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Abstract α-Stable distributions are a family of probability
distributions found to be suitable to model many complex
processes and phenomena in several research fields, such as
medicine, physics, finance and networking, among others.
However, the lack of closed expressions makes their evalu-
ation analytically intractable, and alternative approaches are
computationally expensive. Existing numerical programs are
not fast enough for certain applications and do not make use
of the parallel power of general purpose graphic process-
ing units. In this paper, we develop novel parallel algo-
rithms for the probability density function and cumulative
distribution function—including a parallel Gauss–Kronrod
quadrature—, quantile function, random number generator
andmaximum likelihood estimation of α-stable distributions
using OpenCL, achieving significant speedups and precision
in all cases. Thanks to the use of OpenCL, we also evaluate
the results of our library with different GPU architectures.
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1 Introduction

The Central Limit Theorem is a well-known mathematical
result, which states that the standardized sum of a sufficiently
large number of independent, identically distributed random
variables with finite variance and mean will resemble a nor-
mal (Gaussian) distribution. This theorem can be generalized
for random variables with infinite moments: the resulting
distribution is then called an α-stable (or just stable) distri-
bution (Gnedenko and Kolmogorov 1968). Its name comes
from another interesting property (Nolan 2015): the fact that,
given X1, X2 independent copies of a randomvariable X with
stable distribution, then

aX1 + bX2
dist.= cX + d (1)

for some constants a, b, c > 0 and d ∈ R.
These properties make stable distributions a suitable

model formany events in different fields that naturally exhibit
such high variability rates that they cannot be adequately
modeled using simple statistical distributions. For example,
in medicine they are used for segmentation of brain matter
in magnetic resonance imaging (MRI) (Salas-González et al.
2013) and as a model for ultrasound denoising (Achim et al.
2001); in physics they can be used to study and predict atomic
behavior (Bardou et al. 2002); in finance they are a common
model for asset pricing (Mittnik and Rachev 1993); and their
use in networking allows detection and understanding of traf-
fic events and patterns (Simmross-Wattenberg et al. 2011; Li
et al. 2015).
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However, a problem arises when these distributions are
used in environments where quick results are needed, such
as in medical imaging, high frequency trading (HFT), or
monitoring of multiple network links. It is complex to deal
with α-stable distributions since they lack closed expressions
for their probability density function (PDF) and cumulative
distribution function (CDF) and require complicated, compu-
tationally expensive approximations and numerical methods,
such as those we will present later, to be applied in solving
any of the aforementioned problems. The problem worsens
when these functionsmust be evaluatedmany times in a time-
restricted scenario, such as when estimating parameters in
real time, for instance, to monitor network traffic behavior or
to render echographic images from a medical probe.

Throughout this paper, we develop a novel approach to
compute α-stable distributions using OpenCL (Stone et al.
2010), considerably improving speed and allowingmassively
parallel computation of the PDF and CDF functions. In turn,
these two functions will allow us to parallelize calculations
of the quantile function (also called CDF−1) and the estima-
tion of parameters. For completeness of the library, a parallel
generator of α-stable distributed random numbers has also
been implemented, based on the method proposed by Weron
and Weron (1995).

Our purpose is to allow the use of these distributions in
time-constrained environmentswhere existing solutions such
as John Nolan’s STABLE program1 or libstable2 (Royuela-
del-Val 2016) are not fast enough; or where GPU cards are
available to offload work from the CPU.

To achieve our goal, we have developed a parallel imple-
mentation of the Gauss–Kronrod quadrature rule (Kronrod
1965) for numerical integration, and an implementation of
a maximum likelihood estimator based on contracting grid
search algorithms (Hesterman et al. 2010) that has beenmod-
ified using asynchronous OpenCL commands to maximize
the use of all the components in the pipeline: given that our
algorithm is not memory intensive, the data transfer costs are
almost negligible compared with the OpenCL kernel setup
costs. The scheduling of the different kernels is left to the
OpenCL driver implementation.

We have used theOpenCL framework for the implementa-
tion in order to broaden the platforms where our software can
run: not only GPUs from different vendors (such as NVIDIA
or AMD) but also new parallel platforms such as Alpha
Data’s FPGA boards (Alpha Data 2013) or Intel’s Xeon Phi
co-processor (Intel 2013). However, this paper is only cen-
tered in the application running on GPUs, leaving tests on
other platforms as future work.

1 Available at J.P. Nolan’s website: http://academic2.american.edu/
~jpnolan.
2 Available at Javier Royuela-del-Val’s website: http://www.lpi.tel.uva.
es/~jroyval/.

In spite of usingOpenCL, a device-agnostic language, and
maintaining same code for every platform, we have care-
fully observed memory layout and concurrency issues in our
algorithm so that performance in readily available devices,
specifically NVIDIA and AMD GPUs, is maximized wher-
ever possible.

Results are very promising, with our software, available
at GitHub,3 being several times faster than libstable, the cur-
rent fastest implementation (Royuela-del-Val 2016), while
keeping precision and accuracy.

The rest of the paper is structured as follows: next subsec-
tion discusses related work. Section 2 analyzes the equations
and mathematical algorithms that will be used for the com-
putation of the distribution. Section 3 shows the translation
from those equations to an implementation in OpenCL using
parallel algorithms. Finally, we expose our results in Sect.
4, with a corresponding performance analysis, and our final
conclusions in Sect. 5.

1.1 Related work

Given their usefulness in several different knowledge areas,
several approaches for the computation of α-stable distri-
butions have been developed. Most are centered on giving
a complete implementation, such as John Nolan’s STA-
BLE based on the numerical equations from the same
author (Nolan 1997), a framework for MATLAB (Liang and
Chen2013) or another for theR software (Wuertz andMaech-
ler 2015).

Other implementations have centered in the performance
of the methods. A first approach consists of using alternative
methods to evaluate the equations: for example, Menn and
Rachev (2006) approximate the Fourier inversion integral
by means of the Simpson rule for a subset of the para-
meter space, Robinson (2014) uses interpolation formulae
for log-stable distributions—these are α-stable distributions
withmaximum skewness to the right— and Lombardi (2007)
and Koblents et al. (2016) use Monte Carlo methods for
parameter estimation. A second approach is the use of paral-
lelism, such as libstable (Royuela-del-Val 2016), which uses
thread parallelism; or the software proposed by Belovas et al.
(2013), which uses OpenMP to improve speed just on the
maximum likelihood estimator. However, we have not found
in the literature any development that accelerates all com-
putations of this type of distribution using general purpose
GPUs and maintaining a high level of accuracy.

Additionally, the implementation of the α-stable algo-
rithms is difficult in parallel environments if we want to
go beyond the simple parallelization of point computations,
which is the trivial and common approach with other prob-
ability distributions where the PDF and CDF have simpler

3 https://github.com/hpcn-uam/libstable-opencl.
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expressions. Only parallel implementations for fast calcula-
tion of more complicated functions, such as the inverse Pois-
son CDF for large numbers (Giles 2015) or for a parameter
estimation algorithm via maximum likelihood (Hesterman
et al. 2010), can be found in the literature.

In our case, we face not only complex equations, but also
the need to calculate an integral bymeans of numerical meth-
ods. Adaptive quadrature methods such as Gauss–Kronrod
are not well suited for parallel implementations due to their
recursive nature: alternative methods such as (Thuerck et al.
2014) or (Arumugam et al. 2013) have been developed to
bypass this issue. However, the use of dynamic, efficient
subdivisions of the integration interval does not necessar-
ily result in improved performance due to restrictions on the
available resources, workgroup layout and to the increased
computations required by these algorithms.

