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Abstract Due to the significant increase of communications
between individuals via social media (Facebook, Twitter,
Linkedin) or electronic formats (email, web, e-publication)
in the past two decades, network analysis has become an
unavoidable discipline. Many random graph models have
been proposed to extract information from networks based
on person-to-person links only, without taking into account
information on the contents. This paper introduces the
stochastic topic block model, a probabilistic model for net-
works with textual edges. We address here the problem of
discovering meaningful clusters of vertices that are coher-
ent from both the network interactions and the text contents.
A classification variational expectation-maximization algo-
rithm is proposed to perform inference. Simulated datasets
are considered in order to assess the proposed approach and
to highlight its main features. Finally, we demonstrate the
effectiveness of our methodology on two real-word datasets:
a directed communication network and an undirected co-
authorship network.
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1 Introduction

The significant and recent increase of interactions between
individuals via social media or through electronic communi-
cations enables to observe frequently networks with textual
edges. It is obviously of strong interest to be able tomodel and
cluster the vertices of those networks using information on
both the network structure and the text contents. Techniques
able to provide such a clustering would allow a deeper under-
standing of the studied networks. As a motivating example,
Fig. 1 shows a network made of three “communities” of
vertices where one of the communities can in fact be split
into two separate groups based on the topics of communica-
tion between nodes of these groups (see legend of Fig. 1 for
details). Despite the important efforts in both network anal-
ysis and text analytics, only a few works have focused on the
joint modeling of network vertices and textual edges.

1.1 Statistical models for network analysis

On the one hand, there is a long history of research in
the statistical analysis of networks, which has received
strong interest in the last decade. In particular, statistical
methods have imposed theirselves as efficient and flexible
techniques for network clustering. Most of those methods
look for specific structures, the so-called communities,which
exhibit a transitivity property such that nodes of the same
community are more likely to be connected (Hofman and
Wiggins 2008). Popular approaches for community discov-
ering, though asymptotically biased (Bickel and Chen 2009),
are based on the modularity score given by Girvan and New-
man (2002). Alternative clustering methods usually rely on
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Fig. 1 A sample network made of 3 “communities” where one of the
communities is made of two topic-specific groups. The left panel only
shows the observed (binary) edges in the network. The center panel
shows the network with only the partition of edges into 3 topics (edge
colors indicate the majority topics of texts). The right panel shows the

network with the clustering of its nodes (vertex colors indicate the
groups) and the majority topic of the edges. The latter visualization
allows to see the topic-conditional structure of one of the three commu-
nities

the latent position cluster model (LPCM) of Handcock et al.
(2007), or the stochastic block model (SBM) (Wang and
Wong 1987; Nowicki and Snijders 2001). The LPCMmodel,
which extends the work of Hoff et al. (2002), assumes that
the links between the vertices depend on their positions in a
social latent space and allows the simultaneous visualization
and clustering of a network.

The SBM model is a flexible random graph model
which is based on a probabilistic generalization of the
method applied byWhite et al. (1976) on Sampson’s famous
monastery (Fienberg and Wasserman 1981). It assumes that
each vertex belongs to a latent group, and that the probability
of connection between a pair of vertices depends exclusively
on their group. Because no specific assumption is made on
the connection probabilities, various types of structures of
vertices can be taken into account. At this point, it is impor-
tant to notice that, in network clustering, two types of clusters
are usually considered: communities (vertices within a com-
munity are more likely to connect than vertices of different
communities) and stars or disassortative clusters (the vertices
of a cluster highly connect to vertices of another). In this con-
text, SBM is particularly useful in practice since it has the
ability to characterize both types of clusters.

While SBM was originally developed to analyze mainly
binary networks, many extensions have been proposed since
to deal for instance with valued edges (Mariadassou et al.
2010), categorical edges (Jernite et al. 2014), or to take
into account prior information (Zanghi et al. 2010; Matias
and Robin 2014). Note that other extensions of SBM have
focused on looking for overlapping clusters (Airoldi et al.
2008; Latouche et al. 2011) or on the modeling of dynamic
networks (Yang et al. 2011; Xu and Hero 2013; Bouvey-
ron et al. 2016; Matias and Miele 2016).

The inference of SBM-like models is usually done using
variational expectation maximization (VEM) (Daudin et al.
2008), variational Bayes EM (VBEM) (Latouche et al.
2012), or Gibbs sampling (Nowicki and Snijders 2001).
Moreover, we emphasize that various strategies have been

derived to estimate the number of corresponding clusters
using model selection criteria (Daudin et al. 2008; Latouche
et al. 2012), allocation sampler (Mc Daid et al. 2013),
greedy search (Côme and Latouche 2015), or nonparametric
schemes (Kemp et al. 2006). We refer to (Salter-Townshend
et al. 2012) for a overview of statistical models for network
analysis.

1.2 Statistical models for text analytics

On the other hand, the statistical modeling of texts appeared
at the end of the last century with an early model described
by Papadimitriou et al. (1998) for latent semantic indexing
(LSI) (Deerwester et al. 1990). LSI is known in particular
for allowing to recover linguistic notions such as synonymy
and polysemy from “term frequency - inverse document
frequency” (tf-idf) data. Hofmann (1999) proposed an alter-
native model for LSI, called probabilistic latent semantic
analysis (pLSI), which models each word within a document
using a mixture model. In pLSI, each mixture component
is modeled by a multinomial random variable and the latent
groups can be viewed as “topics.” Thus, each word is gener-
ated from a single topic and different words in a document
can be generated from different topics. However, pLSI has no
model at the document level and may suffer from overfitting.
Notice that pLSI can also be viewed as an extension of the
mixture of unigrams, proposed by Nigam et al. (2000).

The model which finally concentrates the most desired
features was proposed by Blei et al. (2003) and is called
latent Dirichlet allocation (LDA). The LDA model has
rapidly become a standard tool in statistical text analyt-
ics and is even used in different scientific fields such as
image analysis (Lazebnik et al. 2006) or transportation
research (Côme et al. 2014) for instance. The idea of LDA
is that documents are represented as random mixtures over
latent topics, where each topic is characterized by a distri-
bution over words. LDA is therefore similar to pLSI except
that the topic distribution in LDA has a Dirichlet distribu-
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tion. Several inference procedures have been proposed in the
literature ranging from VEM (Blei et al. 2003) to collapsed
VBEM (Teh et al. 2006).

Note that a limitation of LDA would be the inability
to take into account possible topic correlations. This is
due to the use of the Dirichlet distribution to model the
variability among the topic proportions. To overcome this
limitation, the correlated topic model (CTM) was also devel-
oped by Blei and Lafferty (2006). Similarly, the relational
topic model (RTM) (Chang and Blei 2009) models the links
between documents as binary random variables conditioned
on their contents, but ignoring the community ties between
the authors of these documents. Notice that the “itopic”
model (Sun et al. 2009) extends RTM to weighted networks.
The reader may refer to Blei (2012) for an overview on prob-
abilistic topic models.

1.3 Statistical models for the joint analysis of texts and
networks

Finally, a few recent works have focused on the joint model-
ing of texts and networks. Those works are mainly motivated
by the will of analyzing social networks, such as Twit-
ter or Facebook, or electronic communication networks.
Some of them are partially based on LDA: the author-
topic (AT) (Steyvers et al. 2004; Rosen-Zvi et al. 2004)
and the author-recipient-topic (ART) (McCallum et al. 2005)
models. The AT model extends LDA to include authorship
information, whereas the ART model includes authorships
and information about the recipients. Although potentially
powerful, these models do not take into account the network
structure (communities, stars, …) while the concept of com-
munity is very important in the context of social networks, in
the sense that a community is a group of users sharing similar
interests.

Among the most advanced models for the joint analy-
sis of texts and networks, the first models which explicitly
take into account both text contents and network struc-
ture are the community-user-topic (CUT) models proposed
by (Zhou et al. 2006). Two models are proposed: CUT1 and
CUT2, which differ in the way they construct the communi-
ties. Indeed, CUT1 determines the communities only based
on the network structure, whereas the CUT2 model deter-
mines the communities based on the content information
solely. The CUT models therefore deal each with only a part
of the problem we are interested in. It is also worth noticing
that the authors of these models rely for inference on Gibbs
sampling which may prohibit their use on large networks.

