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Abstract Data streams are characterised by a potentially
unending sequence of high-frequency observations which
are subject to unknown temporal variation. Many modern
streaming applications demand the capability to sequentially
detect changes as soon as possible after they occur, while
continuing to monitor the stream as it evolves. We refer
to this problem as continuous monitoring. Sequential algo-
rithms such asCUSUM,EWMAand theirmore sophisticated
variants usually require a pair of parameters to be selected
for practical application. However, the choice of parameter
values is often based on the anticipated size of the changes
and a given choice is unlikely to be optimal for the multi-
ple change sizes which are likely to occur in a streaming
data context. To address this critical issue, we introduce a
changepoint detection framework based on adaptive forget-
ting factors that, instead of multiple control parameters, only
requires a single parameter to be selected. Simulated results
demonstrate that this framework has utility in a continuous
monitoring setting. In particular, it reduces the burden of
selecting parameters in advance.Moreover, themethodology
is demonstrated on real data arising from Foreign Exchange
markets.

Electronic supplementary material The online version of this
article (doi:10.1007/s11222-016-9684-8) contains supplementary
material, which is available to authorized users.

B Dean A. Bodenham
d.bodenham10@imperial.ac.uk

1 Department of Mathematics, Imperial College London,
London, UK

2 D-BSSE, ETH Zürich, Zurich, Switzerland

3 Heilbronn Institute of Mathematics, University of Bristol,
Bristol, UK

Keywords Changepoint detection · Adaptive estimation ·
Data stream · Sequential analysis

1 Introduction

Modern data acquisition technology has provided the oppor-
tunity to reason about streaming data (e.g. Gama 2010;
Aggarwal 2006). Such data are often characterised by a
potentially unending sequence of observations, subject to a
priori unknown temporal variation. Typically, streaming data
are observed at a high frequencywith respect to the computa-
tional demands of the analysis tools deployed against it. This
combination of characteristics means that streaming analysis
has two specific demands: the need for efficient computation
and the need for a mechanism to handle unknown tempo-
ral variation, as it happens. Streaming analysis of computer
network traffic (e.g. Bodenham and Adams 2013, 2014) is a
topical example. Typical of streaming data applications, the
flow of traffic data continues uninterrupted as it is monitored
even if changes are flagged.

Adaptive estimation (e.g. Haykin 2002) is a simple
approach for handling temporal variation, where a parameter
λ, called a forgetting factor, is used to smoothly down-
weight historical data as new data arrive. In certain cases,
in particular for the exponential family of distributions, this
approach yields a computationally efficient implementation.
Specifically, such implementations need only examine each
streaming datum once, and have a constant and low memory
demand.Moreover, other ideas fromadaptivefilter theory can
yield automatic sequential selection of the forgetting factor
(Anagnostopoulos et al. 2012). The capability to automat-
ically set such control parameters is crucial for streaming
applications, since human intervention is impractical.
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Adaptive estimation approaches are not primarily intended
for explicit change detection, but instead for keeping an
estimator close to a time-varying target. This methodology
has been successfully deployed, or adapted, to a number
of streaming data problems (Anagnostopoulos et al. 2012;
Pavlidis et al. 2011; Adams et al. 2010). In this paper, adap-
tive estimation is used to provide an up-to-date estimator that
will provide some resilience to the errors that can occur in
change detection, such as false positives and missed detec-
tions.

This research is concerned with the particular scenario
of sequentially detecting multiple changepoints in discrete-
time, univariate streaming data, which we refer to as con-
tinuous monitoring. This scenario is rather different from
the more conventional problem of statistical process control,
where a detected change could result in, for example, a man-
ufacturing device being stopped for corrective intervention.
Instead, the data stream continues to flow, uninterrupted by
any detected changes. To re-emphasise an earlier point, the
character of the changes in a data stream is unknown. An
exemplar application, explored in Ross et al (2011, Sec. 4),
arises in monitoring financial time series. Here, the value
of a financial instrument is subject to change as a result of
diverse forces in themarket, but the value continues to evolve.
A single trader detecting changes in the stream might result
in a trading action, which may indirectly affect the stream,
but does not fundamentally stop it. Similar problems occur in
certain types of security and surveillance applications (Frisén
2003).

Continuous monitoring thus refers to the problem of
sequentially detecting changes in an unending sequence of
data, where the character of the changes is unknown (loca-
tion, size and type of change, as discussed further below)
and, moreover, the change detector must be able to restart
following a detected change, and repeat this process indefi-
nitely. This challenging problem is the subject of the present
paper. There are numerous issues to consider, including the
definitions of a successfully detected change, the mechan-
ics of restarting and the crucial problem of selecting control
parameters for the change detector.

We restrict attention in this article to continuous moni-
toring of the mean of a data stream, where the location and
size of changes are unknown. While this framework can, in
principle, be used to reason about any parameter, we restrict
attention to monitoring the mean to focus on the challenges
of the streaming scenario. In this context, beyond compu-
tational issues, there are three methodological problems to
address. First is the need to handle changes of unknown and
unpredictable size. Second is the need to handle restarting,
wherein the detector needs to begin again after a change
is detected. Third is the need to set the detector’s control
parameters repeatedly and without expert interaction as the
stream evolves. As discussed in Sect. 3.3, the problem of

unknown change sizes has been explored extensively, partic-
ularly via so-called adaptive-CUSUM and adaptive-EWMA
procedures. Similarly, the problem of restarting has also
received study. Notably, there is little evidence of intersec-
tion between these two threads of literature, i.e. methods that
handle both restarting and unknown change sizes. Methods
developed for either of the former problems still suffer from
the requirement of parameters that are difficult to set without
some knowledge of the expected behaviour of the stream.

Our interest in deploying adaptive estimation methodol-
ogy is partially motivated by the need to specify all control
parameters in advance, which is clearly impossible for the
continuous monitoring problem. The remaining motivation
relates to how such a detector will respond to changes. A
detector using adaptive estimation should bemore capable of
recovering froma false positive than a conventional restarting
sequential change detector.Usually, a change is detected after
some delay, or may be missed entirely; however, a forgetting
factor deals with this gracefully by having the estimate auto-
matically adapt to the new regime whether or not a change
is detected. We restrict attention to the i.i.d. context, either
because it is natural in the context of the data, or alternatively
because we are monitoring the residuals from a model which
would capture any dependence in the observations.

This introduction has sought to raise a number of issues
arising in the continuous monitoring problem that simply
do not arise in conventional sequential change detection.
The remainder of this paper is structured as follows: Sect. 2
introduces the continuous monitoring problem. Section 2.2
discusses performancemeasures relevant to continuousmon-
itoring. A review of sequential change detection methods is
provided in Sect. 3 with special focus on the most basic for-
mulations of CUSUM and EWMA. Section 3.3 discusses
more sophisticated variants on these basic methods. Having
set up this background, Sect. 4 describes adaptive estimation
using a forgetting factor, either fixed or adaptive. A simu-
lation study, comparing adaptive estimation with restarting
CUSUM and EWMA in a continuous monitoring context,
is presented in Sect. 5. The simulation results require care-
ful analysis, but suggest that adaptive estimation has merit
for continuous monitoring. In Sect. 6, we demonstrate our
adaptive estimation change detection methodology in an
application related to financial data.