Our implementation takes a simpler approach, making use
of the parallel capabilities of the GPUs to compute a high-
order quadraturewith a fixed number of subintervals. In cases
where precision is not good enough, we resort to a quick
check that considerably improves the precision, as we will
explain in Subsect. 3.1.4.

2 Background

In this section we expose the equations used for the compu-
tation of α-stable distributions and the numerical integration
algorithm that will be used.

2.1 Equations for α-stable distributions

α-stable distributions are modeled by four parameters. α ∈
(0, 2] is the stability index, β ∈ [−1, 1] the skewness para-
meter, σ > 0 the scale parameter and μ ∈ R the location
parameter. σ and μ are explicitly not named standard devia-
tion and mean of the distribution, despite being the common
notation for these two concepts, because for α-stable distri-
butions, standard deviation only exists for α = 2, and the
mean is only defined for α > 1.

One of the main problems of α-stable distributions is the
lack of closed formulas for the probability density function
(PDF) and cumulative distribution function (CDF). How-
ever, the equations devised by Nolan (Nolan 1997) allow the
numerical computation of the PDF and CDF. These equa-
tions use a re-parameterization of the location parameter μ

to μ0, where both values are related by (2):

μ =
{

μ0 − β tan
(

απ
2

)
σ α �= 1

μ0 − β 2
π
σ ln σ α = 1

(2)

The equation for a standard4 α-stable distribution (i.e.,
with location parameter μ = 0 and scale parameter σ = 1)
denoted by X are the following:

fX (x;α, β) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α
π(x−ζ )|α−1|
· ∫ π

2−θ0
hα,β(θ; x)dθ x > ζ

Γ (1+ 1
α
) cos θ0

π(1+ζ 2)
1
2α

x = ζ

fX (−x;α,−β) x < ζ

(3)

FX (x;α, β) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1(α, β) + sign (1−α)
π

· ∫ π
2−θ0

e−gα,β (θ;x)dθ x > ζ
1
π

(
π
2 − θ0

)
x = ζ

1 − F(−x;α,−β) x < ζ

(4)

where

ζ(α, β) = −β tan
(πα

2

)
(5)

θ0(α, β) = 1

α
arctan

(
β tan

(πα

2

))
(6)

Vα,β(θ) = (cosαθ0)
1

α−1

(
cos θ

sin (α(θ0 + θ))

) α
α−1 · (7)

· cos(αθ0 + (α − 1)θ)

cos θ
(8)

gα,β(θ; x) = Vα,β(θ) · (x − ζ )
α

α−1 (9)

hα,β(θ; x) = gα,β(θ; x)e−gα,β (θ;x) (10)

c1(α, β) =
{

1
π

(
π
2 − θ0

)
α < 1

1 α > 1
(11)

However, the equations have a discontinuity when α = 1.
This is solved by changing the expressions to

fX (x; 1, β) =
⎧⎨
⎩

1
2|β|e

− πx
2β

∫ π
2−π
2
h1,β(θ; x)dθ β �= 0

1
π(1+x2)

β = 0
(12)

FX (x; 1, β) =

⎧⎪⎪⎨
⎪⎪⎩

∫ π
2−π
2
e−g1,β (θ;x)dθ β > 0

1
2 + 1

π
arctan x β = 0

1 − FX (x;α,−β) β < 0

(13)

with

g1,β(θ; x) = e− πx
2β V1,β(θ) (14)

h1,β(θ; x) = V1,β(θ) · e−g1,β (θ;x) (15)

V1,β(θ) = 2

π

( π
2 + βθ

cos θ

)
e

1
β
( π
2 +βθ) tan θ (16)

4 Evaluations for general distributions are calculated shifting and scal-
ing the parameter x as usual.
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This change does not imply a discontinuity: it has already
been demonstrated (Nolan 1997) that this piecewise defini-
tion of the PDF and CDF is continuous.

From these expressions, it is clear that there is room
for acceleration using parallel algorithms to integrate the
expressions in (3), (4), (12) and (13): numerical integration
algorithms rely on the evaluation of the integral at differ-
ent points, with the evaluations being independent. Instead
of relying only on one thread to do the evaluations serially,
multiple threads can be scheduled so each one evaluates one
point.

2.1.1 Gauss–Kronrod quadrature

As said before, Eqs. (3) and (12) can be calculated using
numerical integration algorithms. However, not all algo-
rithms are appropriate for this problem. Adaptive algorithms
that rely on several iterations to achieve a precise value suffer
fromwarp divergence issues, and the cost of the multiple ser-
ial evaluations of the integrand will also affect performance.
An alternative approach is (Thuerck et al. 2014), where the
authors devise the ∂2 heuristic algorithm to generate integra-
tion intervals, avoiding recursion in the GPUwhile achieving
the desired precision by the user.

This approach is, however, not appropriate for this situa-
tion. As exposed in the previous section, the function to be
integrated changes with x , the point in which the PDF or
CDF is evaluated at. Thus, in order to calculate the PDF or
CDF at n points, it would be needed to apply n times the
∂2 heuristic, which brings in a significant performance loss,
given the cost of the function evaluation.

Our solution requires the use of static quadrature rules
without iterations, avoiding thus the cost of several serial-
ized calculations of the integrand. It might use more intervals
than the ∂2 heuristic algorithm, but as the GPU workgroups
can only be of certain sizes, the reduction in the used num-
ber of intervals would not necessarily imply a reduction in
the resources used. Given that the integral to calculate the
probability distributions is one-dimensional, the number of
required intervals is not high and thus, specialized algo-
rithms that dynamically create the necessary subdivisions,
such as (Arumugam et al. 2013), are not needed and their
extra performance cost can be avoided.

For the integration of each subinterval we have chosen
Gauss–Kronrod quadrature, as it yields accurate results and
error estimates which are quick to compute and do not rely
on the different results between iterations.

Gaussian quadrature states that

∫ b

a
f (x)dx ≈

n∑
i=1

wi · f (xi ) (17)

Fig. 1 Pseudo-code for a serial implementation of the Gauss–Kronrod
quadrature rule, where X is the set of nodes and WG ,WK the corre-
sponding weights for the Gauss and Kronrod rules. WG [i] is zero if i
is only a Gauss–Kronrod node

for a certain set of points xi ∈ Xn and corresponding weights
wi ∈ Wn . The Gauss–Kronrod quadrature rules (Kronrod
1965) are a common variant where a first set of n nodes is
chosen and then extended with n + 1 additional points.

Thus, an evaluation of the function in the set of 2n + 1
Gauss–Kronrod nodes yields both a high order estimate for
the integral and an error estimate. Figure 1 shows pseudo-
code for a traditional implementation of the Gauss–Kronrod
quadrature.

3 Proposed algorithms and implementation

In this section,wewill show the algorithmsused to parallelize
the PDF and CDF evaluations (Subsects. 3.1, 3.2), including
an approach for simultaneous calculation of both in Subsect.
3.3, and also the algorithms for the quantile function and
parameter estimation (Subsects. 3.4, 3.5). A discussion of
limitations imposed by the hardware and the framework is
presented in Subsect. 3.6.

For the sake of brevity, we do not we do not describe the
implementation of our parallel random number generator,
based on the work developed by Weron and Weron (1995),
as it is a straightforward parallelization.

