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Abstract Stable distributions are an important class of
infinitely divisible probability distributions, of which two
special cases are the Cauchy distribution and the normal
distribution. Aside from a few special cases, the density
function for stable distributions has no known analytic form
and is expressible only through the variate’s characteristic
function or other integral forms. In this paper, we present
numerical schemes for evaluating the density function for
stable distributions, its gradient, and distribution function in
various parameter regimes of interest, some of which had
no preexisting efficient method for their computation. The
novel evaluation schemes consist of optimized generalized
Gaussian quadrature rules for integral representations of the
density function, complemented by asymptotic expansions
near various values of the shape and argument parameters.
We report several numerical examples illustrating the effi-
ciency of our methods. The resulting code has been made
available online.
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1 Introduction

Continuous random variables that follow stable laws arise
frequently in physics (Kölbig and Schorr 1984), finance and
economics (Mittnik and Rachev 1993; Nolan 2003), elec-
trical engineering (Nikias and Shao 1995), and many other
fields of the natural and social sciences. Certain subclasses of
these distributions are also referred to as α-stable, a-stable,
stable Paretian distributions, or Lévy alpha-stable distribu-
tions. Going forward, we will merely refer to them as stable
distributions. The defining characteristic of random variables
that follow stable laws is that the sum of two independent
copies follows the same scaled and translated distribution
(Nolan 2015). For example, if X1 and X2 are independent,
identically distributed (iid) stable random variables, then in
distribution

X1 + X2 ∼ aX + b, (1.1)

where X has the same distribution as each X�. Several
discrete random variables, such as those following Pois-
son distributions, also obey this stability-of-sums law, but
we restrict our attention to continuous distributions. Mod-
eling with stable distribution has several advantages. For
example, even though in general they do not have finite
variances, they are closed under sums and satisfy a general-
ized type of Central Limit Theorem (Nikias and Shao 1995;
Zolotarev 1986). This property is directly related to the fact
that they have tails which are heavier than those of normal
random variables. For this reason, these distributions are use-
ful in describing many real-world data sets from finance,
physics, and chemistry. On the other hand, computing with
stable distributions requires more sophistication than does,
for example, computing with normal distributions. When
modeling with multivariate normal distributions, all of the
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relevant calculations (in, for example, likelihood evaluation)
are linear-algebraic in nature: matrix inversion, determi-
nant calculation, eigenvalue computation, etc. (Rasmussen
and Williams 2006). The analogous operations for stable
distributions are highly nonlinear, often requiring technical
multivariable optimization and Monte Carlo codes, slowing
down the resulting calculation many-fold. In this work, for
these reasons, we restrict out attention to one-dimensional
stable distributions. Numerical schemes for multivariate sta-
ble distributions are an area of current research.

To bemore precise, if we denote by α ∈ (0, 2] the stability
parameter, β ∈ [−1, 1] the skewness parameter, γ ∈ R

the location parameter, and λ ∈ R
+ the scale parameter

of X , then these random variables satisfy the relationship
(Zolotarev 1986):

a1X1 + a2X2 ∼ aX

+
{

λγ (a1 + a2 − a) α �= 1

λβ(2/π)(a1 log(a1/a) + a2 log(a2/a)) α = 1

(1.2)

where as before ∼ is used to denote equality in distribution
and a = (aα

1 +aα
2 )1/α . Enforcing the previous stability laws,

although partially redundant, places conditions on the char-
acteristic function of X (i.e., the Fourier transform of the
probability density function). Since the density of the sum of
two iid random variables is obtained via convolution of their
individual densities, in the Fourier domain this is equivalent
to multiplication of the characteristic functions. It can be
shown that, in general, the class of characteristic functions
for stable distributions must be of the form:

E
[
eit X

]
= ϕX (t)

= eλ(i tγ−|t |α+i tω(t,α,β)),

(1.3)

with

ω(t, α, β) =
{

|t |α−1β tan πα
2 if α �= 1,

− 2β
π
log |t | if α = 1,

(1.4)

and as before,

α ∈ (0, 2], β ∈ [−1, 1], γ ∈ (−∞,∞), λ > 0. (1.5)

This particular parameterizationof the characteristic function
ϕX in terms of α, β, γ , and λ is the canonical one (Zolotarev
1986) and often referred to as the A-parameterization. As
discussed in Sect. 2, we will deal solely with an alternative
parameterization, the M-parameterization. This parameter-
ization is obtained by merely a change of variables in the
x-parameter but, in contrast to (1.3), is jointly continuous in
all of its parameters.

Often, the form of the above characteristic function is
taken to be the definition of stable distributions because of
the absence of an analytic form of the inverse transform. Spe-
cial cases of these distributions are normal random variables
(α = 2 and β = 0), Cauchy distributions (α = 1 and β = 0),
and the Lévy distribution (α = 0.5 and β = 1). Each of these
distributions has a closed-form expression for its density
and cumulative distribution function. However, asmentioned
before, in general, the density and distributions functions for
stable random variables have no known analytic form and are
expressible only via their Fourier transform or special-case
asymptotic series. Because of this, performing inference or
developing models based on these distribution laws can be
computationally intractable if the density and distribution
functions are expensive to compute (i.e., if numerically eval-
uating the corresponding Fourier integral is expensive). We
will focus our attention on the numerical evaluation of the
density function for a unit, centered distribution: γ = 0 and
λ = 1.Wewill denote this class of unit, centered stable distri-
butions in theA-parameterization as S(α, β,A), and say that
X ∼ S(α, β,A) if X has characteristic function (1.3) with
γ = 0 and λ = 1. In a slight change of notation from Nolan
(2015), we make the particular parameterization explicit in
the definition of S(α, β, ·).

Most existing numerical methods for the evaluation of the
corresponding density function f ,

f (x;α, β) = 1

2π

∫ ∞

−∞
ϕX (t) e−i t x dt, (1.6)

rely on some form of numerical integration (Nolan 1997) or,
in the symmetric case (β = 0), asymptotic expansions for
extremal values of x , and α (Matsui and Takemura 2006).
Often, if the shape parameters of the distribution are being
inferred or estimated from data, as in the case of maximum
likelihood calculations or Bayesian modeling, the density
function f must be evaluated at the same x values for many
values of the parameters α and β. In order to ensure the
accuracy of the numerical integration scheme, often adaptive
quadrature is used. However, for new values of the param-
eters, no previous information can be used, nor are these
quadratures optimal (as in the sense that the trapezoidal rule is
optimal for smooth periodic function or thatGauss–Legendre
quadrature is optimal for polynomials on finite intervals,
Dahlquist and Björck 2003).