A second attempt was made by Pathak et al. (2008) who
extended the ART model by introducing the community-
author-recipient-topic (CART) model. The CART model
adds to the ART model that authors and recipients belong
to latent communities and allows CART to recover groups of

nodes that are homogenous both regarding the network struc-
ture and the message contents. Notice that CART allows the
nodes to be part of multiple communities and each couple
of actors to have a specific topic. Thus, though extremely
flexible, CART is also a highly parametrized model. In addi-
tion, the recommended inference procedure based on Gibbs
sampling may also prohibit its application to large networks.

More recently, the topic-link LDA (Liu et al. 2009) also
performs topic modeling and author community discovery in
a unified framework. As its name suggests, topic-link LDA
extends LDAwith a community layer where the link between
two documents (and consequently its authors) depends on
both topic proportions and author latent features through
a logistic transformation. However, whereas CART focuses
only on directed networks, topic-linkLDA is only able to deal
with undirected networks. On the positive side, the authors
derive a variational EM algorithm for inference, allowing
topic-link LDA to eventually be applied to large networks.

Finally, a family of four topic-user-community models
(TUCM) were proposed by Sachan et al. (2012). The TUCM
models are designed such that they can find topic-meaningful
communities in networks with different types of edges. This
is in particular relevant in social networks such as Twitter
where different types of interactions (followers, tweet, re-
tweet, …) exist. Another specificity of the TUCM models is
that they allow both multiple community and topic member-
ships. Inference is also done here through Gibbs sampling,
implying a possible scale limitation.

1.4 Contributions and organization of the paper

We propose here a new generative model for the clustering
of networks with textual edges, such as communication or
co-authorship networks. Conversely to existing works which
have either too simple or highly parametrized models for the
network structure, our model relies for the networkmodeling
on the SBM model which offers a sufficient flexibility with
a reasonable complexity. This model is one of the few able
to recover different topological structures such as communi-
ties, stars, or disassortative clusters (see Latouche et al. 2012
for instance). Regarding the topic modeling, our approach is
based on the LDAmodel, in which the topics are conditioned
on the latent groups.Thus, the proposedmodelingwill be able
to exhibit node partitions that are meaningful both regarding
the network structure and the topics, with a model of lim-
ited complexity, highly interpretable, and for both directed
and undirected networks. In addition, the proposed inference
procedure—a classification-VEMalgorithm—allows the use
of our model on large-scale networks.

The proposed model, named stochastic topic block model
(STBM), is introduced in Sect. 2. The model inference is
discussed in Sect. 3 as well as model selection. Section 4
is devoted to numerical experiments highlighting the main
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features of the proposed approach and proving the validity
of the inference procedure. Two applications to real-world
networks (the Enron email and the Nips co-authorship net-
works) are presented in Sect. 5. Section 6 finally provides
some concluding remarks.

2 The model

This section presents the notations used in the paper and
introduces the STBM model. The joint distributions of the
model to create edges and the corresponding documents are
also given.

2.1 Context and notations

A directed network with M vertices, described by its M ×M
adjacency matrix A, is considered. Thus, Ai j = 1 if there is
an edge from vertex i to vertex j , 0 otherwise. The network is
assumed not to have any self-loop and therefore Aii = 0 for
all i . If an edge from i to j is present, then it is characterized
by a set of Di j documents, denoted Wi j = (Wd

i j )d . Each

document Wd
i j is made of a collection of Nd

i j words W
d
i j =

(Wdn
i j )n . In the directed scenario considered, Wi j can model

for instance a set of emails or text messages sent from actor
i to actor j . Note that all the methodology proposed in this
paper easily extends to undirected networks. In such a case,
Ai j = A ji and Wd

i j = Wd
ji for all i and j . The set Wd

i j of
documents can then model for example books or scientific
papers written by both i and j . In the following, we denote
W = (Wi j )i j the set of all documents exchanged, for all the
edges present in the network.

Our goal is to cluster the vertices into Q latent groups
sharing homogeneous connection profiles, i.e., find an esti-
mate of the set Y = (Y1, . . . ,YM ) of latent variables Yi such
that Yiq = 1 if vertex i belongs to cluster q, and 0 other-
wise. Although in some cases, discrete or continuous edges
are taken into account, the literature on networks focuses on
modeling the presence of edges as binary variables. The clus-
tering task then consists in building groups of vertices having
similar trends to connect to others. In this paper, the connec-
tion profiles are both characterized by the presence of edges
and the documents between pairs of vertices. Therefore, we
aim at uncovering clusters by integrating these two sources
of information. Two nodes in the same cluster should have
the same trend to connect to others, and when connected,
the documents they are involved in should be made of words
related to similar topics.

2.2 Modeling the presence of edges

In order to model the presence of edges between pairs of
vertices, a stochastic block model (Wang and Wong 1987;

Nowicki and Snijders 2001) is considered. Thus, the vertices
are assumed to be spread into Q latent clusters such that
Yiq = 1 if vertex i belongs to cluster q, and 0 otherwise. In
practice, the binary vector Yi is assumed to be drawn from a
multinomial distribution

Yi ∼ M (
1, ρ = (ρ1, . . . , ρQ)

)
,

where ρ denotes the vector of class proportions. By construc-
tion,

∑Q
q=1 ρq = 1 and

∑Q
q=1 Ziq = 1,∀i .

An edge from i to j is then sampled from a Bernoulli
distribution, depending on their respective clusters

Ai j |YiqY jr = 1 ∼ B(πqr ). (1)

In words, if i is in cluster q and j in r , then Ai j is 1 with
probability πqr . In the following, we denote π the Q × Q
matrix of connection probabilities.Note that in the undirected
case, π is symmetric.

All vectors Yi are sampled independently, and given Y =
(Y1, . . . ,YM ), all edges in A are assumed to be independent.
This leads to the following joint distribution

p(A,Y |ρ, π) = p(A|Y, π)p(Y |ρ),

where

p(A|Y, π) =
M∏

i �= j

p(Ai j |Yi ,Y j , π)

=
M∏

i �= j

Q∏

q,l

p(Ai j |πqr )
YiqY jr ,

and

p(Y |ρ) =
M∏

i=1

p(Yi |ρ)

=
M∏

i=1

Q∏

q=1

ρ
Yiq
q .

2.3 Modeling the construction of documents

As mentioned previously, if an edge is present from vertex
i to vertex j , then a set of documents Wi j = (Wd

i j )d , char-
acterizing the oriented pair (i, j), is assumed to be given.
Thus, in a generative perspective, the edges in A are first
sampled using previous section. Given A, the documents in
W = (Wi j )i j are then constructed. The generative process
we consider to build documents is strongly related to the
latent Dirichlet allocation (LDA) model of Blei et al. (2003).
The link between STBM and LDA is made clear in the fol-
lowing section. The STBM model relies on two concepts at
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the core of the SBM and LDA models, respectively. On the
one hand, a generalization of the SBM model would assume
that any kind of relationships between two vertices can be
explained by their latent clusters only. In the LDAmodel, on
the other hand, the main assumption is that words in docu-
ments are drawn from amixture distribution over topics, each
document d having its own vector of topic proportions θd .
The STBMmodel combines these two concepts to introduce
a new generative procedure for documents in networks.

Each pair of clusters (q, r) of vertices is first associated
to a vector of topic proportions θqr = (θqrk)k sampled inde-
pendently from a Dirichlet distribution

θqr ∼ Dir (α = (α1, . . . , αK )) ,

such that
∑K

k=1 θqrk = 1,∀(q, r). We denote θ = (θqr )qr
and α = (α1, . . . , αK ) the parameter vector controlling the
Dirichlet distribution. Note that in all our experiments we set
each component of α to 1 in order to obtain a uniform distri-
bution. Since α is fixed, it does not appear in the conditional
distributions provided in the following. The nth wordWdn

i j of
documents d inWi j is then associated to a latent topic vector
Zdn
i j assumed to be drawn from a multinomial distribution,

depending on the latent vectors Yi and Y j

Zdn
i j | {YiqY jr Ai j = 1, θ

}

∼ M (
1, θqr = (θqr1, . . . , θqrK )

)
. (2)

Note that
∑K

k=1 Z
dnk
i j = 1,∀(i, j, d), Ai j = 1. Equations

(1) and (2) are related: they both involve the construction
of random variables depending on the cluster assignment of
vertices i and j . Thus, if an edge is present (Ai j = 1) and if
i is in cluster q and j in r , then the word Wdn

i j is in topic k

(Zdnk
i j = 1) with probability θqrk .

