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Abstract Thermodynamics have been shown to have direct
applications in Bayesian model evaluation. Within a tem-
pered transitions scheme, the Boltzmann–Gibbs distribution
pertaining to different Hamiltonians is implemented to cre-
ate a path which links the distributions of interest at the
endpoints. As illustrated here, an optimal temperature exists
along the path which directly provides the free energy, which
in this context corresponds to the marginal likelihood and/or
Bayes factor. Estimators which have been developed under
this framework are organised here using a unifying approach,
in parallel with their stepping-stone sampling counterparts.
New estimators are presented and the use of compound
paths is introduced. As a byproduct, it is shown how the
thermodynamic integral allows for the estimation of prob-
ability distribution divergences and measures of statistical
entropy. A geometric approach is employed here to illus-
trate the importance of the choice of the path in terms of
the corresponding estimator’s error (path-related variance),
which provides a more intuitive approach in tuning the error
sources.
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1 Introduction

The idea of using tempered transitions has gained increased
attention in Bayesian statistics as a method to improve
the efficiency of Markov chain Monte Carlo (MCMC)
algorithms in terms of exploring the target posterior distribu-
tion. Sophisticated methods such as the Metropolis-coupled
MCMC (Geyer 1991), the simulated tempering (Marinari
and Parisi 1992; Geyer and Thompson 1995), the sequential
Monte Carlo (Del Moral et al. 2006), and the annealed sam-
pling (Neal 1996, 2001) incorporate transitions to overcome
the slow mixing of the MCMC algorithms in multi-modal
densities; see Behrens et al. (2012) for an insightful review.

Here, we work on the ideas of path sampling (Gelman and
Meng 1994, 1998) where simulated output of tempered tran-
sitions schemes can be are employed in order to estimate the
ratio of two intractable normalizing constants. In particular,
let q0(θ) and q1(θ) be two unnormalized densities and z0, z1
be their normalizing constants leading to

pt (θ) = qt (θ)

zt
, where zt =

∫
Θ

qt (θ) dθ , for t = 0, 1.

(1)

Gelman and Meng’s (1998) method is based on the con-
struction of a continuous and differentiable path qt (θ) =
h(q1, q0, t) which is used to estimate the ratio of normaliz-
ing constants λ = z1/z0 via the thermodynamic integration
(TI) identity

log λ =
∫ 1

0

∫
Θ

d log qt (θ)

dt
pt (θ) dθ dt

=
∫ 1

0
Ept

{
U (θ)

}
dt, (2)
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where U (θ) = d log qt (θ)
dt and Ept

{
U (θ)

}
stands for the

expectation over the sampling distribution pt (θ). The scalar
t ∈ [0, 1] is often referred to as the temperature parameter,
since the TI has its origins in thermodynamics and specifi-
cally in the calculation of the difference in the free energy of
a system. Here we focus on geometric paths (Neal 1993) of
the form

qt (θ) = q1(θ)t q0(θ)1−t , (3)

for specific choices of q0(θ) and q1(θ). For example, Friel
and Pettitt (2008) have used the path qt (θ) = f ( y|θ)t f (θ)

and therefore set the unnormalized posterior as q1 and the
prior as q0. In the general case, (2) under geometric paths
becomes

log λ =
∫ 1

0

∫
Θ

log
q1(θ)

q0(θ)
pt (θ) dθ dt. (4)

since U (θ) = log q1(θ) − log q0(θ) .
The ideas of the thermodynamics have important appli-

cations on a variety of scientific fields, such as physics,
chemistry, biology and computer science (machine learning,
pattern recognition) among others. As Gelman and Meng
(1998) note, methods related to the TI have been developed
by researchers from different disciplines working indepen-
dently and in parallel (Frenkel 1986; Binder 1986; Ogata
1989). Within Bayesian statistics, a straightforward applica-
tion of the TI refers to model comparison. In fact, current
research in Bayesian statistics focuses on three interesting
topics, namely

(a) on using the TI method to estimate the marginal like-
lihood and/or the Bayes factor (BF, Kass and Raftery
1995),

(b) on the connection between the TI and measures of diver-
gence between probability distributions,

(c) and finally, on assessing the sources of error when esti-
mating λ based on (b).

In Sect. 2 we present existing and new thermodynamic
identities for Bayesian model comparison (a). We also con-
sider an alternative approach for path sampling, based on
the stepping-stone identity considered in Neal (1993) and
applied in this context by Xie et al. (2011) and Fan et al.
(2011). Any blanks in the list of previously reported estima-
tors based on the two different approaches are filled in by
introducing new estimators using a identity-path selection
rationality. We further discuss the implementation of the two
alternative approaches in the direct Bayes factor estimation
and we introduce the compound paths which can be used
to efficiently switch between competing models of different
dimension located at the endpoints of the path.

With regard to (b), Friel and Pettitt (2008), Calderhead
and Girolami (2009), Lefebvre et al. (2010) and Behrens
et al. (2012) under different motivations and scopes, outline
the close relationship between the TI and the relative entropy,
best known in statistics as the Kullback-Leibler divergence
(KL; Kullback and Leibler 1951), which can be derived at
the endpoints of the TI. In Sect. 3, we examine what happens
at the intermediate points, t ∈ (0, 1), and we describe the
mechanism which eventually produces the relative entropy
at the initial (t = 1) and final (t = 0) states.We introduce the
functional KL, defined at each temperature, which is imple-
mented to show that (4) is directly linked to other measures
of divergence between probability distributions, such as the
Chernoff information (Chernoff 1952), the Bhattacharyya
distance (Bhattacharyya 1943) and Rényi’s relative entropy
(Rényi 1961). In this context, we show that there is an opti-
mal point t∗, where the sampling distribution is equidistant
(in the KL sense) from the endpoint densities and where the
ratio of interest λ could be derived directly, avoiding the ther-
modynamic integration.

In Sect. 3, based on our findings on the uncertainty at the
intermediate points, we further examine and geometrically
represent the structure of the thermodynamic integral. This
approach provides insight and assists us to understand the
path sampling estimators of λ in terms of error, assessing
(b). In particular, the path-related variance is geometrically
approached and it is highlighted that any variance reduction
in the thermodynamic estimators should primarily focus on
the path implemented. We identify why large discretisation
error occurs and we discuss on its reduction by adopting
more efficient (in terms of error) paths and subsequently well
designed tempering schedules.

The paper closes with an illustration of the methods and
estimators discussed here in a common regression example
(previously used by Friel and Pettitt 2008 and Lefebvre et al.
2010 for marginal likelihood estimation) and in a demanding
latent trait model implementation using a simulated dataset.

2 Bayesian model comparison using tempered
transitions

Let us consider two competing models, m1 and m0, with
equal prior probabilities. Then, the Bayes factor (BF; Jeffrey
1961; Jeffreys 1935; Kass and Raftery 1995) is derived as
the ratio of the marginal likelihoods

f ( y|mi ) =
∫

Θ

f ( y| θ ,mi )π(θ |mi ) dθ (5)

for each model m1 and m0; where y denotes the data matrix
andπ(θ |mi ) is the prior density of the parameter vector under
the model mi . The integral involved in the marginal likeli-
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hood (Eq. 5) is often high dimensional making its analytic
computation infeasible. Therefore a wide variety of MCMC
based methods have been developed for its estimation; see,
for example, in Chib (1995); Gelman and Meng (1998);
Lewis and Raftery (1997) among others.

Since the marginal likelihood is the normalizing constant
of the posterior distribution f (θ | y,mi ) it can be estimated by
path sampling. Recently, suchmethods have been considered
by Lartillot and Philippe (2006), Friel and Pettitt (2008) and
Lefebvre et al. (2010).Oates et al. (2015) in addition combine
the thermodynamic integration with control variables.

