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Abstract Residual marked empirical process-based tests
are commonly used in regression models. However, they suf-
fer from data sparseness in high-dimensional space when
there are many covariates. This paper has three purposes.
First, we suggest a partial dimension reduction adaptive-to-
model testing procedure that can be omnibus against general
global alternative models although it fully use the dimension
reduction structure under the null hypothesis. This feature
is because that the procedure can automatically adapt to the
null and alternative models, and thus greatly overcomes the
dimensionality problem. Second, to achieve the above goal,
we propose a ridge-type eigenvalue ratio estimate to auto-
matically determine the number of linear combinations of the
covariates under the null and alternative hypotheses. Third, a
Monte-Carlo approximation to the sampling null distribution
is suggested. Unlike existing bootstrap approximation meth-
ods, this gives an approximation as close to the sampling
null distribution as possible by fully utilising the dimension
reduction model structure under the null model. Simulation
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studies and real data analysis are then conducted to illustrate
the performance of the new test and compare it with existing
tests.
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1 Introduction

Consider the partially parametric single-index model in the
form:

Y = G(β� X, W, θ) + ε, (1)

where Y is the response variable, (X, W ) is the covariate vec-
tor inRp1+p2 , G(·) is a known smooth function that depends
not only on the covariate β� X but also on the covariate W , β
and θ are the unknown regression parameter vectors and the
error ε follows a continuous distribution and is independent
with the covariates (X, W ). The model (1) reduces to the
parametric single-index model in the absence of the covari-
ate W and to the general parametric model in the absence
of the covariate β� X . This structure is often meaningful, as
in many applications, p1 is large while p2 is not. See the
relevant dimension reduction literature, such as Feng et al.
(2013).

However, it is less clear whether a real data set fits the
above statistical formalisation. It is worthwhile performing
suitable and efficient model checking before any further sta-
tistical analysis. As we often have no idea about the model
structure under the alternative hypothesis, the general alter-
native model is considered in the following form:
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Y = g(X, W ) + ε, (2)

where g(·) donates an unknown smooth function.
Several methods for testing the parametric single-index

model that removes the covariate W from the model (1), and
the general nonlinear model in the absence of the covariate
β� X can be found in the literature. Two prevalent classes of
method are locally and globally smoothing tests. A locally
smoothing test involves a nonparametric smoothing tech-
nique in the estimation, whereas a globally smoothing test
only requires a set of sample averages with respect to an
index set to form an empirical process or an average over
the set of sample averages. For examples, Härdle and Mam-
men (1993) suggested a locally smoothing test based on the
L2 distance between the parametric and nonparametric esti-
mate of the conditional expectation of Y given (X, W ) in our
notation. Zheng (1996) and Fan and Li (1996) independently
developed tests based on second order conditional moments.
Dette (1999) proposed a consistent test that depended on the
difference between the variance estimate under the null and
alternative hypotheses. Fan et al. (2001) developed a gener-
alised likelihood ratio test. For other developments, see the
Neyman threshold test (Fan andHuang 2001), a class of min-
imum distance tests (Koul and Ni 2004) and the distribution
distance test (Keilegom et al. 2008). González-Manteiga and
Crujeiras (2013) is a comprehensive review.However, locally
smoothing tests have two obvious shortcomings. First, those
methodologies have the subjective constraint choice of tun-
ing parameters such as bandwidth. Unlike estimation, finding
an optimal bandwidth choice for hypothesis testing is still
an open problem (Stute and Zhu 2005). Although practi-
cal evidence suggests that this issue is not critical when the
number p of covariates is small, a proper choice is not easy
at all when p is large, even moderate. This problem often
results in poor performance on the type I error control. A
more serious problem is the typical slow convergence rates
of locally smoothing tests, that is O(n−1/2h−p/4) under the
null hypothesis, where h is the bandwidth tending to zero.
In the present setup, p = p1 + p2. In other words, locally
smoothing tests suffer severely from the curse of dimension-
ality.

For globally smoothing tests, examples include Bierens
(1990), Stute (1997) and Khmaladze and Koul (2004).
Stute et al. (1998) used bootstrap approximation to deter-
mine the critical values of the residual-marked empirical
process-based test. Resampling approximation is particularly
required when p is larger than 2 as its limiting null distri-
bution is intractable. Escanciano (2007) is also a relevant
reference in this class of tests. The typical convergence rate
of globally smoothing tests is O(n−1/2). Thus, they have the
theoretical advantages over locally smoothing tests. How-
ever, the data sparseness in high-dimensional space means
thatmost globally smoothing tests suffer from the dimension-

ality problem, even for large sample sizes (see Escanciano
2006). Practical evidence shows that the power of globally
smoothing tests deteriorates andmaintaining the significance
level becomes more difficult when the dimension p of X is
large, or even moderate. This is particularly the case when
the alternative model is high-frequency.

Adirectway to alleviate this problem is to project the high-
dimensional covariates onto one-dimensional spaces first,
and a test can be an average of tests that are based on the
projections. This is a typical method called the projection-
pursuit. Huber (1985) is a comprehensive reference. Zhu and
Li (1998) suggested using the projection pursuit technique to
define a test based on an unweighted integral of expectations
with respect to all one-dimensional directions. Zhu and An
(1992) has already used this idea to deal with a relevant test-
ing problem. Lavergne and Patilea (2008) adopted this idea
and further developed a dimension-reduction nonparamet-
ric method by exploring an optimal direction. Lavergne and
Patiliea (2012) advised a smooth version of the integrated
conditional moment test over all projection directions. All
of these tests partly overcome the curse of dimensionality
with use of one-dimensional projections. However, the com-
putational burden is a serious issue. Computing the values of
the test statistics is very time-consuming, and becomes even
more serious if we further need to use re-sampling approx-
imation such as the bootstrap to determine critical values.
Based on our very limited numerical studies, which we do
not report in this paper, the CPU time of computing such
tests is more than 100 times of computing the test statistic
developed in the present paper, even when p is only 4. Wong
et al. (1995) discussed the relevant computational issue that
involved the integral over all projection directions in a test
statistic and suggested anumber-theoreticalmethod to reduce
the computational workload. Xia (2009) also constructed a
test that involved searching for an optimal direction, but the
test had no way of controlling type I error.