Then, given Zdn
i j , the word Wdn

i j is assumed to be drawn
from a multinomial distribution

Wdn
i j |Zdnk

i j = 1 ∼ M (1, βk = (βk1, . . . , βkV )) , (3)

where V is the number of (different) words in the vocabulary
considered and

∑V
v=1 βkv = 1,∀k as well as∑V

v=1 W
dnv
i j =

1,∀(i, j, d, n). Therefore, if Wdn
i j is from topic k, then it is

associated to word v of the vocabulary (Wdnv
i j = 1) with

probability βkv . Equations (2) and (3) lead to the following
mixture model for words over topics

Wdn
i j | {YiqY jr Ai j = 1, θ

} ∼
K∑

k=1

θqrkM (1, βk) ,

where the K × V matrix β = (βkv)kv of probabilities does
not depend on the cluster assignments. Note that words of

different documents d and d
′
in Wi j have the same mixture

distribution which only depends on the respective clusters
of i and j . We also point out that words of the vocabulary
appear in any document d of Wi j with probabilities

P(Wdnv
i j = 1|YiqY jr Ai j = 1, θ) =

K∑

k=1

θqrkβkv.

Because pairs (q, r) of clusters can have different vectors
of topics proportions θqr , the documents they are associated
with can have different mixture distribution of words over
topics. For instance, most words exchanged from vertices of
cluster q to vertices of cluster r can be related tomathematics
while vertices from q ′ can discuss with vertices of r ′ with
words related to cinema and in some cases to sport.

All the latent variables Zdn
i j are assumed to be sampled

independently and, given the latent variables, the wordsWdn
i j

are assumed tobe independent.Denoting Z = (Zdn
i j )i jdn , this

leads to the following joint distribution

p(W, Z , θ |A,Y, β) = p(W |A, Z , β)p(Z |A,Y, θ)p(θ),

where

p(W |A, Z , β) =
M∏

i �= j

⎧
⎪⎨

⎪⎩

Di j∏

d=1

Nd
i j∏

n=1

p(Wdn
i j |Zdn

i j , β)

⎫
⎪⎬

⎪⎭

Ai j

=
M∏

i �= j

⎧
⎪⎨

⎪⎩

Di j∏

d=1

Nd
i j∏

n=1

K∏

k=1

p(Wdn
i j |βk)

Zdnk
i j

⎫
⎪⎬

⎪⎭

Ai j

,

and

p(Z |A,Y, θ) =
M∏

i �= j

⎧
⎪⎨

⎪⎩

Di j∏

d=1

Nd
i j∏

n=1

p(Zdn
i j |Yi ,Y j , θ)

⎫
⎪⎬

⎪⎭

Ai j

=
M∏

i �= j

⎧
⎪⎨

⎪⎩

Di j∏

d=1

Nd
i j∏

n=1

Q∏

q,r

p(Zdn
i j |θqr )YiqY jr

⎫
⎪⎬

⎪⎭

Ai j

,

as well as

p(θ) =
Q∏

q,r

Dir(θqr ;α).

2.4 Link with LDA and SBM

The full joint distribution of the STBM model is given by
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Fig. 2 Graphical representation of the stochastic topic block model

p(A,W,Y, Z , θ |ρ, π, β)

= p(W, Z , θ |A, Y, β)p(A,Y |ρ, π), (4)

and the corresponding graphical model is provided in Fig. 2.
Thus, all the documents in W are involved in the full joint
distribution through p(W, Z , θ |A,Y, β). Now, let us assume
that Y is available. It then possible to reorganize the doc-
uments in W such that W = (W̃qr )qr , where W̃qr ={
Wd

i j ,∀(d, i, j),YiqY jr Ai j = 1
}
is the set of all documents

exchanged from any vertex i in cluster q to any vertex j
in cluster r . As mentioned in the previous section, each
word Wdn

i j has a mixture distribution over topics which only
depends on the clusters of i and j . Because all words in
W̃qr are associated with the same pair (q, r) of clusters,
they share the same mixture distribution. Removing tem-
porarily the knowledge of (q, r ), i.e., simply seeing W̃qr as
a document d, the sampling scheme described previously
then corresponds to the one of a LDA model with D = Q2

independent documents W̃qr , each document having its own
vector θqr of topic proportions. The model is then charac-
terized by the matrix β of probabilities. Note that contrary
to the original LDA model (Blei et al. 2003), the Dirichlet
distributions considered for the θqr depend on a fixed vector
α.

As mentioned in Sect. 2.2, the second part of Eq. (4)
involves the sampling of the clusters and the construction
of binary variables describing the presence of edges between
pairs of vertices. Interestingly, it corresponds exactly to the
complete data likelihood of the SBM model, as considered
in Zanghi et al. (2008) for instance. Such a likelihood term
only involves the model parameters ρ and π .

3 Inference

We aim at maximizing the complete data log-likelihood

log p(A,W,Y |ρ, π, β)

= log
∑

Z

∫

θ

p(A,W,Y, Z , θ |ρ, π, β)dθ, (5)

with respect to the model parameters (ρ, π, β) and the set
Y = (Y1, . . . ,YM ) of cluster membership vectors. Note that
Y is not seen here as a set of latent variables over which
the log-likelihood should be integrated out, as in standard
expectation maximization (EM) (Dempster et al. 1977) or
variational EM algorithms (Hathaway 1986). Moreover, the
goal is not to provide any approximate posterior distribution
of Y given the data and model parameters. Conversely, Y
is seen here as a set of (binary) vectors for which we aim
at providing estimates. This choice is motivated by the key
property of the STBM model, i.e., for a given Y , the full
joint distribution factorizes into a LDA-like term and SBM-
like term. In particular, given Y , words in W can be seen
as being drawn from a LDA model with D = Q2 docu-
ments (see Sect. 2.4), for which fast optimization tools have
been derived, as pointed out in the introduction. Note that
the choice of optimizing a complete data log-likelihood with
respect to the set of cluster membership vectors has been
considered in the literature, for simple mixture model such
as Gaussian mixture models, but also for the SBM model
(Zanghi et al. 2008). The corresponding algorithm, the so-
called classification EM (CEM) (Celeux and Govaert 1991)
alternates between the estimation of Y and the estimation of
the model parameters.

As mentioned previously, we introduce our methodology
in the directed case. However, we emphasize that the STBM
package for R we developed, implements the inference strat-
egy for both directed and undirected networks.

3.1 Variational decomposition

Unfortunately, in our case, Eq. (5) is not tractable. Moreover,
the posterior distribution p(Z , θ |A,W,Y, ρ, π, β) does not
have any analytical form. Therefore, following the work of
Blei et al. (2003) on the LDAmodel, we propose to rely on a
variational decomposition. In the case of the STBM model,
it leads to

log p(A,W,Y |ρ, π, β) = L (R(·); Y, ρ, π, β)

+KL (R(·) ‖ p(·|A,W,Y, ρ, π, β)),

where

L (R(·); Y, ρ, π, β) =
∑

Z

∫

θ

R(Z , θ)

× log
p(A,W, Y, Z , θ |ρ, π, β)

R(Z , θ)
dθ, (6)

and KL denotes the Kullback–Leibler divergence between
the true and approximate posterior distribution R(·)of (Z , θ),
given the data and model parameters
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KL (R(·) ‖ p(·|A,W,Y, ρ, π, β))

= −
∑

Z

∫

θ

R(Z , θ) log
p(Z , θ |A,W,Y, ρ, π, β)

R(Z , θ)
dθ.

Since log p(A,W,Y |ρ, π, β) does not depend on the distri-
bution R(Z , θ), maximizing the lower bound L with respect
to R(Z , θ) induces a minimization of the KL divergence. As
in Blei et al. (2003), we assume that R(Z , θ) can be factor-
ized over the latent variables in θ and Z . In our case, this
translates into

R(Z , θ) = R(Z)R(θ) = R(θ)

M∏

i �= j,Ai j=1

Di j∏

d=1

Nd
i j∏

n=1

R(Zdn
i j ).