2.1 The stepping-stone identity

In this section we consider an alternative approach that is
based on the stepping-stone sampling, an importance sam-
pling example considered for the estimation of the marginal
likelihood in Xie et al. (2011) and Fan et al. (2011). Closely
related ideas are also discussed in the context of the free
energy estimation in Neal (1993, see section 6.2 and ref-
erences within); see also in Meng and Wong (1996) and
Liang andWong (2001) for earlier uses of the stepping stone
identity in path link Monte Carlo algorithms. The stepping-
stone sampling considers finite values ti ∈ T , that are placed
according to a temperature schedule. The ratio of the nor-
malizing constants can be expressed as

λ = z1
z0

= ztn
ztn−1

ztn−1

ztn−2

. . .
zt1
zt0

=
n−1∏
i=0

zti+1

zti
.

Hence, the ratio of the normalizing constants are derived
using zti+1/zti as an intermediate stepwhich can be estimated
from t specific MCMC samples based on the identity

zti+1

zti
=
∫

Θ

qti+1(θ)

qti (θ)
p ti (θ) dθ;

see Xie et al. (2011) for details. For geometric paths, the
stepping-stone identity for λ is then given by

λ =
n−1∏
i=0

∫
Θ

{
q1(θ)

q0(θ)

}Δ(ti )

p ti (θ) dθ . (6)

Xie et al. (2011) presented the stepping-stone sampling
specifically for estimating the marginal likelihood (under a
certain geometric path) while Fan et al. (2011) modified the
initial marginal likelihood estimator in order to improve its
properties (both estimators are addressed later on in this sec-
tion). However, as outlined here, the stepping-stone sampling
can be considered as a general method, alternative to path
sampling, that can be applied for the estimation of ratios of
unknown normalisation constants.

In this sectionweoutlined that the identities (4) and (6), are
two closely related alternative tempered transition methods
for the estimation of normalizing constants using geomet-
ric paths. Therefore, any estimator currently developed via
thermodynamic integration has its corresponding stepping-
stone estimator and vice versa. This method-path approach
allows us to further introduce new estimators based on the
counterpart existing ones.

2.2 Marginal likelihood estimators

In order to avoid confusion, hereafter we will name each
estimator based on the method (thermodynamic or stepping-
stone) and on the path implemented for its derivation.

The power posteriors (Lartillot and Philippe 2006; Friel
and Pettitt 2008) and the stepping stone (Xie et al. 2011)
marginal likelihood estimators are using the same geometric
path but they are based on different identities, approaching
the same problem using a different perspective. In fact, both
methods implement the geometric path

qPPt (θ) = { f ( y| θ)π(θ)}t π(θ)1−t = f ( y| θ)tπ(θ), (7)

which will be referred to hereafter as the prior-posterior
path. The prior posterior path links a proper prior for the
model parameters, q0(θ) = π(θ), with the correspond-
ing unnormalized posterior density, q1(θ) = f (θ | y) π(θ).
Setting the prior-posterior in (4) and (6), yields the thermody-
namic and the stepping-stone prior-posterior identities (PPT
and PPS respectively) for the marginal likelihood

log f ( y) =
∫ 1

0
EpPPt

{log f ( y| θ)} dt and

f ( y) =
n−1∏
i=0

∫
Θ

{log f ( y| θ)}Δ(ti ) pPPti (θ) dθ

where pPPt (θ | y) is the density normalized version of (7).
Fan et al. (2011)modified the estimator ofXie et al. (2011)

based on the ideas of Lefebvre et al. (2010), who considered
other options rather than the prior at the zero end of the TI.
Provided that g(θ) is an importance function which approxi-
mates the posterior, the geometric path implemented by Fan
et al. (2011) can be named as the importance-posterior path

qIPt (θ) = { f ( y| θ) π(θ)}t g(θ)1−t .

It should be noted that the density g(θ) is required to be
proper so that z0 = 1. It is possible to be constructed
by implementing the posterior moments available from the
MCMC output at t = 1, provided that the shape of the pos-
terior allows so.
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The thermodynamic and stepping-stone importance-
posteriors (IPT and IPS respectively) are derived by the iden-
tities

log f ( y) =
∫ 1

0
EIP
pt

[
log

f ( y| θ) π(θ)

g(θ)

]
dt and

f ( y) =
n−1∏
i=0

∫
Θ

{
f ( y| θ) π(θ)

g(θ)

}Δ(ti )

pIPti (θ) dθ , (8)

where pIPt (θ) is the density normalized version of qIPt (θ).
The TI identity appearing in (8) has the attractive feature

of sampling from g(θ), rather than the prior, for t = 0. It
also retains the stability ensured by averaging in log scale
according to the thermodynamic approach.

Therefore, in specific model settings, the estimators based
on the thermodynamic importance posteriors can perform
more efficiently than estimators based on the other expres-
sions, provided that an importance function can be formu-
lated.

Although techniques forfinding efficient importance func-
tions exist (see for example in Perrakis et al. 2014), the later
this task is far from trivial. Depending upon the shape of the
posterior (multi-modal, high dimensional) the construction
of an envelope function can be a challenging problem (see
for instance Owen and Zhou 2000). The prior-posterior path
is therefore superior in terms of general applicability, since
an approximation of the posterior is not required.

It is our belief that beyond the four expressions reviewed
here, others may be developed within this broad framework,
by choosing the appropriate path for particular models, com-
ing with thermodynamic and stepping-stone variants.

2.3 Bayes factor direct estimators

The BF is by definition a ratio of normalized constants.
Therefore, (4) and (6) can be implemented to construct direct
BF estimators, rather than applying the methods to each
model separately. Lartillot and Philippe (2006) implemented
the thermodynamic integration, in order to link two compet-
ing (not necessary nested) models, instead of densities. That
was achieved by choosing the appropriate path, in a way that
eventually produces directly a BF estimator. Lartillot and
Philippe (2006) were motivated by the fact that lack of pre-
cision on each marginal likelihood estimation, may alter the
BF interpretation. They argue, that a simultaneous estimation
of the two constants can ameliorate that to some extend. The
idea is to employ a bidirectionalmelting-annealing sampling
scheme, based on the model-switch path:

qMS
t (θ)

=
{
f ( y| θ ,m1) π(θ |m1)

}t{
f ( y| θ ,m0) π(θ |m0)

}1−t

.

Lartillot and Philippe’s (2006) thermodynamicmodel-switch
(MST ) identity for the BF is given by

log BF10 =
∫ 1

0
EpMS

t

[
log

{
f ( y| θ ,m1) π(θ |m1)

f ( y| θ ,m0) π(θ |m0)

}]
dt

(9)

where the expectation is taken over pMS
t (θ | y) which is the

density obtained after normalizing the model-switch path
qMS
t (θ). Based on (6), the stepping-stone counterpart for the
model switch identity (MSS) becomes are as follows

BF10 =
n−1∏
i=0

∫
Θ

{
f ( y| θ ,m1) π(θ |m1)

f ( y| θ ,m0) π(θ |m0)

}Δ(ti )

pMS
ti (θ | y) dθ ,

In case where θ is common between the two models
(for instance if the method is used to compare paths under
different endpoints, see Lartillot and Philippe 2006 for an
example) the method is directly applicable. Otherwise, if
θ = (θm1 , θm0), pseudo-priors need to be assigned at the
endpoints of the path to retain the dimension balance between
the two models in a similar manner as in transdimensional
MCMC methods such as the reversible jump MCMC algo-
rithm (Green 1995), the Carlin and Chib (1995) Gibbs
sampler and the Gibbs variable selection of Dellaportas et al.
(2002). Such pseudo-priors should reflect the corresponding
posteriors and their specification can be a challenging task.
Rough choices of pseudo-priors can be based on small pilot
MCMC runs of the bigger model (in nested model compar-
ison) or for both models (in non-nested model comparison)
in a similar manner as in reversible jumpMCMC implemen-
tation; see for example in Forster and Dellaportas (1999).
Nevertheless, this task needs further investigation which the
authors intend to address in the future.