2 Continuous monitoring

Usually change detection algorithms are compared by their
ability to find a single changepoint, with the pre-change
and post-change distributions possibly unknown. However,
in many real-world situations such as financial monitoring
(exemplified in Sect. 6), multiple changepoints are expected
and an algorithm must continue to monitor the process for
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successive changes. In this section, we discuss the multiple
changepoint scenario and relevant performance metrics.

Denote a stream of observations as x1, x2, . . . , sampled
from i.i.d. random variables X1, X2, . . . , with changepoints
τ1, τ2, . . . , such that

X1, X2, . . . , Xτ1 ∼ F1,

Xτ1+1, Xτ1+2, . . . , Xτ2 ∼ F2,

Xτ2+1, Xτ2+2, . . . , Xτ3 ∼ F3, etc, (1)

where F1, F2, . . . represent distributions such that
Fi �= Fi+1 for all i . For a change in the mean, the size
of the i th change is |E[Xτi+1] − E[Xτi ]| for i ≥ 1.

2.1 Restarting: the need to estimate parameters

For most parametric sequential change detection algorithms
even if, in order to detect changepoint τi , the parameters for
the post-change distribution Fi+1 are not required in order
to detect a change, parameters for the pre-change distribu-
tion Fi will almost certainly be needed. These parameters
are often unknown in practical problems. One solution is to
assume that, at the start of the i th regime after changepoint
τi−1, the process is in-control for a certain number of observa-
tions, xτi , xτi+1, . . . , xτi+B , and then use these observations
to estimate the parameters for the current regime (Jones et al.
2001, 2004; Jones 2002). This parameter estimation stage
is called the burn-in period. For all the algorithms deployed
below we estimate both the mean and variance of the stream
during the burn-in period. This version of change detec-
tion, where the unknown stream parameters are estimated,
is particularly challenging. However, issues arise with this
restarting approach, since if the burn-in is not sufficiently
long to estimate the parameters accurately, the performance
of any change detection algorithm will be severely affected
(Jensen et al. 2006).

Note that while there are sequential change detection
algorithms that do not require estimates of the pre-change
parameters (Appel and Brandt 1983; Hawkins et al. 2003),
these algorithms are all concerned with detecting a single
change, and not multiple changes, which is the main focus
of this paper.

2.2 Performance measures

For the single changepoint scenario, the Average Run
Lengths ARL0 and ARL1 (described in Sect. 2.2.1) are suf-
ficient to describe the performance of a change detection
algorithm. However, assessment of performance becomes
complicated once we depart from the most basic sequential
change detection setting (i.e. a single change in univariate
stream). For example, in the context of a multivariate change

detection problem, Sullivan (2002) developed extra perfor-
mance measures.

Performance assessment is complicated in the continu-
ous monitoring problem, and extends beyond the standard
approaches used in the literature. We consider first the con-
ventional metrics, and then performance metrics relevant to
the continuous monitoring scenario.

2.2.1 Average run length

Two standard performance measures are the Average Run
Lengths, ARL0 and ARL1 (Page 1954). ARL0 is computed
as the average number of observations until a changepoint
is detected, when the algorithm is run over a sequence of
observations with no changepoints, while ARL1 is the aver-
age number of observations between a changepoint occurring
and the change being detected. Note that ARL1 typically
refers to a single change of a given magnitude.

As noted in the introduction, the challenge of continuous
monitoring involves a sequence of changes of unknown and
varying magnitude. These measures alone are insufficient to
characterise detection performance in a continuous monitor-
ing framework. Issues related to calculating the ARLs in a
continuous monitoring setting are discussed in Sect. 5.2.

2.2.2 Detection rates

The ARL1 value neither reflects howmany changepoints are
detected nor how many are missed. Moreover, ARL1 and
ARL0 together do not reflect the ratio of true detections to
false positives. In a single-change context, thesemight be dif-
ficult to measure, since any reasonable algorithm will detect
a change given enough time. However, in a data stream, there
is a finite amount of time between changepoints, and some
changes might not be detected before another changepoint
occurs, and we then classify these as missed changes.

Now, suppose that we have a data stream with C change-
points, and our algorithm makes a total of D detections, T
of which are true (correct) detections, while D − T are false
detections. We then define

– CCD = T/C , the proportion of changepoints correctly
detected,

– DNF = T/D, the proportion of detections that are not
false detections.

These intuitive definitions are the same as sensitivity and
positive predicted value (PPV ) in the surveillance literature
(German et al. 2001; Fraker et al. 2008), and are equivalent to
recall and precision, respectively, in the pattern recognition
literature. Similar metrics are discussed in Kifer et al. (2004).

Although the “complements” of CCD and DNF may be
more intuitively defined (proportions ofmissed changepoints
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and false detections, respectively), these definitions are pre-
ferred since the closer CCD and DNF are to 1, the better
the performance of the algorithm.

3 Review of sequential change detection

This section provides an overview of the standard CUSUM
and EWMA procedures, in addition to more sophisticated
variants. The overview relates to the context of a stream
of observations x1, x2, . . . , sampled independently from the
random variables X1, X2, . . . which have mean μ and vari-
ance σ 2. If these parameters are unknown, as occurs with
streaming data, estimates are used, as discussed in Sect. 2.1.

3.1 CUSUM

The Cumulative Sum (CUSUM) algorithm was first pro-
posed in Page (1954) and requires knowledge of the pre- and
post-change distributions of the stream for optimality (Mous-
takides 1986), in the sense of Lorden (1971). However, if the
distributions’ parameters are unknown, as is often the case,
then this optimality is not guaranteed.

If the stream is initiallyN(μ, σ 2)-distributed, theCUSUM
statistics S j and Tj are defined as S0 = T0 = μ, and

S j = max(0, S j−1 + (x j − μ)/σ − k), j ∈ {1, 2, . . . }
Tj = max(0, Tj−1 − (x j − μ)/σ − k), j ∈ {1, 2, . . . }

in order to detect an increase or decrease in the mean. A
change is detected when either S j > h or Tj > h.

Here the control parameters k and h need to be chosen.
These values are often chosen according to the needs of the
application, and specifically the magnitude of the changes
one is trying to detect; a selection of recommended values
for k and h is provided in Hawkins (1993). This selection is
based on the anticipated change size, |E[Xτi+1]−E[Xτi ]|. In
continuous monitoring where changes of unknown size will
occur, setting these parameters in this manner is unrealistic
because the changepoint size cannot be anticipated.Handling
the problem of setting control parameters repeatedly in the
continuous monitoring context is a key concern of this paper.