3.2 Model decomposition

As pointed out in Sect. 2.4, the set of latent variables in Y
allows the decomposition of the full joint distribution in two
terms, from the sampling of Y and A to the construction of
documents given A and Y . When deriving the lower bound
(6), this property leads to

L (R(·); Y, ρ, π, β) = L̃ (R(·); Y, β) + log p(A,Y |ρ, π),

where

L̃ (R(·); Y, β)

=
∑

Z

∫

θ

R(Z , θ) log
p(W, Z , θ |A,Y, β)

R(Z , θ)
dθ, (7)

and log p(A,Y |ρ, π) is the complete data log-likelihood
of the SBM model. The parameter β and the distribution
R(Z , θ) are only involved in the lower bound L̃ while ρ and
π only appear in log p(A,Y |ρ, π). Therefore, given Y , these
two terms can bemaximized independently. Moreover, given
Y, L̃ is the lower bound for the LDA model, as proposed by
Blei et al. (2003), after building the set W = (W̃qr )qr of
D = Q2 documents, as described in Sect. 2.4. In the next
section, we derive a VEM algorithm to maximize L̃ with
respect β and R(Z , θ), which essentially corresponds to the
VEM algorithm of Blei et al. (2003). Then, log p(A,Y |ρ, π)

is maximized with respect to ρ and π to provide estimates.
Finally, L (R(·); Y, ρ, π, β) is maximized with respect to Y ,
which is the only term involved in both L̃ and the SBM
complete data log-likelihood. Because the methodology we
propose requires a variational EM approach as well as a
classification step, to provide estimates of Y , we call the
corresponding strategy a classification VEM (C-VEM) algo-
rithm.

3.3 Optimization

In this section, we derive the optimization steps of the C-
VEM algorithm we propose, which aims at maximizing the
lower bound L. The algorithm alternates between the opti-
mization of R(Z , θ),Y , and (ρ, π, β) until convergence of
the lower bound.
Estimation of R(Z , θ) The following propositions give the
update formulae of the E step of the VEM algorithm applied
on Eq. (7).

Proposition 1 (Proof in Appendix 1) The VEM update step
for each distribution R(Zdn

i j ) is given by

R(Zdn
i j ) = M

(
Zdn
i j ; 1, φdn

i j = (φdn1
i j , . . . , φdnK

i j )
)

,

where

φdnk
i j ∝

(
V∏

v=1

β
Wdnv

i j
kv

) Q∏

q,r

exp

(

ψ(γqrk − ψ

(
K∑

l=1

γqrl

))YiqY jr

,

∀(d, n, k).

φdnk
i j is the (approximate) posterior distribution of words

Wdn
i j being in topic k.

Proposition 2 (Proof in Appendix 2) The VEM update step
for distribution R(θ) is given by

R(θ) =
Q∏

q,r

Dir(θqr ; γqr = (γqr1, . . . , γqrK )),

where

γqrk = αk +
M∑

i �= j

Ai j YiqY jr

Nd
i j∑

d=1

Ndn
i j∑

n=1

φdnk
i j ,∀(q, r, k).

Estimation of the model parameters Maximizing the lower
bound L in Eq. (7) is used to provide estimates of the model
parameters (ρ, π, β). We recall that β is only involved in
L̃ while (ρ, π) only appear in the SBM complete data log-
likelihood. The derivation of L̃ is given in Appendix 3.

Proposition 3 (Proofs in Appendices 4, 5, 6) The estimates
of β, ρ, and π , are given by

βkv ∝
M∑

i �= j

Ai j

Di j∑

d=1

Ndn
i j∑

n=1

φdnk
i j Wdnv

i j ,∀(k, v),

ρq ∝
M∑

i=1

Yiq ,∀q, πqr =
∑M

i �= j
∑Q

q,r YiqY jr Ai j
∑M

i �= j
∑Q

q,r YiqY jr
,∀(q, r).
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Estimation of Y At this step, the model parameters (ρ, π, β)

along with the distribution R(Z , θ) are held fixed. Therefore,
the lower bound L in (7) only involves the set Y of clus-
ter membership vectors. Looking for the optimal solution Y
maximizing this bound is not feasible since it involves test-
ing the QM possible cluster assignments.However, heuristics
are available to provide local maxima for this combinatorial
problem. These so-called greedy methods have been used
for instance not only to look for communities in networks
by Newman (2004) and Blondel et al. (2008) but also for
the SBMmodel (Côme and Latouche 2015). They are some-
times referred to as on line clustering methods (Zanghi et al.
2008).

The algorithm cycles randomly through the vertices. At
each step, a single vertex is considered and all membership
vectors Y j are held fixed, except Yi . If i is currently in cluster
q, then the method looks for every possible label swap, i.e.,
removing i from cluster q and assigning it to a cluster r �= q.
The corresponding change in the SBM complete data log-
likelihood is then computed. If no label swap induces an
increase in the SBM complete data log-likelihood, then Yi
remains unchanged. Otherwise, the label swap that yields the
maximal increase is applied, and Yi is changed accordingly.

3.4 Initialization strategy and model selection

The C-VEM introduced in the previous section allows the
estimation of R(Z , θ),Y , as well as (ρ, π, β), for a fixed
number Q of clusters and a fixed number K of topics. As
any EM-like algorithms, the C-VEM method depends on
the initialization and is only guaranteed to converge to a
local optimum (Bilmes 1998). Strategies to tackle this issue
include simulated annealing and the use of multiple initial-
izations (Biernacki et al. 2003). In this work, we choose the
latter option. Our C-VEM algorithm is run for several ini-
tializations of a k-means like algorithm on a distance matrix
between the vertices obtained as follows:

1. The VEM algorithm (Blei et al. 2003) for LDA is applied
on the aggregation of all documents exchanged from ver-
tex i to vertex j , for each pair (i, j) of vertices, in order
to characterize a type of interaction from i to j . Thus, a
M × M matrix X is first built such that Xi j = k if k is
the majority topic used by i when discussing with j .

2. The distance M × M matrix Δ is then computed as fol-
lows:

Δ(i, j) =
N∑

h=1

δ(Xih �= X jh)Aih A jh

+
N∑

h=1

δ(Xhi �= Xhj )Ahi Ahj . (8)

The first term looks at all possible edges from i and j
toward a third vertex h. If both i and j are connected
to h, i.e., Aih A jh = 1, the edge types Xih and X jh

are compared. By symmetry, the second term looks at
all possible edges from a vertex h to both i as well
as j , and compare their types. Thus, the distance com-
putes the number of discordances in the way both i
and j connect to other vertices or vertices connect to
them.

Regardingmodel selection, since amodel-based approach
is proposed here, two STBM models will be seen as differ-
ent if they have different values of Q and/or K . Therefore,
the task of estimating Q and K can be viewed as a model
selection problem. Many model selection criteria have been
proposed in the literature, such as the Akaike information
criterion (Akaike 1973) (AIC) and the Bayesian information
criterion (Schwarz 1978) (BIC). In this paper, because the
optimization procedure considered involves the optimization
of the binary matrix Y , we rely on a ICL-like criterion. This
criterion was originally proposed by Biernacki et al. (2000)
for Gaussian mixture models. In the STBM context, it aims
at approximating the integrated complete data log-likelihood
log p(A,W,Y ).

Proposition 4 (Proof in Appendix 7) A ICL criterion for
the STBM model can be obtained

ICLST BM = L̃(R(·); Y, β) − K (V − 1)

2
log Q2

+max
ρ,π

log p(A,Y |ρ, π, Q)

−Q2

2
logM(M − 1) − Q − 1

2
logM

Note that this result relies on two Laplace approximations, a
variational estimation, as well as Stirling formula. It is also
worth noticing that this criterion involves two parts, as shown
in the appendix: a BIC like term associated to a LDA model
[see Than and Ho (2012) for instance] with Q2 documents
and the ICL criterion for the SBM model, as introduced by
Daudin et al. (2008).

4 Numerical experiments

This section aims at highlighting themain features of the pro-
posed approach on synthetic data and at proving the validity
of the inference algorithm presented in the previous section.
Model selection is also considered to validate the criterion
choice. Numerical comparisons with state-of-the-art meth-
ods conclude this section.
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Table 1 Parameter values for
the three simulation scenarios
(see text for details)

Scenario A B C

M (nb of nodes) 100

K (topics) 4 3 3

Q (groups) 3 2 4

ρ (group prop.) (1/Q, . . . , 1/Q)

π (connection prob.)