Stute and Zhu (2002) considered a naive method to han-
dle the curse of dimensionality when testing the parametric
single-index model: Y = G(β� X) + ε. Stemming from
the fact that under the null hypothesis, E[{Y − G(β� X)}
I (X ≤ t)] = 0 for all t ∈ R p leads to E[{Y −
G(β� X)}I (β� X ≤ t)] = 0 for all t ∈ R, the test statis-
tic is based on the empirical process:

Rn(x) = n−1/2
n∑

i=1

{
yi − G(β̂�xi )

}
I (β̂�xi ≤ x),

where β̂ is, under the null hypothesis, a root-n consistent
estimate of β. It has been proven to be powerful in many
cases. However, this test is a directional test rather than an
omnibus test. Thus, the general alternative of (2) cannot be
detected. This phenomenon can be easily illustrated by the
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following alternative model: Y = β�
1 X + c sin(β�

2 X) + ε,
where X is normally distributed N (0, Ip) with a p × p iden-
tity matrix Ip, and β1 and β2 are two orthogonal vectors. The
value c = 0 corresponds to the null hypothesis. However,
for any c, E(Y − β�

1 X |β�
1 X) = 0. In other words, this con-

ditional mean cannot distinguish between models under the
null and alternative hypotheses.

However, the advantage of the SZ’s test (Stute and Zhu
2002) under the null hypothesis is very important partic-
ularly in high-dimensional paradigms as under the null
hypothesis it solely uses the dimension reduction struc-
ture and thus it helps well maintain the significance level.
Guo et al. (2015) recently proposed an adaptive-to-model
dimension-reduction test that can be used to test for the
model Y = G(β� X, θ) + ε against the general alterna-
tive model Y = g(X) + ε. The main idea is to fully utilize
the dimension reduction structure about X under the null
hypothesis as Stute and Zhu (2002) did, but to adapt the
alternative model such that the test is still omnibus. Their
test is based on a locally smoothing technique. The improve-
ment over existing locally smoothing tests is significant. The
test has a much faster convergence rate of O(n−1/2h−1/4)

than the typical rate of O(n−1/2h−p/4) and can detect local
alternatives distinct from the null hypothesis at the rate of
O(n−1/2h−1/4) that is also much faster than the typical rate
of O(n−1/2h−p/4) that locally smoothing tests can achieve.
In other words, asymptotically, the test works as if X was
univariate. Thus, the test can significantly avoid the curse
of dimensionality. The numerical studies in their paper also
indicated its advantages in cases with moderate sample size.

To facilitate more general alternative models, a key idea
in their methodology development is to treat the purely non-
parametric regression model (2) as a special multi-index
regression model as follows:

Y = g(B� X, W ) + ε, (3)

where B is a p1 × q matrix with q orthogonal columns for
an unknown number q with 1 ≤ q ≤ p1 and g(·) is still
an unknown smooth function. We assume that the matrix B
satisfies B� B = Iq for identifiability. This model covers
many popular models in the literature, such as the single-
index models with B = β, the multi-index models with the
absence of W , and partial single-index models with the mean
function g1(β� X) + g2(W ). Here β is considered to be a
column of B. When q = p1 and B = Ip1 , the model (3) is
reduced to the usual nonparametric alternative model (2).
This is still true even when B is not equal to Ip1 , but the rank
is equal to p1. This is because when q = p1, g(X, W ) =
g(B B� X, W ) ≡: g̃(B� X, W ), where B is any p1 × p1
orthonormal matrix. This persuasively demonstrates that the
model (2) can be treated as a special case of (3). Based on
this, a test can be constructed by noticing that under the null

hypothesis, E{Y − g(β� X, W, θ)I (B� X ≤ t, W ≤ ω)} =
0 for all (t, ω) and under the alternative hypothesis, it is
nonzero for some vector (t, ω).

To define an empirical version of this function as the
basis for constructing a test statistic, an adaptive estimate
of B is crucial for ensuring the test to have the adaptive-
to-model property. That is, we wish an estimate of B to
be consistent to κβ for a constant κ under the null and to
B under the alternative. Then, under the null hypothesis,
the test can only rely on the dimension-reduced covariates
(β� X, W ), and is still omnibus to detect the general alterna-
tive model (3). As mentioned above, when W is absent, the
test in Guo et al. (2015) has the adaptiveness property to the
alternative model. To identify B and its structural dimension,
various dimension reduction approaches such as minimum
average variance estimation (MAVE, Xia et al. 2002) and
discretization-expectation estimation (DEE, Zhu et al. 2010)
have been suggested. However, when W is present, these
methods fail to work. Furthermore, due to the existence of
W , even when the dimension p1 = 1, the corresponding
locally smoothing test still has a slow convergence rate in
the order of O(n−1/2h−(p2+1)/4) where p2 is the dimension
of W .

In this paper, we consider a globally smoothing test that
keeps the advantage of SZ’s test, fully uses the dimension
reduction structure and utilises an adaptive-to-model strat-
egy to get the test omnibus. As mentioned above, the key is
to identify B adaptive to the null and alternative hypothesis.
To be precise, under the null hypothesis, B is identified to be a
vector proportional to β to make the test dimension-reduced.
While, under the alternative hypothesis, B is adaptively iden-
tified such that the constructed test is still omnibus. To this
end, the partial sufficient dimension reduction approach (e.g.
Chiaromonte et al. 2002; Feng et al. 2013) has to be applied.
To achieve the above goal, we also need to identify and
estimate the structural dimension q of B. Under the null
hypothesis, q = 1 is automatically identified and estimated.
We then suggest a ridge-type eigenvalue ratio estimate. The
details are presented in the next section. Another issue is crit-
ical value determination. In the present setting, the limiting
null distribution is intractable, as it is for all globally smooth-
ing tests. A resampling approximation is required. We then
propose a Monte Carlo approximation that also fully utilises
the information in the hypothetical model so that the approx-
imation can be as close to the sampling null distribution as
possible.