The main contribution of this work is to develop an effi-
cient means by which to evaluate the density function for
stable random variables using various integral formulations,
optimized quadrature schemes, and asymptotic expansions.
We develop generalized Gaussian quadrature rules (Bremer
et al. 2010;Yarvin andRokhlin 1998)which are able to evalu-
ate the density f for various ranges of the shape parameters
α, β, as well as the argument x . We generate quadratures
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that consist of a single set of weights and nodes which are
able to integrate the characteristic function (or deformations
thereof) for large regions of the parameters and argument
space. Using a small collection of such quadrature rules, we
are able to cover most of αβx-space. This class of quadrature
schemes is an extension of the classical Gaussian quadrature
schemes for polynomials which are able to exactly integrate
polynomials of degree d ≤ 2n − 1 using n nodes and n
weights (i.e., using a total of 2n degrees of freedom). We
discuss these quadrature rules in detail in Sect. 3 and derive
new asymptotic expansions in the asymmetric case in theM-
parameterization. For regionswith large x , we derive efficient
asymptotic expansions which can be used for evaluation.

The paper is organized as follows: In Sect. 2, we
review some standard integral representations and asymp-
totic expansions for the density functions of stable distribu-
tions. In Sect. 3, we discuss the procedure for constructing
generalized Gaussian quadratures for evaluating the integral
representations presented in the previous section. In Sect. 4,
we demonstrate the effectiveness of our schemes for evalu-
ating the density functions via various numerical examples.
In Sect. 5, the conclusion, we discuss some additional areas
of research and point out regimes in which the algorithms of
this paper are not applicable.

2 Stable distributions

In this section, we review some basic facts regarding stable
distributions and review the integral and asymptotic expan-
sions that we will use to evaluate the density function. As
mentioned in the previous section, there are several dif-
ferent parameterizations of stable densities. We now detail
the parameterization useful for numerical calculations, most
commonly referred to as Zolotarev’s M-parameterization.
Random variables that follow stable distributions with this
parameterization will be denoted X ∼ S(α, β,M).

2.1 Basic facts

There are a number of different parameterizations for stable
distributions, each of which is useful in a particular regime:
integral representations, asymptotic expansions, etc. It was
shown in Nolan (1997) that Zolotarev’s M-parameterization
is particularly useful for numerical computations as it allows
for the computation of a unit density that can be later scaled
and translated. In our numerical scheme, we also use the
M-parameterization because of its continuity in all underly-
ing parameters. This is a standard procedure among other
numerical methods as well.

This parameterization, and therefore the density function,
is defined by the characteristic function

ϕX (t) = eλ(i tγ−|t |α+i tωM (t,α,β)),

ωM (t, α, β) =
{

(|t |α−1 − 1)β tan πα
2 if α �= 1,

− 2β
π
log |t | if α = 1.

(2.1)

For the rest of the paper, we will work with unit stable laws
(γ = 0, λ = 1) unless otherwise mentioned. We will refer to
the case ofβ = 0 as the symmetric case andotherwise forβ �=
0 the asymmetric case. In general, the parameters α and β

cannot be interchanged between different parameterizations,
and in this particular case, the change of variables from the
A- to the M-parameterization is given by:

αA = αM = α, βA = βM = β,

γA = γM − β tan
πα

2
, λA = λM (2.2)

where the subscripts are used to denote the parameterization.
Under this change of variable, the characteristic function
in the A-parameterization lacks the term −i tβ tan(πα/2)
in the exponent. The existence of this term in the M-
parameterization makes characteristic function continuous
at α = 1. This change of variables is mostly done for ana-
lytical convenience. However, the mode of the density in the
A-parameterization approaches infinity as α → 1 if β �= 0.
Therefore, neither of the one-sided limits α → 1± is a useful
distribution in the A-parameterization (Zolotarev 1986).

From (2.1), it follows that for unit stable laws,

ϕX (−t;α, β) = ϕX (t;α,−β) = ϕX (t;α, β), (2.3)

where z denotes the complex-conjugate of z, and we have
used the Fourier transform convention

ϕX (t) = E
[
eit X

]
=

∫ ∞

−∞
f (x) eitx dx .

(2.4)

The density f is therefore given by:

f (x) = 1

2π

∫ ∞

−∞
ϕX (t) e−i t x dt. (2.5)

In conjunction with (2.3), one can show that

f (x;α, β) = 1

2π

∫ ∞

−∞
e−i t x ϕX (t;α, β) dt

= 1

2π

(∫ ∞

0
eitx ϕX (t;α,−β) dt

+
∫ 0

−∞
e−i t x ϕX (t;α, β)

)

= 1

π
Re

∫ ∞

0
eitx ϕX (t;α,−β) dt. (2.6)
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Furthermore, (2.3) and the Fourier inversion formula imply
that

f (−x;α, β) = f (x;α,−β). (2.7)

This symmetry allows for considerable restriction in the
relevant values of x . In particular, for α �= 1, defining
ζ(α, β) = β tan πα/2, we need only address the case x > ζ .
Indeed, if x < ζ , then

− x > −ζ(α, β) = ζ(α,−β) (2.8)

as can be seen from (2.1).

2.2 Integral representations

Inserting ϕX from (2.1) into the inverse Fourier trans-
form (2.6), we see that

f (x;α, β) = 1

π

∫ ∞

0
cos(h(t; x, α, β)) e−tα dt, (2.9)

where for α �= 1

h(t; x, α, β) = (x − ζ )t + ζ tα,

ζ(α, β) = −β tan
πα

2
,

(2.10)

and for α = 1

h(t; x, α, β) = xt + 2βt

π
log t,

ζ(α, β) = 0.
(2.11)

Because of the linear dependence of h on t , the integrand
in (2.9) is oscillatory for modestly sized values of x . See
Fig. 1 for a plot of this integrand. For numerical calculations,
the infinite interval of integration can be truncated based on
the decay of the exponential term if x is not too large. How-
ever, for small values of α, this region of integration can
still be prohibitively large. Furthermore, for large |x |, the
integrandbecomes increasingly oscillatory and standard inte-
gration schemes (e.g., trapezoidal rule, Gaussian quadrature)
not only becomeexpensive, but lose accuracy due to the oscil-
lation. It is possible that Filon-type quadratures (Olver 2008)
could be applicable, but this has yet to be thoroughly investi-
gated in the literature. Section 3.4 contains a brief discussion
of quadrature techniques for highly oscillatory integrands,
but these methods, unfortunately, would likely prove to be
more computationally expensive than those techniques pre-
sented in this work. For these reasons, this representation
of the density f in (2.9) cannot be used efficiently in the
following parameter ranges: small α and/or large |x |.
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Fig. 1 Graph of the Fourier transform of f , i.e., the integrand in (2.9),
for parameter values of x = 10, α = .5 and β = 0

Alternatively, the integral in (2.9) can be rewritten using
the method of stationary phase. This calculation was done in
Nolan (1997). To this end, we begin by rewriting (2.9) as

f (x;α, β) = 1

π
Re

∫ ∞

0
eih(z)−zα dz, (2.12)

where Rew denotes the real part of the complex number w

and we have suppressed the explicit dependence on α and β

for simplicity. Deforming along the contour with zero phase,
we have

f (x;α, β) = α

π |α − 1|
1

(x − ζ )∫ π
2

−θ0

g(θ; x, α, β) e−g(θ;x,α,β) dθ, (2.13)

with

g(θ; x, α, β) = (x − ζ )
α

α−1 V (θ;α, β), (2.14)

where for α �= 1

ζ(α, β) = −β tan
πα

2
,

θ0(α, β) = 1

α
arctan

(
β tan

πα

2

)
,

V (θ;α, β) = (cosαθ0)
1

α−1

(
cos θ

sin α(θ0 + θ)

) α
α−1

× cos (αθ0 + (α − 1)θ)

cos θ
, (2.15)
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Fig. 2 Graph of the stationary phase integrand in (2.13) for parameter
values of x = 10−1, α = 1.5 and β = 0. Note the large derivatives and
spiked behavior

and where for α = 1

ζ(α, β) = 0,

θ0(α, β) = π

2
,

V (θ;α, β) = 2

π

( π
2 + βθ

cos θ

)
exp

(
1

β

(π

2
+ βθ

)
tan θ

)
.