{
πqq = 0.25
πqr, r �=q = 0.01

πqr, ∀q,r = 0.25

{
πqq = 0.25
πqr, r �=q = 0.01

θ (prop. of topics)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ111 = θ222 = 1

θ333 = 1

θqr4, r �=q = 1

otherwise 0

⎧
⎪⎨

⎪⎩

θ111 = θ222 = 1

θqr3, r �=q = 1

otherwise 0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ111 = θ331 = 1

θ222 = θ442 = 1

θqr3, r �=q = 1

otherwise 0

Fig. 3 Networks sampled according to the three simulation scenarios A, B, and C. See text for details

4.1 Experimental setup

First, regarding the parametrization of our approach, we
chose αk = 1,∀k which induces a uniform distribution over
the topic proportions θqr .

Second, regarding the simulation setup and in order to
illustrate the interest of the proposed methodology, three
different simulation setups will be used in this section. To
simplify the characterization and facilitate the reproducibil-
ity of the experiments, we designed three different scenarios.
They are as follows:

– Scenario A consists in networks with Q = 3 groups, cor-
responding to clear communities, where persons within
a group talk preferentially about a unique topic and use a
different topic when talkingwith persons of other groups.
Thus, those networks contain K = 4 topics.

– Scenario B consists in networks with a unique commu-
nity, where the Q = 2 groups are only differentiated by
the way they discuss within and between groups. Persons
within groups 1 and 2 talk preferentially about topics 1
and 2, respectively. A third topic is used for the commu-
nications between persons of different groups.

– Scenario C, finally, consists in networks with Q = 4
groups which use K = 3 topics to communicate. Among
the 4 groups, two groups correspond to clear commu-
nities where persons talk preferentially about a unique
topic within the communities. The two other groups cor-
respond to a single community and are only discriminated
by the topic used in the communications. People from

group 3 use topic 1 and the topic 2 is used in group 4.
The third topic is used for communications between
groups.

For all scenarios, the simulated messages are sampled from
four texts from BBC news: one text is about the birth of
Princess Charlotte, the second one is about black holes in
astrophysics, the third one is focused on UK politics, and
the last one is about cancer diseases in medicine. All mes-
sages are made of 150 words. Table 1 provides the parameter
values for the three simulation scenarios. Figure 3 shows
simulated networks according to the three simulation sce-
narios. It is worth noticing that all simulation scenarios have
been designed such that they do not strictly follow the STBM
model, and therefore they do not favor the model we propose
in comparisons.

4.2 Introductory example

As an introductory example, we consider a network of M =
100 nodes sampled according to scenario C (3 communities,
Q = 4 groups and K = 3 topics). This scenario corresponds
to a situation where both network structure and topic infor-
mation are needed to correctly recover the data structure.
Indeed, groups 3 and 4 form a single community when look-
ing at the network structure and it is necessary to look at the
way they communicate to discriminate the two groups.

The C-VEM algorithm for STBMwas run on the network
with the actual number of groups and topics (the problem
of model selection will be considered in next section). Fig-
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Final clustering

Fig. 4 Clustering result for the introductory example (scenario C). See
text for details

ure 4 first shows the obtained clustering, which is here perfect
both regarding the simulated node and edges partitions.More
interestingly, Fig. 5 allows to visualize the evolution of the
lower boundL along the algorithm iterations (top-left panel),

the estimated model parameters π and ρ (right panels), and
the most frequent words in the 3 found topics (left-bottom
panel). It turns out that both the model parameters, π and ρ

(see Table 1 for actual values), and the topic meanings are
well recovered. STBM indeed perfectly recovers the three
themes that we used for simulating the textual edges: one is
a “royal baby” topic, one is a political one, and the last one is
focused on Physics. Notice also that this result was obtained
in only a few iterations of the C-VEM algorithm, that we
proposed for inferring STBM models.

A useful and compact view of both parameters π and
ρ, and of the most probable topics for group interactions
can be offered by Fig. 6. Here, edge widths correspond to
connection probabilities between groups (π ), the node sizes
are proportional to group proportions (ρ), and edge col-
ors indicate the majority topics for group interactions. It is
important to notice that, even though only the most probable
topic is displayed here, each textual edge may use different
topics.
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Fig. 5 Clustering result for the introductory example (scenario C). See text for details
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Fig. 6 Introductory example: summary of connection probabilities
between groups (π , edge widths), group proportions (ρ, node sizes),
and most probable topics for group interactions (edge colors)

Table 2 Percentage of selections by ICL for each STBMmodel (Q, K )

on 50 simulated networks of each of three scenarios

K\Q 1 2 3 4 5 6

Scenario A (Q = 3, K = 4)

1 0 0 0 0 0 0

2 12 0 0 0 0 0

3 0 0 0 0 0 0

4 0 0 82 2 0 2

5 0 0 2 0 0 0

6 0 0 0 0 0 0

Scenario B (Q = 2,K = 3)

1 0 0 0 0 0 0

2 12 0 0 0 0 0

3 0 88 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

Scenario C (Q = 4, K = 3)

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 2 82 0 0

4 0 0 0 16 0 0

5 0 0 0 0 0 0

6 0 0 0 0 0 0

Rows and columns in italics correspond to the actual values for Q and
K

4.3 Model selection

This experiment focuses on the ability of the ICL criterion to
select appropriate values for Q and K . To this end, we sim-
ulated 50 networks according to each of the three scenarios
and STBM was applied on those networks for values of Q
and K ranging from 1 to 6. Table 2 presents the percentage

of selections by ICL for each STBM model (Q, K ) on 50
simulated networks of each of the three scenarios.

In the three different situations, ICL succeeds most of the
time in identifying the actual combination of the number of
groups and topics. For scenarios A and B, when ICL does
not select the correct values for Q and K , the criterion seems
to underestimate the values of Q and K , whereas it tends to
overestimate them in the case of scenario C. One can also
notice that wrongly selected models are usually close to the
simulated one. Let us also recall that, since the data are not
strictly simulated according to a STBM model, the ICL cri-
terion does not have the model which generated the data in
the set of tested models. This experiment allows to validate
ICL as a model selection tool for STBM.

4.4 Benchmark study

This third experiment aims at comparing the ability of STBM
to recover the network structure both in term of node parti-
tion and topics. STBM is here compared to SBM, using the
mixer package (Ambroise et al. 2010), and LDA, using the
topicmodels package (Grun and Hornik 2013). Obviously,
SBM and LDA will be only able to recover either the node
partition or the topics. We chose here to evaluate the results
by comparing the resulting node and topic partitions with the
actual ones (the simulated partitions). In the clustering com-
munity, the adjusted Rand index (ARI) (Rand 1971) serves as
a widely accepted criterion for the difficult task of clustering
evaluation. The ARI looks at all pairs of nodes and checks
whether they are classified in the same group or not in both
partitions. As a result, an ARI value close to 1 means that the
partitions are similar. Notice that the actual values of Q and
K are provided to the three algorithms.

In addition to the different simulation scenarios, we con-
sidered three different situations: the standard simulation
situation as described in Table 1 (hereafter “Easy”), a simu-
lation situation (hereafter “Hard 1”) where the communities
are less differentiated (πqq = 0.25 and πq �=r = 0.2, except
for scenario B), and a situation (hereafter “Hard 2”) where
40 % of message words are sampled in different topics than
the actual topic.