3.1 PDF evaluation

The evaluation of the α-stable PDF requires to ascertain the
value of an integral by numerical methods. The approach
presented in libstable (Royuela-del-Val 2016), using the
Gauss–Kronrod quadrature, is very well suited for gen-
eral purpose GPUs if the iterative subdivision algorithm is
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replaced by a fixed partitioning that returns precise enough
results: given the cost of the integrand evaluation and the
parallelization capabilities of GPGPUs, it is more efficient
to calculate a large number of points at the same time than
calculating less points but iteratively.

In order to use the full capabilities of the GPU proces-
sor, the workload has been scheduled in the best possible
way to reducememory access times and improve parallelism.
The memory layout avoids any memory bottlenecks: all the
threads access memory positions either sequentially, when
storing the partial results, or by broadcasting when retriev-
ing constants from the global memory space. The algorithm
does not suffer from divergent threads, as all of them exe-
cute the same algorithm and go through the same branching
paths.

Our algorithm is divided in three sections: Subsect.
3.1.1 explains the workgroup layout chosen to take advan-
tage of the GPU capabilities to calculate the integral, the
procedure for the evaluation of the function at the neces-
sary points is detailed in Subsects. 3.1.2 and 3.1.3 shows
how the final calculations are done, avoiding large per-
formance hits due to memory sharing and synchronization
issues. Finally, some precision issues found during the devel-
opment and the solutions implemented are discussed in
Subsect. 3.1.4.

3.1.1 Workgroup layout

First, the global arguments (parameters of the distribution,
pre-calculated values and indicators of the equations that
should be used) are transferred to the GPU constant memory
space (NVIDIA 2009a). The points to be evaluated are sent
to global memory space. The two buffers to hold the results
(Gauss and Kronrod sums) are created and their addresses
passed as arguments to the kernel.

Once thememory layout is ready, the kernel is enqueued to
compute the numerical integration in the GPU. The integra-
tion interval in (3) is divided in afixednumber of subintervals.
The Gauss–Kronrod quadrature algorithm is then applied to
each one of these intervals.

This approach allows a natural two-dimensional, static
workgroup layout for the GPU (see Fig. 2): each local work-
group is responsible for the evaluation of a single point, and
in thatworkgroup the (i, j) itemwill calculate the j thGauss–
Kronrod point of the i th subinterval.With this notation, there
will be I subintervals, J Gauss–Kronrod points and a total
of I · J threads per workgroup.

The Gauss–Kronrod quadrature method involves two
identical sets of operations on each point: calculation of the
value where the function should be evaluated, evaluation of
the function to integrate and then multiplication by the cor-

Workgroup layout

Su
bi
nt
er
va

ls
(I
)

Gauss-Kronrod points (J)

a b

Numerical integration
1 point per thread

(i, j)

a b

Numerical integration
2 points per thread

Fig. 2 Workgroup layout and integration strategy. Each one of the I
rows in the workgroup maps to a subdivision of the integration interval.
The j th column integrates evaluates the integral at the j th Gauss–
Kronrod point of the corresponding subinterval. When using multiple

points per thread, one thread evaluates the function atmore subintervals.
Not pictured for simplicity: each point is actually two points located the
same distance from the subinterval center, as the Gauss–Kronrod rule
is symmetric
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responding weight of the point. The only difference between
the Gauss and Kronrod quadratures is the weight assigned
to each point (which will be 0 in points not pertaining to the
Gauss quadrature).

This, together with the fact that Gauss–Kronrod quadra-
ture is symmetrical, allows the extensive use of vector
operations to improve performance in the kernel and reduce
the number of instructions.

3.1.2 Point evaluation procedure

The two values where the function will be evaluated are
obtained as a vector named x

x =
(
a
a

)
+ l ·

[(
i + 0.5
i + 0.5

)
+

(
abscissa[ j]

−abscissa[ j]
)]

(18)

where i is the subinterval index, j is the index of the point to
be calculated, abscissa is an array holding the offsets for the
Gauss–Kronrod quadrature points (stored in constant mem-
ory space),a is the beginning of thewhole integration interval
and l is the length of the subinterval, calculated as l = L

I with
L the length of the entire integration interval.

Equation (18) first calculates the center of the subinterval
and then adds the corresponding Gauss–Kronrod abscissas,
which are symmetric with respect to the origin (in this case,
the origin is the subinterval center). Finally, the result is prop-
erly scaled and translated to fit with the integration interval.

The integrand is then evaluated at those points using
OpenCL’s vector operations, thus obtaining two results with
just one call to the function to be integrated. Both results are
added and the resulting sum is multiplied by the vector of
weights, of which the first coordinate is the Kronrod quadra-
ture weight and the second one is the Gauss weight. The
final result of the evaluation is a vector with the values of
both Gauss and Kronrod quadrature rules at the given point.

Our software allows the use of larger vectors to bypass
limitations on the size of workgroups (see Subsect. 3.6 for
an explanation) and to increase the number of subdivisions of
the integration interval. We can substitute two-dimensional
vectors by four or eight-dimensional vectors to evaluate,
respectively, two or four subintervals per thread, thus dou-
bling or quadrupling the subdivisions of the integration
interval and obtaining more precise results. In this case, the
vector x from (18) would be calculated instead as

x =
⎛
⎜⎝
a
...

a

⎞
⎟⎠ + l·

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

I · 0 + i + 1
2

I · 0 + i + 1
2

...

I (n − 1) + i + 1
2

I (n − 1) + i + 1
2

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝

abscissa[ j]
−abscissa[ j]

...

abscissa[ j]
−abscissa[ j]

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

(19)

with n the number of points being evaluated per thread (1, 2
or 4) and I the second dimension of the workgroup size.

The main change in (19) is that, apart from using wider
vectors (size 2n), we assign to each thread n different subin-
tervals. For example, using 16 subdivisions with 2 points per
thread, threads with subinterval index i = 1 would integrate
points in the subintervals 1 and 9. It is also easy to see that,
when n = 1, (19) is equivalent to (18).

A downside of this implementation is the fact that some
hardware may serialize the vector operations if the vectors
are too wide. In this case, instead of executing one instruc-
tion per operation with vectors of size 8, it may execute two
instructions, each one computing 4 components of the vec-
tor. This issue may result in noticeable performance impact
depending on the hardware and the points per thread used.

In our tests, we have found that a total of 16 subdivisions
with two points per thread achieves the best balance between
performance and precision. Increasing the number of points
per thread affects performance without meaningful precision
improvements. The results discussed inSect. 4 use this setting
by default.

3.1.3 Final result calculations

Once all the points have been evaluated, a local memory
barrier command is issued to synchronize all the threads
in the local workgroup, and the sum of the values of every
point is calculated using a reduction in O(log2 n) operations
that maximizes thread usage and memory coalescing. Local
memory barriers are used as the synchronization mechanism
between threads, as it is the most efficient way to complete
the sums.

This reduction is first applied to the points in each subin-
terval and then to the partial sums of each subinterval. A
detailed pseudo-code algorithm is presented and explained
in Fig. 3.

3.1.4 Precision issues when x → ∞ or x → ζ

The integrand function hα,β comes closer to a singular peak
when x → ∞ or when x → ζ (see Fig. 4). This behavior
reduces the precision of the numerical method considerably.