Having in mind the direct estimation of Bayes factors,
more complicated estimators may be derived using com-
pound geometric paths. With the term compound paths
we refer to paths that consist of a hyper geometric path,
Qt (θ), used to link two competing models and a nested
path qt (θ , i) for each endpoint function Qi , for i = 0, 1.
The two intersecting paths form a quadrivial, (Q ◦ q)t (θ) =
Q1(θ)t Q0(θ)1−t with t ∈ [0, 1] that can be defined as

(Q ◦ q)t (θ)

=
[
q1(θ , 1)t q0(θ, 1)1−t

]t [
q1(θ , 0)t q0(θ , 0)1−t

]1−t

.

The multivariate extension is discussed in detail in Gelman
and Meng (1998). The endpoint target densities are given
by qi (θ , i) for t = 0 and t = 1 respectively estimating
the ratio z1/z0 = ∫

q1(θ , 1)dθ × [∫
q0(θ, 0)dθ

]−1
. The
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densities qi (θ , j) for i, j = 0, 1 and i �= j serve as link-
ing densities within each nested path. Therefore, following
the importance-sampling logic, they should play the role of
approximating (importance) functions for each qi (θ, i).

For the specific case of the Bayes factor estimation, the
objective is to retrieve the marginal likelihoods at the end-
points and therefore it is reasonable to consider as nested
paths the prior-posterior and the importance-posterior paths,
discussed in the previous section. The importance-posterior
BF quadrivial, for instance, is as follows

(Q ◦ q)I Pt (θ) =
[{

f ( y| θ ,m1)π(θ |m1)

}t
g(θ |m1)

1−t
]t

×
[{

f ( y| θ ,m0)π(θ |m0)

}1−t

g(θ |m0)
t
]1−t

leading to the thermodynamic (QI PT ) and stepping-stone
(QI PS ) expressions

log BF10

=
∫ 1

0
EPt

⎡
⎢⎢⎢⎣log

{
f ( y| θ ,m1) π(θ |m1)/g(θ |m1)

}2t
g(θ |m1)

{
f ( y| θ ,m0) π(θ |m0)/g(θ |m0)

}2(1−t)
g(θ |m0)

⎤
⎥⎥⎥⎦ dt

and

BF10 =
n−1∏
i=0

∫
Θ

× log

{
f ( y| θ ,m1) π(θ |m1)/g(θ |m1)

}2Ti
g(θ |m1)

{
f ( y| θ ,m0) π(θ |m0)/g(θ |m0)

}2(1−Ti )

g(θ |m0)

Pti (θ) dθ,

where Pt (θ) = (Q ◦ q)I Pt (θ)/Zt , Zt = ∫
Θ (Q ◦ q)I Pt dθ ,

t ∈ [0, 1]. In the thermodynamic expression, t is the melt-
ing temperature and 1 − t the annealing one, assuming that
the procedure starts at t = 0 and gradually increases to
t = 1. The hyper-path ensures that while the model m1 is
melting, the model m0 is annealing. At the same time, the
importance-posterior path serving as the nested one, links
the posterior with the importance at each model separately.
In the stepping-stone counterpart expression the melting and
annealing temperatures are given by Ti = (ti+1 + ti )/2 for
any i = 0, 1, . . . , n − 1.

From the expressions QI PS and QI PT we may derive
the analogue ones for the prior-posterior quadrivial (QPPT
and QPPS ) by substituting the importance densities g(θ |mi )

with the corresponding priors π(θ |mi ), (i = 0, 1). The
quadrivial expressions, univariate andmultivariate, are under
ongoing research and it is not yet clear to the authors which
applications could benefit from their complete structure. The
optimal tempering scheme is also an open issue. However,

as shown in the applications at Sect. 4, they are associated
with reduced Monte Carlo error.

3 Entropy measures and path sampling

In Statistics, entropy is used as a measure of uncertainty
which, unlike the variance, does not depend on the actual
values of a random variable θ , but only on their associated
probabilities. Here, we use the term entropy measures in a
broad definition to refer to measures of divergence between
probability distributions that belong to the family of f −
divergences (Ali and Silvey 1966; Csiszár 1963). Such mea-
sures are widely used in statistics (Liese and Vajda 2006),
information theory (Cover and Thomas 1991) and thermo-
dynamics (Crooks and Sivak 2011).

The most commonly used f −divergence is the Kullback
- Leibler (Kullback and Leibler 1951)

K L(p1 ‖ p0) =
∫

Θ

p1(θ) log
p1(θ)

p0(θ)
dθ

=
∫

Θ

p1(θ) log p1(θ) dθ

−
∫

Θ

p1(θ) log p0(θ) dθ

= −H(p1) + cH(p1 ‖ p0), (10)

with cH(p1 ‖ p0) being the cross entropy and H(p1) the dif-
ferential entropy; see for details inCover andThomas (1991).
The KL-divergence is always non-negative but it is not a dis-
tance or ametricwith the strictmathematical definition, since
neither the symmetry nor the triangle inequality conditions
are satisfied. In information theory, it is mostly referred to as
the relative entropy and is a measure of the information lost
when p0(θ) is used as an approximation of p1(θ). Subse-
quently, a symmetric version of K L can naturally be defined
as

J (p1, p0) = K L(p1 ‖ p0) + K L(p0 ‖ p1),

whichdates back to Jeffreys’ investigations of invariant priors
(Jeffreys 1946) and is often called as the symmetrized KL-
divergence or J-divergence.

The relationship between the KL-divergence and the ther-
modynamic integral was described by Friel and Pettitt (2008)
and further studied by Lefebvre et al. (2010). In particular,
the KL-divergences between p1(θ) and p0(θ) can be derived
by the endpoints of the expectation of Ept

{
U (θ)} appearing

thermodynamic equation (4) since

K L(p1 ‖ p0) = Ep1

{
U (θ)

}− log λ and

K L(p0 ‖ p1) = −Ep0

{
U (θ)

}+ log λ .
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The findings presented by Friel and Pettitt (2008) and Lefeb-
vre et al. (2010) refer therefore to the endpoints of a geometric
path. The question which naturally arises here is which is the
role of entropy at the intermediate points, t ∈ (0, 1). In the
following, we address this issue and we illustrate how other
f −divergences are related to the thermodynamic integral (4)
and thus can be estimated as path sampling byproducts.

3.1 The normalised thermodynamic integral

In this section, we draw attention to the normalized thermo-
dynamic integral (NTI) given by

NT I =
∫ 1

0

∫
Θ

pt (θ) log
p1(θ)

p0(θ)
dθ dt. (11)

The NTI links the normalised densities p0, p1 and equals
zero for any geometric path. It can be expressed via the ther-
modynamic integral using the identity

NT I =
∫ 1

0

∫
Θ

pt (θ) log
q1(θ)

q0(θ)
dθ dt − log λ .

This identity will be used to connect the thermodynamic
integral with f −divergences other than the KL, at the inter-
mediate points of [0,1].

3.1.1 The functional KL and f − divergences

TheNTI (11) essentially represents the area between the tem-
perature axis and the following curve

KLt =
∫

Θ

pt (θ) log
p1(θ)

p0(θ)
dθ = Ept

{
U (θ)

}− log λ , (12)

as depicted in Fig. 1. Hereafter, the KLt is refered to as the
functional KL-divergence of order t and reduces to KL0 =
−K L(p0 ‖ p1) and toKL1 = K L(p1 ‖ p0) at the endpoints
of the geometric path, in accordance with the findings of
Friel and Pettitt (2008) and Lefebvre et al. (2010). The KLt

denotes the difference between theKLdivergences of pt with
the two endpoint densities p1 and p0 since

KLt = −cH(pt ‖ p1) + cH(pt ‖ p0)

= K L(pt ‖ p1) − K L(pt ‖ p0).