In the “Easy” situation, the results are coherent with our
initial guess when building the simulation scenarios. Indeed,
besides the fact that SBM and LDA are only able to recover
one of the twopartitions, scenarioA is an easy situation for all
methods since the clusters perfectlymatch the topic partition.
Scenario B, which has no communities and where groups
only depend on topics, is obviously a difficult situation for
SBM but does not disturb LDA which perfectly recovers the
topics. In scenario C, LDA still succeeds in identifying the
topicsm, whereas SBMwell recognizes the two communities
but fails in discriminating the two groups hidden in a single
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Table 3 Clustering results for
the SBM, LDA and STBM on
20 networks simulated
according to the three scenarios

Method Scenario A Scenario B Scenario C

Node ARI Edge ARI Node ARI Edge ARI Node ARI Edge ARI

Easy

SBM 1.00 ± 0.00 – 0.01 ± 0.01 – 0.69 ± 0.07 –

LDA – 0.97 ± 0.06 – 1.00 ± 0.00 – 1.00 ± 0.00

STBM 0.98 ± 0.04 0.98 ± 0.04 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Hard 1

SBM 0.01 ± 0.01 – 0.01 ± 0.01 – 0.01 ± 0.01 –

LDA – 0.90 ± 0.17 – 1.00 ± 0.00 – 0.99 ± 0.01

STBM 1.00 ± 0.00 0.90 ± 0.13 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.03

Hard 2

SBM 1.00 ± 0.00 – −0.01 ± 0.01 – 0.65 ± 0.05 –

LDA – 0.21 ± 0.13 – 0.08 ± 0.06 – 0.09 ± 0.05

STBM 0.99 ± 0.02 0.99 ± 0.01 0.59 ± 0.35 0.54 ± 0.40 0.68 ± 0.07 0.62 ± 0.14

Average ARI values are reported with standard deviations for both node and edge clustering. The “Easy”
situation corresponds to the simulation situationdescribes inTable 1. In the “Hard1” situation, the communities
are very few differentiated (πqq = 0.25 and πq �=r = 0.2, except for scenario B). The “Hard 2” situation finally
corresponds to a setup where 40 % of message words are sampled in different topics than the actual topic

community. Here, STBM obtains in all scenarios the best
performance on both nodes and edges (Table 3).

The “Hard 1” situation considers the case where the com-
munities are actually not well differentiated. Here, LDA is
little affected (only in scenario A), whereas SBM is no longer
able to distinguish the groups of nodes. Conversely, STBM
relies on the found topics to correctly identifies the node
groups and obtains, here again, excellent ARI values in all
the three scenarios.

The last situation, the so-called “Hard 2” case, aims at
highlighting the effect of theword sampling in the recovering
of the used topics. On the one hand, SBM now achieves
a satisfying classification of nodes for scenarios A and C
while LDA fails in recovering the majority topic used for
simulation. On those two scenarios, STBM performs well on
both nodes and topics. This proves that STBM is also able
to recover the topics in a noisy situation by relying on the
network structure. On the other hand, scenario B presents an
extremely difficult situationwhere topics are noised and there
are no communities. Here, although both LDA and SBM fail,
STBM achieves a satisfying result on both nodes and edges.
This is, once again, an illustration of the fact that the joint
modeling of network structure and topics allows to recover
complex hidden structures in a network with textual edges.

5 Application to real-world problems

In this section, we present two applications of STBM to real-
world networks: the Enron email and the Nips co-authorship
networks. These two datasets have been chosen because one
is a directed network of moderate size, whereas the other one
is undirected and of a large size.

5.1 Analysis of the Enron email network

We consider here a classical communication network, the
Enron data set, which contains all email communications
between 149 employees of the famous company from1999 to
2002.The original dataset is available at https://www.cs.cmu.
edu/~./enron/. Here, we focus on the period 1, September
to 31, December, 2001. We chose this specific time window
because it is the denser period in term of sent emails and since
it corresponds to a critical period for the company. Indeed,
after the announcement early September 2001 that the com-
panywas “in the strongest and best shape that it has ever been
in,” the Securities and Exchange Commission (SEC) opened
an investigation on 31, October for fraud and the company
finally filed for bankruptcy on 2, December, 2001. By this
time, it was the largest bankruptcy in the U.S. history and
resulted in more than 4,000 lost jobs. Unsurprisingly, those
key dates actually correspond to breaks in the email activity
of the company, as shown in Fig. 7.

The dataset considered here contains 20 940 emails sent
between theM = 149 employees.Allmessages sent between
two individuals were coerced in a single meta-message.
Thus, we end up with a dataset of 1 234 directed edges
between employees, each edge carrying the text of all mes-
sages between two persons.

The C-VEM algorithm we developed for STBM was run
on these data for a number Q of groups from 1 to 14 and
a number K of topics from 2 to 20. As one can see in
Fig. 1 of the supplementary material, the model with the
highest value was (Q, K ) = (10, 5). Figure 8 shows the
clustering obtained with STBM for 10 groups of nodes and 5
topics. As previously shown, edge colors refer to the major-
ity topics for the communications between the individuals.
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Fig. 7 Frequency of messages
between Enron employees
between September 1st and
December 31th, 2001
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Fig. 8 Clustering result with
STBM on the Enron dataset
(Sept.–Dec. 2001)
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The found topics can be easily interpreted by looking at
the most specific words of each topic, displayed in Fig. 9.
In a few words, we can summarize the found topics as
follows:

– Topic 1 seems to refer to the financial and trading activ-
ities of Enron.

– Topic 2 is concernedwith Enron activities in Afghanistan
(Enron and the Bush administration were suspected to
work secretly with Talibans up to a few weeks before the
9/11 attacks).

– Topic 3 contains elements related to the California elec-
tricity crisis, in which Enron was involved, and which
almost caused the bankruptcy of SCE-corp (Southern
California Edison Corporation) early 2001.
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Fig. 9 Most specific words for
the 5 found topics with STBM
on the Enron dataset
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Fig. 10 Enron dataset: summary of connection probabilities between
groups (π , edge widths), group proportions (ρ, node sizes) and most
probable topics for group interactions (edge colors)

– Topic 4 is about usual logistic issues (building equipment,
computers, …).

– Topic 5 refers to technical discussions on gas deliveries
(mmBTU represents 1 million of British thermal unit,
which is equal to 1055 joules).

Figure 10 presents a visual summary of connection proba-
bilities between groups (the estimatedπ matrix) andmajority
topics for group interactions. A few elements deserve to be
highlighted in view of this summary. First, group 10 contains
a single individual who has a central place in the network
and who mostly discusses about logistic issues (topic 4) with
groups 4, 5, 6, and 7. Second, group 8 is made of 6 indi-
viduals who mainly communicates about Enron activities in
Afghanistan (topic 2) between them and with other groups.

Finally, groups 4 and 6 seem to be more focused on trading
activities (topic 1), whereas groups 1, 3, and 9 are dealing
with technical issues on gas deliveries (topic 5).

As a comparison, the network has also been processed
with SBM, using the mixer package (Ambroise et al. 2010).
The chosen number K of groups by SBM was 8. Figure 11
allows to compare the partitions of nodes provided by SBM
and STBM. One can observe that the two partitions differ
on several points. On the one hand, some clusters found by
SBM (the bottom-left one for instance) have been split by
STBM since some nodes use different topics than the rest of
the community. On the other hand, SBM isolates two “hubs”
which seem to have similar behaviors. Conversely, STBM
identifies a unique “hub” and the second node is gathered
with other nodes, using similar discussion topics. STBM has
therefore allowed a better and deeper understanding of the
Enron network through the combination of text contents with
network structure.

5.2 Analysis of the Nips co-authorship network

This second network is a co-authorship network within a
scientific conference: the Neural Information Processing
Systems (Nips) conference. The conference was initially
mainly focused on computational neurosciences and is nowa-
days one of the famous conferences in statistical learning
and artificial intelligence. We here consider the data between
the 1988 and 2003 editions (Nips 1–17). The dataset, avail-
able at http://robotics.stanford.edu/~gal/data.html, contains
the abstracts of 2484 accepted papers from 2740 contribut-
ing authors. The vocabulary used in the paper abstracts
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Fig. 11 Clustering results with
SBM (left) and STBM (right)
on the Enron data set. The
selected number of groups for
SBM is Q = 8, whereas STBM
selects 10 groups and 5 topics

SBM STBM

Fig. 12 Clustering result with
STBM on the Nips
co-authorship network

Final clustering

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10

Group 11
Group 12
Group 13
Topic 1
Topic 2
Topic 3
Topic 4
Topic 5
Topic 6
Topic 7

has 14,036 words. Once the co-authorship network recon-
structed, we have an undirected network between 2740
authors with 22,640 textual edges.