In the special case of x → ζ , the specific formula for
x = ζ from (3) can be used when x is in a small interval
around ζ . However, this is not enough as the intervals where
the approximation is valid are not big enough, and neither
solves the precision problem when x → ∞.

In previous implementations (Royuela-del-Val 2016), the
proposed solution to the problem is the determination of that
peak using numericalmethods and the usage of different inte-
gration methods around that peak. However, we have found
a more suitable approach for our implementation.
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Fig. 3 Pseudo-code for the reduction that returns the final results,
where »= is the shift and assignment operator. First, the threads for each
interval perform a parallel sum of all the results of each point, stored
in a two-dimensional array sums of dimension subintervals_count ×
points_count. Partial results are also stored there. At the end of the
loop, the values sums[i][0] will contain the Gauss–Kronrod results for
each subinterval. The procedure is then repeated with those results

As GPGPUs are highly parallelizable, the cost in cycles
of increasing the number of nodes of the Gauss–Kronrod
quadrature is almost negligible and only affects the cycles
invested in the summation of all the results. But as the sum-
mation is done in O(log2 n) time, we can effectively double
the degree or the number of subintervals with minimal per-
formance impact.

Thus, high-order Gauss–Kronrod quadrature formulas are
used to reduce considerably the impact of the peaks without
needing additional measures.

However, when α > 1, increasing the points used in
Gauss–Kronrod may not be enough to achieve the desired
precision or is not even possible: GPGPUs limit the size of
local workgroups, so there is a ceiling in the number of points
that can be used (this issue is further discussed in Subsect.
3.6).

This could be considered as a failure of the single-iteration
approach to the numerical integration stated at the beginning
of Subsect. 3.1,with a possible solution being the use of adap-

tive algorithms such as (Thuerck et al. 2014) in these difficult
parameter cases.However,we have solved this problemwith-
out resorting to such complex and costly approaches: we use
simple checks based on knowledge of the specific integrand
that do not affect performance significantly and achieve the
desired precision.

After obtaining the Gauss–Kronrod result for each inter-
val, the first thread of each subinterval (i.e., the (i, 0) thread)
checks if its contribution is greater than a certain threshold
(experimentally chosen in order to achieve enough preci-
sion). This way, the interval in which the integrand hα,β has
significant values is detected.

If this contributing interval is too small (again, the thresh-
old has been determined experimentally in order to achieve
the desired precision), it will be an indicator of the pres-
ence of a sharp peak. A reevaluation is then triggered and
the local workgroup reevaluates the integrand in that con-
tributing interval, increasing precision. This process can be
repeated again if the contributing interval is still too small.

This method avoids large performance hits in evaluations
in which the single pass evaluation is good enough (there is
only an additional local memory barrier, the rest is achieved
using atomic operations), and returns precise results when
the integrand comes close to a single point; all of this while
maximizing GPGPUs parallel capabilities.

Another precision issue happened with small values of
the stability index (α < 0.3). As shown in Fig. 5, the inte-
grand increases abruptly at the beginning of the interval and
decreases the precision of the numerical integration. The
method of contributing subintervals exposed above does not
detect this issue. In order to improve the accuracy in these
cases, we force instead a reevaluation in the beginning of the
integration interval.

3.2 CDF evaluation

The evaluation of the CDF uses the same algorithms pre-
sented in the previous section. Because of the similarity of

Fig. 4 Behavior of the function
hα,β(θ; x) from (10), for
α = 1.2 and β = −0.3. For
these values, ζ ≈ −0.923: it can
be seen that when x tends to that
value, h behaves like a singular
peak
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Fig. 5 Behavior of the function
hα,β(θ; x) from (10), for
x = 22, α = 0.3 and β = 0.9.
In this case, there is a sharp
increase at the beginning of the
interval that must be integrated
carefully to reduce the error
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the equations for the PDF and the CDF (see (3), (4) and
(12), (13)), the code used is exactly the same: a flag decides
whether the function to compute will be the PDF of the CDF.
Depending on the flag, the code will compute accordingly
the multiplication factors of the integral and, in the case of
the CDF, the number to be added after the integration is com-
pleted (c1(α, β) or 1 − c1(α, β) depending on whether x is
greater or less than ζ ).

The integrand of the CDF evaluation is better behaved
than the PDF one, so no additional measures had to be taken
to achieve significant precision.

3.3 Combined PDF and CDF evaluation

As explained above, an advantage of the equations used for
the evaluation of the PDF and CDF ((3), (4) and (12), (13))
is that they are similar. The integrand of the PDF is the same
as the one of the CDF except for one additional operation,
for all values of α.

This allows computing simultaneously the PDF and CDF
values, a feature that will become especially useful when
computing the quantile function (Subsect. 3.4). However, in
our implementation of this dualmode (calledPCDF through-
out the code) error estimates are not generated, as thosewould
increase the complexity of the code, and would subsequently
affect performance.

The evaluation code is exactly the same as the one for the
PDF and CDF evaluations. The difference is that, when cal-
culating the integrand at the necessary abscissas as explained
in Subsect. 3.1.2, the code does not return a pair with the val-
ues of the Gauss and Kronrod quadrature nodes (that is, the
integrand multiplied by the corresponding Gauss or Kron-
rod weights), but instead returns a pair with the values of the
Kronrod quadratures for the PDF and CDF. The rest of the
procedure is the same, with the kernel returning two arrays.
The host code will detect that a PCDF evaluation has been
issued and will return the two arrays to the client code.

3.4 Quantile function evaluation

Given a probability p, the quantile function Q(p) specifies
the value for which the probability of the random variable
being less than or equal to this value is equal to the given
probability. Formally, that is expressed as

Q(p) = inf
x∈R

{p ≤ FX (x)} (20)

where FX is the CDF. When FX is continuous, as it is in the
α-stable case, the quantile function can be simplified as the
inverse of the CDF: Q = F−1

X .
There is not a closed analytic formula for a general quan-

tile function. Thus, it requires a numerical inversion of the
CDF function: given a probability p for an α-stable distrib-
ution with parameters α, β, μ, σ , the equation

φ(x) = FX (x;α, β, μ, σ ) − p = 0 (21)

has to be solved for x to obtain the result.
To find that root and obtain the desired results we have

used the Newton method. This algorithm uses knowledge of
the derivative of the function, achieving fast rates of con-
vergence. The successive points are calculated using the
following equation, beginning with an initial guess x0:

xn+1 = xn − φ(xn)

φ′(xn)
(22)

with the error estimation calculated as

ε =
∣∣∣∣ xn+1 − xn

xn+1

∣∣∣∣ (23)

The algorithm iterates until the desired accuracy is
achieved. The fast convergence of the Newtonmethod allows
us to move completely the algorithm to the GPU.

The implementation of the algorithm uses the same code
that would be used in a regular implementation for com-
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Fig. 6 An illustration of the
contracting grid algorithm to
find the maximum of the
log-likelihood function
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mon programming languages. Each workgroup calculates
one quantile value to allow parallel calculation of multi-
ple quantiles. The first thread of each workgroup determines
the initial guess using interpolation on precalculated values,
obtains its correspondingPDFandCDFvalues and calculates
the next guess and error estimate. These steps are repeated
until the error estimate is lower than the desired accuracy.
When the iterations stop, the thread saves the result and error
estimate in a global array: once all theworkgroups finish their
evaluations, the kernel will finish and control will return to
the host code.