The rest of the paper is organised as follows. In Sect. 2,
a dimension-reduction method, the partial discretization-
expectation estimation, is reviewed, and is then used to
identify or estimate B. The ridge-type eigenvalue ratio is
also defined and its asymptotic properties are investigated in
this section. Based on these, a test is constructed in Sect. 3.
The asymptotic properties under the null and local alternative
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hypotheses are also presented in this section. As the limiting
null distribution is intractable, the Monte Carlo test approx-
imation is described in Sect. 4. In Sect. 5, the simulation
results are reported and a real data analysis is conducted for
illustration. Section 6 is a discussion section and also con-
tains a remark about a limitation of the proposed test due
to the inconsistency of the structure dimension estimation
under the local alternatives. Regularity conditions and tech-
nical proofs are found in the online supplementary material.

2 Partial discretization-expectation estimation and
structural dimension estimation

2.1 A brief review on partial discretization-expectation
estimation

As discussed above, identifying or estimating B is impor-
tant for constructing an adaptive test. To this end, sufficient
dimension reduction techniques can be applied. According
to the sufficient dimension reduction theories, we can iden-
tify the space spanned by the columns of the matrix B (see,
Chiaromonte et al. 2002). Write B̃ as the p × q matrix con-
sisting of these q basis vectors. We call B̃ the basis matrix.
Note that B is also a basis matrix of the space. Thus it is easy
to see that for a q × q nonsingular matrix C , B̃ = B × C�.
When q = 1, C is a constant and thus B̃ is a vector propor-
tional to the vector β under the null hypothesis. In Sect. 3
we show that identifying B̃ is enough for the testing problem
described herein.

In this subsection, we focus on identifying a basis matrix
B̃. Without confusion, we still write it as B. This is equiv-
alent to identify the space spanned by the columns of the
matrix B which is called the partial central subspace ( see,
Chiaromonte et al. 2002), and is written as S(W )

Y |X . By their
definition, it is the intersection of all subspaces S such that

Y⊥⊥X |(PS X, W ),

where ⊥⊥ stands for ‘independent of’ and P(·) indicates a
projection operator with respect to the standard inner prod-

uct. dim{S(W )
Y |X} is called the structural dimension of S(W )

Y |X .
In our setup, the structural dimension is 1 under the null
model and q under the alternative hypothesis. Chiaromonte
et al. (2002) and Wen and Cook (2007) developed estima-
tion methods for S(W )

Y |X when W is discrete. Li et al. (2010)
proposed groupwise dimension reduction (GDR), which can
also deal with this case. Feng et al. (2013) proposed partial
discretization-expectation estimation (PDEE) by extending
discretization-expectation estimation (DEE) in Zhu et al.
(2010). All of those estimations use the root-n consistency
with the partial central subspace. In this paper, we adopt
PDEE because PDEE is computationally inexpensive, and

can be easily used to determine the structural dimension q.
Also, when W is absent, PDEE can naturally reduce to DEE
without any changes in the algorithm.

From Feng et al. (2013), the following are the basic esti-
mation steps.

1. Discretise the covariate W = (W1, . . . , Wp2) into a
set of binary variables by defining W (t) = (I {W1 ≤
t1}, . . . , I {Wp2 ≤ tp2}) where t = (t1, . . . , tp2) and the
indicator functions I {Wi ≤ ti } take value 1 if Wi ≤ ti
and 0 otherwise, for i = 1, . . . , p2.

2. Let S(W (t))
Y |X denote the partial central subspace of Y |{X,

W (t)}, and M(t) be a p1 × p1 positive semi-definite
matrix satisfying Span{M(t)} = S(W (t))

Y |X .

3. Let T = W̃ where W̃ is an independent copy of W . The
target matrix is M = E{M(W̃ )}. B consists of the eigen-
vectors that are associated with the nonzero eigenvalues
of M = E{M(W̃ )}.

4. Let w1, . . . , wn be the n observations of W . Define an
estimate of M as

Mn = 1

n

n∑

i=1

Mn(wi ),

where Mn(wi ) is the partial sliced inverse regression matrix
estimate defined in Chiaromonte et al. (2002) with sliced
inverse regression proposed by Li (1991). Then when q is
given, an estimate Bn(q)of B consists of the eigenvectors that
are associated with the q largest eigenvalues of Mn . Bn(q)

can be root-n consistent for B. For more details, readers may
refer to Feng et al. (2013).

2.2 Structural dimension estimation

The structural dimension q is unknown in general. Interest-
ingly, even when it is given, we still want to estimate adap-
tively according to its values under the null and alternative
hypotheses because of its importance for the adaptive-to-
model construction for the test. To estimate q, Feng et al.
(2013) advised the BIC-type criterion that is an extension of
that in Zhu et al. (2006). However, all practical uses show
that selecting a proper penalty is not easy. In this paper, we
suggest a ridge-type eigenvalue ratio estimate to determine
q as:

q̂ = arg min
1≤ j≤p

{
λ̂2j+1 + cn

λ̂2j + cn

}
, (4)

where λ̂p ≤ · · · ≤ λ̂1 are the eigenvalues of the matrix Mn .
This method is motivated by Xia et al. (2015). The basic idea
is as follows. Let λ j be the eigenvalues of the target matrix
M . When j ≤ q, the eigenvalue λ j > 0 and thus, the ratio
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r j−1 = λ j/λ j−1 > 0; when j > q λ j = 0. Therefore, rq =
λq+1/λq = 0; and λ j+1/λ j = 0/0. To define all ratios well,
we can add a ridge in the ratio as r j = (λ j+1+cn)/(λ j +cn)

for 1 ≤ j ≤ p −1. As λ̂2j converges to λ2j at the rate of order

1/
√

n for 1 ≤ j ≤ q, and to 0 at the rate of order 1/n for
q + 1 ≤ j ≤ p, then cn = log n/n can be a good choice.
Compared with the BIC criterion in Feng et al. (2013) that
requires to choose a suitable penalty, we also need to choose
a good ridge constant cn . But we do find that the estimation
can be much more stable against the ridge selection than the
penalty selection in the BIC criterion. As this is beyond the
score of this paper, we do no give the detail in this paper.
The algorithm is very easy to implement and the estimation
consistency can be guaranteed. The result is stated in the
following.