Hence, it can be interpreted as a measure of relative
location of the sampling distribution pt , relative to p1
and p0. That is, for any t ∈ [0, 1], the KLt indicates
whether pt is closer to p0 (negative values) or to p1
(positive values), while KLt = 0 at the point where
the two endpoint densities are equidistant from the sam-
pling distribution. The sampling distribution pt (θ) is the

Boltzmann–Gibbs distribution pertaining to the Hamil-
tonian (energy function) Ht (θ) = −t log p1(θ) − (1 − t)
log p0(θ). A key observation here is that when adopting
geometric paths, the sampling distribution embodies the
Chernoff coefficient μ(t) = ∫

Θ p1(θ)t p0(θ)1−t dθ (Cher-
noff 1952) since

pt (θ) =
{
z1 p1(θ)

}t{
z0 p0(θ)

}1−t

∫
Θ q1(θ)t q0(θ)1−t dθ

= p1(θ)t p0(θ)1−t

μ(t)
,

(13)

for any t ∈ [0, 1]. In view of (13) the NTI becomes

∫ 1

0

∫
Θ

p1(θ)t p0(θ)1−t

μ(t)
log

p1(θ)

p0(θ)
dθ dt

=
∫ 1

0

d logμ(t)

dt
dt =

[
logμ(t)

]1
0

= 0, (14)

since

d logμ(t)

dt
= 1

μ(t)

∫
d{ p1(θ)t p0(θ)1−t }

dt
dt.

From (14) it is straightforward to see that the NTI up to
any point t ∈ (0, 1) is directly related to the Chernoff t-
divergence (Chernoff 1952; Parzen 1992; Kakizawa et al.
1998; Rauber et al. 2008), given by

Ct (p1 ‖ p0) = − log
∫

Θ

p1(θ)t p0(θ)1−t dθ = − logμ(t),

(15)

as described in detail in the following lemma.

Lemma 1 The normalised thermodynamic integral (11) up
to any point t ∈ (0, 1) given by

NT I (t) =
∫ t

0

∫
Θ

pu(θ) log
p1(θ)

p0(θ)
dθ du (16)

is equal to minus the Chernoff t-divergence of the endpoint
densities, that is

NT I (t) = logμ(t) = −Ct (p1 ‖ p0). (17)

The proof of Lemma 1 is obtained in straightforward man-
ner as (14). �

BasedonLemma1, it occurs that theChernoff t−divergences
can be directly computed from the NTI. Subsequently, a
number of other divergences related to Chernoff can be
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Fig. 1 Graphical representation of the NTI: the plot of KLt (θ) over t

obtained from NTI. The Bhattacharyya distance (Bhat-
tacharyya 1943) occurs at t = 0.5, that is

Bh(p1, p0) = C0.5(p1 ‖ p0)

= − log
∫

Θ

√
p1(θ)p0(θ)dθ = − log ρB .

The Bhattacharyya coefficient ρB can be implemented in
turn to derive the Bhattacharyya-Hellinger distance (Bhat-
tacharyya 1943; Hellinger 1909) since He(p1, p0) =√
1 − ρB . Based on the Chernoff t-divergence we may also

derive the Rényi t-divergence Rt (p1 ‖ p0) = Ct (p1 ‖
p0)/(1 − t) (Rényi 1961) and the Tsallis t-relative entropy
Tt (p1 ‖ p0) = [ exp {− Ct (p1 ‖ p0)

}− 1
]
/(1 − t).

The graphical representation of the NTI (Fig. 1) reveals
the relationship of the thermodynamic integral with a number
of entropy measures. The cross entropy differences between
pt and the endpoint distributions (p0 and p1) are depicted
on the vertical axis. The KL-divergences between p0 and p1
are located at the endpoints of [0, 1]. The projection of the
KLt curve on the vertical axis represents the J−divergence.
The Chernoff t−divergence for any ti ∈ [0, 1] is given by
the area between the curve and the t-axis from t = 0 to
t = ti , while the Bhattacharyya distance is given by the cor-
responding area from zero up to t = 0.5. All these measures
can be estimated as path sampling byproducts. An algorithm
to estimate the f −divergences mentioned here using path
sampling, is presented at the Appendix.

To summarize, it occurs that theNTI given in (11) can offer
another link between Bayesian inference, information theory
and thermodynamics (or statistical mechanics). For instance,
under the Hamiltonian Ht (θ), Merhav (2010, section 3.3)
discuss the excess or dissipated work in thermodynamics and
its relation to the data processing theorem in information the-
ory,with theNTI emerging in the case of reversible processes.
In a more general framework, Crooks and Sivak (2011) con-
sider conjugate trajectories, that is forward (from t = 0 to

t = 1) and backward processes (from t = 1 to t = 0), to
derive the physical significance of the f −divergences con-
sidered here, in terms of non-equilibrium dynamics. Further
parallelism between the NTI and statistical mechanics is not
attempted here, leaving this part to the experts on the field.

In the next section we focus on the point t∗ (hereafter
optimal temperature) where the functional KLt equals zero
and discuss on further results related to it.

3.1.2 Optimal temperature t∗

The solution of the equation KLt∗ = 0 defines the point
t∗ where the sampling distribution is equidistant (in the KL
sense) from the endpoint densities, that is, K L(pt∗ ‖ p1) =
K L(pt∗ ‖ p0). The main observation here is that at the opti-
mal temperature it holds Ept∗

{
U (θ)

} = log λ, according to
the definition (12). Therefore, there is a temperature point
where the ratio of interest λ may be derived directly, avoid-
ing the thermodynamic integration.

In other words, in the case that t∗ is known, the ratio
of the normalizing constants λ can be estimated in a single
MCMC run (with t = t∗), rather than employing the entire
path using multiple simulations. However this is rarely the
case and, using the inverse logic, t∗ can be estimated by path
sampling.

Before proceeding any further, we may first outline the
reversibility property of the NTI, which is based on the
anti-symmetry property Ct (p1 ‖ p0) = C1−t (p0 ‖ p1),
considered in Crooks and Sivak (2011).

Reversibility property: For any intermediate point t ∈ (0, 1)
it holds that

NT I (t) = −NT I (t) with NT I (t)

=
∫ 1

t

∫
Θ

pu(θ) log
p1(θ)

p0(θ)
dθ du. (18)

The reversibility property implies that the maximum area
occurs at t∗ and it is equal to NTI(t∗). This result leads us
to the Chernoff information (Parzen 1992), as described in
Lemma 2 which follows.

Lemma 2 The Chernoff information, defined as

C(p1 ‖ p0) = max
t∈[0,1]Ct (p1 ‖ p0)

is equal to NT I (t∗) with t∗ being the solution of equation
KLt = 0, i.e.

C(p1 ‖ p0) = NT I (t∗) with t∗ ∈ [0, 1] : KLt∗ = 0.

Proof Consider the continuous and differentiable function
g(t) = NT I (t) = logμ(t). Then g′(t) = d logμ(t)/dt =
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KLt and g′′(t) = Vpt

{
log p1(θ)

p0(θ)

}
> 0;whereVpt

{
log p1(θ)

p0(θ)

}

is the variance of log p1(θ)
p0(θ)

with respect to pt (θ). Since
g′(t∗) = KLt∗ = 0 and g′′(t∗) > 0, then g(t∗) =
mint∈[0,1] logμ(t). Hence, from (17) we have that

C(p1 ‖ p0) = max
t∈[0,1]Ct (p1 ‖ p0)

= min
t∈[0,1] NT I (t) = NT I (t∗).

	

The optimal t∗ is a unique point in [0,1] and can be

estimated using the algorithm presented in the Appendix.
Subsequent to the approximation of the optimal temperature,
the Chernoff information can be estimated, which is gener-
ally a non-trivial and cumbersome procedure. For instance,
Nielsen (2011) describe a geodesic bisection optimization
algorithm that approximates C(p1 ‖ p0) for multidimen-
sional distributions which belong to the exponential family,
based on Bregman divergences (named after Bregman, who
introduced the concept in Bregman 1967). Julier (2006) pro-
vides also an approximation for Gaussian mixture models.
The MCMC method based on the TI presented here is an
alternative method that can be used for any choice of p0 and
p1 distributions.