The differences with a regular Newton algorithm imple-
mentation come from the fact that the calculation of PDF
and CDF values requires multiple threads with the work-
group layout from Subsect. 3.1.1. Thus, the point where the
PDF and CDF are going to be evaluated is distributed to all
the threads of the workgroup using local memory and a sin-
gle barrier. The error estimate is transmitted in the same way,
so all the threads of the workgroup finish at the same time:
when the guess has reached enough precision.

3.5 Parameter estimation

Once the algorithm for the parallel evaluation α-stable PDF
is implemented, an immediate application is parameter esti-
mation. Given the cost of the PDF evaluation, maximum
likelihood estimators have not been a practical option, and
alternative approaches based on other estimators have been
proposed (Koutrouvelis 1981; McCulloch 1986).

However, these methods are iterative so their parallel
implementation is not straightforward. On the other hand,
the presence of a PDF evaluation algorithm in GPGPUs
facilitates the implementation of a parallel maximum like-
lihood estimator for the four parameters of the distribution.
As the likelihood function of α-stable distributions has a sin-
gle maximum and evolves smoothly (DuMouchel 1973), the
estimator is consistent. Thus, this has been the parameter
estimation method finally implemented.

The search algorithm has been chosen to maximize the
use of the parallel processor. A contracting grid search algo-
rithm (Hesterman et al. 2010) evaluates multiple points per
iteration (see Fig. 6), so it is well suited for GPGPUs.

Before using the contracting grid search algorithm a first
rough estimate is calculated using McCulloch’s estimators.
They calculate quickly a first estimate that can be used to
reduce the search space.

This first estimate is used as the center of the grid. Our
software sets the grid width and calculates the set of points
in the parameter space where the likelihood should be eval-
uated. These evaluations are also done with OpenCL in the
GPU in order to improve performance.

The point with the maximum likelihood is set as the new
center of the grid and a new set of points is calculated with
a narrower grid. This continues until the grid is smaller than
the error tolerance or when the maximum difference of like-
lihood between the points of the grid is small enough.

The use of McCulloch’s as initial estimations impose a
limitation on ourMLE, which is the impossibility to fit stable
data with α < 0.6: McCulloch’s estimators are not valid
in that region. Without initial estimations, a search in the
whole space of parameters (specifically, location and scale
parameters) is not feasible and our ML estimator will not
return meaningful results.

To further improve performance with regards to the work
of Hesterman et al. (2010), OpenCL kernel transfer and setup
costs are reduced using asynchronous commands and multi-
ple queues. Consequently, all the components in the pipeline
(host CPU, PCImemory transfer bus andGPU processor) are
used simultaneously, reducingwaiting times and speeding up
execution.

Another possibility that our software can use to improve
performance is to rely on McCulloch’s estimators for the
parameters μ and σ , and setting the grid estimation only
for α and β. On each iteration, the estimation of μ and σ

is recalculated with the new α, β values to further improve
precision.

3.6 Hardware limitations

During the development, we have faced hardware limitations
that forced us to change the initial approach. Themain incon-
venience has been the limitation on the size of workgroups.

OpenCL workgroups are not of unlimited size: the maxi-
mum number of local work items depends on the hardware
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Table 1 Specifications for the test devices

Global bandwidth (GBps) Local bandwidth (GBps) Core clock (GHz) Core count Compute units PCIe bus

Tesla M 177 2662 1.300 512 16 PCIe 2 ×16 (8 GB/s)

Tesla K 288 17,165 0.745 2880 90 PCIe 3 ×16 (15.75 GB/s)

AMD 352 2816 1.000 2816 44 PCIe 2 ×16 (8 GB/s)

and the kernel complexity. In order to work with multiple
points and multiple dimensions, we had to reduce the num-
ber of subdivisions, a solution that caused some precision
issues, as discussed in Subsect. 3.1.4. Even with this fix
implemented, the limit on the number of subdivisions is still
present so, depending on the used GPU model, the preci-
sion can decrease significantly if enough workgroups are not
available. Dynamic parallelism (i.e., spawning new kernels)
was not possible because it is not supported in the OpenCL
versions we have used.

These hardware limitations also discarded a single-kernel,
all-GPGPU approach for parameter estimation, having to
resort to multiple command queues. The former approach
would have required even bigger workgroups that would not
have been supported by our test hardware.

Although OpenCL is presented as a framework to develop
parallel algorithms independently of the underlying hard-
ware, we have found that the hardware actually matters. For
example, our software can’t compile the kernel when used
on OpenCL platforms without support for double-precision
numbers, or does not work on some CPUs due to hard limits
on the size of workgroups, and requires capabilities not avail-
able in some platforms, such as atomic operations or vector
operations.

4 Results

In this section, we expose the results obtained by our devel-
oped software and compare themwith libstable as the current
fastest serial implementation (Royuela-del-Val 2016). We
describe our testing devices in Subsect. 4.1, show the results
for the PDF evaluation, CDF evaluation, quantile function
and parameter estimators in Subsects. 4.2, 4.3, 4.5 and 4.6
respectively. Additionally, in Subsect. 4.7 we analyze the
performance parameters of our code to find the bottlenecks.

As we explained at the beginning of Sect. 3, for brevity
we do not provide detailed results of the straightforward
parallelization of the random number generator algorithm
proposed by Weron and Weron (1995). As expected, we
checked that it that performs better than the serial counterpart
[the GNU Scientific Library implementation (Gough 2009)]
for enough random numbers generated (in our tests, 1000 or
more).

4.1 Testing devices and environment

We have tested our application in three different GPUs,
named as follows:

– TeslaM A NVIDIA Tesla M2090 GPU, Fermi architec-
ture, with 6GB of GDDR5 memory and 512 cores at 1.3
GHz. It offers a memory bandwidth of 177 GB/s.

– TeslaK The most advanced card in our test setup, an
NVIDIATeslaK40 card,Kepler architecture, targeted for
high performance servers andworkstations. This card has
12 GB of GDDR5 memory and 2880 cores at 745 MHz.
The memory bandwidth is 288 GB/s.

– AMD An AMD/ATI Radeon 290X GPU, GCN archi-
tecture, with 4GB of GDDR5 memory and 2816 cores
running at 1 GHz. The offered memory bandwidth is 352
GB/s.

Table 1 shows the relevant performance details for each
GPU card. The data has been retrieved from the specifica-
tions of the vendors (NVIDIA 2012, 2013; AMD 2013).
The local memory bandwidth (referred to as “shared mem-
ory” in NVIDIA documentation) for the whole device has
been calculated from those specs and from the correspond-
ing computing architectures (NVIDIA 2009b, 2014; AMD
2012) as follows:

local bw = bank bw · banks / SU · cores

cores / SU
· core clock

(24)

where the bank bandwidth is expressed as the number of
bits that can be read/written per processor. The scheduling
unit (SU, referred to as “wavefronts” in AMD’s architectures
and “warps” in NVIDIA’s) are groups of 32 and 64 cores in
NVIDIA and AMD architectures, respectively.