Theorem 1 Under Conditions A1 and A2 in the Appendix,
the estimate q̂ of (4) with cn = log n/n has the following
consistency:

(i) under the null hypothesis (1), P(q̂ = 1) → 1;
(ii) under the alternative hypothesis (3), P(q̂ = q) → 1.

From our justification presented in the Appendix, the choice
of cn can be in a relatively wide range to ensure consistency
under the null and alternative hypotheses. However, to avoid
the arbitrariness of its choice, we find that cn = log n/n is a
proper choice. The above identification of q is very important
for ensuring that the test statistic is adaptive to the underly-
ing models. Finally, an estimate of B is Bn = Bn(q̂). This
estimate is used in the following test statistic construction.

3 A partial dimension reduction adaptive-to-model
test and its properties

3.1 Test statistic construction

The hypotheses of interest can now be restated. The null
hypothesis is

H0:E(Y |X, W ) = G(β� X, W, θ) for some

β ∈ R
p1 , θ ∈ � ∈ R

d ,

against the alternative hypothesis: for any β and θ

H1:E(Y |X, W ) = g(B�X, W ) 	= G(β� X, W, θ).

In this subsection, let ε = Y − G(β� X, W, θ) denote the
error term under the null hypothesis. Under H0, q = 1, and
B = κβ for some constant κ , then we have:

E(ε|X, W ) = 0 ⇔ E(ε|B� X, W ) = 0

⇔ E[ε I {(B� X, W ) ≤ (u, ω)}] = 0

for all (u, ω). Under H1, E{Y − G(β� X, W, θ)|X, W } =
g(B�X, W ) − G(β� X, W, θ) 	= 0, we then have:

E{Y − G(β� X, W, θ)|X, W } 	= 0

⇔ E{Y − G(β� X, W, θ)|B� X, W } 	= 0.

Before proceeding to the test statistic construction, recall
that what we can identify is B̃ = B × C for a q × q
orthogonal matrix C . Thus, we need to make sure this non-
identifiability does not affect the equivalence between E{Y −
G(β� X, W, θ)|B̃� X, W } 	= 0 and E{Y − G(β� X, W, θ)

|B� X, W } 	= 0. This is easy to check. Note that B̃ = B×C�
with C being a non-singular matrix and thus B and B̃ map
one-to-one. Then

E{Y − G(β� X, W, θ)|X, W } = E{g(B�X, W )

−G(β� X, W, θ)|X, W }
= E{g̃(B̃� X, W )

−G(β� X, W, θ)|X, W },

where g̃(·, ·) = g(C−1·, ·). It is equivalent between E{Y −
G(β� X, W, θ)|B� X, W } 	= 0 and E{Y − G(β� X, W, θ)

|B̃� X, W } 	= 0. Therefore, identifying B itself is not neces-
sary. As mentioned, we simply write B̃ as B.

Now we are in the position to define a residual-marked
empirical process. Let

Vn(u, ω) = n−1/2
n∑

i=1

{yi − G(β�
n xi , wi , θn)}

×I {(Bn(q̂)�xi , wi ) ≤ (u, ω)}, (5)

where βn and θn are the nonlinear least squares estimates
respectively, and Bn(q̂) was defined before.

Therefore, we use Vn as the basis for constructing a test
statistic:

Tn =
∫

V 2
n (Bn(q̂)�x, ω)d Fn(Bn(q̂)�x, ω), (6)

where Fn(·) denotes the empirical distribution based on the
samples {Bn(q̂)�xi , wi }n

i=1. Therefore, the null hypothesis
is rejected for large values of Tn .

It is clear that this test statistic is not scale-invariant and
thus usually a normalizing constant is required. This con-
stant needs to be estimated which involves many unknowns.
In this paper, a Monte Carlo test procedure is recommended
which can automatically make the test scale-invariant so that
normalisation is not necessary. Additionally, it can mimic
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the sampling null distribution better than existing approxi-
mations such as that in Stute et al. (1998). The details can be
found in Sect. 4.

3.2 Limiting null distribution

To study the properties of the process Vn(·, ·) and the test
statistic Tn , here we define a process for the purpose of the-
oretical investigation: for u and ω,

V 0
n (u, ω) = n−1/2

n∑

i=1

{
yi − G(β�xi , wi , θ)}I {(B�xi , wi )

≤ (u, ω)
}
. (7)

When E(Y 2) < ∞, take the conditional variance of Y given
B� X = u and W = ω,

σ 2(u, ω) = V ar(Y |B� X = u, W = ω),

and put

ψ(u, ω) =
∫ ω

−∞

∫ u

−∞
σ 2(v1, v2)d FB� X,W (v1, v2),

where FB� X,W (·, ·) denotes the distribution function of
(B� X, W ). It is easy to see that under H0,

Cov{V 0
n (u1, ω1), V 0

n (u2, ω2)} = ψ(u1 ∧ u2, ω1 ∧ ω2).

