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Abstract Completely random measures (CRM) represent
the key building block of a wide variety of popular stochastic
models and play a pivotal role in modern Bayesian Non-
parametrics. The popular Ferguson & Klass representation of
CRMs as a random series with decreasing jumps can imme-
diately be turned into an algorithm for sampling realizations
of CRMs or more elaborate models involving transformed
CRMs. However, concrete implementation requires to trun-
cate the random series at some threshold resulting in an
approximation error. The goal of this paper is to quantify the
quality of the approximation by a moment-matching crite-
rion, which consists in evaluating a measure of discrepancy
between actual moments and moments based on the sim-
ulation output. Seen as a function of the truncation level,
the methodology can be used to determine the truncation
level needed to reach a certain level of precision. The result-
ing moment-matching Ferguson & Klass algorithm is then
implemented and illustrated on several popular Bayesian
nonparametric models.
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1 Introduction

Independent increment processes or, more generally, com-
pletely random measures (CRMs) are ubiquitous in modern
stochastic modeling and inference. They form the basic build-
ing block of countless popular models in, e.g., Finance,
Biology, Reliability, Survival Analysis. Within Bayesian
nonparametric statistics they play a pivotal role. The Dirich-
let process, the cornerstone of the discipline introduced
in Ferguson (1973), can be obtained as normalization or
exponentiation of suitable CRMs [see Ferguson (1974)].
Moreover, as shown in Lijoi and Prünster (2010), CRMs can
be seen as the unifying concept of a wide variety of Bayesian
nonparametric models. See also Jordan (2010). The concrete
implementation of models based on CRMs often requires
to simulate their realizations. Given they are discrete infinite
objects,

∑
i≥1 JiδZi , some kind of truncation is required, pro-

ducing an approximation error
∑

i≥M+1 JiδZi . Among the
various representations useful for simulating realizations of
CRMs the method due to Ferguson and Klass (1972) and pop-
ularized by Walker and Damien (2000) stands out in that, for
each realization, the weights Ji ’s are sampled in decreasing
order. This clearly implies that for a given truncation level M
the approximation error over the whole sample space is mini-
mized. The appealing feature of decreasing jumps has lead to
a huge literature exploiting the Ferguson & Klass algorithm.
Limiting ourselves to recall contributions within Bayesian
Nonparametrics we mention, among others, Argiento et al.
(2016, 2015), Barrios et al. (2013), De Blasi et al. (2010),
Epifani et al. (2003), Griffin and Walker (2011), Griffin
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(2016),Nieto-Barajas and Walker (2002), Nieto-Barajas et al.
(2004), Nieto-Barajas and Walker (2004), Nieto-Barajas and
Prünster (2009) and Nieto-Barajas (2014). General refer-
ences dealing with the simulation of Lévy processes include
Rosiński (2001) and Cont and Tankov (2008), who review
the Ferguson & Klass algorithm and the compound Poisson
process approximation to a Lévy process.

However, the assessment of the quality of the approxima-
tion due to the truncation for general CRMs is limited to some
heuristic criteria. For instance, Barrios et al. (2013) imple-
ment the Ferguson & Klass algorithm for mixture models
by using the so called relative error index. The correspond-
ing stopping rule prescribes to truncate when the relative
size of an additional jump is below a pre-specified fraction
of the sum of sampled jumps. The inherent drawbacks of
such a procedure and related heuristic threshold-type pro-
cedures employed in the several of the above references is
two-fold. On the one hand the threshold is clearly arbitrary
without quantifying the total mass of the ignored jumps. On
the other hand the total mass of the jumps beyond the thresh-
old, i.e. the approximation error, can be very different for
different CRMs or, even, for the same CRM with different
parameter values; this implies that the same threshold can
produce very different approximation errors in different sit-
uations. Starting from similar concerns about the quality of
the approximation, the recent paper by Griffin (2016) adopts
an algorithmic approach and proposes an adaptive trunca-
tion sampler based on sequential Monte Carlo for infinite
mixture models based on normalized random measures and
on stick-breaking priors. The measure of discrepancy that
is used in order to assess the convergence of the sampler
is based on the effective sample size (ESS) calculated over
the set of particles: the algorithm is run until the absolute
value of the difference between two consecutive ESS gets
under a pre-specified threshold. Also motivated by the same
concerns, Argiento et al. (2016, 2015) adopt an interesting
approach to circumvent the problem of truncation by chang-
ing the model in the sense of replacing the CRM part of their
model with a Poisson process approximation, which having
an (almost surely) finite number of jumps can be sampled
exactly. However, this leaves the question of the determi-
nation of the quality of approximation for truncated CRMs
open. Another line of research, originated by Ishwaran and
James (2001), is dedicated to validating the trajectories from
the point of view of the marginal density of the observations
in mixture models. In this context, the quality of the approxi-
mation is measured by the L1 distance between the marginal
densities under truncated and non-truncated priors. Recent
interesting contributions in this direction include bounds for
a Ferguson & Klass representation of the beta process (Doshi
et al. 2009) and bounds for the beta process, the Dirichlet
process as well as for arbitrary CRMs in a size biased repre-
sentation (Paisley et al. 2012; Campbell et al. 2015).

This paper faces the problem by a simple yet effective
idea. In contrast to the above strategies, our approach takes
all jumps of the CRMs into account and hence leads to select
truncation levels in a principled way, which vary according
to the type of CRM and its parameters. The idea is as fol-
lows: given moments of CRMs are simple to compute, one
can quantify the quality of the approximation by evaluating
some measure of discrepancy between the actual moments
of the CRM at issue (which involve all its jumps) and the
“empirical” moments, i.e. the moments computed based on
the truncated sampled realizations of the CRM. By impos-
ing such a measure of discrepancy not to exceed a given
threshold and selecting the truncation level M large enough
to achieve the desired bound, one then obtains a set of “vali-
dated” realizations of the CRM, or, in other terms, satisfying
a moment-matching criterion. An important point to stress
is that our validation criterion is all-purpose in spirit since it
aims at validating the CRM samples themselves rather than
samples of a transformation of the CRM. Clearly the latter
type of validation would be ad hoc, since it would depend
on the specific model. For instance, with the very same set
of moment-matching realizations of a gamma process, one
could obtain a set of realizations of the Dirichlet process
via normalization and a set gamma mixture hazards by com-
bination with a suitable kernel. Moreover, given moments
of transformed CRMs are typically challenging to derive, a
moment-matching strategy would not be possible in most
cases. Hence, while the quantification of the approximation
error does not automatically translate to transformed CRMs,
one can still be confident that the moment-matching output
at the CRM level produces good approximations. That this is
indeed the case is explicitly shown in some practical exam-
ples both for prior and posterior quantities in Sect. 3.