All the devices ran the same code, which is the main
advantage of using OpenCL. The OpenCL version used
has been 1.1 in the NVIDIA cards, as it does not offer
drivers for newer versions of the framework. The AMD
card used OpenCL version 2.0. This has to be taken into
account when evaluating the results, as the newer improved
versions offer better performance and precision. The only
activated option for the compilation of the OpenCL kernel
is -cl-no-signed-zeros. The compilers used are the
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Table 2 Precision results when x ∈ (−100, 100) for the PDF of a
standard (μ = 0, σ = 1) stable distribution

α β Abs. error Rel. error Precision

0.25 0 5.11 × 10−14 8.64 × 10−11 1.14 × 10−9

0.25 0.5 5.96 × 10−14 1.05 × 10−10 1.31 × 10−9

0.25 1 5.29 × 10−18 2.52 × 10−16 3.26 × 10−17

0.5 0 1.36 × 10−19 2.32 × 10−16 4.2 × 10−17

0.5 0.5 1.08 × 10−19 2.06 × 10−16 6.43 × 10−17

0.75 0 2.71 × 10−19 9.22 × 10−16 3.77 × 10−10

0.75 0.5 2.71 × 10−19 8.71 × 10−16 6.72 × 10−10

0.75 1 4.13 × 10−18 4.05 × 10−16 1.24 × 10−10

1.25 0 5.58 × 10−16 1.26 × 10−11 1.07 × 10−16

1.25 0.5 4.48 × 10−16 1.23 × 10−11 1.43 × 10−11

1.25 1 2.78 × 10−17 1.81 × 10−15 1.81 × 10−11

1.5 0 2.37 × 10−16 2.96 × 10−11 1.05 × 10−16

1.5 0.5 2.13 × 10−16 2.93 × 10−11 1.09 × 10−16

1.5 1 2.17 × 10−19 4.11 × 10−16 7.59 × 10−12

ones included in the respective SDKs: CUDA 6.0 in the
NVIDIA cards and AMD APP SDK 2.9 in the AMD case.

The comparisons have been made with libstable running
on an Intel Core Xeon E5-2630 v2 with 12 cores running
at 2.60 GHz, compiled with GCC 4.7.2 with options -O3
-march=native and linked against Fedora’s official build
of the GSL library, version 1.15.

4.2 PDF evaluation

Despite certain limitations imposed by the hardware (see
Subsect. 3.6), Table 2 shows that in the interval (−100, 100)
our software achieves reasonable precision in comparison
with the software libstable (Royuela-del-Val 2016): absolute

error is small, both calculated as the difference with libstable
and as the difference between Gauss and Kronrod quadrature
rules, nearing machine precision in some instances. Relative
error committed is also small, below 1.05 × 10−10 in every
instance.

The error is measured as the median of the absolute dif-
ferences between the result of our software and the one of
the libstable software (Royuela-del-Val 2016) taken as refer-
ence. The precision is the estimated relative error committed,
calculated from the difference between Gauss and Kronrod
quadrature rules.

Regarding performance, the parallel PDF evaluation con-
siderably improves performance when the number of points
to be evaluated is significant enough (e.g., a libstable exe-
cution can be faster when evaluating just one point). In our
tests, 1000 point batches showed a significant speedup: from
0.031055 ms per point (32,200.93 point evaluations per sec-
ond) with libstable to 0.003ms per point or 333,333.33 point
evaluations per second on a NVIDIA Tesla K40 card, which
makes it 10.35 times faster.

Our solution is even faster than libstable using 12 threads
on an Intel Core Xeon CPU, that despite showing signifi-
cant performance improvements with regards to the single
threaded tests (0.007202 ms per point or 138,850.32 points
per second with 1000 points) is still slower than our solution
running both in the Tesla K40 and in the Tesla M2090, as the
last one achieves 0.0042 ms per point (238,095.24 points per
second).

Figure 7 shows the evolution of performance depending of
the number of points being evaluated in different hardware,
and Table 3 shows the exact performance measures for 1000
points. It can be observed that there are not further perfor-
mance gains after a certain number of points: this is caused
by the fact that GPUs cannot absorb an unlimited number of

Fig. 7 Performance of the PDF
calculation in different GPU
cards in comparison with the
results obtained with libstable
on an Intel Core Xeon CPU,
depending on the number of
points evaluated. Hardware
details are exposed at the
beginning of Sect. 4
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Table 3 Summary of the different PDF performancemeasures for 1000
points

Milliseconds / point Points per seconds

Tesla K 0.003 333,333.33

Tesla M 0.0042 238,095.24

AMD 0.0028 357,142.86

Libstable 1 thread 0.0311 32,200.93

Libstable 12 threads 0.0072 138,850.32

workgroups; instead, theworkgroups are separated in batches
and their execution is serialized.

An interesting result is the comparison between the
NVIDIA cards and the AMD Radeon R9 290X GPU. First,
we have to take into account that the AMD card does not sup-
port workgroups as big as the NVIDIA ones, so we had to
halve the number of integration subintervals. To account for
the decrease in precision, we doubled the number of points
per thread, so our software used vectors of 8 doubles in each
thread, a change that decreases performance.

Even with this handicap, for 1000 points, the AMD GPU
achieves significant performance speedups (0.0028 ms per
point and 0.0028 points per second), taking only 93.33%
of the time of the high-end NVIDIA Tesla K40 computing
card, and running faster than the multi-threaded libstable on
an Intel Core Xeon CPU.

Possible reasons for the comparable speeds on such differ-
ent cards (the AMD is a gaming card, while the Tesla are spe-
cialized for high-performance computing) could be the high
memory bandwidth in the AMD and the upgraded OpenCL
version (AMD supports OpenCL 2.0, while NVIDIA only
has OpenCL 1.1 drivers), which includes improved memory
coalescing features and better overall performance. It has also
been shown (Fang et al. 2011) that NVIDIA cards show bet-
ter performance with CUDA than with OpenCL. We explore
further this issue in Subsect. 4.7.

Figure 8 shows how the performance varies depending
on the parameters used. Our software is faster when α ∈
(0.4, 1) as that is the regionwhere integration becomes easier
and does not require further passes to improve precision.
When α comes closer to 2, the integrand behaves more like a
singular peak and multiple passes are required, thus slowing
down integration. The skewness parameter β does not affect
significantly the execution time.

4.3 CDF evaluation

As explained in Subsect. 3.2, the function to integrate is better
behaved in the CDF than in the CDF. This translates to higher
precision (see Tables 4, 5 for a comparison with libstable
taken as reference) without the need for additional measures.
Most of the relative error is near machine precision, and the
lowest precision (4.99×10−11) occurs in extreme regions of
the parameter space.

The behavior of the integrand also affects performance: as
Figs. 9 and 10 show, theCDF is slightly faster than the PDF as
it does not need as much reevaluations to achieve significant
precision. It is not unexpected given the fact that the majority
of the code is shared between the two calculations.

As with the PDF, the CDF performance is not especially
affected by the skewness parameter β, being the stability
index α the one determining the evaluation time.

4.4 Combined PDF and CDF calculation

As explained in Subsect. 3.3, the similarity of the CDF and
PDF integrand functions allows our software to calculate
simultaneously both functions without significant perfor-
mance decreases.

The comparison with libstable shown in Fig. 11 and Table
6 has been made calling its CDF and PDF functions sepa-
rately, while using the simultaneous calculation in the GPU.
It is not a fair comparison but shows how the GPU capabil-

Fig. 8 Variation of the
performance depending on the
parameters. The software was
tested with 500 points in a
NVIDIA Tesla M2090
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ities can be used and demonstrates an important advantage
for applications that require the calculation of the PDF and
CDF values simultaneously.