(2.16)

While seemingly more complicated than that in (2.9), the
integrand in (2.13) is strictly positive and has no oscillations,
and the interval of integration is finite. Unfortunately, this is
not a fail-safe transformation. In particular, for very small
and very large x , and α close to 1 and 2, the integrand has
large derivatives (e.g., very spiked) and is hard to efficiently
integrate; see Fig. 2. For this reason, previous schemes (Mat-
sui and Takemura 2006; Nolan 1997) have used zero-finding
methods to locate the integrand’s unique extremum point
θmax, where g(θmax) = 1. Subsequently, adaptive quadra-
ture schemes were applied to the two subintervals created
by splitting the original interval of integration at θmax. This
procedure is often computationally expensive.

Even though an expression for the cumulative distribution
function (CDF) can be derived by straightforward integration
of (2.13), this is not ideal for various numerical consider-
ations described later. We obtain an expression for F , the
CDF for f , by using an inversion theorem found in Shep-
hard (1991):

F(x) = 1

2
− 1

2π

∫ ∞

0

(
ϕ(t)e−i xt − ϕ(−t) eixt

) dt

i t

= 1

2
+ 1

π

∫ ∞

0
sin(h(t; x, α, β)) e−tα dt

t
, (2.17)

The theorem in Shephard (1991) assumes the existence of
a mean of the random variable which is associated with the
characteristic function. However, stable variates with α < 1
do not have a mean. Fortunately, one can relax the assump-
tions of the theorem to integrability of the integrand in (2.17).
Thismeans that the expression is valid for all parameter com-
binations. The integrand of (2.17) has similar behavior as
the integrand in (2.9), and therefore, we expect that similar
numerical schemes for evaluating the integral will be appli-
cable. In the asymmetric case however, the integrand has a
singularity at the origin when α < 1 and β �= 1. The advan-
tages of this representation are explained in detail in Sect. 4.

2.3 Series and asymptotics

Fortunately, there are series and asymptotic expansions for
Zolotarev’s M-parameterization which nicely compliment
the integral representations above. Specifically, they yield
accurate results for very small and large x . Zolotarev derived
series and asymptotic expansions for theB-parameterization
in Zolotarev (1986), and in the following, wewill derive sim-
ilar representations for the M-parameterization valid in the
general case.

Lemma 1 Let α �= 1, β ∈ [−1, 1], ζ = −β tan(πα/2), and

S0n (x;α, β) := 1

απ

n∑
k=0

�( k+1
α

)

�(k + 1)
(1 + ζ 2)−

k+1
2α sin ([π/2

+ (arctan ζ )/α] (k + 1)) (x − ζ )k . (2.18)

Then for any n ∈ N,

| f (x;α, β) − S0n−1(x;α, β)|

≤ 1

απ

�( n+1
α

)

�(n + 1)
(1 + ζ 2)−

n+1
2α |x − ζ |n . (2.19)

Proof To obtain a series representation centered at x = ζ ,
we follow the derivation in Zolotarev (1986), but for the M-
parameterization instead of the B-parameterization:

f (x;α, β)

= 1

π
Re

∫ ∞

0
eitx ϕX (t;α,−β) dt

= 1

π
Re

∫ ∞

0

∞∑
k=0

(i t [x − ζ ])k

k! exp
(−(1 − iζ )tα

)
dt

= 1

π

n−1∑
k=0

(x − ζ )k

k! Re
∫ ∞

0
(i t)k exp

(−(1 − iζ )tα
)

dt + Rn, (2.20)
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where

Rn = 1

π
Re

∫ ∞

0

[
eit (x−ζ ) −

n−1∑
k=0

× (i t[x − ζ ])k
k!

]
exp(−(1 − iζ )tα) dt (2.21)

Applying the change of variables s = (1 − iζ )1/αt to the
last integral in (2.20) and subsequently rotating the contour
of integration to the real axis yields

f (x;α, β) = Sn−1(x;α, β) + R0
n . (2.22)

The change of contour can be justified with Lemma 2.2.2 in
Zolotarev (1986). It remains to show that Rn is bounded in
magnitude by (2.19). Indeed,

|Rn |

= 1

π

∣∣∣∣∣Re
∫ ∞

0

(
eit (x−ζ ) −

n−1∑
k=0

[i t (x − ζ )]k
k!

)
e−(1−iζ )tα dt

∣∣∣∣∣
= 1

π

∣∣∣∣∣Re
∫ ∞

0

( ∞∑
k=n

(i[1 − iζ ]−1/αs[x − ζ ])k
k!

)
e−sα ds

(1 − iζ )1/α

∣∣∣∣∣
≤ |x − ζ |n

πn! (1 + ζ 2)−
n+1
2α

∫ ∞

0
sne−sαds

= 1

απ

�( n+1
α

)

�(n + 1)
(1 + ζ 2)−

n+1
2α |x − ζ |n . (2.23)

The second equality comes from the change of variables
s = (1− iζ )1/αt , and a rotation of the contour of integration
to the real axis. The difference between the exponential and
the sumof the first n−1 terms of its power series can bounded
by the nth term with the mean value theorem. �	

As a consequence, the series (2.18) converges to the den-
sity as n → ∞ for α > 1. For α < 1, (2.18) is not
convergent, but can be used as an asymptotic expansion as
x → ζ if β �= 1. While the truncation error bound (2.19)
holds regardless of the parameters, (2.18) does not capture the
asymptotic behavior of the density as x → ζ+ if α < 1 and
β = 1. Indeed, (2.18) is identically zero for this parameter
choice. On the other hand, the density falls off exponentially
as x → ζ+, which an asymptotic expansion in Zolotarev
(1986) reveals. Unfortunately, this expansion cannot be effi-
ciently evaluated numerically because its coefficients do not
have a closed form.

Still, by rearranging (2.19), we find that truncating (2.18)
after the n − 1 term is accurate to within ε of the true value
for all x satisfying

|x − ζ | ≤
[
εαπ(1 + ζ 2)

n+1
2α

�(n + 1)

�( n+1
α

)

]1/n

:= B0
n (α, β). (2.24)

After the discussion in the paragraph above, it is important
to stress that this bound guarantees absolute accuracy of the
truncated series , rather than relative accuracy.

Lemma 2 Let α �= 1, β ∈ [−1, 1], ζ = −β tan(πα/2), and

S∞
n (x;α, β) := α

π

n∑
k=1

(−1)k+1 �(αk)

�(k)
(1 + ζ 2)k/2

× sin([πα/2 − arctan ζ ]k) (x − ζ )−αk−1.