3.2 EWMA

The Exponentially Weighted Moving Average (EWMA)
scheme was first described in Roberts (1959) and is defined
by the statistic Z j : Z0 = μ, and

Z j = (1 − r)Z j−1 + r x j , j ∈ {1, 2, . . . },

where r is a chosen control parameter. The standard deviation
of Z j is

σZ j = σ

√
r

2 − r

[
1 − (1 − r)2 j

]
,

and a change is detected when either Z j > μ + LσZ j or
Z j < μ − LσZ j , where L is a second control parameter
that needs to be chosen. Again, setting values for the con-
trol parameters r and L is somewhat subjective, or based
on desired ARL0 performance, with Lucas and Saccucci
(1990) suggesting values in the range r ∈ [0.05, 1.0], and
L ∈ [2.4, 3.0].

3.3 More sophisticated approaches

CUSUM and EWMA have been detailed above because
they are the two most basic and well-studied approaches for
change detection. Of course, many sophisticated variations
have been proposed, each of which typically handle only
one of the challenges in continuous monitoring. Re-capping
the requirements of continuous monitoring provides a con-
venient way to partition the relevant literature

R1 Sequential and efficient computation
R2 Handling changes of unknown size
R3 Few control parameters

R2 has been studied extensively in the context of a
single changepoint. Much of this work is related to so-
called adaptive-CUSUM and adaptive-EWMA; see Tsung
and Wang (2010) for a review. Note that we are not aware
of any literature where both R2 and restarting are addressed
together.

Apley andChin (2007) provides an optimal filteringmech-
anism which reduces to standard EWMA in special cases.
The approach is shown to be effective for both large and
small changes. However, this approach is inadequate for con-
tinuous monitoring due to R1 and R3, specifically the large
number of coefficients to be estimated in the filter.

In addition to addressing R2, Capizzi and Masarotto
(2012) proposes a method that is suitable for different size
shifts when there is dependence in the process generating the
post-change distribution, in the context of a single change.
This sophistication comes at some computational cost, which
makes this approach unsuitable for continuous monitoring in
relation to R1 and R3.

Again, with respect to R2, Jiang et al. (2008) propose a
hybrid EWMA/CUSUM procedure in the context of a single
change. While this approach looks effective in experiments,
there are four parameters to be determined (R3), which
would be challenging in the continuous monitoring context
where parameters cannot be routinely specified after any
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change. Similarly, Capizzi andMasarotto (2003) suggests an
adaptive-EWMA scheme which requires three control para-
meters.

This issue of self-starting has been addressed in both
univariate and multivariate contexts. For example, an early
approach to multivariate self-starting can be found in
Hawkins (1987). Thismethod has two parameters, the setting
of which is suggested by reference to standard tables, such
as those in Lucas (1976). Other approaches to self-starting
include Sullivan (2002) and Xie and Sigmund (2013). In all
these examples, onewayor another, there aremultiple control
parameter settings (R3) that are challenging in the context of
continuous monitoring.

Finally, while there are approaches for detecting multi-
ple changepoints in a stream (e.g. Xie and Sigmund 2013;
Maboudou-Tchao and Hawkins 2013), in general these are
either non-sequential (Maboudou-Tchao and Hawkins 2013,
R1) or require several control parameters (Xie and Sigmund
2013, R3).

This reviewof previousworkhas sought to show thatwhile
there are sophisticated methods designed to deal with indi-
vidual aspects of the continuous monitoring scenario, these
methods do not meet the minimum requirements for deploy-
ment in a continuous monitoring context. For this reason, the
experimental study of Sect. 5 involves a comparison between
adaptive estimation-based change detection and basic restart-
ing CUSUM and EWMA. This is deliberately the simplest
comparison possible, in order to explore the continuousmon-
itoring problem in detail.

4 Adaptive estimation using a forgetting factor

We start by describing an adaptive estimation scheme to
monitor the mean of a stream of observations with a fixed
forgetting factor λ. Next we extend this to an adaptive forget-
ting factor

−→
λ , and thenwe define a decision rule for deciding

when a change has occurred.

4.1 Estimating the mean with a fixed forgetting factor

Suppose we have a data stream x1, x2, . . . , and we have seen
N observations so far. The arithmetic mean of these obser-
vations is defined as

x̄N = 1

N

N∑
i=1

xi . (2)

In this sum each observation is given equal weight, namely
1/N . The rationale behind adaptive estimation is that, for a
time-varying process, we would like to place more weight
on more recent observations, since this better reflects the

current regime of the data stream. This logic is central to
adaptive estimation, as typified byHaykin (2002). In adaptive
estimation, we introduce an exponential forgetting factor λ ∈
[0, 1] and define the forgetting factor mean x̄N ,λ as

x̄N ,λ = 1

wN ,λ

N∑
i=1

λN−i xi , wN ,λ =
N∑
i=1

λN−i .

Observe that if 0 < λ < 1, then earlier observations are
down-weighted by higher powers of λ, and so more weight
is placed on later observations. Alternatively, we can define
x̄N ,λ = mN ,λ

wN ,λ
for N ≥ 1, and

mN ,λ = λmN−1,λ + xN , wN ,λ = λwN−1,λ + 1 (3)

with m0,λ = w0,λ = 0. Note that λ = 0 and λ = 1 are
degenerate cases. Setting λ = 0 corresponds to forgetting all
previous observations, and only using the most recent obser-
vation, i.e. x̄N ,0 = xN . On the other hand, λ = 1 corresponds
to no forgetting, and then the forgetting factor mean is simply
the usual arithmetic mean, i.e. x̄N ,1 = x̄N .

The reader may observe that these equations bear some
resemblance to the EWMA equations above. Indeed, they
are related; using the above equations we can rewrite

x̄N ,λ =
(
1 − 1

wN ,λ

)
x̄N−1,λ + 1

wN ,λ

xN

= λ

(
1 − λN−1

1 − λN

)
x̄N−1,λ + 1 − λ

1 − λN
xN , (4)

and then if λ ∈ (0, 1), as N → ∞, this becomes

x̄N ,λ = λx̄N−1,λ + (1 − λ)xN ,

which is equivalent to the EWMA scheme if we set r =
1 − λ (Choi et al. 2006). However, there will be differences
for finite N . Additionally, the forgetting factor formulation
allows for the easily defined adaptive estimation scheme dis-
cussed in Sect. 4.2, which partially reduces the burden of
selecting parameters.

