w

πd (xd )

) (∑
(xd ,w)∈Sd

w
πd (xd )

)−1

Proposition 2 The set Sd generated by Algorithm 5 has the
property that

E

⎡

⎣
∑

(xd ,w)∈Sd

h (xd) w

πd (xd)

⎤

⎦ = E (h (Xd) | Yd)

d∏

t=1

c−1
t .
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Proof Define

H (xt ) = E
[
h (Xd) | Xt = xt ,Yd = yd

]
f (xt | yd)

f (xt | yt )
∏d

i=t+1 ci
.

Using (27),

∑

xt ∈St (xt−1)

H (xt ) f (xt | xt−1) f (yt | xt )

=
∑

xt ∈St (xt−1)

E
[
h (Xd) | Xt = xt ,Yd = yd

]
f (xt | yd)

f (xt−1 | yt−1)
∏d

i=t ci

= E
[
h (Xd) | Xt−1 = xt−1,Yd = yd

]
f (xt−1 | yd)

f (xt−1 | yt−1)
∏d

i=t ci

= H (xt−1) .

Consider any expression of the form

∑

(xt ,w)∈Ut (St−1)

H (xt ) w. (31)

Equation (31) can be written as

∑

(xt−1,w)∈St−1

∑

xt ∈St (xt−1)

H (xt ) w
f (xt | xt−1) f (yt | xt )

π t−1 (xt−1)

=
∑

(xt−1,w)∈St−1

wH (xt−1)

π t−1 (xt−1)
. (32)

The expectation of (32) conditional on St−2 is

∑

(xt−1,w)∈Ut−1(St−2)

H (xt−1) w.

So

E

⎡

⎣
∑

(xt ,w)∈Ut (St−1)

H (xt ) w

∣
∣
∣
∣
∣
∣
St−2

⎤

⎦

=
∑

(xt−1,w)∈Ut−1(St−2)

H (xt−1) w. (33)

Applying Eq. (33) d − 1 times to

E

⎡

⎣
∑

(xd ,w)∈Sd

h (xd) w

πd (xd)

∣
∣
∣
∣
∣
∣
Sd−1

⎤

⎦

=
∑

(xd ,w)∈Ud (Sd−1)

h (xd) w

=
∑

(xd ,w)∈Ud (Sd−1)

H (xd) w.

completes the proof. �

We now describe the merging step outlined in Fearnhead
and Clifford (2003), applied to the estimation of the posterior
change-point probabilities

{P (Ct = 2 | Yd = yd)}d
t=1 .

The method we describe here can be extended fairly trivially
to also estimate {P (Ot = 2 | Yd = yd)}d

t=1.
In order to perform this merging, we must add more infor-

mation to all the sample spaces and the samples chosen from
then. The extended space will have xt as the first entry, the
particle weight w as the second entry, and a vector mt of t
values as the third entry. The last entry will be an estimate of
{P (Ci = 2 | yt )}t

i=1. Let

V1 = {(x1, f (x1) f (y1 | x1) ,P (C1 = 2 | x1)) : x1 ∈ S1} .

Note that the third component of every element ofV1 is either
0 or 1. Let S1 be a sample drawn from V1, with probability
proportional to the second element. Assume that sample St−1

has been chosen, and let Vt (St−1) be

{(

xt , w
f (xt | xt−1) f (yt | xt )

π t−1 (xt−1)
, (mt−1,

P (Ct = 2 | Xt = xt ,Yd = yd))) :
(xt−1, w,mt−1) ∈ St−1, xt ∈ St (xt−1)} .

We can now define Algorithm 6, which uses the merging step
outlined in Proposition 4.

Algorithm 6: Sequential Monte Carlo without replace-
ment, for the change-point problem, for the marginal
distributions of {Ct }d

t=1.
input : Density f , function h, sampling designs
output: Estimate of {P (Ct = 2 | yd )}d

t=1.
1 S0 ← ∅
2 for t = 1 to d do
3 U ← Vt (St−1)

4 Merge elements in U according to Proposition 4
5 St ← Sample from Vt (St−1) according to some design, with

size variables {w : (xt , w) ∈ Vt (St−1)}
6 ∀xt ∈ St compute the inclusion probability

π t (xt ) of xt

7 return
(∑

(xd ,w,md )∈Sd

md w

πd (xd )

) (∑
(xd ,w,md )∈Sd

w
πd (xd )

)−1

Proposition 3 If the merging step is omitted, then the set Sd

generated by Algorithm 6 has the property that

E

⎡

⎣
∑

(xd ,w,md )∈Sd

mdw

πd (xd)

⎤

⎦ = {P (Ct = 2 | Yd = yd)}d
t=1

∏d
t=1 ct

.
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Proof Define

G (xt ,mt ) = (mt ,P (Ct+1 = 2 | Xt = xt ,Yd = yd) ,

. . . ,P (Cd = 2 | Xt = xt ,Yd = yd))

× f (xt | yd)

f (xt | yt )
∏d

i=t+1 ci
.

It can be shown that

∑

xt ∈St (xt−1)

G (xt , (mt−1,P (Ct = 2 | Xt = xt ,Yd = yd)))

× f (xt | xt−1) f (yt | xt )

= G (xt−1,mt−1) .

Consider any expression of the form

∑

(xt ,w,mt )∈Vt (St−1)

G (xt ,mt ) w. (34)

Equation (34) can be written as

∑

(xt−1,w,mt−1)∈St−1

w
∑

xt ∈St (xt−1)

G (xt , (mt−1,P (Ct = 2 | Xt = xt ,Yd = yd)))

× f (xt | xt−1) f (yt | xt )

π t−1 (xt−1)

=
∑

(xt−1,w,mt−1)∈St−1

w
G (xt−1,mt−1)

π t−1 (xt−1)
. (35)

The expectation of (35) conditional on St−2 is

∑

(xt−1,w,mt−1)∈Vt−1(St−2)

wG (xt−1,mt−1) .

So

E

⎡

⎣
∑

(xt ,w,mt )∈Vt (St−1)

G (xt ,mt ) w

∣
∣
∣
∣
∣
∣
St−2

⎤

⎦

=
∑

(xt−1,w,mt−1)∈Vt−1(St−2)

wG (xt−1,mt−1) . (36)

Applying Eq. (36) d − 1 times to

E

⎡

⎣
∑

(xd ,w,md )∈Sd

mdw

πd (xd)

∣
∣
∣
∣
∣
∣
Sd−1

⎤

⎦

=
∑

(xd ,w,md )∈Vd (Sd−1)

wG (xd ,md)

completes the proof. �

Proposition 4 Assume we have two units (xt , w,mt ) and(
x′

t , w
′,m′

t

)
, both corresponding to paths of the Markov

chain with Ct = 2 and Ot = 2. Then, we can remove these
units, and replace them with the single unit

(

xt , w + w′, wmt + w′m′
t

w + w′

)

.

This rule also applies if both units correspond to Ct = 2 and
Ot = 1.

Proof Under the specified conditions on xt and x′
t ,

P (Ci = 2 | Xt = xt ,Yd = Yd)

= P
(
Ci = 2

∣
∣ Xt = x′

t ,Yd = Yd
)
, ∀t + 1 ≤ i ≤ d,

f (xt | yt ) = f (xt | yd) ,

f
(
x′

t

∣
∣ yt
) = f

(
x′

t

∣
∣ yd

)
.

This shows that

(
w + w′)G

(

xt ,
wmt + w′m′

t

w + w′

)

= wG (xt ,mt ) + w′G
(
x′

t ,m
′
t

)
.

So replacement of this pair of units by the specified single
unit does not bias the resulting estimator. �
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