(2.25)

Then for any n ∈ N,

| f − S∞
n−1| ≤ α

π

�(αn)

�(n)
(1 + ζ 2)

n
2 |x − ζ |−αn−1. (2.26)

Proof For simplicity,wefirst derive a series expansion for the
A-parameterization and convert it to theM-parameterization
via the shift xA = xM − ζ afterward. To do this, we extend
ϕX to the complex plane and integrate along the contour
z = iux−1/α . Again, this is justified by Lemma 2.2.2 in
Zolotarev (1986).

x−1/α f A(x−1/α;α, β)

= 1

πx1/α
Re

∫ ∞

0
eizx

−1/α
ϕX (z;α,−β) dz

= − 1

π
Im

∫ ∞

0
e−uϕ(iux1/α;α,−β) du

= α

π

n−1∑
k=1

�(αn)

�(n)
(−1)k+1(1 + ζ 2)k/2

× sin([πα/2 − arctan ζ ]k) xk + R∞
n . (2.27)

Here, the first n terms of the power series of the characteristic
function were used to approximate the integral. Therefore,

R∞
n := − 1

π
Im

∫ ∞

0

[
exp(−(1 − iζ )xuα) −

n−1∑
k=0

× (−[1 − iζ ]xuα)k

k!
]
e−u du. (2.28)

The bound of |R∞
n | is attained in a similar manner as the

one for R0
n in Lemma 1. Rearranging the last line of (2.27)

and substituting x − ζ for x yield the series (2.25) in the
M-parameterization. �	

Expression (2.25) converges to the density for α < 1
and can be used as an asymptotic expansion for α > 1,
β �= −1. In the case α > 1, β = −1, (2.25) is identically
zero, while the density decreases to zero exponentially as
x → ∞ (Zolotarev 1986). As with the series above however,
we can still guarantee absolute accuracy compared to the true
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density. Indeed, as a consequence of the lemma, the series
(2.25) is accurate to precision ε for any x satisfying

|x − ζ | ≥
[

α

πε
(1 + ζ 2)

n
2
�(αn)

�(n)

]1/(αn−1)

:= B∞
n−1(α, β).

(2.29)

Notably, if for some α, β, we take n0(α, β) terms of (2.18)
and n∞(α, β) terms of (2.25), then it only remains to show
that values of x in the range

B0
n0 ≤ x − ζ ≤ B∞

n∞ (2.30)

can be evaluated efficiently. We will elaborate on the details
of our scheme in Sect. 4.

2.4 Derivatives of stable densities

The integral representation (2.9) admits reasonably simple
expressions for the Fourier transform of the derivatives of
the density with respect to x , α, and β. We will derive these
expressions here. For brevity, let h = h(t, x;α, β), ζ =
ζ(α, β), and ∂x = ∂/∂x . Similarly for differentiation with
respect to α and β, first, note that for α �= 1,

∂αζ = −π

2
β

[(
tan

πα

2

)2 + 1

]
,

∂βζ = − tan
πα

2
,

(2.31)

and

∂xh = t,

∂αh = (tα − t)∂αζ + tα log(t)ζ,

∂βh = (tα − t)∂βζ. (2.32)

In order to obtain expressions for ∂αh and ∂βh at α = 1, we
compute the limit asα → 1 of the corresponding expressions
in (2.32):

lim
α→1

∂αh = β

π
t log2 t,

lim
α→1

∂βh = 2

π
t log t. (2.33)

Since h is continuous in all parameters at α = 1 and both
one-sided limits exist, the values of ∂α f and ∂β f are well

defined when α = 1. Finally, we have

∂x f (x;α, β) = − 1

π

∫ ∞

0
t sin h e−tα dt,

∂α f (x;α, β) = − 1

π

∫ ∞

0
(sin h ∂αh

+ tα cos h log t
)
e−tα dt,

∂β f (x;α, β) = − 1

π

∫ ∞

0
sin h ∂βh e

−tα dt. (2.34)

The partial derivatives in (2.34) have a relatively compact
form. In contrast, the partial derivatives with respect to α

and β of the stationary phase integral (2.13) and the series
expansions (2.18) and (2.25) become rather unwieldy. Nev-
ertheless, ∂α of the stationary phase integral and series
representation of f was computed in Matsui and Takemura
(2006) (for the symmetric case). However, this approach
becomes cumbersome in the general case, as numerous appli-
cations of the product and chain rule make the expressions
impractically long.

In order to compute the derivatives of the series represen-
tations (2.18) and (2.25) with respect to x , differentiation can
be done term-by-term. See Appendix for this calculation.

3 Generalized Gaussian quadrature

In this section, we briefly discuss what are known as general-
ized Gaussian quadrature rules. These integration schemes
are analogous to the Gaussian quadrature rules for orthog-
onal polynomials, except that they are applicable to wide
classes of functions, not merely polynomials. See Dahlquist
and Björck (2003) for a description of classical Gaussian
quadrature with regard to polynomial integration. Gener-
alized Gaussian quadrature schemes were first rigorously
introduced inMaet al. (1996) andYarvin andRokhlin (1998).
Recently, a more efficient scheme for their construction was
developed in Bremer et al. (2010). It is this more recent algo-
rithm that we base our calculations on, and outline the main
ideas here. See both of these references for a detailed descrip-
tion of these quadrature rules.

3.1 Gaussian quadrature

A k-point quadrature rule consists of a set of k nodes and
weights, which we will denote by {x j , w j }. These nodes and
weights are chosen to accurately approximate the integral of
a function f with respect to a positive weight function ω:

∫ b

a
f (x) ω(x) dx ≈

k∑
j=1

w j f (x j ). (3.1)
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Many different types of quadrature rules exist which exhibit
different behaviors for different classes of functions f . In
short, if a k-point quadrature rule exists which integrates k
linearly independent functions f1, …, fk , we say that the
quadrature rule is a Chebyshev quadrature. If the k-point
rule is able to integrate 2k functions f1, …, f2k , then we say
that the rule is Gaussian.

In the case where the f� are polynomials, the nodes
and weights of the associate Gaussian quadrature can be
determined from the class of orthogonal polynomials with
correspondingweight functionω. However, in the casewhere
the f�’s are arbitrary square-integrable functions, these nodes
and weights must be determined in a purely numerical man-
ner.

3.2 Nodes and weight by nonlinear optimization

We now provide an overview of the numerical procedure for
constructing a Gaussian quadrature rule for the integrand in
equation (2.9) using the procedure of Bremer et al. (2010).
Recall, we are constructing a quadrature rule to compute:

f (x;α, β) = 1

π

∫ ∞

0
cos(h(t; x, α, β)) e−tα dt, (3.2)

i.e., the goal is to compute integrals of the functions we will
denote by

φ(t; x, α, β) = cos(h(t; x, α, β)) e−tα . (3.3)

For reasons of clarity, we address computing a generalized
Gaussian quadrature scheme for a class of functions ψ =
ψ(t; η), i.e., those that depend on only one parameter, η. The
multi-parameter case is analogous. The following discussion
is cursory, and we direct the reader to Bremer et al. (2010)
for more details, as there are several aspects of numerical
analysis, optimization, and linear algebra that would merely
distract from the current application.