By Theorem 1.1 in Stute (1997), we can assert that under H0:

V 0
n −→ V∞ in distribution, (8)

where V∞ is a continuous Gaussian process with mean zero
and covariance kernel as follows:

K {(u1, ω1), (u2, ω2)} = ψ(u1 ∧ u2, ω1 ∧ ω2).

Theorem 2 Under H0 and the regularity conditions A1–A4
in the Appendix, we have the distribution

Vn −→ V∞ − G�V ≡ V 1∞,

where V∞ is the Gaussian process defined in (8) and
the vector-valued function G� = (G1, G2, . . . , G p+d) is
defined as

Gi (u, ω) = E
[
mi (X, W, β, θ)I {(B� X, W ) ≤ (u, ω)}

]
,

where B = κβ and V is a (p1 + d)-dimensional normal
vector with mean zero and covariance matrix L(β, θ) which
is defined in the Appendix.

Remark 1 From this theorem, we can see that the test statis-
tic has the same convergence rate of order n−1/2 to its limit as
that of existing globally smoothing tests. In other words, in
an asymptotic sense, there is no room for globally smoothing
tests to improve their convergence rate. Locally and globally
smoothing tests differ in this feature, as n−1/2h p/4 can be
much improved (Guo et al. 2015). However, as in Stute and
Zhu (2002), the new test can largely avoid the effect of dimen-
sionality such that the test is powerful for relatively large p.
The simulations in Sect. 5 demonstrate this.

3.3 Power study

First, we present the asymptotic property under the global
alternative hypothesis.

Theorem 3 Under Conditions A1, A2, A3 and A4 and H1n

with Cn = c a fixed constant, we have in probability

n−1/2Vn(u, ω) −→ E[{g(B�X, W )

−G(β̃� X, W, θ̃ )}I {(B� X, W ) ≤ (u, ω)}]

where (β̃, θ̃ ) may be different from the true value (β, θ) under
the null hypothesis. Then Tn → ∞ in probability.

To study how sensitive our new method is to the alter-
native hypotheses, consider the following sequence of local
alternative hypotheses:

H1n :Y = G(β� X, W, θ) + Cng(B� X, W ) + ε, (9)

where Cn goes to zero.
Under the local alternatives with Cn → 0, we also need

to estimate the structural dimension q. Recall that under the
global alternative hypothesis in Sect. 2, the estimate q̂ = q
had a probability going to zero, which could be larger than
1 when B contains more than one basis vector. However,
under the above local alternative models, when Cn goes to
zero, the models converge to the hypothetical model that has
one vector β. Thus, we anticipate that q̂ also converges to 1
under the local alternative hypotheses. The following lemma
confirms this.

Lemma 1 Under H1n in (9), Cn = n−1/2 and the regularity
conditions in Theorem 2, the estimate q̂ by (4) satisfies that
as n → ∞, P(q̂ = 1) → 1.

To further study the power performance of the test, assume
an additional regularity Condition A5 in the Appendix.

Theorem 4 Under H1n and Conditions A1, A2, A4 and A5,
when Cn = n−1/2, we have in distribution

Vn(u, ω) −→ V∞(u, ω)

+ E[g(B� X, W )I {(κβ� X, W ) ≤ (u, ω)}]
+ G�(η − V )(u, ω)
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where V∞, G and V are defined as those in Theorem 2 and η

is a (p1 + d)-dimensional constant vector, which are defined
in Appendix. Then Tn has a finite limit.

Remark 2 This theorem shows that under the local alterna-
tive models, the test would also be directional, because q̂ is
not a consistent estimate of q. This is caused by the difficulty
of estimating q when the alternative models are too close
to the null model. If the estimation of q could be improved,
it is likely that the omnibus property would still hold under
the local alternative hypotheses. We discuss this further in
Sect. 6.

4 A Monte-Carlo test procedure

As the limiting null distribution of the test statistic Tn is
not tractable, the nonparametric Monte Carlo test procedure
is suggested to approximate the sampling null distribution,
which is similar in spirit to the wild bootstrap, see Stute et al.
(1998) and Zhu and Neuhaus (2000). However, to enhance
the power of the test, we have a modified version that fully
uses the model structure under the null model.

A magical algorithm is developed to determine the p val-
ues as follows:

Step 1 Generate a sequence of i.i.d variables U = {Ui }n
i=1

from the standard normal distribution N (0, 1). Then
construct the following process:


n(u, ω,U) = n−1/2
n∑

i=1

�̂(xi , wi , yi , β, θ)Ui ,

where �̂(xi , wi , yi , β, θ) is an estimate of �(xi , wi ,

yi , β, θ) with the following notations:

�(xi , wi , yi , β, θ)=εi I {(B�
1 xi , wi )≤(u, ω)}−G�vi ,

�̂(xi , wi , yi , β, θ)= ε̂i I {(B�
1n xi , wi )≤(u, ω)}−Ĝ�v̂i ,

G(u, ω) = E
[
m(X, W, β, θ)I {(B�

1 X, W )≤(u, ω)}
]
,

Ĝ = n−1
n∑

i=1

m(xi , wi , βn, θn)I {(B�
1n X, W ) ≤ (u, ω)},

vi = l(xi , wi , yi , β, θ), v̂i = l(xi , wi , yi , βn, θn),

ε̂i = yi − G(β�
n xi , wi , θn),

with l(·)being a (p1+d)-dimensional vector function
defined in Appendix, and B1 and B1n being respec-
tively the first column vectors of B and Bn(q̂). The
resulting Monte Carlo test statistic is

T̃n(U) =
∫


2
n(B�

1n x, w,U)d FB1n (x, w),

where FB1n (·) denotes the empirical distribution
based on the samples {B�

1n xi , wi }n
i=1.

Step 2 Generate m sets of U, U j , j = 1, . . . , m, and get m
values of T̃n(U), say T̃n(U j ), j = 1, . . . , m.