To sum up, in this section we have proved that a
unique temperature t∗ exists, where: (a) the mean energy
Ept∗

{
U (θ)

}
equals the free energy λ, (b) the sampling

distribution at this temperature is equidistant from the end-
point densities, and (c) the area between the graph and the
thermodynamic path equals the Chernoff information. The
optimal temperature is required for the computation of the
widely applicable Bayesian information criterion (Watan-
abe 2013, WBIC) implying a clear connection between the
thermodynamic integral and the information criteria. For the
computation of WBIC, Watanabe (2013) approximates t∗
using asymptotic arguments while Mononen (2015) studies
the same problem in the field of Gaussian process regres-
sion models. Both approaches directly aim at the calculation
of the optimal temperature in order to estimate WBIC. Here
we investigate the quest of the optimal temperature under a
different perspective since the aim is to study its properties
and its connectionwith the thermodynamic integration rather
than to be used for the estimation of the target quantity. Thus,
the computation of the optimal temperature requires the eval-
uation of the thermodynamic integral. As Friel et al. (2016)
point out, our findings may provide a basis for the develop-
ment of new solid methods for the estimation of the optimal
temperature. For instance, according to point (b), t∗ heavily
depends on the endpoint densities. Thus, different prior dis-
tributions lead to different optimal temperatures; see Table 3
for an illustration. This result lines up with the study of Friel
et al. (2016). The algorithm we provide in the Appendix for

the computation of the optimal temperature is rigorous but it
provides a wide understanding of the placement of the opti-
mal temperature in the [0, 1] interval based on the particular
selected path. Furthermore, it can be used in future studies to
assess the quality of the approximation of the t∗ in real life
examples.

In the next section we focus on the study of the MCMC
estimators of log λ constructed using TI and geometric paths.

3.2 MCMC path sampling estimators and associated
error

Numerical approaches are typically used to compute the
external integral of (2), such as the trapezoidal or Simpson’s
rule (Ogata 1989;Neal 1993;GelmanandMeng1998, among
others). The numerical approaches require the formulation of
an n-point discretisation T = {t0, t1, . . . , tn} of [0, 1], such
that 0 = t0 < · · · < tn−1 < tn = 1, which is called tem-
perature schedule. A separate MCMC run is performed at
each ti with target distribution the corresponding p(θ | ti ),
i = 0, ..., n. The MCMC output is then used to estimate
Et = Ept{U (θ)} by the sample mean Êt of the simulated val-
ues {θ (r)}Rr=1 generated from pt for each t ∈ T . The final
estimator is derived by

log λ̂ =
n−1∑
i=0

(ti+1 − ti )
Êti+1 + Êti

2
; (19)

see also in Friel and Pettitt (2008).
At a second step, the posterior output at each ti and log λ̂

can be employed to estimate t∗ and theChernoff information.
Here we provide an algorithm for that purpose, which yields
also the estimated Chernoff t−divergences for any t ∈ (0, 1)
and subsequently the f −divergences described in Sect. 3.1.

In this section we study two important sources of error
for path sampling estimators: the path-related variance and
the discretisation error. The path-related variance is the error
related to the choice of the path which, for geometric ones,
is restricted to the selection of the endpoint densities. On
the other hand, for any given path, the discretisation error
is related to the choice of the temperature schedule T and
is derived from the numerical approximation of the integral
over [0, 1]. In order to examine these two error sources, we
provide a geometric representation of TI (Eq. 4) and NTI
(Eq. 11) identities. This leads us to a better understanding of
the behaviour of the path sampling estimators.

3.2.1 Path-related variance

The total variance of log λ̂ has been reported by Gelman
and Meng (1998) in the case of stochastic t with an appro-
priate prior distribution attached to it. Further results were
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Fig. 2 Graphical representation of the TI: the plot of the curve Et =
Ept {U (θ)} over t , based on two paths qt (black line) and q ′

t (grey line).
For each path, the J−distance between the endpoints coincides with the
slope of the corresponding secant, sec(0, 1). The slope of the tangent
tan(ti ) equals the local variance Vti

also presented by Lefebvre et al. (2010) for geometric paths.
They have showed that the total variance is associated with
the J−divergence of the endpoint densities and therefore
with the choice of the path. Here we focus on the t-specific
variances Vt = Vpt {U (θ)} > 0 of U (θ) (hereafter local
variance) which are the components of the total variance.

Figure 2 is a graphical representation of TI. To be more
specific, the curve represents the Et values for each t ∈ [0, 1]
while the area between the t-axis and the curve gives the
thermodynamic integral (2). In this figure, the error of the TI
estimators is depicted by the steepness of the curve of Et . This
result is based on the fact that the partition function zt is the
cumulant generating function ofU (θ) (Merhav 2010, section
2.4) and therefore the first derivative ofEt is given by the local
variance Vt , that is E ′

t = Vt . It follows that the slope of the
tangent of the curve at each t equals to Vt . Therefore, the
graphical representation of two competing paths can provide
valuable information about the associated variances of their
corresponding estimators.

In the case of geometric paths particularly, J (p1, p0)
coincides with the slope of the secant defined at the end-
points of the curve and lays below the curve of the strictly
increasing (in terms of t) function Et . Therefore, it can be
used as an indicator of the slope of the curve and the result
of Lefebvre et al. (2010) has a direct visual realisation. The
result can be generalised for any other pair of successive

points, say (ti , Eti ) and (ti+1, Eti+1), with the corresponding
slope (or gradient) of the secant sec(ti , ti+1) given by

∇sec(ti , ti+1) = Eti+1 − Eti+1

ti+1 − ti
= KLti+1 − KLti

ti+1 − ti
. (20)

The latter is derived from (12) and it reflects the fact that
the slopes of the curves depicted in Figs. 1 and 2 are iden-
tical. Additionally, KLt can be written in terms of the
KL-divergence between the successive sampling densities
pti and pti+1 since, from (13) we obtain

K L(pti ‖ pti+1) =
∫

θ

pti (θ) log

{
p1(θ)ti−ti+1 p0(θ)ti+1−ti

}
dθ

+ log
μ(ti+1)

μ(ti )

= −(ti+1 − ti )KLti + log
μ(ti+1)

μ(ti )
. (21)

Using (20) and (21), we can associate the J−divergence
between two successive points with the slope of the secant
sec(ti , ti+1) since

∇sec(ti , ti+1) = J (pti , pti+1)

(ti+1 − ti )2
(22)

generalizing the result of Lefebvre et al. (2010) for the end-
points of the graph where the slope of the sec(0, 1) is given
by J (p1, p0). For successive points closely placed to each
other (that is, for Δ(ti ) = ti+1 − ti → 0) the slope of
the secant approximates the corresponding slope of the tan-
gent of the curve and therefore the local variance. Hence,
the J−divergence between any two successive points is
indicative of the slope of the curve and consequently of the
associated variance. For example, in Fig. 2 for values of t
close to zero the slope of curve is very steep indicating high
local variability.

The local variances of the path sampling estimators dis-
cussed here depend on the selection of the path. In the next
section, we proceed with the study of the discretisation error
and its effect on the path sampling estimators based on both
the TI and NTI identities for any fixed geometric path.

3.2.2 Discretisation error

Calderhead and Girolami (2009) expressed the discretisa-
tion error in terms of differences of relative entropies of
successive (in terms of t) sampling distributions. The result
of Calderhead and Girolami (2009) can be written for any
geometric path as follows
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log λ̂ =
n−1∑
i=0

ẑti+1

ẑti
= 1

2

n−1∑
i=0

(ti+1 − ti )
{
Êti+1 + Êti

}

+ 1

2

n−1∑
i=0

{
K̂ L(pti ‖ pti+1) − K̂ L(pti+1 ‖ pti )

}
,

(23)

Calderhead and Girolami (2009) consider the case for
Δ(ti ) → 0 in (23) and outline that the first summation is
equivalent to the trapezium rule used for numerical inte-
gration with the associated error expressed in terms of the
asymmetries between the KL divergences defined between
pti and pti+1 . In view of (21), expression 23 becomes

log λ̂ = 1

2

n−1∑
i=0

Δ(ti )
{
Êti+1 + Êti

}

− 1

2

n−1∑
i=0

Δ(ti )
(
K̂Lti + K̂Lti+1

)
, (24)

since
∑n−1

i=0 log μ(ti )
μ(ti+1)

= 0. The second term in the right
side of (24) is the approximation of the NTI (using the trape-
zoidal rule), which indeed it should be zero. According to
the discussion in Sect. 3.2.1, the relative entropies in (23), as
well as the areas above and below the t-axis which represent
the Chernoff divergences, are not expected to be zero. They
both represent the path-related variancewhich is independent
(and pre-existing) of the discretisation error. The discretisa-
tion error consists of the asymmetries that occur under any
particular tempering schedule either in the TI or in NTI. The
symmetry is a feature of the thermodynamic integration and
it represents the trade-off between uncertainty in the forward
and backward trajectories. Therefore, the error manifests as
lack of symmetry in the assessment of the uncertainty due to
the discretisation, as explained below.