For a selection of 2n linearly independent functions ψ�,
we note that the corresponding n-point generalized Gaussian
quadrature {t j , w j } is the solution to the following system of
2n nonlinear equations:

n∑
j=1

w j ψ1(t j ) =
∫

ψ1(t) dt,

... = ...

n∑
j=1

w j ψ2n(t j ) =
∫

ψ2n(t) dt.

(3.4)

Obtaining a solution to this system is the goal of the following
procedure.

The scheme proceeds by first finding an orthonormal set
of functions u� such that anyψ(·, η) can be approximated, to
some specified precision ε, as a linear combination of the u�

for any η. Next, an oversampled quadrature scheme that inte-
grates products of these functions is constructed, by using, for
example, adaptive Gaussian quadrature (Press et al. 2007).
AdaptiveGaussian quadrature proceeds by dividing the inter-
val of integration into several segments such that on each
segment, the integral is computed to a specified accuracy.
The accuracy of each quadrature is determined by comparing
with the value obtained on a finer subdivision of the interval.

For 2n functions, this means that we have a m-point
quadrature rule {t j , w j } such that

∣∣∣∣∣∣
∫

uk(t) u�(t) dt −
m∑
j=1

w j uk(t j ) u�(t j )

∣∣∣∣∣∣ ≤ ε, (3.5)

for all 1 ≤ k, � ≤ 2n, with m ≥ 2n. Accurately integrating
products of the u�’s allows for stable interpolation to be done
for any η �= η� (Bremer et al. 2010). At this point, the vec-
tors u� ∈ R

m serve as finite dimensional embeddings of the
square-integrable functions u�:

u� =
⎡
⎢⎣

√
w1 u�(t1)

...√
wm u�(tm)

⎤
⎥⎦ . (3.6)

Here, the u�(t j )’s are scaled so that uT
� u� ≈ ||u�||22. Com-

puting a rank-revealing QR decomposition of the matrix U,

U =
⎡
⎢⎣
uT
1
...

uT
m

⎤
⎥⎦ , (3.7)

allows for the immediate construction of a 2n-point Cheby-
shev quadrature rule. This procedure, equivalently, has
selected 2n values of t j that can serve as integration (and
interpolation) nodes for all of the u�’s. Refining this 2n-
point Chebyshev quadrature down to an n-point quadrature
proceeds via a Gauss–Newton optimization. On each step, a
single node-weight pair (ti , wi ) is chosen to be discarded and
the remaining nodes and weights are optimized. The proce-
dure proceeds until roughly n nodes remain, or accuracy in
the resulting quadrature starts to suffer. While the weights
we obtained as a result of this optimization procedure hap-
pened to be positive, no explicit effort was made to ensure
this. Theoretical considerations for the existence of positive
weights can be found in Yarvin and Rokhlin (1998).

Remark 1 Note that in the symmetric case, we must obtain
a selection of x�1 , α�2 that yield a (possibly redundant) basis
for all φ. This could be done via adaptive discretization in
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these variables, but in practice, we merely sample x , α at
Chebyshev points in Region I in Fig. 3a. The parameter α is
sampled at roughly 100 Chebyshev points in [0.5, 2.0], and
then for each of these values α�2 , x is sampled at roughly 100
Chebyshev point in the interval [0, B∞

40 (α�2)]. This yields an
initial set of 10,000 functions which are then compressed and
integrated. In order to make sure this sampling in x and α

provides a suitable set of functions to span the space of all
φ, we rigorously test the quadrature at many thousands of
random locations in Region I, comparing against adaptive
quadrature. The asymmetric case is analogous, with equis-
paced sampling in x , α, and β. Experimentally, in order to
obtain high accuracy in the resulting quadrature, more nodes
are required in the sampling of x than in α or β.

3.3 A rank-reducing transformation

In the brief description of the above algorithm, we assumed
that the interval of integration for the quadraturewas finite. In
our case, the interval in (3.2) is infinite, but can be truncated
given that it decays quickly due to the term e−tα . A common
interval of integration for all φ(·; x, α) can be obtained based
on the decay of e−tα for the smallest α under consideration.
In fact, for a particular precision ε, we can set the upper limit
of integration to be Tα = (− log ε)1/α . Using this limit, we
can redefine each integrand φ under a linear transformation:

f (x;α, β) ≈ 1

π

∫ Tα

0
φ(t;α, β) dt

= Tα

π

∫ 1

0
φ(τTα;α, β) dτ

= Tα

π

∫ 1

0
cos(h(τTα;α, β)) e−(τTα)α dτ

= Tα

π

∫ 1

0
φ̃(τ ;α, β) dτ. (3.8)

Computing generalized Gaussian quadratures for the func-
tions φ̃ turns out to be much more efficient due to the
similarity of numerical support (i.e., those t such that
|φ̃(t)| > ε). This change of variables can significantly reduce
the rank obtained in the rank-revealing QR step of the pre-
vious nonlinear optimization procedure. For example, the
generalized Gaussian quadrature for functions in Region I in
Fig. 3a consisted of 100 nodes/weights before the change of
variables, and only 43 nodes/weights afterward. The result-
ing quadrature can be applied to the original function φ via a
straightforward linear transformation of the nodes and scal-
ing of the weights.

To be fair, the stationary phase integral (2.13) too per-
mits such a rank-reducing transformation. However, it turns
out to be much less efficient because it relies on an a pri-
ori zero-finding procedure. Notably, (2.13) has changing

numerical support for different choices of the input param-
eters x , α, and β. This is true even after accounting for the
parameter-dependent interval of integration by composing
the integrand with a linear map from [0, 1] to [−θ0, π/2].
Experimentally, even though the integrand decays to zero at
both −θ0 and π/2, the differing numerical support is pri-
marily caused by the exponential behavior of the integrand
on the side of the interval of integration where e−g(θ) → 0.
Making use of this observation, for α ≤ 1 solving for θε

such that g(θε)e−g(θε) < ε allows the integral in (2.13) to be
approximated as:

f (x;α, β)

= α

π |α − 1|
1

(x − ζ )

∫ π/2

θε

g(θ; x, α, β) e−g(θ;x,α,β) dθ,

(3.9)

and for α > 1:

f (x;α, β)

= α

π |α − 1|
1

(x − ζ )

∫ θε

−θ0

g(θ; x, α, β) e−g(θ;x,α,β) dθ.

(3.10)

A change of variable in these integrals can translate the
interval of integration to [0, 1]. If the generalized Gaussian
quadrature construction procedure is applied to these formu-
lae, we also observe a reduction in the number of nodes and
weights required. For example, in the symmetric case, solv-
ing for g(θε) = 40 (which yields double-precision decay)
the rank of the matrix U in (3.7) decreased from 290 to 68
for x ∈ [10−5, 30] and α ∈ [.6, .8]

In practice, the transformation of the stationary phase inte-
gral does not prove to be efficient because it relies on an
initial zero-finding procedure to construct transformation in θ

depending on each parameter x , α, β. In contrast, the change
of variables in (3.8) merely requires evaluating log. Similar
changes of variables can be used to simplify the construction
of quadratures for evaluating gradients of f .