The outline of the paper is as follows. In Sects. 2.1–2.2 we
recall the main properties of CRMs and provide expressions
for their moments. In Sects. 2.3–2.4 we describe the Ferguson
& Klass algorithm and introduce the measure of discrepancy
between moments used to quantify the approximation error
due to truncation. Section 3 illustrates the moment-matching
Ferguson & Klass algorithm for some popular CRMs and
CRM-based Bayesian nonparametric models, namely nor-
malized CRMs and the beta-stable Indian buffet process.
Some probabilistic results, discussed in Sect. 2.3, are given
in the Appendix.

2 Completely random measures

2.1 Definition and main properties

Let MX be the set of boundedly finite measures on X, which
means that if μ ∈ MX then μ(A) < ∞ for any bounded
set A. X is assumed to be a complete and separable metric
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space and both X and MX are equipped with the correspond-
ing Borel σ -algebras. See Daley and Vere-Jones (2008) for
details.

Definition 1 A random element μ̃, defined on (Ω,F ,P)

and taking values inMX, is called a completely random mea-
sure (CRM) if, for any collection of pairwise disjoint sets
A1, . . . , An in X, the random variables μ̃(A1), . . . , μ̃(An)

are mutually independent.

An important feature is that a CRM μ̃ selects (almost
surely) discrete measures and hence can be represented as

μ̃ =
∑

i≥1

JiδZi (1)

where the jumps Ji ’s and locations Zi ’s are random and
independent. In (1) and throughout we assume there are
no fixed points of discontinuity a priori. The main techni-
cal tool for dealing with CRMs is given by their Laplace
transform, which admits a simple structural form known as
Lévy–Khintchine representation. In fact, the Laplace trans-
form of μ̃(A), for any A in X, is given by

L A(u) = E
[
e−λμ̃(A)

]

= exp

{

−
∫

R+×A

[
1 − e−λv

]
ν(dv, dx)

}

(2)

for any λ > 0. The measure ν is known as Lévy intensity and
uniquely characterizes μ̃. In particular, there corresponds a
unique CRM μ̃ to any measure ν on R

+ × X satisfying the
integrability condition

∫

B

∫

R+
min{v, 1}ν(dv, dx) < ∞ (3)

for any bounded B in X. From an operational point of view
this is extremely useful, since a single measure ν encodes all
the information about the jumps Ji ’s and the locations Zi ’s.
The measure ν will be conveniently rewritten as

ν(dv, dx) = ρ(dv|x)α(dx), (4)

where ρ is a transition kernel onR+×X controlling the jump
intensity and α is a measure on X determining the locations
of the jumps. If ρ does not depend on x , the CRM is said
homogeneous, otherwise it is non-homogeneous.

We now introduce two popular examples of CRMs that
we will serve as illustrations throughout the paper.

Example 1 The generalized gamma process introduced by
Brix (1999) is characterized by a Lévy intensity of the form

ν(dv, dx) = e−θv

Γ (1 − γ )v1+γ
dv α(dx), (5)

whose parameters θ ≥ 0 and γ ∈ [0, 1) are such that at least
one of them is strictly positive. Notable special cases are: (i)
the gamma CRM which is obtained by setting γ = 0; (ii) the
inverse-Gaussian CRM, which arises by fixing γ = 0.5; (iii)
the stable CRM which corresponds to θ = 0. Moreover,
such a CRM stands out for its analytical tractability. In the
following we work with θ = 1, a choice which excludes
the stable CRM. This is justified in our setting because the
moments of the stable process do not exist. See Remark 1.

Example 2 The stable-beta process, or three-parameter beta
process, was defined by Teh and Görür (2009) as an extension
of the beta process (Hjort 1990). Its jump sizes are upper-
bounded by 1 and its Lévy intensity on [0, 1] × X is given
by

ν(dv, dx)

= Γ (c + 1)

Γ (1 − σ)Γ (c + σ)
v−σ−1(1 − v)c + σ−1dv α(dx), (6)

where σ ∈ [0, 1) is termed discount parameter and c >

−σ concentration parameter. When σ = 0, the stable-beta
process reduces to the beta CRM of Hjort (1990). Moreover,
if c = 1 −σ , it boils down to a stable CRM where the jumps
larger than 1 are discarded.

2.2 Moments of a CRM

For any measurable set A of X, the n-th (raw) moment of
μ̃(A) is defined by

mn(A) = E
[
μ̃n(A)

]
.

In the sequel the multinomial coefficient is denoted by( n
k1···kn

) = n!
k1!...kn ! . In the next proposition we collect known

results about moments of CRMs which are crucial for our
methodology.

Proposition 1 Let μ̃be a CRM with Lévy intensityν(dv, dx).
Then the i-th cumulant of μ̃(A), denoted by κi (A), is given
by

κi (A) =
∫

R+×A
viν(dv, dx),

which, in the homogeneous case ν(dv, dx) = ρ(dv)α(dx),
simplifies to

κi (A) = α(A)

∫ ∞

0
viρ(dv).

The n-th moment of μ̃(A) is given by

mn(A) =
∑

(∗)

( n
k1 ···kn)

n∏

i=1

(
κi (A)/ i !)ki ,
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where the sum (∗) is over all n-tuples of nonnegative integers
(k1, . . . , kn) satisfying the constraint k1 +2k2 +· · ·+nkn =
n.

A proof is given in the Appendix 1.
In the following we focus on (almost surely) finite CRMs

i.e. μ̃(X) < ∞. This is motivated by the fact that most
Bayesian nonparametric models, but also models in other
application areas, involve finite CRMs. Hence, we assume
that the measure α in (3) is finite i.e. α(X) := a ∈ (0,∞).
This is a sufficient condition for μ̃(X) < ∞ in the non-
homogeneous case and also necessary in the homogeneous
case (see e.g. Regazzini et al. 2003). A common useful para-
metrization of α is then given as a P∗ with P∗ a probability
measure and a a finite constant. Note that, if μ̃(X) = ∞, one
could still identify a bounded set of interest A and the whole
following analysis carries over by replacing μ̃(X) with μ̃(A).

As we shall see in Sect. 2.3, the key quantity for evaluating
the truncation error is given by the random total mass of the
CRM, μ̃(X). Proposition 1 shows how the moments mn =
mn(X) can be obtained from the cumulants κi = κi (X) and,
in particular, the relations between the first four moments and
the cumulants are

m1 = κ1, m2 = κ2
1 + κ2, m3 = κ3

1 + 3κ1κ2 + κ3,

m4 = κ4
1 + 6κ2

1 κ2 + 4κ1κ3 + 3κ2
2 + κ4.

With reference to the two examples considered in Sect. 2.1,
in both cases the expected value of μ̃(X) is a, which explains
the typical terminology total mass parameter attributed to a.
For the generalized gamma CRM the variance is given by
Var(μ̃(X)) = a(1 − γ ), which shows how the parameter
γ affects the variability. Moreover, κi = a(1 − γ )(i−1) with
x(k) = x(x +1) . . . (x +k−1) denoting the ascending factor-
ial. As for the stable-beta CRM, we have Var(μ̃(X)) = a 1−σ

c+1
with both discount and concentration parameter affecting the
variability, and also κi = a

(1−σ)(i−1)

(1+c)(i−1)
. Table 1 summarizes the

cumulants κi and moments mn for the random total mass
μ̃(X) for the generalized gamma (assuming as in Exam-

ple 1 θ = 1), stable-beta CRMs and some of their special
cases.