We applied STBM on this large dataset and the selected
model by ICL was (Q, K ) = (13, 7). The values of ICL
are presented in Fig. 4 of the supplementary material. Note
that the values of the criterion for K > Q are not indicated
since we found ICL to have higher values for K ≤ Q on this
dataset. It is worth noticing that STBM chose here a limited
number of topics compared to what a simple LDA analysis
of the data would have provided. Indeed, STBM looks for
topics which are useful for clustering the nodes. In this sense,
the topics of STBM may be slightly different than those of

LDA. Figure 12 shows the clustering obtained with STBM
for 13 groups of nodes and 7 topics. Due to size and density
of the network, the visualization and interpretation from this
figure are actually tricky. Fortunately, the meta-view of the
network shown by Fig. 13 is of a greater help and allows to
get a clear idea of the network organization. To this end, it is
necessary to first picture out the meaning of the found topics
(see Fig. 14):

– Topic 1 seems to be focused on neural network theory,
which was and still is a central topic in Nips.

– Topic 2 is concerned with phoneme classification or
recognition,
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Fig. 13 Nips co-authorship
network: summary of
connection probabilities
between groups (π , edge
widths), group proportions (ρ,
node sizes), and most probable
topics for group interactions
(edge colors)

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10

Group 11
Group 12
Group 13
Topic 1
Topic 2
Topic 3
Topic 4
Topic 5
Topic 6
Topic 7

Fig. 14 Most specific words
for the 5 found topics with
STBM on the Nips
co-authorship network

Topics

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7

weight test fig wiesel updating input motor

cluster phonemes tension cortex weight spikes israel

search operation procedure index noise firing steveninck

earning functions stochastic hubel feedback likelihood van

gain threshold reinforcement drift fig overlap tishby

reinforcement neuron supervised orientations groups activity naftali

noise dynamic electronic map learning data brenner

analog phoneme synapse models network stimulus rob

neuron learning noise centers equilibrium learning code

synapse formal learning orientation group spike universality

– Topic 3 is a more general topic about statistical learning
and artificial intelligence.

– Topic 4 is about Neuroscience and focuses on experimen-
tal works about the visual cortex.

– Topic 5 deals with network learning theory.
– Topic 6 is also about Neuroscience but seems to be more
focused on EEG.

– Topic 7 is finally devoted to neural coding, i.e., char-
acterizing the relationship between the stimulus and the
individual responses.

In light of these interpretations, we can eventually comment
some specific relationships between groups. First of all, we
have an obvious community (group 1) which is disconnected
with the rest of the network and which is focused on neu-
ral coding (topic 7). One can also clearly identifies, in both
Fig. 13 and the reorganized adjacency matrix (Fig. 6 of the
supplementary material) that groups 2, 5, and 10 are three
“hubs” of a few individuals.Group2 seems tomainlyworkon
the visual cortex understanding, whereas group 10 is focused
on phoneme analysis. Group 5 is mainly concerned with the
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general neural network theory but has also collaborations
in phoneme analysis. From a more general point of view,
topics 6 and 7 seem to be popular themes in the network.
Notice that group 3 has a specific behavior in the network
since people in this cluster publish preferentially with peo-
ple in other groups than together. This is the exact definition
of a disassortative cluster. This appears clearly in Fig. 6 of
the supplementary material. It is also of interest to notice that
statistical learning and artificial intelligence (which are prob-
ably now 90 % of the submissions at Nips) were not yet by
this time proper thematics. They were probably used more as
tools in phoneme recognition studies and EEG analyses. This
is confirmed by the fact that words used in topic 3 are less
specific to the topic and are frequently used in other topics
as well (see Fig. 7 of the supplementary material).

As a conclusive remark on this network, STBMhas proved
its ability to bring out concise and relevant analyses on the
structure of a large and dense network. In this view, the meta-
network of Fig. 13 is a great help since it summarizes several
model parameters of STBM.

6 Conclusion

This work has introduced a probabilistic model, named
the stochastic topic bloc model (STBM), for the mod-
eling and clustering of vertices in networks with textual
edges. The proposed model allows the modeling of both
directed and undirected networks, authorizing its application
to networks of various types (communication, social medias,
co-authorship,…). A classification variational EM (C-VEM)
algorithm has been proposed for model inference and model
selection is done through the ICL criterion. Numerical exper-
iments on simulated datasets have proved the effectiveness
of the proposed methodology. Two real-world networks (a
communication and a co-authorship network) have also been
studied using the STBM model and insightful results have
been exhibited. It is worth noticing that STBM has been
applied to a large co-authorship network with thousands of
vertices, proving the scalability of our approach.

Further work may include the extension of the STBM
model to dynamic networks and networks with covariate
information on the nodes and / or edges. The extension to
the dynamic framework would be possible by adding for
instance a state space model over group and topics propor-
tions. Such an approach has already been used with success
on SBM-like models, such as in Bouveyron et al. (2016). It
would also be possible to take into account covariate informa-
tion available on the nodes by adopting a mixture of experts
approach, such as inGormley andMurphy (2010). Extending
the STBM model to overlapping clusters of nodes would be
another natural idea. It is indeed commonplace in social anal-
ysis to allow individuals to belong tomultiple groups (family,

work, friends,…). One possible choice would be to derive an
extension of the MMSBMmodel (Airoldi et al. 2008). How-
ever, this would increase significantly the parameterization
of themodel. Finally, STBMcould also be adapted in order to
take into account the intensity or the type of communications
between individuals.
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Appendix

Appendix 1: Optimization of R(Z)

TheVEMupdate step for each distribution R(Zdn
i j ), Ai j = 1,

is given by

log R(Zdn
i j ) = EZ\i, j,d,n ,θ [log p(W |A, Z , β)

+ log p(Z |A,Y, θ)] + const

=
K∑

k=1

Zdnk
i j

V∑

v=1

Wdnv
i j logβkv

+
Q∑

q,r

YiqY jr

K∑

k=1

Zdnk
i j Eθqr [log θqrk] + const

=
K∑

k=1

Zdnk
i j

(
V∑

v=1

Wdnv
i j logβkv

+
Q∑

q,r

YiqY jr

(

ψ(γqrk) − ψ

(
K∑

k=1

γqrk

))⎞

⎠

+ const,

(9)

where all terms that do not depend on Zdn
i j have been put into

the constant termconst.Moreover,ψ(·)denotes the digamma
function. The functional form of a multinomial distribution
is then recognized in (9)

R(Zdn
i j ) = M

(
Zdn
i j ; 1, φdn

i j =
(
φdn1
i j , . . . , φdnK

i j

))
,

where

φdnk
i j ∝

(
V∏

v=1

β
Wdnv

i j
kv

) Q∏

q,r

exp

(

ψ(γqrk − ψ

(
K∑

l=1

γqrl

))YiqY jr

.

φdnk
i j is the (approximate) posterior distributionofwordsWdn

i j
being in topic k.
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Appendix 2: Optimization of R(θ)

The VEM update step for distribution R(θ) is given by

log R(θ) = EZ [log p(Z |A, Y, θ)] + const

=
M∑

i �= j

Ai j

Di j∑

d=1

Nd
i j∑

n=1

Q∑

q,r

YiqY jr

×
K∑

k=1

EZdn
i j

[
Zdnk
i j

]
log θqrk

+
Q∑

q,r

K∑

k=1

(αk − 1) log θqrk + const

=
Q∑

q,r

K∑

k=1

⎛

⎜
⎝αk +

M∑

i �= j

Ai j YiqY jr

Nd
i j∑

d=1

Ndn
i j∑

n=1

φdnk
i j − 1

⎞

⎟
⎠

log θqrk + const.

We recognize the functional form of a product of Dirichlet
distributions

R(θ) =
Q∏

q,r

Dir(θqr ; γqr = (γqr1, . . . , γqrK )),

where

γqrk = αk +
M∑

i �= j

Ai j YiqY jr

Nd
i j∑

d=1

Ndn
i j∑

n=1

φdnk
i j .