3.4 Alternatives to generalized Gaussian quadrature

A number of quadrature techniques which are particularly
effective for highly oscillatory integrands have been devel-
oped relatively recently. See Iserles et al. (2006) and Olver
(2008, 2010) for an informative overview of such meth-
ods. Two notable examples which we will discuss here are
Filon-type and Levin-type methods. These techniques are
applicable to integrals of the form

∫
f (t) eiωg(t) dt, (3.11)
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where f and g are smooth, non-oscillatory functions, and ω

is a scalar. The function g is called the oscillator.
The integrand of (2.9) is oscillatory, and therefore, one

could consider applying either Filon-type or Levin-type
quadrature schemes instead of the generalized Gaussian
quadrature rules. Unfortunately, for general parameters
ranges, generalized Gaussian quadratures are likely to be the
most efficient schemes.We briefly justify this statement with
a discussion of Filon and Levin methods.

Filon-type quadratures are interpolatory quadrature rules.
That is, they approximate the function f with a set of func-
tions ψk for which an analytical solution of the integral

μk =
∫

ψk(t) e
iωg(t) dt (3.12)

exists. This poses a problem for the application of Filon-type
quadratures to the integral (2.9). Indeed, note that (2.9) can
be written in the form of (3.11) by setting

f (t) = e−tα ,

g(t) = (x − ζ )t + ζ tα.
(3.13)

Since g depends on α, β, and x , the integrals μk have to
be recalculated for every evaluation of a stable density with
differing parameters. In contrast, the generalized Gaussian
quadratures we derived are applicable for a wide range of
parameters (see Fig. 3).

Turning to Levin-type methods, they can be illustrated
with the following observation Olver (2010). Let u(t) be a
function which satisfies

d

dt

(
u(t) eiωg(t)

)
= f (t) eiωg(t). (3.14)

We then have

∫ b

a
f (t) eiωg(t)dt = u(b) eiωg(b) − u(a) eiωg(a). (3.15)

From (3.14), we can also derive the differential equation

u′ + iω g′ u = f, (3.16)

where u′ and g′ denote differentiation with respect to t . The
problem of computing an oscillatory integral has therefore
been converted to that of solving a first-order, linear differ-
ential equation on the interval [a, b].

Levin-type methods will require the solution of this
ODE every time an integral has to be evaluated. Even
with high-order convergent ODE solvers, these methods are
unlikely to beat generalized Gaussian quadrature methods in
terms of floating-point operations (after suitable offline pre-
computations). Levin-type methods could be applicable to

the parameter range .9 < α < 1.1, β �= 0, where modestly
sized generalized Gaussian quadratures are not available.
For example, if a Chebyshev spectral method is used to
solve (3.16), numerical experiments indicate that the condi-
tionnumber of the systemcan reach∼ 106 before the solution
u can be fully resolved (requiring ∼ 1000 Chebyshev terms)
(Driscoll et al. 2014). Therefore, a significant loss of accuracy
with spectral methods is likely. Indeed, sometimes only nine
significant digits are achieved with this approach. Adaptive
step-size ODE solvers or other methods may obtain higher
accuracy in solving (3.16), but their efficiency as compared
to generalized Gaussian methods has yet to be analyzed.

Levin-type methods could also be used for integral rep-
resentations of the partial derivatives of stable densities, for
which no asymptotic expansion is available. However, it is
likely to be cheaper to form a Chebyshev interpolant of the
density as a function of the parameter, and then differentiate
the series (i.e., perform 2D interpolation and spectral dif-
ferentiation). This will achieve higher accuracy than a finite
difference scheme, with a slightly higher computational cost.

4 Algorithm and Numerical examples

In the following,wewill describe the details of our algorithm.
In particular, we detail which formula or quadrature should
be used depending on values of the parameters x , α, β. We
begin with a comparison of the benefits of the two integral
representations given by (2.9) and (2.13).

4.1 Choosing an integral representation

It has become clear after several numerical experiments that
the stationary phase integral (2.13), while seemingly simpler
to evaluate than (2.9), carries several disadvantages. Namely,
it cannot be used to reliably evaluate f when x ∼ ζ (themode
of the distributions in the symmetric case), α ∼ 1, or for very
large x . Furthermore, its partial derivatives suffer from the
same deficiencies and have rather unwieldy forms. Lastly,
the rank-reducing technique of Sect. 3.3 is not as effective
when applied to (2.13). This results in quadratures of much
larger sizes when compared to those for (2.9).

In contrast, (2.9) has only one of the aforementioned defi-
ciencies: It cannot be evaluated efficiently when α ∼ 1 in the
asymmetric case. Still, it is important to point out that (2.9)
can be easily evaluated at α ∼ 1 in the symmetric case.

The stationary phase form (2.13) does have two advan-
tages over (2.9). First, it is well behaved for intermediate to
large x , whereas (2.9) becomes very oscillatory. Second, it
can be evaluated for α < 0.5, whereas the relevant interval
of integration of (2.9) grows rather fast as α → 0. However,
the series expansion (2.25) is a much more efficient means
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Fig. 3 Regions of validity for
generalized Gaussian quadrature
rules and series approximations
for the evaluation of f (x; α, β).
Asymptotic expansions are used
for extreme values of x , and
generalized Gaussian quadrature
routines are able to fill in large
regions of the remaining space.
a The symmetric case, β = 0.
b The asymmetric case, β �= 0

(a) (b)

of evaluation in these regimes. This limits the usefulness of
the stationary phase integral for our purpose.

As a result, the only integral representation of the density
we use in our algorithm is given by (2.9). One consequence
of this choice is that we do not need to use the series expan-
sion around x = ζ given in (2.18), as the integral is well
behaved there. For similar reasons, we use (2.17) to compute
F , and the integral representations for the gradient of f given
in (2.34).

4.2 The symmetric case β = 0

We first provide some numerical examples of the accuracy
and efficiency of evaluating the symmetric densities

f (x;α, 0) = 1

π

∫ ∞

0
cos(xt) e−tα dt. (4.1)

We restrict our attention to values of f for α ≥ 0.5 for two
reasons. First, when α is much smaller than 0.5, and x is
close to but not equal to ζ , existing numerical schemes for
integral representations and series expansions require pro-
hibitive computational cost to achieve reasonable accuracy.
And second, the applications for modeling with stable laws
with such small values of the stability parameter α seem to
be very rare. Nevertheless, it should be pointed out that when
α < 0.1, the series (2.25) with n∞ = 128 terms is accurate to
double precision for x − ζ ≥ 10−16. At x = ζ , the first term
of the series (2.18) can be used to obtain an accurate value
of the density. Therefore, in this extreme regime, effective
numerical evaluations of stable laws are possible using the
series expansions alone.