Remark 1 The stable CRM, which can be derived from
the generalized gamma CRM by setting θ = 0, does
not admit moments. Hence, it cannot be included in our
moment-matching methodology. However, the stable CRM
with jumps larger than 1 discarded, derived from the stable-
beta process by setting c = 1−σ , has all moments. Moreover,
even when working with the standard stable CRM, posterior
quantities typically involve an exponential updating of the
Lévy intensity (see Lijoi and Prünster 2010), which makes
the corresponding moments finite. This then allows to apply
the moment matching methodology to the posterior.

2.3 Ferguson & Klass algorithm

For notational simplicity we present the Ferguson & Klass
algorithm for the case X = R. However, note that it can be
readily extended to more general Euclidean spaces (see e.g.
Orbanz and Williamson 2012). Given a CRM

μ̃ =
∞∑

i=1

JiδZi , (7)

the Ferguson & Klass representation consists in expressing
random jumps Ji occurring at random locations Zi in terms
of the underlying Lévy intensity.

In particular, the random locations Zi , conditional on the
jump sizes Ji , are obtained from the distribution function
FZi |Ji given by

FZi |Ji (s) = ν(dJi , (−∞, s])
ν(dJi ,R)

.

In the case of a homogeneous CRM with Lévy intensity
ν(dv, dx) = ρ(dv) a P∗(dx), the jumps are independent of
the locations and, therefore FZi |Ji = FZi implying that the
locations are i.i.d. samples from P∗.

As far as the random jumps are concerned, the repre-
sentation produces them in decreasing order, that is, J1 ≥

Table 1 Cumulants and first four moments of the random total mass μ̃(X) for the gamma (G), inverse-Gaussian (IG), generalized gamma (GG),
beta (B) and stable-beta (SB) CRMs

CRM Cumulants Moments

κi m1 m2 m3 m4

G a(i − 1)! a a(2) a(3) a(4)

IG a(1/2)(i−1) a a2 + 1
2 a a3 + 3

2 a2 + 3
4 a a4 + 3a3 + 15

4 a2 + 15
8 a

GG a(1 − γ )(i−1) a a2 + a(1−γ ) a3 + 3a2
(1−γ ) +a(1−γ )(2) a4 + 6a3

(1−γ ) +a2
(1−γ )(11−7γ ) + a(1−γ )(3)

B a (i−1)!
(c+1)(i−1)

a a2 + a
c+1 a3 + 3a2

c+1 + 2a
(c+1)(2)

a4 + 6a3

c+1 + 8a2

(c+1)(2)
+ 3a2

(c+1)2 + 6a
(c+1)(3)

SB a
(1−σ)(i−1)

(c+1)(i−1)
a a2 + a 1−σ

c+1 a3 + 3a2 1−σ
c+1 +a

(1−σ)(2)

(c+1)(2)
a4 + 6a3 1−σ

c+1 + 4a2 (1−σ)(2)

(c+1)(2)
+3a2 (1−σ)2

(c+1)2 + a
(1−σ)(3)

(c+1)(3)
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J2 ≥ · · · . Indeed, they are obtained as ξi = N (Ji ), where
N (v) = ν([v,∞),R) is a decreasing function, and ξ1, ξ2, . . .

are jump times of a standard Poisson process (PP) of unit

rate i.e. ξ1, ξ2 − ξ1, . . .
i.i.d.∼ Exp(1). Therefore, the Ji ’s are

obtained by solving the equations ξi = N (Ji ). In general, this
is achieved by numerical integration, e.g., relying on quadra-
ture methods (see, e.g. Burden and Faires 1993). For specific
choices of the CRM, it is possible to make the equations
explicit or at least straightforward to evaluate. For instance,
if μ̃ is a generalized gamma process (see Example 1), the
function N takes the form

N (v) = a

Γ (1 − γ )

∫ ∞

v

e−uu−(1+γ ) du

= a

Γ (1 − γ )
Γ (v;−γ ), (8)

with Γ ( · ; · ) indicating an incomplete gamma function. If
μ̃ is the stable-beta process, one has

N (v) = a
Γ (c + 1)

Γ (1 − σ)Γ (c + σ)

∫ 1

v

u−σ−1(1 − u)c+σ−1 du

= a
Γ (c + 1)

Γ (1 − σ)Γ (c + σ)
B(1 − v; c + σ,−σ), (9)

where B( · ; · , · ) denotes the incomplete beta function.
Hence, the Ferguson & Klass algorithm can be summa-

rized as follows.

Algorithm 1 Ferguson & Klass algorithm
1: Sample ξi ∼ PP for i = 1, . . . , M
2: Define Ji = N−1(ξi ) for i = 1, . . . , M
3: Sample Zi ∼ P∗ for i = 1, . . . , M
4: Approximate μ̃ by

∑M
i=1 Ji δZi

Since it is impossible to sample an infinite number of
jumps, approximate simulation of μ̃ is in order. This becomes
a question of determining the number M of jumps to sample
in (7) leading to the truncation

μ̃ ≈ μ̃M =
M∑

i=1

JiδZi , (10)

with approximation error in terms of the un-sampled jumps
equal to

∑∞
i=M+1 Ji . The Ferguson & Klass representation

has the key advantage of generating the jumps in decreas-
ing order implicitly minimizing such an approximation error.
Then, the natural path to determining the truncation level
M would be the evaluation of the Ferguson & Klass tail
sum

∞∑

i=M+1

N−1(ξi ). (11)

Brix (1999 Theorem A.1) provided an upper bound
for (11) in the generalized gamma case. In Proposition 4 of
Appendix 2 we derive also an upper bound for the tail sum of
the stable-beta process. However, both bounds are far from
sharp and therefore of little practical use as highlighted in
Appendix 2. This motivates the idea of looking for a differ-
ent route and our proposal consists in the moment-matching
technique detailed in the next section.

2.4 Moment-matching criterion

Our methodology for assessing the quality of approximation
of the Ferguson & Klass algorithm consists in comparing
the actual distribution of the random total mass μ̃(X) with
its empirical counterpart, where by empirical distribution we
mean the distribution obtained by the sampled trajectories,
i.e. by replacing random quantities by Monte Carlo averages
of their sampled trajectories. In particular, based on the fact
that the first K moments carry much information about a
distribution, theoretical and empirical moments of μ̃(X) are
compared.