While the path-related variance is independent from the
discretisation error, the reverse argument does not hold. In
fact, the discretisation error is highly influenced and depen-
dent upon the path-related variance. Consider two pairs of
successive points, located close to the zero and unit end-
points in Fig. 1, say t (0)i , t (0)i+1 and t (1)j , t (1)j+1 respectively, for
i, j = 1, ..., n. Further assume that the distances between the
points within each pair are equal, say δ > 0. For the first pair,
the corresponding KLt s on the vertical axis are distant due
to the steepness of the curve. On the contrary, for the second
pair the corresponding KLt s are very close, due to the fact
that the slope of the curve is almost horizontal. Therefore,
using the trapezoidal rule, for equally spaced pairs of points
we approximate a large part of the curve towards the zero
end and a small part of the curve towards the unit end. In
order to achieve the same degree of accuracy at both ends,
the second pair of points need to be closer. In conclusion,

the temperature schedule should place more points towards
the end of the path where the uncertainty (slope) is higher.
For instance, the powered fraction (PF) schedule (Friel and
Pettitt 2008)

TPF = {ti }ni=1 such as ti = (i/n)C, C = 1/a > 1, (25)

places more points towards the zero endpoint of the path. Xie
et al. (2011) proposed a closely related geometric schedule
where the ti s are chosen according to evenly spaced quartiles
of a Beta(a, 1) distribution. Friel et al. (2014) proposed an
adaptive algorithm for the temperature schedule that takes
under consideration the local variances in order to locate the
high uncertainty points. The algorithm traces the points on
the curve and assigns an increased number of ti s close to
their regions. Then, the error is considerably decreased with
a small computational price. Hug et al. (2016) also study a
closely related approach, which relies on Simpsons rule, and
demonstrated improved performance in high dimensional
problems.

A temperature schedule which placesmore points towards
the end of the path where the uncertainty is higher, is not
efficient for the bidirectional paths presented in Sect. 2.3.
Using for instance (25) in one of the directions, it would
have reduced the path related variance for the one direction
but it would have the exact opposite effect in the other direc-
tion. Therefore, the uniform schedule is more efficient in this
case and improvement in the estimation can be achieved by
uniformly placing more temperature points in [0,1].

4 Illustrative examples

4.1 Regression modelling in the pine dataset

For the illustration of the estimators discussed in Sect. 2 we
implement the pine data set, which has been studied by Friel
and Pettitt (2008) and Lefebvre et al. (2010) in the context of
path sampling. The dataset consists of measurements taken
on 42 specimens of Pinus radiata. A linear regression model
was fitted for the specimen’smaximum compressive strength
(y), using their density (x) as independent variable, that is

yi = α+β(xi−x̄) + εi , εi ∼ N (0, σ 2), i = 1, . . . , 42.

(26)

The objective in this example is to illustrate how eachmethod
and path combination responds to prior uncertainty. To do so,
we use three different prior schemes, namely:

Π1:(α, β)′ ∼ N
{
(3000, 185)′, (106, 104)′

}
, σ 2 ∼ IG

(3, 1.8 × 105) ,
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Table 1 Marginal likelihood
estimates—Pine data

n Path/Method log λ̂1 log λ̂2 log λ̂3

50 PPT −312.9 (0.21) −324.7 (0.19) −352.4 (0.57)

PPS −310.2 (0.06) −322.6 (0.05) −328.5 (0.03)

IPT −310.0 (0.02) −323.4 (0.03) −328.2 (0.03)

IPS −310.0 (0.02) −323.4 (0.03) −328.2 (0.03)

100 PPT −311.3 (0.11) −323.7 (0.14) −339.0 (0.03)

PPS −310.1 (0.06) −323.5 (0.03) −328.5 (0.03)

IPT −309.9 (0.02) −323.4 (0.02) −328.2 (0.03)

IPS −309.9 (0.02) −323.4 (0.02) −328.2 (0.03)

PP denotes the prior-posterior path and IP the importance posterior path. The indices T and S imply the
thermodynamic and stepping–stone analogues

Π2: (α, β)′ ∼ N
{
(3000, 0)′, (105, 103)′

}
, σ 2 ∼ IG

(3, 1.8 × 104) ,
Π3: (α, β)′ ∼ N

{
(3000, 0)′, (105, 103)′

}
, σ 2 ∼ IG

(0.3, 1.8 × 104),

where IG(a, b) denotes the inverse gamma distribution with
shape a and rate b. The marginal likelihoods were estimated
over n1 = 50 and n2 = 100 evenly spaced temperatures.
At each temperature, a Gibbs algorithm was implemented
and 30,000 posterior observations were generated; after dis-
carding 5000 as a burn-in period. The posterior output was
divided into 30 batches (of equal size of Rb = 1000 points)
and all estimators were computed within each batch. The
mean over all batches was used as the final estimate, denoted
by log λ̂i for each prior Πi , i = 1, 2, 3. In order the esti-
mators to be directly comparable in terms of error, the batch
means method (Schmeiser 1982, Bratley et al. 1987) was
preferred. In particular, the standard deviation of the log λ̂

over the 30 batches was considered as the estimated error,
denoted hereafter by ̂MCE . Lefebvre et al. (2010) used
n = 1001 equally spaced points to compute the gold stan-
dard for log λ̂1 = −309.9. Following the same approach
we derived log λ̂2 = −323.3 and log λ̂3 = −328.2. These
values are considered as benchmarks in the current study.
Finally, the importance functions for each model were con-
structed from the posterior means and variances at t = 1.

The estimations for themarginal likelihoods are presented
in Table 1. The values that were obtained based on the
importance-posterior path, reached the gold standards even
when n = 50. The thermodynamic (IPT ) and the stepping–
stone (IPS) counterparts performed equally well and were
associated with similar errors. On the contrary, the estima-
tors that are basedon the prior-posterior path yieldeddifferent
values depending on the method. In particular, the stepping–
stone estimator (PPS) was fairly close to the gold standards
with low error, for all prior schemes. The thermodynamic
estimator (PPT ) on the other hand, underestimated the mar-
ginal likelihood and exhibited higher errors than all other
methods. Logarithms of the ratios of the estimated mar-

ginal likelihoods along with the estimated BF values directly
derived by themodel-switchmethods are further presented in
Table 2. The thermodynamic and stepping-stone analogues
of MS, QPP and QI P , yielded estimates with similar values
and errors.

In this example, we have used a uniform temperature
schedule, moderate number of points n and non informative
priors. It was therefore reasonable to expect that the prior-
based methods would be associated with higher error (that
could be addressed with more suitable temperature sched-
ules) but thi approach was followed in order to highlight
the path-related variance and also allow for direct compar-
isons with the bidirectional methods. The interesting result
here was that the stepping–stone estimator addressed the
prior uncertainty more successfully. In fact, the thermody-
namic and stepping–stone approaches coincided only when
the gold standard was reached, which means that the dis-
cretisation error (23) was minimized. The next step in our
analysis was to employ a temperature schedule that places
more points towards the prior in order to reduce the uncer-
tainty. The powered fraction (25) schedule (Friel and Pettitt
2008) was used with C = 5. For n = 100, the PPT
yielded the benchmark values for the marginal likelihoods,
namely log λ̂1 = 310.0 (0.01), log λ̂2 = 323.5 (0.01) and
log λ̂2 = 328.3 (0.02). The results were almost identical for
the PPS .