We now move to a description of our evaluation scheme.
For a particular value of α ≥ 0.5, if x ≤ B∞

40 (this
corresponds to Region I in Fig. 3a), we use a 43-point gen-
eralized Gaussian quadrature to evaluate the above integral.
If x > B∞

40 , we use series expansion (2.25). The number
of terms in the series expansion was chosen (experimen-
tally, as a precomputation) to roughly equal the number of
nodes in the optimized quadrature. A similar method is used
for the computation of F and the gradient of f . However,
there is a notable difference in the computation of ∂α f as it

Table 1 Symmetric (β = 0)
stable density evaluation for
α ∈ [.5, 2.0]

nGGQ n∞ max err

f 43 42 5E−14

∂x f 44 42 9E−14

∂α f 49 42 1E−13

F 39 42 9E−14

does not permit a convenient series expression, as noted in
Sect. 2.4. Instead, we use a finite difference scheme applied
to the series (2.25) to compute ∂α f when x > B∞

43 . The
accuracy of finite difference schemes depends on the partic-
ular scheme used. In practice, a two-point finite difference
is accurate to about 10−6, while a fourth-order scheme is
accurate to about 10−10. The fourth-order scheme is listed in
Appendix.

Accuracy results for f and its gradient are reported in
Table 1. The columns are as follows:

nGGQ : the number of nodes in the generalizedGaus-
sian quadrature scheme,

n∞: the number of termsused for the series (2.25),
and

max error: the maximum absolute L∞ error relative to
adaptive integration.

The accuracy results were obtained by testing our quadra-
ture scheme against an adaptive integration evaluate of (2.9)
at 100,000 randomly chosen points in the xα-plane for
x ∈ [0, B∞

n∞] and α ∈ [0.5, 2.0]. We should note that all
results are reported in absolute precision. When evaluat-
ing integrals with arbitrarily sign-changing integrands via
quadrature, if the integral is of size δ then it is likely that
O(| log δ|) digits will be lost in relative precision due to
the cancellation effect inherent in floating-point arithmetic.
Table 2 contains the 43-point quadrature for evaluating stable
densities in Region I of Fig. 3a.

We should note that while it is possible to construct more
efficient quadratures for smaller regions of the xα-plane,
namely for α > 1 (distributions with finite expectation),
it is useful to obtain a single global quadrature value in
a lone region. As shown in Fig. 4a, small changes in α

induce equivalently small changes in the density (a rather
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Table 2 Nodes and weights for computing the integral in (4.1) in
Region I of Fig. 3a

j t j w j

1 3.8153503841778930 E−08 1.9462166165433782 E−07

2 1.8621751229398742 E−06 5.6557228645853394 E−06

3 2.3548989111566051E−05 5.0123980914007912 E−05

4 1.4796873542253231E−04 2.3484191896467563E−04

5 5.9719633529811916E−04 7.3189687338231666E−04

6 1.7776065804175705E−03 1.7238717892356147E−03

7 4.2473152693930051E−03 3.3181618633886167E−03

8 8.6062904061371317E−03 5.4843557934027244 E−03

9 1.5348863951004616E−02 8.0460517169448388E−03

10 2.4742939762206897E−02 1.0741992568943348E−02

11 3.6794136418563730 E−02 1.3324899124821651E−02

12 5.1299788260226145E−02 1.5632319416985788E−02

13 6.7944092105184303E−02 1.7598001767457079E−02

14 8.6382423526857308E−02 1.9224720756886148E−02

15 1.0629323929619865E−01 2.0550906564542663E−02

16 1.2740084223127754 E−01 2.1626845166204386E−02

17 1.4948000254495675E−01 2.2501767869303416E−02

18 1.7235168105825832 E−01 2.3218324218440851E−02

19 1.9587547846015377E−01 2.3811106669646236E−02

20 2.1994170091684220 E−01 2.4307093498802106E−02

21 2.4446430088367060 E−01 2.4726814975746716E−02

22 2.6937507294734536E−01 2.5085627984821550 E−02

23 2.9461905048621601E−01 2.5394814769833289E−02

24 3.2015086713296453E−01 2.5662404915729992 E−02

25 3.4593177859400515E−01 2.5893662976614856E−02

26 3.7192698736533930 E−01 2.6091208338375568E−02

27 3.9810287487972756E−01 2.6254650270947675E−02

28 4.2442340488910107E−01 2.6379218475411595E−02

29 4.5084450818929106E−01 2.6452938570694140 E−02

30 4.7730398807466573E−01 2.6449899946836126E−02

31 5.0370157776242630 E−01 2.6317157280117857E−02

32 5.2986292621392794 E−01 2.5956236923454400 E−02

33 5.5549151318191370 E−01 2.5233135355892482 E−02

34 5.8023336057818919E−01 2.4253858975533026E−02

35 6.0420106522936246E−01 2.3883208046443095E−02

36 6.2845118361063135E−01 2.4788564380040439E−02

37 6.5391666500166423E−01 2.6135655855085593E−02

38 6.8067763680759019E−01 2.7386023987669407E−02

39 7.0883363435562430 E−01 2.9079584045104245E−02

40 7.3935214962210505E−01 3.2403729259281477E−02

41 7.7501382927296592 E−01 3.9683359210637488E−02

42 8.1983271443438077E−01 5.0313579393503942 E−02

43 8.7653187131388799E−01 6.3807406535572972 E−02

Note that the change of variables discussed in Sect. 3.3 must be used
before applying the quadrature

low-rank update in Fourier-space). In particular applications
with restricted stability parameters, it may be prudent to
construct even more efficient quadratures. There are several
parameter combinations or ranges that might benefit from
specialized quadrature. For example, the Holtsmark distri-
bution (α = 1.5, β = 0) occurs in statistical investigations
of gravity (Chandrasekhar 1943; Chavanis 2009). The meth-
ods of this paper can be applied to compute this distribution,
and others, very efficiently.

4.3 The asymmetric case β �= 0

In the asymmetric case, β �= 0, we first change variables
and evaluate the densities at locations relative to: x − ζ . This
ensures that the densities are continuous in all parameters. As
in the symmetric case, we restrict our attention to densities
with α ≥ 0.5. Furthermore, due to difficulties in the integral
and series formulations near α = 1, we partition the α space
into two regions: [0.5, 0.9] and [1.1, 2.0]. For values of β �=
0, |ζ | → ∞ as α → 1. This is the main mode of failure for
both integral representations (2.9) and (2.13) near α = 1.
As a consequence, the integrand in (2.9) becomes highly
oscillatory for even small values of x−ζ , and (2.13) becomes
spiked, as seen in Fig. 2. Quadrature techniques developed
to deal with highly oscillatory integrands may be applicable
in this regime and will be investigated in future work.