The infinite vector of jumps is denoted by J = (Ji )
∞
i=1

and a vector of jumps sampled by the Ferguson & Klass
algorithm by J (l) = (J (l)

1 , . . . , J (l)
M ). Here, l = 1, . . . , NFK

stands for the l-th iteration of the algorithm, i.e. for the l-th
sampled realization. We then approximate the expectation
E of a statistic of the jumps, say S(J), by the following
empirical counterpart, denoted by EFK,

E
[
S(J)] ≈ EFK

[
S(J)] := 1

NFK

NFK∑

l=1

S
(
J (l)). (12)

Note that there are two layers of approximation involved
in (12): first, only a finite number of jumps M is used;
second, the actual expected value is estimated through an
empirical average which typically conveys on Monte Carlo
error. The latter is not the focus of the paper, so we take
a large enough number of trajectories, NFK = 104, in order
to insure a limited Monte Carlo error of the order of
0.01. We focus on the first approximation inherent to the
Ferguson & Klass algorithm.

More specifically, as far as moments are concerned,mK =
(m1, . . . , mK ) denotes the first K moments of the random
total mass μ̃(X) = ∑∞

i=1 Ji provided in Sect. 2.2 and m̂K =
(m̂1, . . . , m̂K ) indicates the first K empirical moments given
by

m̂n = EFK

⎡

⎣

(
M∑

i=1

Ji

)n⎤

⎦ . (13)

As measure of discrepancy between theoretical and empir-
ical moments, a natural choice is given by the mean
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squared error between the vectors of moments or, more pre-
cisely, between the n-th roots of theoretical and empirical
moments

� = �(mK , m̂K ) =
(

1

K

K∑

n=1

(
m1/n

n − m̂1/n
n

)2
)1/2

. (14)

When using the Ferguson & Klass representation for com-
puting the empirical moments the index � depends on the
truncation level M and we highlight such a dependence by
using the notation �M . Of great importance is also a related
quantity, namely the number of jumps necessary for achiev-
ing a given level of precision, which essentially consists in
inverting �M and is consequently denoted by M(�).

The index of discrepancy (14) clearly also depends on K ,
the number of moments used to compute it and 1/K in (14)
normalizes the indices in order to make them comparable
as K varies. A natural question is then about the sensitivity
of (14) w.r.t. K . It is desirable for �M to capture fine vari-
ations between the theoretical and empirical distributions,
which is assured for large K . In extensive simulation studies
not reported here we noted that increasing K in the range
{1, . . . , 10} makes the index increase and then plateau and
this holds for all processes and parameter specifications used
in the paper. Recalling also the whole body of work by Pear-
son on eponymous curves, which shows that the knowledge
of four moments suffices to cover a large number of known
distributions, we adhere to his rule of thumb and choose
K = 4 in our analyses. On the one hand it is a good com-
promise between targeted precision of the approximation and
speed of the algorithm. On the other hand it is straightforward
to check the results as K varies in specific applications; for
the ones considered in the following sections the differences
are negligible.

In the literature several heuristic indices based on the
empirical jump sizes around the level of truncation have been
discussed (cf Remark 3 in Barrios et al. 2013). Here, in order
to compare such procedures with our moment criterion, we
consider the relative error index which is based on the jumps
themselves. It is defined as the expected value of the rela-
tive error between two consecutive partial sums of jumps. Its
empirical counterpart is denoted by eM and given by

eM = EFK

[
JM

∑M
i=1 Ji

]

. (15)

3 Applications to Bayesian nonparametrics

In this section we concretely implement the proposed
moment-matching Ferguson & Klass algorithm to several
Bayesian nonparametric models. The performance in terms
of both a priori and a posteriori approximation is evaluated.

A comparison of the quality of approximation resulting from
using (15) as benchmark index is provided.

3.1 A priori simulation study

We start by investigating the performance of the proposed
moment-matching version of the Ferguson & Klass algorithm
w.r.t. the CRMs defined in Examples 1 and 2, namely the gen-
eralized gamma and stable-beta processes. Figure 1 displays
the behaviour of both the moment-matching distance �M (left
panel) and the relative jumps’ size index eM (right panel)
as the truncation level M increases. The plots, from top to
bottom, correspond to: the generalized gamma process with
varying γ and a = 1 fixed; the inverse-Gaussian process with
varying total mass a (which is a generalized gamma process
process with γ = 0.5); the stable-beta process with varying
discount parameter σ and a = 1 fixed.

First consider the behaviour of the indices as the parameter
specifications vary. It is apparent that, for any fixed truncation
level M , the indices �M and eM increase as each of the para-
meters a, γ or σ increases. For instance, roughly speaking, a
total mass parameter a corresponds to sampling trajectories
defined on the interval [0, a] (see Regazzini et al. 2003), and
a larger interval worsens the quality of approximation for any
given truncation level. Also it is natural that γ and σ impact
in similar way �M and eM given they stand for the “stable”
part of the Lévy intensity. See first and third rows of Fig. 1.

As far as the comparison between �M and eM is concerned,
it is important to note that eM consistently downplays the
error of approximation related to the truncation. This can be
seen by comparing the two columns of Fig. 1. �M is signif-
icantly more conservative than eM for both the generalized
gamma and the stable-beta processes, especially for increas-
ing values of the parameters γ , a or σ . This indicates quite
a serious issue related to eM as a measure for the quality
of approximation and one should be cautious when using it.
In contrast, the moment-matching index �M matches more
accurately the known behaviour of these processes as the
parameters vary.

By reversing the viewpoint and looking at the truncation
level M(�) needed for achieving a certain error of approxi-
mation � in terms of moment-match, the results become even
more intuitive. We set � = 0.1 and computed M(�) on a grid
of size 20×20 with equally-spaced points for the parameters
(a, γ ) ∈ (0, 2)× (0, 0.8) for the generalized gamma process
and (a, c) ∈ (0, 2) × (0, 30) for the beta process. Figure 2
displays the corresponding plots. In general, it is interesting
to note that a limited number of jumps is sufficient to achieve
good precision levels. Analogously to Fig. 1, larger values of
the parameters require a larger number of jumps to achieve
a given precision level. In particular, when γ > 0.5, one
needs to sample a significantly larger number of jumps. For
instance, in the generalized gamma process case, with a = 1,
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(a) (b)

Fig. 1 Left panel: �M as M varies; right panel eM as M varies. Top
row generalized gamma process (GG) with varying γ and a = 1 fixed;
middle row inverse-Gaussian process (IG), γ = 0.5, with varying total

mass a; bottom row stable-beta process (SBP) with a = 1, c = 0.5
fixed and varying discount parameter σ . The points are connected by
straight lines only for visual simplification

the required number of jumps increases from 28 to 53 when
passing from γ = 0.5 to γ = 0.75. It is worth noting that for
the normalized version of the generalized gamma process, to
be discussed in Sect. 3.2 and quite popular in applications,
the estimated value of γ rarely exceeds 0.75 in species sam-
pling, whereas it is typically in the range [0.2, 0.4] in mixture
modeling.