The relationship between this adaptive forgetting factor
framework and the Kalman filter provides a partial theoreti-
cal justification for the approach. Suppose a random walk is
characterised for i = 1, 2, . . . by

Xi ∼ N(μi , σ
2
X ),

μi = μi−1 + ξi ,

ξi ∼ N(0, σ 2
ξ ).

for some parameters σX and σξ . In Anagnostopoulos (2010,
Sec. 3.1.6), it is remarked that for such a random walk,
if the parameters σX and σξ are known then the optimal
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filter estimate after observation N , given all observations
x1, x2, . . . , xN , is denoted by

μ̂K F
N = E

[
XN |x1, . . . , xN ; σX , σξ

]
,

and then μ̂K F
N is recursively computable by the Kalman filter

equations (Kalman 1960). Furthermore, it is shown in Anag-
nostopoulos (2010, Sec. 3.1.6) that (for this special case)
wK F
0 = μ̂K F

0 = 0, and for N > 0

μ̂K F
N =

(
1 − 1

wK F
N

)
μ̂K F
N−1 +

(
1

wK F
N

)
, (5)

wK F
N+1 = λNwK F

N + 1, (6)

λN =
[

σ 2
ξ

σ 2
X

wK F
N + 1

]−1

(7)

It is interesting to compare Eqs. (3) and (4) for the fixed
forgetting factor mean estimator with Eqs. (5) and (6). This
comparison shows that the optimal filter equations are of the
same form as the forgetting factors equations. However, it
is apparent from this comparison that the optimal forgetting
factor for the Kalman filter is intimately related to the signal-
to-noise ratio, σ 2

ξ /σ 2
X .

4.2 Defining an adaptive forgetting factor

It is not clear how to select a value λ ∈ [0, 1] for the fixed
forgetting factor schemementioned above. Indeed, it is likely
that no single parameter setting will be optimal, as we claim
is the case with CUSUM and EWMA in continuous mon-
itoring. It is also conceivable that the performance of the
estimator could be improved if λ were allowed to vary as the
stream develops. For instance, after a sudden change the for-
getting factor should be closer to zero, to quickly “forget” the
previous regime, and when in-control it should be closer to 1.
Adaptive (variable) forgetting factors were first explored in
Åström andWittenmark (1973) andÅström et al. (1977), and
later in Fortescue et al. (1981). We define the adaptive for-
getting factor (AFF)

−→
λ , as the sequence

−→
λ = (λ1, λ2, . . . ).

In what follows, we shall introduce an optimisation parame-
ter, which we address later, and the value of which will be
shown to be unimportant. Motivated by Eq. (3), we define
the adaptive forgetting factor mean x̄

N ,
−→
λ
as follows:

Definition 1 For a sequence of observations x1, x2, . . . , xN ,
and forgetting factors λ1, λ2, . . . , λN , after defining

m
N+1,

−→
λ

= λNmN ,
−→
λ

+ xN+1, m
0,

−→
λ

= 0,

w
N+1,

−→
λ

= λNw
N ,

−→
λ

+ 1, w
0,

−→
λ

= 0, (8)

the adaptive forgetting factor mean x̄
N ,

−→
λ
is defined, for N ≥

1, by x̄
N ,

−→
λ

= m
N ,

−→
λ

w
N ,

−→
λ

.

Henceforth, note that
−→
λ in a subscript indicates that an

adaptive forgetting factor is used, while λ indicates a fixed
forgetting factor. When

−→
λ is used for m

N ,
−→
λ
, all λi ∈

(λ1, λ2, . . . , λN−1) are implicitly used in its calculation.
Determining how to update λN → λN+1 is the key ques-

tionwhenusing an adaptive forgetting factor. Following ideas
in Haykin (2002, Chap. 14) we update

−→
λ using a two-step

process. We first choose a cost function L
N ,

−→
λ
of x̄

N ,
−→
λ
, and

then update
−→
λ in the direction that minimises L

N ,
−→
λ
by

λN = λN−1 − η
∂

∂
−→
λ
L
N ,

−→
λ

, (9)

where η � 1. This is a variant of stochastic gradient descent
(e.g. Borkar 2008). Note that the derivativewith respect to

−→
λ

is a special scalar-valued derivative which will be described
in detail in Sect. 4.2.1 below. We defer a discussion on the
value of η to Sect. 4.4, where it will be shown that for a
broad range of values the change detection method seems
insensitive to the selection of η. Note that the choice of the
cost function L

N ,
−→
λ
is context-dependent, and there aremany

possible choices for this function. In the next section, our
choice of L

N ,
−→
λ
will be motivated by our desire to monitor

the mean of a sequence of observations.

4.2.1 The derivative with respect to
−→
λ

The derivative of a function with respect to
−→
λ can be defined

as follows:

Definition 2 For any function f
N ,

−→
λ
involving

−→
λ ,

∂

∂
−→
λ

f
N ,

−→
λ

= lim
ε→0

1

ε

[
f
N ,

−→
λ +ε

− f
N ,

−→
λ

]
,

where
−→
λ + ε = (λ1 + ε, λ2 + ε, . . . ).

As a particular example, which will be needed later, consider
the derivative ofm

N ,
−→
λ
. Although it is defined sequentially in

Eq. (8), it can bewritten in a non-sequential form,1 according
to the following proposition, proved in the Supplementary
Material (Sec. 1.1):

Proposition 3 For N = 1, 2, . . . , m
N ,

−→
λ

defined sequen-
tially in Definition 1 can be computed using:

m
N ,

−→
λ

=
N∑
i=1

⎡
⎣
⎛
⎝N−1∏

p=i

λp

⎞
⎠ xi

⎤
⎦ . (10)

1 Note that the empty product has value:
∏N−1

p=N λp = 1.
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Using this proposition, we then have

m
N ,

−→
λ +ε

=
N∑
i=1

⎡
⎣
⎛
⎝N−1∏

p=i

(
λp + ε

)
⎞
⎠ xi

⎤
⎦ (11)

= (λN−1 + ε)m
N−1,

−→
λ +ε

+ xN , (12)

and so we define its derivative as 	
N ,

−→
λ

	
N ,

−→
λ

= ∂

∂
−→
λ
m

N ,
−→
λ

= lim
ε→0

1

ε

[
m

N ,
−→
λ +ε

− m
N ,

−→
λ

]
. (13)

To get an expression for	
N ,

−→
λ
, we need the following result,

proved in the Supplementary Material (Sec. 1.2):

Lemma 4 For λi , λi+1, . . . , λM, i ≥ 1 and ε � 1,

M∏
t=i

(
λt + ε

) =
M∏
t=i

λt + ε

( M∑
t=i

( M∏
p=i
p �=t

λp

))
+ O(ε2). (14)

This result, combined with Eqs. (10)–(13), allows us to find
a non-sequential form for 	

N ,
−→
λ
:

Proposition 5 Following the definition of	
N ,

−→
λ
in Eq. (13),

	
N ,

−→
λ
can be computed using

	
N ,

−→
λ

=
N−1∑
i=1

⎡
⎢⎢⎣

N−1∑
t=i

( N−1∏
p=i
p �=t

λp

)
xi

⎤
⎥⎥⎦ . (15)