Once the thermodynamic procedure yielded the bench-
mark values, we proceededwith the estimation of the entropy
measures (see Sect. 3.1) presented in Table 3. The precision
for the point t∗ was set to the third decimal point and the
extra MCMC runs costed less than a minute of computa-
tional time. The Bhattacharyya and Bhattacharyya-Hellinger
values indicate that the priors Π1, Π2 and Π3 where very
distant from the corresponding posteriors. On the contrary,
the importance functions were close approximations of their
matching posterior densities. This fact completely explains
the differences in the estimation, reflecting the increased local
variances encountered by the PPT as opposed to IPT . That is,
the estimated distances between the end-point densities are in
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Table 2 Estimated log ratio of
the marginal likelihoods—Pine
data

Path/Method n = 50 n = 100

log
(̂
λ2/̂λ1

)
log
(̂
λ3/̂λ1

)
log
(̂
λ2/̂λ1

)
log
(̂
λ3/̂λ1

)

PPT −11.8 (0.21) −39.5 (0.57) −12.4 (0.14) −26.0 (0.38)

PPS −12.5 (0.06) −18.4 (0.73) −12.5 (0.06) −18.5 (0.34)

IPT −13.4 (0.04) −18.2 (0.04) −13.4 (0.03) −18.2 (0.04)

IPS −13.4 (0.04) −18.2 (0.04) −13.4 (0.03) −18.2 (0.01)

MST −13.5 (0.01) −18.2 (0.01) −13.5 (0.01) −18.2 (0.01)

MSS −13.5 (0.01) −18.2 (0.01) −13.5 (0.01) −18.2 (0.01)

QPPT −13.5 (0.01) −18.2 (0.01) −13.5 (0.01) −18.2 (0.01)

QPPS −13.5 (0.01) −18.2 (0.02) −13.5 (0.01) −18.2 (0.01)

QI PT −13.5 (0.01) −18.2 (0.01) −13.5 (0.01) −18.2 (0.01)

QI PS −13.5 (0.01) −18.2 (0.01) −13.5 (0.01) −18.2 (0.01)

PP denotes the prior-posterior path and IP the importance posterior path. MS and Q stand for the
model-switch and quadrivial (bidirectional) methods. The indices T and S imply the thermodynamic and
stepping–stone analogues

Table 3 Estimated
f −divergences for Pine data

f −divergency Π1 Π2 Π3

PPT IPT PPT IPT PPT IPT

K L (p1 ‖ p0) 5.6 (<0.01) 0.03 (<0.01) 16.3 (<0.01) 0.10 (<0.01) 24.8 (<0.01) 0.10 (<0.01)

K L (p0 ‖ p1) 414.8 (4.61) 0.06 (<0.01) 304.1 (5.71) 0.09 (<0.01) 3061.0 (53.1) 0.09 (<0.01)

J (p0, p1) 420.5 (4.62) 0.09 (<0.01) 320.4 (5.63) 0.20 (<0.01) 3085.0 (53.4) 0.02 (<0.01)

Bh (p0, p1) 2.53 (<0.01) 0.01 (<0.01) 6.68 (<0.01) 0.03 (<0.01) 11.4 (<0.01) 0.07 (<0.01)

He (p0, p1) 0.96 (<0.01) 0.11 (<0.01) 0.99 (<0.01) 0.17 (<0.01) 0.99 (<0.01) 0.26 (<0.01)

Ct∗ (p0 ‖ p1) 3.38 (<0.01) 0.01 (<0.01) 7.24 (<0.01) 0.03 (<0.01) 15.0 (<0.01) 0.03 (<0.01)

Rt∗ (p0 ‖ p1) 2.76 (<0.01) 0.01 (<0.01) 4.61 (<0.01) 0.02 (<0.01) 12.1 (<0.01) 0.02 (<0.01)

Tt∗ (p0 ‖ p1) 1.19 (<0.01) 0.02 (<0.01) 1.57 (<0.01) 0.06 (<0.01) 1.24 (<0.01) 0.06 (<0.01)

t∗ 0.183 0.552 0.445 0.363 0.192 0.437

K L(· ‖ ·): Kullback-Leibler relative entropy, J (·, ·): Jeffreys’ divergence, Bh(·, ·): Bhattacharyya distance,
He(·, ·): Bhattacharyya-Hellinger distance. Estimated at t∗: C(· ‖ ·): Chernoff information, R(· ‖ ·): Rényi
relative entropy, T (· ‖ ·): Tsallis relative entropy. PP denotes the prior-posterior path and IP the importance
posterior path. The indices T and S imply the thermodynamic and stepping–stone analogues

line with the path-related variance and therefore knowledge
of the distances facilitates the prior selection, the evaluation
of the importance function and the selection of the most effi-
cient path.

4.2 Marginal likelihood for latent trait models in a
simulated dataset

According to our results, the uncertainty in the pine data
example was manageable under a suitable tempering sched-
ule. This will not always be the case, especially in high
dimensional problems. Here we consider also a factor analy-
sis model with binary items which belongs to the family of
the generalised linear latent trait models (GLLTM;Moustaki
and Knott 2000). The GLLTM consist of three components:
(i) the multivariate random component Y of the observed
variables, (ii) the linear predictor denoted by η j and (iii) the
link function υ(·), which connects the previous two compo-

nents. Hence, a GLLTM can be summarized as:

Y j |Z∼ExpF, η j =α j +
k∑

�=1

β j�Z�, and υ j

(
μ j (Z)

)
=η j

(27)

for j = 1, . . . p ; where ExpF is a member of the expo-
nential family and μ j (Z) = E(Y j |Z). With regard to the
prior, a multivariate standard normal distribution is typically
assumed for the latent variables Z. For the model parame-
ters θ = {α j , β j�} ( j = 1, . . . p, � = 2, . . . , k) we use
the low information prior presented in Vitoratou et al. (2014)
based on the ideas of Ntzoufras et al. (2000) and Fouskakis
et al. (2009, equation 6). For binary variables, this prior cor-
responds to a N (0, 4) distribution for all non-constrained
loadings and for all α j . For all the β j j parameters a stan-
dardized normal prior is used for each logβ j j inducing prior
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a standard deviation forβ j j approximately equal to 2, in anal-
ogywith the rest non-zero parameters β jl . To summarize, the
prior is given by:

π(β j�) =
⎧⎨
⎩
0 with probability 1 if j < �

LN (0, 1) if j = �

N (0, 4) if j > �

where Y ∼ LN (μ, σ 2) is the log-normal distribution with
the mean and the variance of log Y being equal to μ and σ 2,
respectively. The dataset consists of N = 400 responses,
p = 4 observed items and k = 1 latent variable and was
previously considered in Vitoratou et al. (2014), within the
context of marginal likelihood estimation. Using the same
importance functions as in Vitoratou et al. (2014), we applied
the PP and the IP paths, to derive the estimatedmarginal like-
lihood. Due to the dimensionality of themodel, n = 200 runs
were used and30,000posterior observations fromaMetropo-
lis within Gibbs algorithm were derived at each temperature
point (burn in period: 10,000 iterations, thinned by 10).

The batch means for the thermodynamic and stepping-
stone importanceposteriorswere−978.1and−977.9 respec-
tively, with associated MCE errors 0.018 and 0.013. ed
These values are in agreement with the estimates obtained
by Vitoratou (2013, section 6.3) using several marginal
likelihood estimators including, among others, the bridge
harmonic (−977.4) and the bridge geometric (−977.5) esti-
mators (Gelman and Meng 1998).