3.2 Normalized random measures with independent
increments

Having illustrated the behaviour of the moment-matching
methodology for plain CRMs we now investigate it on spe-
cific classes of nonparametric priors, which typically involve
a transformation of the CRM. Moreover, given their poste-
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(a) generalized gamma process (b) beta process

Fig. 2 Number of jumps M(�) required to achieve a precision level of � = 0.1 for �M . Left panel generalized gamma process for a ∈ (0, 2) and
γ ∈ (0, 0.8). Right panel beta process for a ∈ (0, 2) and c ∈ (0, 30)

rior distributions involve updated CRMs it is important to
test the moment-matching Ferguson & Klass algorithm also
on posterior quantities. The first class of models we consider
are normalized random measures with independent incre-
ments (NRMI) introduced by Regazzini et al. (2003). Such
nonparametric priors have been used as ingredients of a vari-
ety of models and in several application contexts. Recent
reviews can be found in Lijoi and Prünster (2010), Barrios
et al. (2013).

If μ̃ is a CRM with Lévy intensity (4) such that 0 <

μ̃(X) < ∞ (almost surely), then an NRMI is defined as

P̃ = μ̃

μ̃(X)
. (16)

Particular cases of NRMI are then obtained by specifying the
CRM in (16). For instance, by picking the generalized gamma
process defined in Example 1 one obtains the normalized
generalied gamma process, denoted by NGG, and first used
in a Bayesian context by Lijoi et al. (2007).

3.2.1 Posterior distribution of an NRMI

The basis of any Bayesian inferential procedure is repre-
sented by the posterior distribution. In the case of NRMIs,
the determination of the posterior distribution is a challeng-
ing task since one cannot rely directly on Bayes’ theorem
(the model is not dominated) and, with the exception of
the Dirichlet process, NRMIs are not conjugate as shown
in James et al. (2006). Nonetheless, a posterior character-
ization has been established in James et al. (2009) and it

turns out that, even though NRMIs are not conjugate, they
still enjoy a sort of “conditional conjugacy.” This means that,
conditionally on a suitable latent random variable, the poste-
rior distribution of an NRMI coincides with the distribution
of an NRMI having fixed points of discontinuity located
at the observations. Such a simple structure suggests that
when working with a general NRMI, instead of the Dirich-
let process, one faces only one additional layer of difficulty
represented by the marginalization with respect to the con-
ditioning latent variable.

Before stating the posterior characterization to be used
with our algorithm, we need to introduce some notation
and basic facts. Let (Yn)n≥1 be an exchangeable sequence
directed by an NRMI, i.e.

Yi |P̃ i.i.d.∼ P̃, for i = 1, . . . , n,

P̃ ∼ Q,
(17)

with Q the law of NRMI, and set Y = (Y1, . . . , Yn). Due
to the discreteness of NRMIs, ties will appear with positive
probability in Y and, therefore, the sample information can be
encoded by the Kn = k distinct observations (Y ∗

1 , . . . , Y ∗
k )

with frequencies (n1, . . . , nk) such that
∑k

j=1 n j = n. More-
over, introduce the nonnegative random variable U such that
the distribution of [U |Y] has density, w.r.t. the Lebesgue mea-
sure, given by

fU |Y(u) ∝ un−1 exp
{−ψ(u)

} k∏

j=1

τn j

(
u|Y ∗

j

)
, (18)
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where τn j (u|Y ∗
j ) = ∫ ∞

0 vn j e−uvρ(dv|Y ∗
j ) and ψ is the

Laplace exponent of μ̃ defined by ψ(u) = − log
(
LX(u)

)
,

cf (2). Finally, assume P∗ = E[P̃] to be nonatomic.

Proposition 2 (James et al. 2009) Let (Yn)n≥1 be as in (17)
where P̃ is an NRMI defined in (16) with Lévy intensity as
in (4). Then the posterior distribution of the unnormalized
CRM μ̃, given a sample Y, is a mixture of the distribution
of [μ̃|U, Y] with respect to the distribution of [U |Y]. The
latter is identified by (18), whereas [μ̃|U = u, Y] is equal
in distribution to a CRM with fixed points of discontinuity at
the distinct observations Y ∗

j ,

μ̃∗ +
k∑

j=1

J ∗
j δY ∗

j
(19)

such that:

(a) μ̃∗ is a CRM characterized by the Lévy intensity

ν∗(dv, dx) = e−uvν(dv, dx), (20)

(b) the jump height J ∗
j corresponding to Y ∗

j has density,
w.r.t. the Lebesgue measure, given by

f ∗
j (v) ∝ vn j e−uvρ

(
dv|Y ∗

j

)
, (21)

(c) μ̃∗ and J ∗
j , j = 1, . . . , k, are independent.

Moreover, the posterior distribution of the NRMI P̃, con-
ditional on U, is given by

[P̃|U, Y] d= w
μ̃∗

μ̃∗(X)
+ (1 − w)

∑k
k=1 J ∗

j δY ∗
j

∑k
l=1 J ∗

l

, (22)

where w = μ̃∗(X)/(μ̃∗(X) + ∑k
l=1 J ∗

l ).

In order to simplify the notation, in the statement we have
omitted explicit reference to the dependence on [U |Y] of both
μ̃∗ and {J ∗

j : j = 1, . . . , k}, which is apparent from (20)
and (21). A nice feature of the posterior representation of
Proposition 2 is that the only quantity needed for deriving
explicit expressions for particular cases of NRMI is the Lévy
intensity (4). For instance, in the case of the generalized
gamma process, the CRM part μ̃∗ in (19) is still a gener-
alized gamma process characterized by a Lévy intensity of
the form of (5)

ν∗(dv, dy) = e−(1+u)v

Γ (1 − γ )v1+γ
dv a P∗(dy). (23)

Moreover, the distribution of the jumps (21) correspond-
ing to the fixed points of discontinuity Y ∗

j ’s in (19) reduces
to a gamma distribution with density

f ∗
j (v) = (1 + u)n j −γ

Γ (n j − γ )
vn j −γ−1e−(1+u)v. (24)

Finally, the conditional distribution of the non-negative
latent variable U given Y (18) is given by

fU |Y(u) ∝ un−1(u + 1)kγ−n exp

{

− a

γ
(u + 1)γ

}

. (25)

The availability of this posterior characterization makes
it then possible to determine several important quantities
such as the predictive distributions and the induced partition
distribution. See James et al. (2009) for general NRMI and
Lijoi et al. (2007) for the subclass of normalized generalized
gamma processes. See also Argiento et al. (2016) for another
approach to approximate the NGG with a finite number of
jumps.

3.2.2 Moment-matching for posterior NRMI

From (19) it is apparent that the posterior of the unnormalized
CRM μ̃, conditional on the latent variable U , is composed of
the independent sum of a CRM μ̃∗ and fixed points of discon-
tinuity at the distinct observations Y ∗

j . The part which is at
stake here is obviously μ̃∗ for which only approximate sam-
pling is possible. As for the fixed points of discontinuities,
they are independent from μ̃∗ and can be sampled exactly, at
least in special cases.