Table 4 Precision results when x ∈ (−100, 100) for the CDF of a
standard (μ = 0, σ = 1) stable distribution

α β Abs. error Rel. error Precision

0.25 0 7.65 × 10−12 4.99 × 10−11 4.12 × 10−10

0.25 0.5 1.24 × 10−11 4.47 × 10−11 4.72 × 10−10

0.25 1 5.55 × 10−17 1.49 × 10−16 1.92 × 10−17

0.5 0 6.66 × 10−16 3.83 × 10−15 1.45 × 10−16

0.5 0.5 7.39 × 10−16 7.5 × 10−15 1.42 × 10−16

0.75 0 6.66 × 10−16 2.58 × 10−15 3.04 × 10−12

0.75 0.5 7.1 × 10−16 1.82 × 10−15 2.89 × 10−13

0.75 1 3.33 × 10−16 3.62 × 10−16 5.98 × 10−14

1.25 0 7.55 × 10−16 1.51 × 10−15 1.51 × 10−16

1.25 0.5 7.36 × 10−16 2.17 × 10−15 2.05 × 10−9

1.25 1 5.55 × 10−16 6.67 × 10−16 3.2 × 10−9

1.5 0 7.46 × 10−16 1.43 × 10−15 4.89 × 10−15

1.5 0.5 7.07 × 10−16 1.64 × 10−15 1.39 × 10−14

1.5 1 5.55 × 10−16 6.67 × 10−16 6.62 × 10−16

Table 5 Summary of the different CDFperformancemeasures for 1000
points

Milliseconds / point Points per seconds

Tesla K 0.0029 344,827.59

Tesla M 0.0041 243,902.44

AMD 0.0024 416,666.67

Libstable 1 thread 0.0525 19,042.18

Libstable 12 threads 0.0115 87,244.81

The time consumed by the simultaneous calculation is
almost the same as the required by the PDF and CDF evalua-
tions separately. The only disadvantage of this simultaneous
calculation approach is that error estimates are not calculated
as explained in Subect. 3.3. Precision-wise, the results are the
same than the ones returned by the standalone CDF or PDF
functions.

4.5 Quantile function

To evaluate the quantile function results, we have generated
a set of equally spaced points in the real line, then obtained
their CDF values and used our quantile function, comparing
its output with the original points to validate precision. We
have filtered out quantiles below 0.1 or above 0.9: given the
characteristic heavy tails of the α-stable distribution, results
in those regions will not be meaningful as the CDF grows
too slowly.

Table 7 shows the precision achieved by our software with
a tolerance setting of just 10−4. The precision can be set
as high as desired, but we have found this tolerance setting
returns precise values with very good performance. Figure
12 shows the evolution of the quantile function performance
depending on the number of evaluated points, with exact
numbers for 1000 points in Table 8.

Our solution is considerably faster than libstable: for 1000
points, the Tesla K is 5.8 times faster than the quantile func-
tion from libstable running with 12 parallel threads on the
Intel Xeon CPU.

4.6 Parameter estimation

To validate the maximum likelihood estimation algorithm
presented in Subsect. 3.5, we have generated synthetic stable
data and then estimated the distributions using our library.

Fig. 9 Performance of the CDF
calculation in different GPU
cards in comparison with the
results obtained with libstable
on an Intel Core Xeon CPU,
depending on the number of
points evaluated

0.001

0.01

0.1

1

0 200 400 600 800 1000 1200 1400

m
s
p
er

p
oi
nt

Points

Multiple points GPU CDF performance test

TeslaK - Time per point
TeslaM - Time per point
AMD - Time per point

Libstable 1 thread - Time per point
Libstable 12 threads - Time per point

123



1378 Stat Comput (2017) 27:1365–1382

Fig. 10 Variation of the
performance of the CDF
depending on the parameters.
The software was tested with
500 points in a NVIDIA Tesla
M2090

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2α
0 0.2 0.4 0.6 0.8

β0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

m
s
p
er

p
oi
nt

Fig. 11 Performance of the
PDF and CDF calculation in
different GPU cards in
comparison with the results
obtained with libstable on an
Intel Core Xeon CPU,
depending on the number of
points evaluated
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Table 6 Summary of the different PCDF performance measures for
1000 points

Milliseconds / point Points per seconds

Tesla K 0.003 333,333.33

Tesla M 0.0042 238,095.24

AMD 0.0026 384,615.38

Libstable 1 thread 0.0829 12,065.78

Libstable 12 threads 0.0158 63,219.12

We generated 20 sets of 1000 stable-distributed values for
each one of the 17,400 sample points in the α-β-σ -μ para-
meter space (that is, α ∈ [0.6, 2], β ∈ [0, 1], μ ∈ [−1, 1]
and σ ∈ [0.5, 3]). The bias is calculated as the difference
between the estimated parameters and the ones the data was
generated with. We only show the bias depending on the
α and β parameters because we have not found significant
changes in bias when changing μ and σ .

Table 7 Precision results when q ∈ (0.1, 0.9) for the quantile function
of a standard (μ = 0, σ = 1) stable distribution

α β Abs. error Rel. error

0.25 0 6.18 × 10−5 1.52 × 10−7

0.25 0.5 6.72 × 10−5 3.87 × 10−6

0.25 1 2.79 × 10−5 6.48 × 10−6

0.5 0 4.37 × 10−5 7.89 × 10−7

0.5 0.5 2.94 × 10−5 4.19 × 10−6

0.75 0 1.09 × 10−5 2.21 × 10−6

0.75 0.5 2.34 × 10−5 2.88 × 10−6

0.75 1 2.71 × 10−5 6.92 × 10−6

1.25 0 1.46 × 10−5 4.74 × 10−6

1.25 0.5 4.7 × 10−6 1.92 × 10−6

1.25 1 1.57 × 10−5 6.97 × 10−6

1.5 0 7.5 × 10−6 2.56 × 10−6

1.5 0.5 5.42 × 10−6 1.09 × 10−7

1.5 1 1.4 × 10−5 2.58 × 10−6
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Fig. 12 Performance of the
quantile function calculation in
different GPU cards in
comparison with the results
obtained with libstable on an
Intel Core Xeon CPU,
depending on the number
of points evaluated
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Table 8 Summary of the different quantile performance measures for
1000 points

Milliseconds / point Points per seconds

Tesla K 0.0096 104,166.67

Tesla M 0.0179 55,865.92

AMD 0.0065 153,846.15

Libstable 1 thread 0.2631 3800.432

Libstable 12 threads 0.0557 17,965.26

The bias is low in most cases, as Fig. 14 shows. Also,
most of the estimation errors happen in the extremes of the
parameter space (seeFig. 13) andwith theβ parameter,which
comes not as a surprise given the fact that, when α tends to 2,
the distribution resembles a Gaussian one and the symmetry
parameter β does not affect its shape.

Regarding performance, our ML estimation algorithm
improves by orders of magnitude the time per estimation
required by a previous ML estimator developed in lib-
stable (Royuela-del-Val 2016) (11291.476 milliseconds on
average compared with 82.73002 milliseconds on the Tesla
M2090). Table 9 shows the detailed time results. We have
included the results from the ML estimator from libstable
with the PDF being evaluated in the GPU (named Libstable
- TeslaM). The GPU evaluation gives a significant speedup
but the grid algorithm shows that there was still room for
improvement.