This result, proved in the Supplementary Material (Sec. 1.3–
1.4), leads to the sequential update equation

	
N+1,

−→
λ

= λN	
N ,

−→
λ

+ m
N ,

−→
λ

, 	
1,

−→
λ

= 0. (16)

Similarly we obtain for Ω
N ,

−→
λ

= ∂

∂
−→
λ

w
N ,

−→
λ

Ω
N+1,

−→
λ

= λNΩ
N ,

−→
λ

+ w
N ,

−→
λ

, Ω
1,

−→
λ

= 0. (17)

Interestingly, Eqs. (16) and (17) agree with those given in
Anagnostopoulos et al. (2012). However, there the derivative
was defined by assuming λi+1 = λi , which is a counter-
intuitive assumption to make in order to derive update
equations for time-varying

−→
λ . Here, we have derived the

update equations, Equations (16) and (17), without needing
tomake such an assumption. Indeed, the derivation above rig-
orously confirms the heuristic argument in Anagnostopoulos
et al. (2012).

4.2.2 The choice of cost function L
N ,

−→
λ

Equations (16) and (17) allow us to sequentially compute the
derivative of any well-behaved cost function L

N ,
−→
λ
which is

a function of w
N ,

−→
λ
and m

N ,
−→
λ
. For example, defining

L
N ,

−→
λ

= [x̄
N−1,

−→
λ

− xN ]2, (18)

which turns out to be an appropriate choice when adaptively
estimating the mean of a sequence of observations, the deriv-
ative is simply (see Supplementary Material, Sec. 1.5)

∂

∂
−→
λ

L
N ,

−→
λ

= 2[x̄
N−1,

−→
λ

− xN ]
[

	
N−1,

−→
λ

− x̄
N−1,

−→
λ

Ω
N−1,

−→
λ

w
N−1,

−→
λ

]
.

The choice of cost function L
N ,

−→
λ
in Eq. (18) can be moti-

vated by a sequential maximum likelihood formulation for
i.i.d. normal observations (Anagnostopoulos et al. 2012), and
for the rest of the article this cost function will be used.

Figure 1 demonstrates the behaviour of an adaptive forget-
ting factor. The left frame gives some simulated data, where

(a) (b) (c)

Fig. 1 Stream x1, x2, . . . sampled from Xk ∼ N(0, 1) for k ≤ 50, and Xk ∼ N(1, 1) for k > 50. Value of observations (left), value of AFF
−→
λ

over one stream (middle) and value of AFF
−→
λ averaged over 1000 such streams (right). In each case, the step size η = 0.01
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the process exhibits a simple jump in the mean. The middle
frame displays the corresponding value of the adaptive for-
getting factor. The right frame shows the average behaviour
of the adaptive forgetting factor, over 1000 random realisa-
tions of the process. We see that the forgetting factor exhibits
desirable behaviour, specifically that

−→
λ exhibits a marked

drop immediately after the change, and then later recovers
to its previous level after a period of stability. Note that after
updating

−→
λ according to Equation (9), it is possible that

λi /∈ [0, 1]. In order to ensure λi ∈ [0, 1], after updating −→
λ

we use, for some λmin ∈ [0, 1)

λi = max {min{λi , 1}, λmin} ,

In fact, we use λmin = 0.6, rather than λmin = 0, so that
−→
λ

does not get too close to 0 and recovers faster after a change to
pre-change levels. Section 1.6 in the SupplementaryMaterial
provides justification for this choice.

We finally note that while there have been attempts to cre-
ate an adaptive-EWMA chart (e.g. Capizzi and Masarotto
2003), these are of a fundamentally different character and
use score functions which smoothly interpolate two EWMA
and Shewhart charts. Now that the AFF estimation frame-
work has been fully described, we discuss a decision rule for
detecting a change.

4.3 Deciding when a change has occurred

The adaptive estimation scheme described above provides a
computationally efficientmeans to provide anup-to-date esti-
mate of the mean of the stream. Extra reasoning is required
to extend this scheme to a change detection framework, as
discussed below. First, we need the following proposition,
proved in the Supplementary Material (Sec. 2.1):

Proposition 6 If our data stream is sampled from the i.i.d.
random variables X1, X2, . . . , XN , with E[Xi ] = μ and
Var[Xi ] = σ 2 for all i ≥ 1, then X̄

N ,
−→
λ
, the adaptive for-

getting factor mean of X1, X2, . . . XN , defined according to
Definition 1, has expectation and variance

E[X̄
N ,

−→
λ

] = μ, Var[X̄
N ,

−→
λ

] = (u
N ,

−→
λ

)σ 2,

where u
1,

−→
λ

= 1 and, for i ≥ 1,

ui+1,λ =
(
1 − 1

wi+1,λ

)2

ui,λ +
(

1

wi+1,λ

)2

.

Note that Proposition 6 makes no mention of normality, or
the distribution of the Xk variables, simply their expectation
and variance.

While monitoring our forgetting factor mean x̄N ,λ, we
need a decision rule to decide that a change has occurred. A

number of possibilities are available for reasoning about the
distribution of X̄ N ,λ. Since both the mean and variance are
available, a simple approach based on Chebyshev’s inequal-
ity is possible. However, experiments with this approach
indicate that the inequality is not sufficiently tight to yield
good change detection performance, and so it leads to
challenges in automatically setting the control parameter.
Following much of the development of the literature in
sequential analysis (Gustafsson 2000; Basseville and Niki-
forov 1993), we assume that the distributions generating our
observations are normal.

If we assume that the pre-change distribution is normal,
specifically F1 = N(μ, σ 2), then we have from the above
that X̄ N ,λ ∼ N(μ, (uN ,λ)σ

2). Then, for a given α ∈ [0, 1],
we can use the normal cdf to find limits L1, L2 such that

Pr
[
X̄ N ,λ ≤ L1

] = α/2, Pr
[
X̄ N ,λ ≥ L2

] = 1 − α/2,

and our control limits are then defined by the interval
PN ,λ,α = (L1, L2). A change is detected if x̄N ,λ /∈ PN ,λ,α .
The choice of α is, of course, application-specific. So, for
our AFF scheme, we only need to choose one control para-
meter, the significance level α. This is different to CUSUM
and EWMA in which each requires two control parameters
to be chosen.

4.4 Choice of step size η

Although the AFF algorithm change detector only relies on
a single parameter α being chosen, we should wonder if the
step size (learning rate) η in Eq. (9) affects its performance.
Indeed, there is very little guidance in the literature on setting
this gradient descent parameter. In this section, we explore
the impact of choosing different values for η.