We focus on the case of the NGG process. By (20) the Lévy
intensity of μ̃∗ is obtained by exponentially tilting the Lévy
intensity of the prior μ̃. Hence, the Ferguson & Klass algo-
rithm applies in the same way as for the prior. The sampling
of the fixed points jumps is straightforward from the gamma
distributions (24). As far as the moments are concerned, key
ingredient of our algorithm, the cumulants of μ̃∗ are equal
to κ∗

i = a
(1−γ )(i−1)

(u+1)i−γ and the corresponding moments are then
obtained via Proposition 1.

Our simulation study is based on a sample of size n = 10.
Such a small sample size is challenging in the sense that the
data provide rather few information and the CRM part of the
model is still prevalent. We examine three possible clustering
configurations of the observations Y ∗

i s: (i) k = 1 group, with
n1 = 10, (ii) k = 3 groups, with n1 = 1, n2 = 3, n3 = 6,
and (iii) k = 10 groups, with n j = 1 for j = 1, . . . , 10. First
let us consider the behaviour of fU |Y, which is illustrated in
Fig. 3 for n = 10 and k ∈ {1, 2, . . . , 10}. It is clear that the
smaller the number of clusters, the more fU |Y is concentrated
on small values, and vice versa.
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Fig. 3 NGG posterior: density fU |Y with n = 10 observations, a = 1,
γ = 0.5, and number of clusters k ∈ {1, . . . , 10}; k = 1 corresponds
to the most peaked density and k = 10 to the flattest

Now we consider μ̃∗(X), the random total mass corre-
sponding to the CRM part of the posterior only given in (22).
Such a quantity depends on U whose distribution is driven
by the data Y. In order to keep the presentation as neat as
possible, and in the same time to remain consistent with the
data, we choose to condition on U = u for u equal to the
mean of fU |Y, the most natural representative value. Given
this, it is possible to run the Ferguson & Klass algorithm
on the CRM part μ̃∗ of the posterior and compute moment-
matching index �M as the number of jumps varies. Figure 4
shows these results for the inverse-Gaussian CRM, a spe-
cial case of the generalized gamma process corresponding to
γ = 0.5. Such posteriors were sampled under the above men-
tioned Y clustering configuration scenarios (i)-(iii), which led
to mean values of U |Y of, respectively, 6.3, 8.9 and 25.1. The
plot also displays a comparison to the prior values of �M and

indicates that for a given number of jumps the approximation
error, measured in terms of �M , is smaller for the posterior
CRM part μ̃∗ w.r.t. to the prior CRM μ̃.

Additionally, instead of considering only the CRM part
μ̃∗ of the posterior, one may be interested in the quality
of the full posterior which includes also the fixed discon-
tinuities. For this purpose we consider an index which is
actually of interest in its own. In particular, we evaluate the
relative importance of the CRM part w.r.t. the part corre-
sponding to the fixed points of discontinuity in terms of
the ratioE

(∑k
j=1 J ∗

j

)
/E

(
μ̃∗(X)

)
. Loosely speaking one can

think of the numerator as the expected weight of the data
and the denominator as the expected weight of the prior.
Recall that in the NGG case, for a given pair (n, k) and con-
ditional on U = u, the sum of fixed location jumps is a
gamma(n − kγ, u + 1). Hence, the index becomes

E
(∑k

j=1 J ∗
j |U = u

)

E
(
μ̃∗(X)|U = u

) = (n − kγ )/(u + 1)

a/(u + 1)1−γ
= n − kγ

a(u + 1)γ
.

(26)

By separately mixing the conditional expected values in
(26) over fU |Y (we use an adaptive rejection algorithm to
sample from fU |Y) we obtained the results summarized in
the table of Fig. 4. We can appreciate that the fixed part typ-
ically overcomes (or is at least of the same order than) the
CRM part, a phenomenon which uniformly accentuates as
the sample size n increases. Returning to the original prob-
lem of measuring the quality of approximation in terms of
moment matching, these findings make it apparent that the
comparative results of Fig. 4 between prior and posterior
are conservative. In fact, if performing the moment-match
on the whole posterior, i.e. including the fixed jumps which

Fig. 4 Inverse-Gaussian process (γ = 0.5) with a = 1. Left Moment-
matching errors �M as the number of jumps M varies. �M corresponding
to prior μ̃ (continuous line) and posterior μ̃∗ under Y clustering scenar-

ios (i) (dashed line), (ii) (dotted line), (iii) (dotted-dashed line). Right
Index of relative importanceE

( ∑k
j=1 J ∗

j

)
/E

(
μ̃∗(X)

)
for varying (n, k).
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can be sampled exactly, the corresponding moment-matching
index would, for any given truncation level M , indicate a bet-
ter quality of approximation w.r.t. the index based solely on
μ̃∗. Note that computing the moments of μ̃∗(X) + ∑k

i=1 Ji

straightforward given the independence between μ̃∗ and the
fixed jumps Ji ’s and also among the jumps themselves. From
a practical point of view the findings of this section suggest
that a given quality of approximation � in terms of moment-
match for the prior represents an upper bound for the quality
of approximation in the posterior.

3.2.3 A note on the inconsistency for diffuse distributions

In the context of Gibbs-type priors, of which the normalized
generalized gamma process is a special case, De Blasi et al.
(2012) showed that, if the data are generated from a “true”
P0, the posterior of P̃ concentrates at a point mass which is
the linear combination

bP∗(·) + (1 − b)P0(·)

of the prior guess P∗ = E(P̃) and P0. The weight b depends
on the prior and, indirectly, on P0, since P0 dictates the rate at
which the distinct observations k are generated. For a diffuse
P0, all observations are distinct and k = n (almost surely).
In the NGG case this implies that b = γ and hence the pos-
terior is inconsistent since it does not converge to P0. For
the inverse-Gaussian process, i.e. with γ = 0.5, the pos-
terior distribution gives asymptotically the same weight to
P∗ and P0. The last row of the table of Fig. 4, which dis-
plays the ratio E

(∑k
j=1 J ∗

j

)
/E

(
μ̃∗(X)

)
for k = n, is an

illustration of this inconsistency result since the ratio gets
close to 1 as n grows. In contrast, when P0 is discrete,
which implies that k increases at a slower rate than n, one
always has consistency. This is illustrated by the first two
rows of the table of Fig. 4, where one can appreciate that the
ratio E

( ∑k
j=1 J ∗

j

)
/E

(
μ̃∗(X)

)
increases as n increases, giv-

ing more and more weight to the data. These findings suggest
that consistency issues for general NRMI could be explored
from new perspectives based on the study of the asymptotic
behavior of fU |Y, which will be subject to future work.