For calculating asymmetric densities, the parameter space
is partitioned in the following manner: For all 0 ≤ x − ζ ≤
B∞
n∞ , the densities are calculated via a generalized Gaussian

quadrature scheme for the integral (2.9). For x−ζ > B∞
n∞ , the

series expansion (2.25) is used. As mentioned previously, we
have not obtained a convenient series representation of ∂α f
and ∂β f . Similar to the computation of ∂α f in the sym-
metric case, we use finite differences to approximate values
of ∂α f and ∂β f whenever x > B∞

n∞ . Depending on the finite
difference scheme used, this may lead to reduced accuracy
compared to the quadrature method for the computation of f
and ∂x f . Similar accuracy reports to those for the symmet-
ric densities are contained in Tables 3a and 3b. Notably, the
quadrature rule for F in the regime α ∈ [.5, .9] is less accu-
rate and has more nodes/weights than for the other functions.
This is due to the fact that the integrand in (2.17) for F is
singular at t = 0 in the asymmetric case. As a consequence,
designing highly accurate quadrature rules for (2.17) without
using quadruple precision calculations is not possible. This
issue will be investigated in future work. The corresponding
quadrature rules are available for download at https://gitlab.
com/s_ament/qastable.

4.4 Efficiency of the method

To test the efficiency of our method, we compare our imple-
mentation of the density function evaluation to two different
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Fig. 4 Effect of changing
parameters of the density
f (x; α, β), along with partial
derivatives. a Varying α. b
Varying β

(a) (b)

Table 3 Asymmetric (β �= 0)
stable density evaluation for
α ∈ [0.5, 0.9] and α ∈ [1.1, 2.0]

nGGQ n∞ max err

α ∈ [.5, .9]
f 94 90 5E−14

∂x f 110 90 1E−13

∂α f 113 90 9E−14

∂β f 109 90 5E−14

F 181 90 1E−8

α ∈ [1.1, 2.0]
f 86 80 2 E−14

∂x f 96 80 2 E−14

∂α f 98 80 9E−14

∂β f 93 80 4 E−14

F 88 80 1E−14

Table 4 Timings for density evaluations

tGQ tGQ (β = 0) tAQ1 tAQ2

0.003s 0.001s 0.3 s 2 s

implementations based on adaptive quadrature. All codes
are written in Matlab. The first implementation simply
applies Matlab’s integral function to the oscillatory
integral (2.9). Note that this function can be called in a
vectorized manner by adjusting the ArrayValued argu-
ment. Without this adjustment, the computations below are
about an order of magnitude slower. (That is, tAQ1 and tAQ2

are roughly 10 times as large.) The second implementation
mimics the approach that was previously taken to compute
the stationary phase integral (2.13). Namely, it first locates
the peak of the integrand using Matlab’s intrinsic fzero
function and subsequently applies integral on the two
subintervals created by splitting the original interval of inte-
gration at the peak of the integrand.

The validation test proceeds as follows. First, α and β

are chosen randomly in the permissible parameter ranges.
Then, 10,000 uniformly random x are generated such that
0 ≤ x − ζ ≤ 20. Thereafter, we record the wall-clock time

eachmethod takes to calculate the stable density at all 10,000
points. For our tests, we require the absolute accuracy of the
adaptive schemes to be 10−10. The results are reported in
Table 4. The columns of the table are:

tGQ : the time takenbyour scheme to compute the density
at all points,

tAQ1: time taken by the first adaptive scheme outlined
above, and

tAQ2: the time taken by the second adaptive scheme out-
lined above.

We also report a timing for the symmetric case (β = 0) for
our scheme, since it uses a quadrature separate from the one in
the asymmetric case. The test was performed on a MacBook
Pro with a 2.4 GHz Intel Core i7 and 8 GB 1333MHz DDR3
RAM. As one can see, our scheme outperforms the adaptive
ones by at least two orders of magnitude.

5 Conclusions

In this work, we have presented efficient quadrature schemes
and series expansions for numerically evaluating the densi-
ties, and derivatives thereof, associated with what are known
as stable distributions. The quadratures are of generalized
Gaussian type and were constructed using a nonlinear opti-
mization procedure. The series expansions were obtained
straightforwardly from integral representations, but seem to
have not been previously presented in the computational
statistics literature. The methods of this paper are quite effi-
cient and easily vectorizable. This is in contrast to existing
schemes for evaluating these integrals, which were predomi-
nately based on adaptive integration—which cannot take full
advantage of vectorization schemes due to varying depths of
recursion.

Furthermore, while the quadratures that we constructed
are (nearly) optimal with respect to the number of nodes and
weights required, they do not obtain full double precision
accuracy (∼10−16). We often only achieve absolute accura-
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cies of 12 or 13 digits. While some of the precision loss is
due to merely roundoff error in summing the terms in the
quadrature, some of the loss of accuracy is due to solving the
ill-conditioned linearization of the quadrature problem. The
accuracy lost due to this aspect of the procedure could be
recovered if the quadrature generation codes were rewritten
using quadruple precision arithmetic instead of double pre-
cision. In most cases, the accuracy we obtained is sufficient
for general use, but we are investigating a higher precision
procedure for constructing the quadrature rules.

The schemes presented in this paper still fail to thor-
oughly address the evaluation of the density function (and
gradient and CDF) for values of α ≈ 1 in the asymmetric
case. One could, however, perform a large-scale precom-
putation in extended precision in order to tabulate these
densities for various values of x and β, store the results, and
later interpolate to other values. This approach was beyond
the scope of this work. This approach was used for maxi-
mum likelihood estimation in Nolan (2001). Unless chosen
very carefully, a rather large number of interpolation nodes
are necessary to achieve high accuracy, and each function
( f,∇ f, F) has to be tabulated separately. We are actively
investigating approaches to fill in this gap in the numerical
evaluation of the density (and gradient and CDF).

A software package written in Matlab for computing
stable densities, their gradients, and distribution functions
using the algorithms of this paper is available at https://gitlab.
com/s_ament/qastable and will be continually updated as we
improve the efficiency and accuracy of existing evaluations,
and include additional capabilities.
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Appendix: Gradients of series expansions

Here we provide formulae for the derivatives of the series
expansions presented in Sect. 2.4. From (2.18),

∂x f (x;α, β)

= 1

απ

∞∑
k=0

�( k+2
α

)

�(k)
(1 + ζ 2)−

k+2
2α

× sin ((π/2 + (arctan ζ )/α) (k + 2)) (x − ζ )k . (5.1)

Using an error bound analogous to the ones in Sect. 2.3, we
have that

|x − ζ | ≤ C0
n (α) :=

[
εαπ(1 + ζ 2)

n+2
2α

�(n)

�( n+2
α

)

]1/n

. (5.2)

By differentiating (2.25), we attain

∂x f (x, α, β) = α

π

∞∑
k=1

(−1)k
(αk + 1)�(αk)

�(k)
(1 + ζ 2)k/2

× sin((πα − arctan ζ )k)(x − ζ )−αk−2,

(5.3)

whose radius of convergence to precision ε we estimate by

|x − ζ | ≥ C∞
n−1(α)

:=
[

α

πε
(1 + ζ 2)

n
2
(αn + 1)�(αn)

�(n)

]1/(αn−2)

. (5.4)

For the parameter ranges where there is no convenient
formulation of the derivatives, we can use a finite difference
approximation of the form

∂x f (x)

= − f (x + 2h) + 8 f (x + h) − 8 f (x − h) + f (x − 2h)

12h
+ O(h4). (5.5)
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