Step 3 The p value is estimated by

p̂ = m−1
m∑

j=1

I {T̃n(U j ) ≥ Tn},

where Tn is defined in (6). Whenever p̂ ≤ α, reject
H0, for a given significance level α, or the critical
value is determined as the (1 − α)100% upper per-
centile of all U j ’s.

As mentioned before, this test procedure is scale-invariant
although Tn is not, because the resampling procedure does
not need to involve test statistic normalisation and p̂ =
m−1 ∑m

j=1 I {T̃n(U j ) ≥ Tn} = m−1 ∑m
j=1 I {T̃n(U j )/c ≥

Tn/c} for any c > 0.

Remark 3 It is worth pointing out that the algorithm is differ-
ent from traditional wild bootstrap or nonparametric Monte
Carlo test procedures that use the vector B(q̂)�n X . More
details can be found in Stute et al. (1998) and Zhu (2005).
When we only use the vector B1n , which is associated with
the largest eigenvalue of the target matrix Mn defined in
Sect. 2, we only use univariate covariate B�

1n X , which isβ� X
under the null asymptotically. This makes the approximation
as close to the sampling null distribution as possible.

The following theorem states the consistency of the condi-
tional distribution approximation even under local alternative
hypotheses.

Theorem 5 Under the conditions in Theorem 2 and the
null hypothesis or the local alternative hypotheses with
Cn = n−1/2, we know that for almost all sequences
{(y1, x1, w1), . . . , (yn, xn, wn), . . .}, the conditional distri-
bution of T̃n(U) converges to the limiting null distribution of
Tn.

5 Numerical studies

5.1 Simulations

In this subsection, we conduct simulations to examine the
finite-sample performance of the proposed test. The simu-
lations are based on 2000 Monte Carlo test replications to
compute the critical values or p values. Each experiment
is then repeated 1000 times to compute the empirical sizes
and powers at the significance level α = 0.05. To estimate
the central subspace spanned by B, we use the SIR-based
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PDEE/DEE procedure according to the cases with and with-
out the variate W in the model. In these two cases, we call
the test T PDEE

n .
We choose the ZH’s test (Zheng 1996) and the SZ’s test

(Stute and Zhu 2002) as the representatives of local and and
globally smoothing tests, respectively, to compare with our
test. We choose these tests because (1) the ZH’s test has the
explicitly and tractable limiting null distribution that can be
used to determine the critical values; (2) like other locally
smoothing tests, the re-sampling version helps improve its
performance (we then also include the re-sampling version
of the ZH’s test); and (3) the SZ’s test is asymptotically
distribution-free and powerful in many situations, but is not
an omnibus test. We will demonstrate this. Further, we also
compare our test toTheGWZ’s test (Guoet al. 2015), because
it is based on the ZH’s test but also has the adaptive-to-model
property, and can be much more powerful. We respectively
write the proposed test, the ZH’s, the SZ’s and the GWZ’s
tests as T PDEE

n , T ZH
n , T SZ

n and T GWZ
n .

In this section, we first design four examples to examine
the performance in four scenarios without the random vari-
able W . The first example has the same projection direction
in both the hypothetical and alternative models. The sec-
ond example is used to check the adaptiveness of our test
to omnibus testing even when dimension reduction structure
under the null hypothesis is fully adopted, showing that the
SZ’s test is directional and thus has much less power. The
third example is used to check the effect of dimensionality
from X for locally smoothing tests, and to compare our test
with the ZH’s and theGWZ’s test. The fourth example is used
to assess the effect of correlations among the components of
X . In the first three examples, the data (xi , wi ) are generated
from the multivariate standard normal distribution N (0, Ip),
independent of the standard normal errors εi .

Example 1 Consider the following regression model:

Y = β�
0 X + a × cos(0.6πβ�

0 X)

+ 0.5 × ε and β0 = (0, 0, 1, 1)/
√
2.

The values a = 0, 0.2, 0.4, 0.6, 0.8, 1 are used. The value
a = 0 corresponds to the null hypothesis and a 	= 0 to
the alternative hypothesis. The power function is plotted in
Fig. 1. Some findings are as follows. The power increases
reasonably with larger a. The proposed test T P DE E

n is sig-
nificantly and uniformly more powerful than T Z H

n and T SZ
n .

When a is not large, T SZ
n works better than T Z H

n , and when
a is large, T Z H

n slightly outperforms T SZ
n in power.

Example 2 To further check the omnibus property of the pro-
posed test to detect general alternative models, a comparison
with the SZ’s test and the ZH’s test is again carried out. In this

0 0.2 0.4 0.6 0.8 1
0

0.5

1

a

Empirical sizes and powers with p=4, n=100

0 0.2 0.4 0.6 0.8 1
0

0.5

1

a

Empirical sizes and powers with p=4, n=200

TPDEE
n

TSZ
n

TZH
n

TPDEE
n

TSZ
n

TZH
n

Fig. 1 The empirical size and power curves of T PDEE
n , T SZ

n and T ZH
n

in Example 1

example, we generate the data from the following regression
model:

Y = β�
0 X + a × 0.125 exp(0.3β�

1 X) + 0.5 × ε;

where β0 = (1, 1, 0, 0)/
√
2 and β1 = (0, 0, 1, 1)/

√
2. The

values a = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 are
used. In this model, B = (β�

0 , β�
1 )� and β�

0 X is orthogonal
to the functions under the alternative hypotheses. We can see
that the SZ’s test cannot detect such alternative hypotheses.
The results are reported in Fig. 2. The results clearly show
that the SZ’s test T SZ

n and the ZH’s test T SZ
n are not very

sensitive to the alternative hypotheses. In particular, when
the sample size is small (n = 100), the SZ’s test T SZ

n has
almost no power.

Example 3 To gain further insights into our test, we con-
sider the effect of the dimensionality of X . When the number
of dimensions is large, the ZH’s test does not maintain the
significance level or power performance, due to slow con-
vergence. Thus, the wild bootstrap is applied to approximate
the sampling null distribution. The re-sampling time is 2000
in this simulation study. The bootstrap version is written as
T ZHB

n . the GWZ’s test is also compared.