3.3 Stable-beta Indian buffet process

The Indian buffet process (IBP), introduced in Ghahramani
and Griffiths (2005), is one of the most popular models for
feature allocation and is closely connected to the beta process
discussed in Example 2. In fact, when marginalizing out
the Dirichlet process and considering the resulting partition
distribution one obtains the well known Chinese restaurant
process. Likewise, as shown in Thibaux and Jordan (2007),
when integrating out a beta process in a Bernoulli process
(BeP) model one obtains the IBP. Recall that a Bernoulli

process, with an atomic base measure μ̃, is a stochastic
process whose realizations are collections of atoms of mass
1, with possible locations given by the atoms of the base
measure μ̃. Such an atom is element of the collection with
probability given by the jump size in μ̃. Later, Teh and Görür
(2009) generalized the construction and defined the stable-
beta Indian buffet process as

Yi |μ̃ i.i.d.∼ BeP(μ̃) for i = 1, . . . , n,

μ̃|c, σ, a P∗ ∼ SBP(c, σ, a P∗).
(27)

Given the construction involves a CRM, it is clear that any
conditional simulation algorithm will need to rely on some
truncation for which we use our moment-matching Ferguson
& Klass algorithm.

3.3.1 Posterior distribution in the IBP

Let us consider a conditional iid sample Y = (Y1, . . . , Yn)

as in (27). Note that due to the discreteness of μ̃, ties appear
with positive probability. We adopt the same notations for the
ties Y ∗

j and frequencies n j as in Sect. 3.2. Then we can state
the following result which highlights the posterior structure
of the stable-beta process in the Indian buffet process.

Proposition 3 (Teh and Görür 2009) Let (Yn)n≥1 be as
in (27). Then the posterior distribution of μ̃ conditional on
Y is given by the distribution of

μ̃∗ +
k∑

j=1

J ∗
j δY ∗

j

where

(a) μ̃∗ is a stable-beta process characterized by the Lévy
intensity

ν∗(dv, dx) = (1 − v)nν(dv, dx),

(b) the jump height J ∗
j corresponding to Y ∗

j is beta distrib-
uted

J ∗
j ∼ beta(n j − σ, c + σ + n − n j ),

(c) μ̃∗ and J ∗
j , j = 1, . . . , k, are independent.

Note that due to the polynomial tilting of ν by (1 − u)n

in (a) above, the CRM part μ̃∗ is still a stable-beta process
with updated parameters

c∗ = c + n and a∗ = a
(c + σ)(n)

(c + 1)(n)

,

while the discount parameter σ remains unchanged.
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(a) (b)

Fig. 5 Moment-matching errors �M as the number of jumps M varies
for the stable-beta process with c = 1, a = 1, and, respectively, σ = 0
(left panel) and σ = 0.5 (right panel). �M corresponding to prior μ̃

(continuous line) and the posterior μ̃∗ given with n = 5 (dashed line)
and n = 10 (dotted line) and n = 20 (dashed-dotted line) observations
(σ = 0.5)

3.3.2 Moment-matching for the IBP

In order to implement the moment-matching methodology
we first need to evaluate the posterior moments of the random
total mass. For this purpose, we rely on the moments charac-
terization in terms of the cumulants provided in Proposition 1.
The cumulants κ∗

i of the CRM part μ̃∗(X) are obtained from
Table 1 with the appropriate parameter updates which leads
to

κ∗
i = a∗ (1 − σ)(i−1)

(1 + c∗)(i−1)

= a
(1 − σ)(i−1)(c + σ)(n)

(1 + c)(n+i−1)

.

We consider two stable-beta processes: the beta process prior
μ̃ ∼ SBP(c = 1, σ = 0, a = 1) and the stable-beta process
prior μ̃ ∼ SBP(c = 1, σ = 0.5, a = 1). We let n vary in
{5, 10, 20}. In contrast to the NRMI case, there is no need
to work under different scenarios for the clustering profile of
the data, since the posterior CRM μ̃∗ is not affected by them
with only the sample size entering the updating scheme. We
compare the prior moment-match for μ̃ with the posterior
moment-match for μ̃∗ in terms of our discrepancy index �M

and the results are displayed in Fig. 5. The comparison shows
that there is a gain in precision between prior and posterior
distributions in terms of �M suggesting that the a priori error
level � represents an upper bound for the posterior approxi-
mation error.

As in Sect. 3.2, we also evaluate the relative weights of
fixed jumps and posterior CRM or, roughly, of the data w.r.t.
the prior. Recalling that fixed location jumps J ∗

j are inde-
pendent and beta(n j − σ, c + σ + n − n j ) and some algebra
allow to re-write the ratio of interest as

E
( ∑k

j=1 J ∗
j

)

E
(
μ̃∗(X)

) = (n − kσ)(c + 1)(n−1)

a(c + σ)(n)

.

Table 2 Stable-beta process
with σ = 0.5, c = 1 and a = 1:
Index of relative importance
E
( ∑k

j=1 J ∗
j

)
/E

(
μ∗(X)

)
for

varying (n, k)

k\n E
( ∑k

j=1 J ∗
j

)
/E

(
μ∗(X)

)

10 30 100

1 2.57 4.71 8.79

nσ 2.28 4.36 8.39

n 1.35 2.40 4.41

Table 2 displays the corresponding values for different
choices of n and k. As in the NRMI case, the fixed part over-
comes the CRM part, which means that the data dominate
the prior, and, moreover, their relative weight increases as n
increases. In terms of moment-matching this shows that, if
one looks at the overall posterior structure, the approximation
error connected to the truncation is further dampened.

3.4 Practical use of the moment-matching criterion

We illustrate the use of the moment-matching strategy by
implementing it within location-scale NRMI mixture mod-
els, which can be represented in hierarchical form as

Yi |μi , σi
ind∼ k(·|μi , σi ), i = 1, . . . , n,

(μi , σi )|P̃ i.i.d.∼ P̃, i = 1, . . . , n,

P̃ ∼ NRMI,

where k is a kernel parametrized by (μ, σ ) ∈ R×R+ and the
NRMI P̃ is defined in (16). Under this framework, density
estimation is carried out by evaluating the posterior predic-
tive density. Specifically, we consider the Gaussian kernel
k(x |μ, σ) = N (x |μ, σ) and NGG on locations and scales
with a normal base measure P0, parameter θ = 1 in Eq. (5),
and varying stability parameter γ ∈ {0, 0.25, 0.5, 0.75}.

123



Stat Comput (2017) 27:3–17 15

Table 3 Galaxy dataset

γ eM = 0.1 eM = 0.05 eM = 0.01

0 19.4 15.5 9.2

0.25 31.3 23.7 15.1

0.5 42.4 28.9 18.3

0.75 64.8 41.0 23.2

Kolmogorov–Smirnov distance dK S(F̂�M , F̂eM ) between estimated cdfs
F̂�M and F̂eM under, respectively, the moment-match (with �M = 0.01)
and the relative error (with eM = 0.1, 0.05, 0.01) criteria. The mix-
ing measure of normal mixture is the normalized generalized gamma
process with varying γ ∈ {0, 0.25, 0.5, 0.75}

The dataset we consider is the popular Galaxy dataset,
which consists of velocities of 82 distant galaxies diverging
from our own galaxy. Since the data are clearly away from
zero (range from 9.2 to 34), Gaussian kernels, although hav-
ing the whole real line as support, are typically employed in
its analysis.