Before looking at values of η, we first take a closer look
at the scale of the derivative ∂

∂
−→
λ
L
k,

−→
λ
in Eq. (9). First, we

arrive at the following result, proved in the Supplementary
Material (Sec. 2.2):

Proposition 7 If our data stream is sampled from the i.i.d.
random variables X1, X2, . . . , XN , with E[Xi ] = μ and
Var[Xi ] = σ 2 for all i ≥ 1, then

E

[
∂

∂
−→
λ
L
N ,

−→
λ

]
∼ O(σ 2),

where L
N ,

−→
λ
is defined as in Eq. (18).

This result is important, since
−→
λ is a value in the range

[0, 1], and if σ 2 is too large, the gradient descent step in
Eq. (9) will force

−→
λ to be either 0 or 1, depending onwhether

the derivative is positive or negative, respectively. A simple
approach to remedying this issue it to scale the derivative

123



Stat Comput (2017) 27:1257–1270 1265

Table 1 This table shows the
detection performance for AFF
with parameter α = 0.05 and
step size η ∈ {0.1, 0.01, 0.001},
for a stream with approximately
5000 changepoints of size δ,
where δ is sampled uniformly
from {0.25, 0.5, 1, 3}, and using
burn-in length B = 50

Algo Parameter Value Step size η CCD DNF ARL1 (SDRL1) ARL0 (SDRL0)

AFF α 0.005 0.1 0.85 0.82 27.23 (32.27) 670.04 (1018.23)

AFF α 0.005 0.01 0.86 0.79 27.12 (32.05) 819.36 (1162.97)

AFF α 0.005 0.001 0.86 0.78 24.89 (29.65) 987.68 (1336.78)

This table shows that the performance of AFF is very similar for a range of values for η. The performance
measures CCD, the proportion of changepoints correctly detected, and DNF, the proportion of detected
changepoints that are not false detections, are defined in Sect. 2.2.2. The Average Run Lengths, ARL0 and
ARL1, are defined in Sect. 2.2.1, while the SDRL0 and SDRL1 are their standard deviations, respectively

(a) (b) (c)

Fig. 2 The average behaviour of the AFF
−→
λ for a single change, as in Fig. 1 (right-most figure). Left, middle and right figures here use η =

0.1, 0.01, 0.001, respectively. Each scheme reacts to the change quickly, but recovery is slow when η = 0.001

by σ 2. We therefore scale ∂

∂
−→
λ
L
N ,

−→
λ
by the estimate of the

variance obtained during the burn-in period, σ̂ 2, i.e.

λN = λN−1 − η

(
1

σ̂ 2

)
∂

∂
−→
λ
L
N ,

−→
λ

. (19)

In other words, this data-driven procedure removes the
burden of scaling the derivative. With this taken care of,
we investigate the performance of the AFF change detec-
tor for η = 0.1, 0.01, 0.001. Table 1 below shows that, when
considering a data stream containing thousands of change-
points with a variety of change sizes, the AFF algorithm
performs relatively consistently for η = 0.1, 0.01, 0.001,
using the approach above of scaling the derivative. Further
tables, showing similarly stable performance for when the
change sizes are the same, are included in the Supplemen-
tary Material (see Sect. 3, specifically Sect. 3.3).

Figure 2 shows the value of
−→
λ drops after a change,

regardless of the value of η. However, the smaller the value of
η, the slower

−→
λ recovers to its pre-change levels. Schemes

could be explored where
−→
λ is reset to 1 after a change has

been detected, but such refinements are not investigated here.
Figure 3 shows that the value η does not substantially

affect the average value of x̄
N ,

−→
λ
. While there is a differ-

ence immediately following the changepoint at τ = 50, by
observation 100 the average values seem to be identical. In

Fig. 3 The impact of the step size η on the AFF mean x̄
N ,

−→
λ
, for data

as in Fig. 1. Each line represents the average of the AFF mean x̄
N ,

−→
λ

over 1000 simulations

particular, the behaviour of x̄
N ,

−→
λ
for η = 0.1 and η = 0.01

is very similar.

5 Simulation study

In developing new change detection methodology, it is cus-
tomary to consider the case of normally distributed data
(e.g. Capizzi and Masarotto 2010; Hawkins 1987). This
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(a) (b)

Fig. 4 a Generating the stream, as described in Sect. 5. The values
τ1, τ2, . . . are the changepoint locations, based on the random inter-
val widths ξ1, ξ2, . . . padded by a grace period G and a period D to
allow for the detection of the changepoint. Changepoint locations fur-

ther highlighted by vertical dashed lines. b Schematic representation of
detection regions, as described in Sect. 5.1. A changepoint is correctly
detected if a detection is made in a detection region, while a detection
in a waiting region indicates a false detection

simulation study follows this custom, specifying Fi ∼
N (μi , σi ), and additionally σi = 1, for all i .

Randomly spaced changepoints are now generated, fol-
lowing the scheme illustrated in Fig. 4a, by first sampling
ξi , ξ2, . . . ∼ Pois(ν), for some value ν, to obtain random
interval widths. These ξi are then padded with values G and
D; G is a grace period to give the algorithm time to estimate
the streams parameters, and D is a period that allows the
algorithm to detect a change. The changepoints are therefore
specified by

τ1 = G + ξ1

τi = τi−1 + D + G + ξi , i ∈ {2, 3, . . . M}.

The stream is then generated in blocks [τi + 1, τi+1]. The
first block is sampled from a normal distribution with mean
μ1 = 0, and then block i is sampled with meanμi = μi−1+
θ · δi , where δi is a random jump size in some set S, and θ

is uniformly sampled from {+1,−1} to allow for increases
and decreases in the mean.

For the simulations below, the stream is generated with
parameters

ν = 50, G = 50, D = 50, M = 5000,

and the set of jump sizes δi is uniformly sampled from

S = {0.25, 0.5, 1, 3}.

This simulation investigates the performance of CUSUM,
EWMA and AFF. Furthermore, following a suggestion from
an anonymous reviewer, we also investigate the perfor-
mance of the method described in Jiang et al. (2008), which
we abbreviate to JSA (based on the authors’ names). An

overview of the JSA method can be found in the Sect. 6 in
the Supplementary Material. All algorithms use a burn-in
period of length B to estimate the parameters of the stream
(mean and variance) before monitoring for the changepoint.

Note that our stream is generated to contain 5000 change-
points in order to obtain accurate values for ARL1, DNF and
CCD. In the standard single changepoint setting, this would
be done by running 1000 trials, where each trial measures the
ability to detect a single changepoint. In our case, since we
have different changepoint sizes, we estimate these quantities
by evaluating over a single stream with many changepoints.
Note that ARL0 is computed in the standard way; 1000 trials
are run, where each trial consists of the algorithm attempting
to find a changepoint on a long stationary stream (all observa-
tions generated from the samedistribution).Any changepoint
that is detected is a false detection, and the delay to detecting
that false changepoint contributes to the ARL0.