Consider the models:

Y = β�
0 X + a × {0.3(β�

1 X)3 + 0.3(β�
1 X)2} + 0.5 × ε;

where β0 = (1, 1, 1, 1, 0, 0, 0, 0)/2 and β1 = (0, 0, 0, 0, 1,
1, 1, 1)/2. Then the dimension p = 8. The results are pre-
sented in Fig. 3. We first examine the significance level
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maintainance of different methods. T ZH
n does not maintain

the significance level well, especially when n = 50, the
empirical sizes of T ZH

n is only 0.024when the critical value is
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Empirical sizes and powers with p=4, n=100
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Empirical sizes and powers with p=4, n=200

TPDEE
n

TSZ
n

TZH
n

TPDEE
n

TSZ
n

TZH
n

Fig. 2 The empirical size and power curves of T PDEE
n , T SZ

n and T ZH
n

in Example 2

determined by the limiting null distribution, but its bootstrap
version T ZHB

n can do. the test T GWZ
n can alsowellmaintain the

significance level. T PDEE
n performs uniformly the best among

all competitors and the absolute differences between the sig-
nificance level and empirical sizes are less than 0.005. From
Fig. 3, we can clearly see that the test T GWZ

n has advantage
over its competitor T ZH

n in gaining power, and T PDEE
n uni-

formlyworks better than the others. The comparison between
T GWZ

n and T PDEE
n further substantiates the theoretical advan-

tage that the globally smoothing test is more sensitive to
alternative hypotheses than the locally smoothing test when
both are constructed via the dimension reduction technique.
The results reported in Fig. 1 present that when the sample
size is larger, the performance of all methods becomes better
reasonably. Compared with the results in Figs. 1 and 2 with
p = 4, the dimension p has little effect for T PDEE

n . How-
ever, it has a very significant effect for T ZHB

n and T ZH
n . When

the dimension of the covariates is higher, the performance of
T ZH

n and T ZHB
n is worse. For space saving, We do not include

the detail of the simulation results.

Example 4 To further assess the performance of the test
T PDEE

n , we examine the effect of the correlated covariate
X and the distribution of the error term ε. Consider the fol-
lowing model:

y = β�
0 X + a × exp(−(β�

0 X)2/2)/2 + 0.5 × ε;

where X follows a normal distribution N (0, �) with the
covariance matrix �i j = I (i = j) + ρ|i− j | I (i 	= j) for
ρ = 0.5, i, j = 1, 2, . . . , p, β0 = (1, 1,−1,−1)/2 and ε

follows the student’s t distributionwith 4 degrees of freedom.
The results are listed in Table 1. Comparing the results

in this table with those in Figs. 1 and 2, it is clear that with
the correlated covariate X , we arrive at similar conclusions to

Fig. 3 The empirical size and
power curves of T PDEE

n , T ZHB
n ,

T ZH
n and T GWZ

n in Example 3

0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
p=8 and n=50

0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
p=8 and n=100

0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
p=8 and n=200

TPDEE
n

TZHB
n

TZH
n

TGWZ
n

TPDEE
n

TZHB
n

TZH
n

TGWZ
n

TPDEE
n

TZHB
n

TZH
n

TGWZ
n

123



1202 Stat Comput (2017) 27:1193–1204

Table 1 Empirical sizes and powers of T PDEE
n , T SZ

n , T ZH
n and T GWZ

n for Example 4 with p = 4 and correlated covariates

n/a T PDEE
n T SZ

n T ZH
n T GWZ

n

50 100 200 50 100 200 50 100 200 50 100 200

0 0.062 0.057 0.052 0.031 0.039 0.050 0.038 0.039 0.041 0.051 0.053 0.045

0.2 0.102 0.167 0.207 0.052 0.060 0.139 0.055 0.069 0.082 0.081 0.111 0.167

0.4 0.235 0.416 0.587 0.092 0.156 0.406 0.088 0.149 0.272 0.153 0.298 0.522

0.6 0.431 0.660 0.885 0.156 0.378 0.726 0.215 0.374 0.595 0.298 0.611 0.852

0.8 0.582 0.854 0.978 0.268 0.542 0.918 0.369 0.586 0.885 0.541 0.828 0.969

1.0 0.696 0.951 0.996 0.292 0.730 0.980 0.530 0.783 0.964 0.704 0.961 0.999

those inExamples 1 and 2. T PDEE
n easilymaintains the signif-

icance level. We also find that when the structural dimension
q = 1 under the alternative hypothesis, the power perfor-
mance of T GWZ

n is very similar to that of T PDEE
n . Comparing

Example 3 in Fig. 3 with Example 4 in Table 1, we can see
that the lower structural dimension increases T GWZ

n ’s empir-
ical power. This suggests that the structural dimension q still
has a negative effect on T GWZ

n although it is not very much.
However, the power of T PDEE

n does not deteriorate when the
the structural dimension is increased. Further, T PDEE

n can
control type I error very well and is significantly more pow-
erful than the ZH’s and the SZ’s tests. It is evident that T PDEE

n
is robust to the error term.

In summary, the globally smoothing-based dimension
reduction adaptive-to-model test inherits the advantages of
classical globally smoothing tests and has the adaptive-to-
model property when the dimension reduction structure is
adopted.

Now we consider the parallel models in Examples 1, 2, 3
and 4when the covariate W is included. However, we present
only the results for T P DE E

n because based on the results in
the above examples and comparisons, the performance of the
competitors is evenworsewhen there areq1 more dimensions
in the model (meaning that q1 more dimensions are added
when W is q1-dimensional).