The corresponding values under the prior posterior path
were −995.4 and −995.1 with associated MCE errors 0.032
and 0.027, respectively. The low MCEs indicated that the
error was not stochastic but rather due to the temperature
placement. Even though the powered fraction (25) schedule
was used to place more values close to the prior (C = 5), the
uncertainty was not successfully addressed. The estimators
did not improvewhen the processwas replicated for n = 500.
This example indicates that in high dimensional models with
non informative priors, the PPT and PPS estimators can be
deteriorated by discretisation error even for large n.

5 Discussion

In this paper we have started our quest from general ther-
modynamic approaches using geometric paths, concluding
to marginal likelihood and Bayes factors estimators. We fur-
ther passed from the normalized thermodynamic integration
to f − divergences and the path-related error.

We have focused our attention on the most popular
implementation of thermodynamic integration in Bayesian
statistics: the estimation of the marginal likelihood and the
Bayes factors. We have first presented an alternative thermo-
dynamic approach based on the stepping-stone identity (Neal

1993), introduced in biology byXie et al. (2011) andFan et al.
(2011).We presented in parallel the available in the literature
estimators under the two different approaches (thermody-
namic and stepping-stone) and further made a distinction
betweenmethods according to the specific path implemented
(prior-posterior or importance-posterior). By this way, we
were able to introduce new appropriate estimators (based
on equivalent paths) filling in the blanks in the list of the
marginal likelihood and Bayes factors estimators. We have
also introduced compound Bayes factor estimators which are
based on nested,more complex, pathswhich seem to perform
efficiently when estimating directly Bayes factors instead of
marginal likelihoods.

Our study through these topics offers a direct connection
between thermodynamic integration and divergence mea-
sures such as Kullback–Leibler and Chernoff divergences,
as well as f -divergences and entropy measures emerging as
special cases or functions of them. By this way, we were able
to offer an efficient MCMC based thermodynamic algorithm
for the estimation of the Chernoff information for a general
frameworkwhichwas not available in the past.While entropy
measures are mostly implemented in information theory,
Pardo (2006) provides a detailed guide concerning the imple-
mentation of divergences in standard statistical problems
such as hypothesis testing, model comparison and parameter
estimation. The Chernoff information, for instance, is used
to identify an upped bound of the probability of error of
the Bayes rule in classification problems with two possible
decisions including hypothesis testing; see Nussbaum and
Szkoła (2009) andCover and Thomas (1991) for details. Sev-
eral further readings can be found related to applications of
other f -divergences in statistical inference; see for example
in Sanei Tabass and Borzadaran Mohtashami (2015) for the
use of Tsallis entropy in parameter estimation, in Morales
et al. (2000) for the implementation of the Rényi distance in
goodness-of-fit assessment, and inChaudhuri et al. (1991) for
the implementation of Bhattacharyya distance in time series
context.

The study of the thermodynamic identities and integrals
in terms of the f -divergences has lead us to an understanding
of the error sources of the TI estimators. All these are accom-
panied with detailed graphical and geometric representation
and interpretation offering insight to the thermodynamic
approach of estimating ratios of normalizing constants. The
unified framework in thermodynamic integration presented
in this article offers new highways for research and further
investigation. Below we discuss only some of the possible
future research directions.

First, we have shown interesting properties of the opti-
mal temperature t∗, namely (a) the mean energy Ept∗

{
U (θ)

}
equals the free energy λ; (b) the sampling distribution at t∗
is equidistant from the endpoint densities; and (c) the area
between the graph and the thermodynamic path equals to

123



1178 Stat Comput (2017) 27:1165–1180

the Chernoff information. Moreover, the latter point subse-
quently leads also to the computation of other f - divergences.
Point (b) leads to the conclusion that t∗ will be sensitive
to the choice of the endpoints, leading to different optimal
temperatures for different prior specifications; see Table 3
for an illustration. This optimal temperature is directly con-
nected with the information criteria and is required for the
computation of the widely applicable Bayesian information
criterion; see for details in Watanabe (2013). Nevertheless,
in contrast to Watanabe (2013), the aim of this work is not
the computation t∗ in order to simplify the thermodynamic
computations. For this reason, t∗ is obtained as a by-product
which leads to the computation of divergences. Moreover,
these findings provide fruitful insights that may lead to inno-
vative research pathways concerning the study of information
criteria. Although the algorithmwe provide for the computa-
tion of the optimal temperature is rigorous, it may serve as the
gold standard for the evaluation of computational methods
for t∗.

The second research direction is associated with the study
of a possible link between the deviance information criterion,
DIC, (Spiegelhalter et al. 2002) and thermodynamic integra-
tion. It is well-known that the estimation of the number of
efficient parameters is highly problematic inmixturemodels.
Apossible connection betweenTI andDICmayoffer alterna-
tive efficient estimation methods in cases where multi-modal
posterior densities are involved.

The development of a stochastic TI approach where the
temperaturewill be treated as a unknownparameter is another
intriguing research field. In this case, a suitable prior should
be elicitated in order to a-priori support points where higher
uncertainty of Êt is located. Such a stochastic approach will
eliminate the discretisation errorwhich is an important source
of variability for TI estimators.

Finally, MCMC samplers used for Bayesian variable
selection is another interesting area of implementation of
the TI approach. In such cases, interest may lie on the esti-
mation of the normalizing constants over the whole model
space and the direct estimation of posterior inclusion proba-
bilities of each covariate. This might be extremely useful in
large spaces with high number of covariates where the full
exploration of the model space is infeasible due to its size
and due to the existence of multiple neighborhoods of local
maxima placed around well-fitted models.

6 Appendix

6.1 Estimation of the Chernoff t− divergences and
information

Following Lemma 2, the Chernoff information is given by
NT I (t∗). Therefore, in order to compute the Chernoff infor-

mation we need first to estimate t∗ for which KLt∗ is zero.
The computation of t∗ can be achieved by adding a num-
ber of steps in the path sampling procedure according to the
following algorithm.

Step 1 Perform n MCMC runs to obtain Êt for all t ∈ T and
log λ̂ from (19).

Step 2 Calculate K̂Lt = Êt − log λ̂ for all t ∈ T .
Step 3 Identify interval

(
t−i∗ , t

+
i∗+1

)
where the sign of KLt

changes; where

t−i = max
(
t ∈ T : K̂Lt < 0

)
and

t+i = min
(
t ∈ T : K̂Lt > 0

)
.

Note, that KLt will be negative for any t < t∗
and positive otherwise since since dKLt

dt = Vpt{
log p1(θ)

p0(θ)

}
> 0 and thereforeKLt it is an increasing

function of t .
Step 4 Perform extra MCMC cycles by further discretising(

t−i∗ , t
+
i∗+1

)
until the required precision is achieved.

Step 5 Update T and n to account for the new points ti ∈(
t−i∗ , t

+
i∗+1

)
used in Step 5.

Step 6 Once the t∗ is estimated, the MCMC output already
available from the runs in Steps 1 and 4 can be used
to estimate the Chernoff information. In particular, it
is estimated as described in (19) having substituted
Êt by K̂Lt for all t ∈ T and only accounting for
ti ≤ t∗ in the summation. Therefore, the Chernoff
information is estimated by ̂NT I (t∗) given by

log ̂NT I (t∗) =
∑

i∈I: ti+1≤ t∗
(ti+1 − ti )

K̂Lti+1 + K̂Lti

2

=
∑

i∈I: ti+1≤ t∗
(ti+1 − ti )

Êti+1 + Êti
2

−t∗ log λ̂, (28)

where the I = {0, 1, . . . , n} and n = |T |.

In the special case where the path sampling is combined with
output fromMCMCalgorithmswhich involve tempered tran-
sitions (see Calderhead and Girolami 2009 for details), the
estimation of the Chernoff information comes with low com-
putational cost. This approach can be attractive and useful in
the case of multi-modal densities. The same algorithm can be
also implemented to compute the rest of the f -divergences
measures discussed in Sect. 3.1. In fact, their estimation is
less demanding since it requires one additional MCMC run,
in order to derive the estimated KLti at the point of inter-
est; for instance at ti=0.5 we derive the Bh(p1, p0) and
He(p1, p0) divergences.
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