As far as the simulation algorithm is concerned, based
on Sects. 3.1–3.3, the following moment-matching Fergu-
son & Klass posterior sampling strategy is implemented: (1)
evaluate the threshold M(�) which validates trajectories of
the CRM using Algorithm 1 on the prior distribution; (2)
implement Algorithm 1 on the posterior distribution using
the threshold M(�). More elaborate and suitably tailored
moment-matching strategies can be devised for specific mod-
els. However, to showcase the generality and simplicity of our
proposal we do not pursue this here.

In particular, we set �M = 0.01. We compare the output
to the Ferguson & Klass algorithm with heuristic relative
error eM criterion, which consists of step (2) only with
truncation dictated by the relative error for which we set
eM ∈ {0.1, 0.05, 0.01}. For both algorithms the Gibbs sam-
pler is run for 20, 000 iterations with a burn-in of 4, 000,
thinned by a factor of 5.

In order to compare the results, we compute the
Kolmogorov–Smirnov distance dK S(F̂�M , F̂eM ) between
associated estimated cumulative distribution functions (cdf)
F̂�M and F̂eM under, respectively, the moment-match and the
relative error criteria. The results are displayed in Table 3.
The estimated cdf F̂�M with �M = 0.01 can be seen as a
reference estimate since the truncation error is controlled
uniformly across the different values of γ by the moment-
match at the CRM level. First, one immediately notes that the
smaller eM , the closer the two estimates become (in the dK S

distance). Second, and more importantly, the numerical val-
ues of the distances heavily depend on the particular choice
of the parameter γ for any given eM . In fact, F̂�M and F̂eM are
significantly further apart for large values of γ than for small
ones. This clearly shows that the quality of approximation
with the heuristic criterion of the relative index is highly vari-
able in terms of a single parameter; in passing from γ = 0 to

γ = 0.75 the distance increases by at least a factor of 2. This
means that for comparing correctly CRM based models with
different parameters one would need to pick different rela-
tive indices for each value of the parameter. However, there
is no way to guess such thresholds without the guidance of an
analytic criterion. And, this already happens by varying a sin-
gle parameter, let alone when changing CRMs for which the
same eM could imply drastically different truncation errors.
This seems quite convincing evidence supporting the aban-
donment of heuristic criteria for determining the truncation
threshold and the adoption of principled approaches such as
the moment-matching criterion proposed in this paper.
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Appendix 1: Proof of Proposition 1

For any measurable set A of X, the n-th moment of μ̃(A), if
it exists, is given by mn(A) = (−1)n L(n)

A (0), where L(n)
A (0)

denotes the n-th derivative of the Laplace transform L A in (2)
evaluated at 0. The result is proved by applying Faà di Bruno’s
formula to (2) for obtaining the derivatives. 	


Appendix 2: Evaluation of the tail sum of the
stable-beta process

Here we provide an evaluation of the tail sum (11) in the case
of the stable-beta process. We start by stating a lemma useful
for upper bounding the tail sum.

Lemma 1 Let function N ( · ) be as in (9) for the stable-beta
process. Then for any ξ > 0

N−1(ξ) ≤
{

e
1−ξ/a

c if σ = 0,

(αξ + β)−1/σ if σ ∈ (0, 1),

where α = σΓ (1 − σ)
Γ (c+σ)
aΓ (c+1)

and β = 1 − σ
c+σ

Γ (1 − σ).

Proof For σ = 0, from u−1(1 − u)c−1 ≤ u−1 + (1 − u)c−1

one obtains
∫ 1
v

u−1(1 − u)c−1du ≤ 1/c − log v. Hence,
N (v)/a ≤ 1 − c log v and N−1(ξ) ≤ e(1−ξ/a)/c. The argu-
ment for σ �= 0 follows along the same lines starting from
u−1−σ (1 − u)σ+c−1 ≤ Γ (1 − σ)u−σ−1 + (1 − u)σ+c−1. 	

Proposition 4 Let (ξ j ) j≥1 be the jump times for a homoge-
neous Poisson process on R

+ with unit intensity. Define the
tail sum of the stable-beta process as

TM =
∞∑

j=M+1

N−1(ξ j ),
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Fig. 6 Stable-beta process with parameters σ = 0 and σ = 0.5. Left
Bound in probability t̃εM of the tail sum TM obtained by direct cal-
culation of the quantiles q j with ε = 10−2 as the truncation level M

increases. Right Bounds tεM (provided in Proposition 4) and t̃εM (obtained
by direct calculation of the quantiles q j ) of the tail sum after M jumps
with ε = 10−2

where N ( · ) is given by (9). Then for any ε ∈ (0, 1),

P

(
TM ≤ tεM

)
≥ 1 − ε, for tεM

=
⎧
⎨

⎩

C1
ε

e
1
c − εM

C1 if σ = 0,

σ
1−σ

(C2ε)
1/σ

(M +βC2/ε)1/σ−1 if σ ∈ (0, 1),

where C1 = 2ace and C2 = 2e/α do not depend on ε.

Proof The proof follows along the same lines as the proof
of Theorem A.1. in Brix (1999). Let q j denote the ε2M− j

quantile, for j = M +1, M +2, . . ., of a gamma distribution
with mean and variance equal to j . Then

P

( ∞∑

j=M+1

N−1(ξ j ) ≤
∞∑

j=M+1

N−1(q j )

)

≥ 1 − ε.

An upper bound on t̃εM = ∑∞
j=M+1 N−1(q j ) is then found

by resorting to Lemma 1 along with the inequality q j ≥ ε
2e j .

If σ = 0

t̃εM ≤ e1/c
∞∑

j=M+1

e− q j
ac ≤ e1/c

∞∑

j=M+1

e− ε j
2ace

≤ e1/c 2ace

ε
e− εM

2ace ,

whereas if σ �= 0

t̃εM ≤
∞∑

j=M+1

(αq j + β)−
1
σ ≤

∞∑

j=M+1

(
αε j

2e
+ β

)− 1
σ

=
(

2e

αε

)− 1
σ

∞∑

j=M+1

(

j + 2eβ

αε

)− 1
σ

.

The result follows by bounding the last sum by
∫ ∞

M

(
x + 2eβ

αε

)− 1
σ

dx . 	


The bound tεM obtained in Proposition 4 is exponential
when σ = 0 and polynomial when σ �= 0, but it is very con-
servative as already pointed out by Brix (1999). This finding
is further highlighted in the table associated to Fig. 6, where
the bound tεM is computed with appropriate constants derived
from the proof. In contrast, the bound t̃εM obtained by direct
calculation of the quantiles q j (instead of resorting to a lower
bound on them) is much sharper. Figure 6 displays the sharper
bound t̃εM . Inspection of the plot demonstrates a decrease pat-
tern in this bound in probability which is reminiscent of the
ones for the indices �M and eM studied in the paper. This
observation is a further indication that the Ferguson & Klass
algorithm is a tool with well-behaved approximation error.
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