Appendix 3: Derivation of the lower bound
L̃ (R(·);Y, β)

The lower bound L̃ (R(·); Y, β) in (7) is given by

L̃ (R(·); Y, β)

=
∑

Z

∫

θ

R(Z , θ) log
p(W, Z , θ |A,Y, β)

R(Z , θ)
dθ

= EZ [log p(W |A, Z , β)]
+ EZ ,θ [log p(Z |A,Y, θ)] + Eθ [log p(θ)]
− EZ [log R(Z)] − Eθ [log R(θ)]

=
M∑

i �= j

Ai j

Di j∑

d=1

Ndn
i j∑

n=1

K∑

k=1

φdnk
i j

V∑

v=1

Wdnv
i j logβkv

+
M∑

i �= j

Ai j

Di j∑

d=1

Ndn
i j∑

n=1

Q∑

q,r

YiqY jr

×
K∑

k=1

φdnk
i j

(

ψ(γqrk) − ψ

(
K∑

l=1

γqrl

))

(10)

+
Q∑

q,r

(

logΓ

(
K∑

l=1

αk

)

−
K∑

l=1

logΓ (αl)

+
K∑

k=1

(αk − 1)

(

ψ(γqrk) − ψ

(
K∑

l=1

γqrl

)))

−
M∑

i �= j

Ai j

Di j∑

d=1

Ndn
i j∑

n=1

K∑

k=1

φdnk
i j logφdnk

i j

−
Q∑

q,r

(

logΓ

(
K∑

l=1

γqrl

)

−
K∑

l=1

logΓ (γqrl)

+
K∑

k=1

(γqrk − 1)

(

ψ(γqrk) − ψ

(
K∑

l=1

γqrl

)))

.

Appendix 4: Optimization of β

In order to maximize the lower bound L̃ (R(·); Y, β), we
isolate the terms in (10) that depend on β and add Lagrange
multipliers to satisfy the constraints

∑V
v=1 βkv = 1,∀k

L̃β =
M∑

i �= j

Ai j

Di j∑

d=1

Ndn
i j∑

n=1

K∑

k=1

φdnk
i j

V∑

v=1

Wdnv
i j logβkv

+
K∑

k=1

λk

(
V∑

v=1

βkv − 1

)

.

Setting the derivative, with respect to βkv , to zero, we find

βkv ∝
M∑

i �= j

Ai j

Di j∑

d=1

Ndn
i j∑

n=1

φdnk
i j Wdnv

i j .

Appendix 5: Optimization of ρ

Only the distribution p(Y |ρ) in the complete data log-
likelihood log p(A,Y |ρ, π) depends on the parameter vector
ρ of cluster proportions. Taking the log and adding a
Lagrange multiplier to satisfy the constraint

∑Q
q=1 ρq = 1,

we have

log p(Y |ρ) =
M∑

i=1

Q∑

q=1

Yiq log ρq .

Taking the derivative with respect ρ to zero, we find

ρq ∝
M∑

i=1

Yiq .
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Appendix 6: Optimization of π

Only the distribution p(A|Y, π) in the complete data log-
likelihood log p(A, Y |ρ, π)dependson theparametermatrix
π of connection probabilities. Taking the log we have

log p(A|Y, π)

=
M∑

i �= j

Q∑

q,r

YiqY jr

(
Ai j logπqr + (1 − Ai j ) log(1 − πqr )

)
.

Taking the derivative with respect to πqr to zero, we obtain

πqr =
∑M

i �= j
∑Q

q,r YiqY jr Ai j
∑M

i �= j
∑Q

q,r YiqY jr
.

Appendix 7: Model selection

Assuming that the prior distribution over the model parame-
ters (ρ, π, β) can be factorized, the integrated complete data
log-likelihood log p(A,W,Y |K , Q) is given by

log p(A,W,Y |K , Q)

= log
∫

ρ,π,β

p(A,W,Y, ρ, π, β|K , Q)dρdπdθ

= log
∫

ρ,π,β

p(A,W,Y |ρ, π, β, K , Q)

× p(ρ|Q)p(π |Q)p(β|K )dρdπdβ.

Note that the dependency on K and Q is made explicit here,
in all expressions. In all other sections of the paper, we did
not include these terms to keep the notations uncluttered. We
find

log p(A,W, Y |K , Q)

= log
∫

ρ,π,β

(
∑

Z

∫

θ

p(A,W, Y, Z , θ |ρ, π, β, K , Q)dθ

)

× p(ρ|Q)p(π |Q)p(β|K )dρdπdβ

= log
∫

ρ,π,β

(
∑

Z

∫

θ

p(W, Z , θ |A,Y, β, K , Q)p(A, Y |ρ, π, Q)dθ

)

× p(ρ|Q)p(π |Q)p(β|K )dρdπdβ

= log
∫

ρ,π,β

p(W |A, Y, β, K , Q)p(A|Y, π, Q)p(Y |ρ, Q) (11)

× p(ρ|Q)p(π |Q)p(β|K )dρdπdβ

= log
∫

β

p(W |A, Y, β, K , Q)

× p(β|K )dβ + log
∫

π

p(A|Y, π, Q)p(π |Q)dπ

+ log
∫

ρ

p(Y |ρ, Q)p(ρ|Q)dρ.

Following the derivation of the ICL criterion, we apply a
Laplace (BIC-like) approximation on the second term of
Eq. (11). Moreover, considering a Jeffreys prior distribution
for ρ and using Stirling formula for large values of M , we
obtain

log
∫

π

p(A|Y, π, Q)p(π |Q)dπ

≈ max
π

log p(A|Y, π, Q) − Q2

2
logM(M − 1),

as well as

log
∫

ρ

p(Y |ρ, Q)p(ρ|Q)dρ

≈ max
ρ

log p(Y |ρ, Q) − Q − 1

2
logM.

For more details, we refer to Biernacki et al. (2000). Further-
more, we emphasize that adding these two approximations
leads to the ICL criterion for the SBM model, as derived by
Daudin et al. (2008)

ICLSBM = max
π

log p(A|Y, π, Q)

− Q2

2
logM(M − 1) + max

ρ
log p(Y |ρ, Q)

− Q − 1

2
logM

= max
ρ,π

log p(A,Y |ρ, π, Q)

− Q2

2
logM(M − 1) − Q − 1

2
logM.

InDaudin et al. (2008),M(M−1) is replaced byM(M−1)/2
and Q2 by Q(Q + 1)/2 since they considered undirected
networks.

Now, it is worth taking a closer look at the first term
of Eq. (11). This term involves a marginalization over β.
Let us emphasize that p(W |A,Y, β, K , Q) is related to the
LDA model and involves a marginalization over θ (and Z ).
Because we aim at approximating the first term of Eq. (11),
also with a Laplace (BIC-like) approximation, it is crucial to
identify the number of observations in the associated likeli-
hood term p(W |A,Y, β, K , Q). As pointed out in Sect. 2.4,
given Y (and θ ), it is possible to reorganize the docu-
ments in W as W = (W̃qr )qr is such a way that all words
in W̃qr follow the same mixture distribution over topics.
Each aggregated document W̃qr has its own vector θqr of
topic proportions and since the distribution over θ factorizes
(p(θ) =∏Q

q,r p(θqr )), we find
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p(W |A,Y, β, K , Q)

=
∫

θ

p(W |A,Y, θ, β, K , Q)p(θ |K , Q)dθ

=
Q∏

q,r

∫

θqr

p(W̃qr |θqr , β, K , Q)p(θqr |K )dθqr

=
Q∏

q,r

�(W̃qr |β, K , Q),

where �(W̃qr |β, K , Q) is exactly the likelihood term of the
LDA model associated with document W̃qr , as described in
Blei et al. (2003). Thus

log
∫

β

p(W |A,Y, β, K , Q)p(β|K )dβ

= log
∫

β

p(β|K )

Q∏

q,r

�(W̃qr |β, K , Q)dβ. (12)

Applying a Laplace approximation on Eq. (12) is then equiv-
alent to deriving a BIC-like criterion for the LDAmodel with
documents in W = (W̃qr )qr . In the LDA model, the number
of observations in the penalization term of BIC is the number
of documents [see Than and Ho (2012) for instance]. In our
case, this leads to

log
∫

β

p(W |A,Y, β, K , Q)p(β|K )dβ

≈ max
β

log p(W |A,Y, β, K , Q) − K (V − 1)

2
log Q2.

(13)

Unfortunately, log p(W |A,Y, β, K , Q) is not tractable and
so we propose to replace it with its variational approxi-
mation L̃, after convergence of the C-VEM algorithm. By
analogy with ICLSBM , we call the corresponding criterion
BICLDA|Y such that

log p(A,W,Y |K , Q) ≈ BICLDA|Y + ICLSBM .
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