We have also included the results from a MATLAB max-
imum likelihood estimator based on off-line precomputed
PDF values5 (Simmross-Wattenberg et al. 2015). The com-
parison is not fair (MATLABcode is interpreted andprobably

5 Code is available online at http://es.mathworks.com/matlabcentral/
fileexchange/44576-fast-calculation-of-stable-density-functions-base
d-on-off-line-precomputations.

slower than C code) but it shows that our algorithm performs
better than other approaches to fastmaximum likelihood esti-
mation.

4.7 Kernel performance analysis

To understand the performance results in the different GPU
cards shown in the previous sections, we must explore how
their specifications (see Table 1) affect our code. The usual
measure for performance in GPU cards is the memory band-
width usage, as it is the common bottleneck in parallel
applications. We have studied the PDF evaluation as a sam-
ple, although the results are similar in other cases.

Table 10 shows the bandwidth usage depending on the
GPU. The kernel time is the time measured by the OpenCL
driver profiler, so it only takes into account the kernel execu-
tion time in the GPU and not operations in the host computer,
including the setup time.

The results found in the table reflect the expected features
of our kernel code. It is not memory intensive, especially
in the global memory space. Each thread retrieves only four
values from global memory: the point to integrate (which is
the same for all the threads of a workgroups), the abscissa of
the Gauss–Kronrod node and the two corresponding weights
(these last three accesses are to constantmemory, which has a
higher bandwidth than regular globalmemory). Finally, there
are only twowrites to globalmemory perworkgroup (the two
Gauss–Kronrod integration results): it is not a surprise that
most of the kernel execution time is spent on tasks other than
global memory accesses.

Local memory is used more extensively than global mem-
ory in our code, but still it is not the bottleneck. The increased
usage corresponds to use of local matrices to hold the partial
integration results and the reduction algorithm exposed in
Subsect. 3.1.3: although it is faster than a simple for loop, it
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Fig. 13 Bias in the estimation
of synthetic stable data. The
dataset consists of 1000 points
and 20 experiments for each
possible value of α, β, μ, σ for
α ∈ [0.6, 2], β ∈ [0, 1], μ ∈
[−1, 1] and σ ∈ [0.5, 3]
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Fig. 14 Box plot of the distribution of the bias in the estimation of
synthetic stable data. The dataset consists of 1000 points and 20 exper-
iments for each possible value of α, β, μ, σ

is more memory intensive (2N reads and N
2 writes versus N

reads and 1 write of the for loop).
The results show that our bottleneck is not the memory, as

usually happens with GPU applications, but the processor.
The NVIDIA Tesla K card has the lowest processor clock
of our test setup, 745 MHz. However, this is not the only
factor that dominates performance. The number of cores is
important: more compute units meanmore threads can run in
parallel. The PCIe bus speeds also influence the performance
when few points are computed and the cost of transferring
memory and instructions to and from the GPU are significant
relative to the computation.

To fairly compare the performance results, we have to take
into account what we explained in the previous sections: as
the AMD card does not support workgroups of size 512, we
had to reduce their size and double the number of points per
thread to maintain precision. However, when using 2 points
per thread as in theNVIDIAGPUs, theAMDperforms better
than the TeslaK inmost cases and not only for a large number
of points.

Table 9 Detail of the performance results of the maximum likelihood
estimator: average time for a fit and the 95th percentile of the time
distribution

Avg. time (ms) 95th percentile (ms)

Libstable 11,291.476 18,244.981

Libstable—TeslaM 628.2777 1134.724

Grid—TeslaM 82.73002 168.3666

Grid—TeslaK 20.07744 27.97425

Grid—AMD 120.3731 180.3383

ML offline 257.0785 585.6634

This makes the Tesla M the slowest device: with just 512
cores, the advantage of the high processor clock disappears as
the card serializes the execution of a large number of threads.
Meanwhile, the AMD card performs extremely well thanks
to the processor speed and high number of cores, although
the fact that it uses PCIe Gen2 penalizes its performance
when it computes a low number of points. In those situations,
the Tesla K is the best performer despite the low processor
speeds, as it has a really high local memory bandwidth, and
the largest core count and PCIe bus speeds.

These predictions fit with what we found experimentally
modifying the code: we found that some instructions took
an unusual amount of time. For example, the exponentiation
in (10) takes the 54% of the kernel execution time on the
GPU, which translates to an approximate 30% of the time
required to evaluate a set of points. This could be caused by
our code hitting the worst-case of the NVIDIA processor’s
exponentiation function.

However, the different OpenCL versions and different
compilers used (each vendor distributes its own OpenCL
compiler) can also affect the results. The quantile function is
only slightly more computationally intensive than the other
computations: it involves the PDF and CDF calculation and
the root finding algorithm, but the latter is not complex as
it only involves one check and a small calculation as spec-
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Table 10 Bandwidth usage per
GPU. The kernel time refers to
the average kernel execution
time for a PDF calculation of
500 points

Tesla M Tesla K AMD

Kernel time (ms) 2.11 1.03 1.44

Kernel global memory b.w. (GBps) 13.59 27.98 10.00

Global memory b.w. usage (%) 7.68 9.72 2.84

Kernel local memory b.w. (GBps) 980.32 2018.03 1384.36

Local memory b.w. usage (%) 36.82 11.76 49.16

ified in Subsect. 3.4. In fact, as Fig. 12 shows, the AMD
card performs clearly better than the Tesla K after just 250
points evaluating four points per thread instead of two as the
NVIDIA card does. In this case, optimizations performed by
the AMD compiler could improve the performance, explain-
ing the significant performance differences in this case with
respect to the PDF and CDF results.

5 Conclusions

Throughout this paper, we have shown that significant perfor-
mance improvements (up to 10.35 times better in thePDFand
CDF, 27.41 times in the quantile function and 562.4 times in
the maximum likelihood estimations compared with single-
threaded solutions) can be achieved by the use of GPUs,
taking advantage of their parallel capabilities to implement
algorithms such as the Gauss–Kronrod quadrature (Subsect.
3.1) andmaximum likelihood estimation (Subsects. 3.5) with
enough precision.

Our solution shows that the use of GPUs, even consumer-
level ones, can be useful to accelerate α-stable computations
to a level where new applications on real-time environments
can be developed. We have also analyzed the performance of
our code (Subsect. 4.7), finding that theGPUswhere our code
should perform better are those with high processor speeds
and a large number of cores, as our application bottleneck is
not on the memory but on the processor.

There are further work areas regarding α-stable compu-
tations, especially regarding parameter estimation. In our
paper, we have used initial estimators (McCulloch 1986)
that do not work in the full parameter space. Our estimation
algorithm could be improved by finding estimators that work
where McCulloch’s does not work (that is, when α < 0.6) to
allow consistent and precise fit of every kind of stable data.

Another area of work would be the parallelization of the
estimation at a higher level: using the parallel capabilities of
the GPU to estimate multiple sets of data at the same time.
However, our ML estimators would not be suitable for this
task: they already consume a considerable number of GPU
cores, so there would be no room for an additional parallel
level with current hardware. A possible solution to this prob-
lem could be the replacement of the maximum likelihood

estimator by another estimator that does not require a high
number of GPU cores. Simpler estimators, such as those pro-
posed by Koutrouvelis (1981) or McCulloch (1986) could be
used to estimate simultaneously multiple sets of data in the
GPU.

Finally, our approach could also be extended to a multi-
GPU environment: given the independence of the compu-
tations for each point, the evaluations for the PDF, CDF,
quantile function, random number generation and parameter
estimations can be easily distributed across GPUs to improve
performance.
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