Example 5 The four models are:

Case 1 Y = β�
0 X + W + a × cos(0.6πβ�

0 X)

+ 0.5 × ε;

Case 2 Y = β�
0 X + sin(W )+a ×{0.5(β�

1 X)2 +2 sin(W )}
+ 0.5 × ε;

Case 3 Y = β�
0 X+cos(W )+a×{0.3(β�

1 X)3+0.3(β�
1 X)2}

+ 0.5 × ε;

Case 4 y = β�
0 X + sin(W ) + a × exp(−(β�

0 X)2/2) × W
+ 0.5ε.

All of the settings are the same as the respective settings in
Examples 1, 2, 3 and 4 except for the additional W following
the normal distribution N (0, 1). The results are reported in
Table 2.

Table 2 Sizes and powers of T PDEE
n for Example 5

a n = 50 n = 100 n = 200 n = 400

Case 1 with p = 4 and q = 1

0 0.068 0.059 0.056 0.050

0.2 0.172 0.172 0.294 0.642

0.4 0.262 0.512 0.874 1.000

0.6 0.508 0.895 1.000 1.000

0.8 0.652 0.964 1.000 1.000

1 0.702 0.984 1.000 1.000

Case 2 with p = 4 and q = 2

0 0.058 0.055 0.053 0.048

0.2 0.069 0.096 0.139 0.376

0.4 0.110 0.246 0.691 0.997

0.6 0.212 0.573 0.985 1.000

0.8 0.304 0.866 1.000 1.000

1 0.421 0.938 1.000 1.000

Case 3 with p = 8 and q = 2

0.2 0.133 0.182 0.296 0.550

0.4 0.245 0.415 0.719 0.952

0.6 0.357 0.597 0.911 0.998

0.8 0.421 0.724 0.951 1.000

1 0.501 0.802 0.978 1.000

Case 4 with p = 4 and q = 1

0 0.060 0.045 0.047 0.051

0.2 0.102 0.154 0.270 0.496

0.4 0.217 0.427 0.744 0.982

0.6 0.405 0.724 0.973 1.000

0.8 0.541 0.897 0.999 1.000

1.0 0.646 0.956 0.999 1.000

The reported results clearly indicate that when W is pre-
sented,T PDEE

n stillworkswell inmaintaining the significance
level and detecting general alternative models.

5.2 Real data analysis

In this subsection, for illustration we perform the regres-
sion modelling of the well-known Boston Housing Data,
initially studied by Harrison and Rubinfeld (1978). The
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data set contains 506 observations and 14 variables, as fol-
lows: the median value of owner-occupied homes in $1000’s
(MEDV), per capita crime rate by town (CRIM), proportion
of residential land zoned for lots over 25,000 sq.ft. (ZN),
proportion of non-retail business acres per town (INDUS),
Charles River dummy variable (1 if tract bounds river; 0
otherwise) (CHAS), nitric oxides concentration (parts per
10 million) (NOX), average number of rooms per dwelling
(RM), proportion of owner-occupied units built prior to
1940 (AGE), weighted distances to five Boston employ-
ment centres (DIS), index of accessibility to radial highways
(RAD), full-value property-tax rate per 10, 000 (TAX), pupil-
teacher ratio by town (PTRATIO), the proportion of black
people by town (B) and lower status of the population
(LSTAT).

As suggested by Feng et al. (2013), we take the log-
arithm of (MEDV) as the response variable, the predictor
CRIM as W and the other 11 predictors as X , except CHAS,
because it has little influence on the housing price as advised
by Wang et al. (2010), and is thus excluded from this data
analysis. In this data analysis, we standardise the predic-
tors for ease of explanation. Here a simple linear model
is considered to be the hypothetical model. The SIR-based
PDEE procedure is applied to determine the partial central
subspace S(W )

Y |X . A total of 2000 Monte Carlo test repli-
cations are implemented to compute the p value that is
about 0. Hence, the null hypothesis is rejected. Moreover,
q̂ is 2. Thus, a partial multi-index model would be plausi-
ble.

6 Discussions

In this paper, we propose an adaptive-to-model dimension
reduction test based on a residual marked empirical process
for partially parametric single-index models. The test can
fully utilise the dimension reduction structure to reduce
dimensionality problems, while remaining an omnibus test.
Comparisonswith existing local andglobally smoothing tests
suggest that (1) model-adaptation enhances the power per-
formance, also maintaining the significance level; and (2)
the globally smoothing-based adaptive-to-model test outper-
forms the locally smoothing-based adaptive-to-model test.
Thus, a globally smoothing test is worthy of recommenda-
tion. This method can be readily applied to other models and
problems when a dimension reduction structure is presented.
The research is on-going.

In the hypothetical and alternative models, the indepen-
dence between the error and the covariates is assumed. This
condition is fairly strong. The condition can be weakened
to handle the testing problem for the following hypothetical
and alternative models:

Y = G(β� X, W, θ) + δ(β� X, W )ε,

Y = g(B�X, W ) + δ(B� X, W )ε.

Here, all of the settings are the same as those considered in
the paper, except that the function δ(·) is an unknown smooth
function. Bn(q̂) estimated by the SIR-based PDEE/DEE pro-
cedure is still a root-n consistent estimate of B. Thus, the
proposed test can still be feasible.

From the asymptotic properties of the proposed test, we
also find a limitation. Under the local alternatives that con-
verge to the null hypothesis at a certain rate, the proposed
test, unlike existing omnibus tests, cannot be powerful. This
is because of the inconsistency of the estimator q̂ of q under
the local alternatives with Cn = 1/

√
n. The method can

only estimate q to be 1. Thus, the estimate B̂ converges to
β, and when the other directions in B are orthogonal to β

and the function has some special structure, our test may not
have good power. However, this does not mean that our test
cannot detect any local alternative models. When the con-
vergence rate Cn becomes slower, the ridge-type eigenvalue
ratio estimate can still well estimate B by choosing a suitable
ridge value cn and then local alternative hypotheses can be
detected. Thus, to make the test omnibus under local alter-
natives, the key is to develop a good method to well estimate
q. The research is ongoing.
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