5.1 Classifying the detected changes

After running over the stream, an algorithm will return a
sequence of detected changepoints {̂τ1, τ̂2, . . . }, andwemust
then classify these as correct or false detections. In a simula-
tion setting, we would use the sequence of true changepoints
{τ1, τ2, . . . } to do this, and would also record which of these
true changepoints were missed.

Suppose that we wish to classify the detected changepoint
τ̂n . After the previous changepoint τ̂n−1, a change detec-
tion algorithm in our simulation would have used the period
[̂τn−1 + 1, τ̂n−1 + B] to estimate the mean and variance of
the stream (Note: for n = 1, τ0 = 0). Suppose the next true
changepoint that occurs after τ̂n−1+B is τm , and that the fol-
lowing true changepoint is τm+1.We now have three possible
scenarios:
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– if τ̂n ∈ [̂τn−1 + B, τm], then τ̂n is a false detection,
– if τ̂n ∈ [τm + 1, τm+1], then τ̂n is a correct detection,
– if τ̂n > τm+1, then τm is a missed detection.

In the case of a missed detection, τ̂n is taken to be the cor-
rect detection of the true changepoint directly preceding it,
e.g. τm+1. In order to visualise the situation better, one can
imagine that our stream is divided into three regions of dif-
ferent coloured backgrounds, burn-in, waiting and detection
regions. Then, a detected changepoint τ̂n is classified accord-
ing to the region in which it lies. For example, in Fig. 4b the
first detected changepoint is a correct detection, while the
second detected changepoint is a false detection.

5.2 Average run length for a data stream

The calculations of ARL0 and ARL1 are simple using this
framework. The ARL1 is the sum of the lengths of the detec-
tion regions between the correctly detected changepoints and
their nearest true changepoints. Note that this excludes the
detection regions that are between two true changepoints
(missed detections).

While it is tempting to calculate ARL0 as the sum of
the lengths of the waiting regions between false detections
(divided by the number of false detections), we instead fol-
low the traditional approach for calculating ARL0. That is,
for i = 1, 2, . . . , M trials, the algorithm is run over a suf-
ficiently long stationary stream (i.e. without changepoints)
until a change is falsely detected at τ̂i . The ARL0 is then
computed to be 1

M

∑M
i=1 τ̂i .

The variances of ARL0 and ARL1 are also calculated,
and their standard deviations SDRL0 and SDRL1, respec-
tively, are reported. These values are known as the standard
deviations of the run lengths.

5.3 Results

Table 2 displays exemplar results for CUSUM, EWMA and
AFF algorithms for a stream with over 750,000 observations
containing over 5000 changepoints with a variety of change
sizes, in an effort to simulate a real-world data stream.

The parameter values used for CUSUM and EWMA are
the recommended choices in Hawkins (1993) and Lucas and
Saccucci (1990), respectively. However, the performance of
CUSUMandEWMAcanvary dramatically depending on the
choice of parameter values. Part of the reason for this is that
these different parameter choices are the suggested choices
when trying to detect a single change of a known magni-
tude. This is clearly not the case in a streaming data context
where multiple changepoints of different magnitudes should
be expected. Therefore, it is a serious drawback to need to
select one of these parameter choices, when one cannot know
what change-size to expect. Even if all the changes were of

the samemagnitude, as long as thismagnitudewere unknown
one would still not be able to make an informed choice of
parameter values. The Supplementary Material (Sec. 3.1)
contains tables showing similarly diverse performance (for
CUSUM and EWMA) even when the changes in the stream
are all of the same magnitude. Finally it is worth mention-
ing that, to the best of our knowledge, no previous work has
investigated the performance of CUSUM and EWMA oper-
ating on a stream with multiple, different-sized changes.

In the case of AFF, however, performance is far more sta-
ble. It was shown in Sect. 4.4 and Table 1 that the value of the
step size η is not important, since a variety of η values lead
to very similar performance. Further tables in the Supple-
mentary Material (Sec. 3.3) reinforce this point. Therefore,
one is left to select the value of the single control parameter
α. Indeed, setting α is a simple matter of deciding on the
width of the control limits, e.g. as in the construction of a
confidence interval, α = 0.01 for a 99% interval. Clearly,
larger values of α lead to narrower intervals and more sen-
sitive detectors, resulting in an increase in false detections,
etc.

Note that the results for the JSA method suggest it may
not be suitable for a streaming data context. A particular
concern is the lowCCDvalue, which indicates thatmany true
changepoints are missed. Further results (for more parameter
choices) for JSA are provided in Sect. 5 in the Supplementary
Material.

Additionally, Sect. 5 in the Supplementary Material pro-
vides further results for gamma-distributed data to evaluate
how these methods perform when the normality assumption
does not hold. As discussed in detail in Sect. 5.2 (Sup-
plementary Material), the AFF method appears to perform
well despite this model misspecification, in comparison to
CUSUM, EWMA and JSA.

Note that while the SDRL0 and SDRL1 values may seem
high, they are in line with the SDRL magnitudes in the liter-
ature (e.g. Jones et al. 2001). These standard deviations are
further inflated due to the estimation of the stream’s mean
and variance during the burn-in period, but it is not a large
effect. This is discussed in more detail in the Supplemen-
tary Material (Sect. 3.4). In the next section, we investigate
the performance of the AFF change detector on a real-world
dataset.

6 Foreign exchange data

As discussed in the introduction, a primary application of
continuous monitoring for data streams arises in financial
trading. Here, the value of a financial instrument evolves
over time, as a result of the behaviour of the market. Indi-
vidual traders need to determine if the price has made an
unexpected change in order to trigger trading actions. How-
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Table 2 The detection performance for CUSUM, EWMA, JSA and AFF for a stream of over 750,000 observations with approximately 5000
changes of size δ, with δ ∈ {0.25, 0.5, 1, 3}, with all methods using a burn-in of length B = 50 to estimate the in-control mean and variance

Algo Parameters Values CCD DNF ARL1 (SDRL1) ARL0 (SDRL0)

CUSUM (k, h) (1.50, 1.61) 0.65 0.80 30.55 (36.86) 534.54 (890.49)

CUSUM (k, h) (1.25, 1.99) 0.70 0.80 29.91 (36.57) 538.56 (903.96)

CUSUM (k, h) (1.00, 2.52) 0.75 0.79 27.14 (34.13) 524.86 (905.54)

CUSUM (k, h) (0.75, 3.34) 0.80 0.79 26.08 (32.28) 454.60 (795.29)

CUSUM (k, h) (0.50, 4.77) 0.85 0.77 24.73 (30.52) 373.38 (612.43)

CUSUM (k, h) (0.25, 8.01) 0.90 0.77 24.17 (27.87) 285.25 (458.91)

EWMA (r , L) (1.00, 3.090) 0.58 0.85 34.55 (38.94) 701.96 (1068.50)

EWMA (r , L) (0.75, 3.087) 0.64 0.83 32.08 (38.23) 654.44 (1000.28)

EWMA (r , L) (0.50, 3.071) 0.71 0.82 28.92 (35.42) 615.59 (969.71)

EWMA (r , L) (0.40, 3.054) 0.75 0.82 27.90 (34.74) 602.86 (948.69)

EWMA (r , L) (0.30, 3.023) 0.79 0.81 26.16 (32.86) 559.71 (892.78)

EWMA (r , L) (0.25, 2.998) 0.81 0.81 26.25 (33.19) 553.58 (884.68)

EWMA (r , L) (0.20, 2.962) 0.83 0.80 25.36 (32.20) 506.41 (847.37)

EWMA (r , L) (0.10, 2.814) 0.87 0.78 24.17 (30.38) 420.15 (702.72)

EWMA (r , L) (0.05, 2.615) 0.98 0.37 4.90 (13.62) 333.58 (566.51)

EWMA (r , L) (0.03, 2.437) 0.99 0.35 1.93 (7.13) 304.86 (490.30)

JSA (̂δmin, β, γ , ζ ) (0.500, 0.20, 1.50, 6.06) 0.12 0.94 27.57 (31.33) 489.99 (642.11)

JSA (̂δmin, β, γ , ζ ) (0.500, 0.20, 2.50, 4.63) 0.13 0.87 28.09 (33.04) 222.09 (265.45)

JSA (̂δmin, β, γ , ζ ) (1.000, 0.30, 1.50, 5.05) 0.12 0.88 26.29 (33.10) 236.44 (268.91)

JSA (̂δmin, β, γ , ζ ) (1.000, 0.30, 3.00, 4.39) 0.13 0.83 26.38 (33.64) 152.14 (166.09)

AFF α 0.005 0.86 0.79 27.12 (32.05) 819.36 (1162.97)

AFF α 0.008 0.87 0.73 25.78 (30.97) 577.88 (866.34)

AFF α 0.010 0.88 0.71 24.96 (30.10) 495.66 (760.56)

The parameter values used for CUSUM and EWMA are the recommended choices in Hawkins (1993) and Lucas and Saccucci (1990), respectively,
yet there is a large variation in performance. The values for the JSA control parameters are a selection of those recommended in Jiang et al. (2008).
For AFF, we only need to vary the single parameter α. The value of the step size for AFF used in this table is η = 0.01, with similar results for other
values of η. The performance measures CCD, the proportion of changepoints correctly detected, and DNF, the proportion of detected changepoints
that are not false detections, are defined in Sect. 2.2.2. The Average Run Lengths, ARL0 and ARL1, are defined in Sect. 2.2.1, while the SDRL0
and SDRL1 are their standard deviations, respectively

ever, the data streamcontinues, uninterrupted, as such trading
decisions happen. For illustration, we will consider 5-min
Foreign Exchange (FX) tick data. Specifically, we consider a
stream of Swiss Franc (CHF) and Pound Sterling (GBP). Our
objective here is simply to detect changes in the price-ratio
that could be used to trigger trading actions.

It is well known that FX streams are non-stationary. The
standard approach to address this problem is to transform the
data, and analyse the so-called log-returns, LRt = log(xt )−
log(xt−1).

We use AFF to perform change detection on the log-
returns of the CHF/GBP data. There are over 330,000
observations. The data are from 07h05 on October 21,
2002 until 12h00 on May 15, 2007, with one data point
every five minutes. For purposes of clarity, Fig. 5a shows
the changepoints (vertical lines) detected on the log-returns
superimposed on the raw data stream for AFF with α =
0.005.

Although this section is simplymeant to provide an exam-
ple of the AFF algorithm deployed on real data, we also
provide a comparison with PELT (Killick et al. 2012), an
optimal offline detection algorithm, in order to provide an
indication of the “true” changepoints. The changes detected
by PELT is shown in Fig. 5b. PELT also has a single con-
trol parameter, which was chosen to be 0.01 for this figure.
Note that PELT analysed the raw data stream, rather than the
log-returns.

Figure 5 shows the changepoints detected on the first
10,000 observations for clarity, and shows a high degree
of agreement between AFF and PELT; the two methods are
declared to agree on a changepoint if they each detect within
10 observations of each other. For example, PELT detects a
changepoint at observation 349, while AFF detects a change-
point at observation 350. In Fig. 5, changepoints common
to both methods are indicated by solid black lines, while
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Fig. 5 Change detection on a
CHF/GBP data stream using a
AFF (above) and b PELT
(below). The raw data stream is
plotted with the detected
changepoints indicated by the
vertical lines, with solid black
lines indicating that both
schemes detect that changepoint
(within 10 observations of each
other), and grey dashed lines
indicating that the changepoint
is not detected by the other
method. Note that the
changepoint(s) around 8200
differs between PELT and AFF
by 26 observations, and so is a
grey dashed line

(a)

(b)

changepoints that are not detected by both methods are indi-
cated by dashed grey lines.

On the full dataset of over 330,000 observations, PELT
detects 373 changepoints. AFF detects 154 of these 373
changepoints (within 10 observations of the PELT-detected
changepoint), indicating that it detects over 40% of the
changepoints detected by PELT. This is a particularly striking
result, sinceAFF is anonlinemethod,while PELT is anoffline
method.2 Note however, that only 20% of the changepoints
that AFF detects are changepoints also detected by PELT; in
other words, AFF detects a large proportion of changepoints
not detected by PELT. Similar behaviour is observed for both
methods as parameter values are varied to increase sensitivity
and to allow more changepoints to be detected. Section 7 in
the Supplementary Material also compares the performance
of CUSUMand EWMAwith AFF on this dataset.We use the
R implementation of PELT provided in the changepoint
package (Killick and Eckley 2011).

7 Conclusion

Continuous monitoring is much more challenging than the
sequential detection of a single changepoint. Features that
contribute to this challenge include defining different types
of detections, restarting, determination of control parame-
ters and handling changes of different sizes. We have shown
via simulation, in the simple context of detection of changes

2 Note that since it is an offline method it does not make sense to com-
pute performance measures such as ARL0 and ARL1 for comparison
with AFF, CUSUM and EWMA.

in the mean, that adaptive estimation performs similarly to
CUSUM and EWMA, with a reduced burden on the analyst
since only a single control parameter needs to be chosen.
Moreover, to the best of our knowledge, this is the first per-
formance analysis of CUSUM and EWMA on a data stream
with multiple changes of different sizes.

The goal of developing this methodology was to obtain
a method that is computationally efficient and can be confi-
dently deployed on a real-world stream, without concern for
selecting control parameters, and the AFF change detector
satisfactorily meets this criteria.

Although we have only focused on monitoring the mean,
the adaptive estimation framework can be extended to
monitor the variance, or other parameters, of a stream. Addi-
tionally, it can be extended to a multivariate setting, which
may arise, for example, in the Foreign Exchange problem
described in Sect. 6 when handling multiple currency pairs.
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