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Abstract Ordinary differential equations are arguably the
most popular and useful mathematical tool for describing
physical and biological processes in the real world. Often,
these physical and biological processes are observed with
errors, in which case themost natural way tomodel such data
is via regression where the mean function is defined by an
ordinary differential equation believed to provide an under-
standing of the underlying process. These regression based
dynamical models are called differential equation models.
Parameter inference from differential equation models poses
computational challenges mainly due to the fact that analytic
solutions to most differential equations are not available. In
this paper, we propose an approximation method for obtain-
ing the posterior distribution of parameters in differential
equation models. The approximation is done in two steps. In
the first step, the solution of a differential equation is approx-
imated by the general one-step method which is a class of
numerical numerical methods for ordinary differential equa-
tions including the Euler and the Runge-Kutta procedures;
in the second step, nuisance parameters are marginalized
using Laplace approximation. The proposed Laplace approx-
imated posterior gives a computationally fast alternative to
the full Bayesian computational scheme (such as Makov
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Chain Monte Carlo) and produces more accurate and sta-
ble estimators than the popular smoothing methods (called
collocation methods) based on frequentist procedures. For a
theoretical support of the proposed method, we prove that
the Laplace approximated posterior converges to the actual
posterior under certain conditions and analyze the relation
between the order of numerical error and its Laplace approx-
imation. The proposed method is tested on simulated data
sets and compared with the other existing methods.

Keywords Ordinary differential equation · Posterior
computation · Laplace approximation

1 Introduction

Ordinary differential equations (ODEs) are arguably themost
commonly used mathematical tool for describing physical
and biological processes in the real world. Popular exam-
ples include Lotka-Volterra equation (Alligood et al. 1997),
susceptible, infected, recovered (SIR) model (Kermack and
McKendrick 1927) and the continuously stirred tank reactor
(CSTR) model (Schmidt 2005). The Lotka-Volterra equa-
tion is the differential equation describing the dynamics of
predator-prey systems. The SIR model is an ODE model for
disease epidemic describing the relation among the numbers
of susceptible, infected and recovered individuals in a closed
population. The CSTRmodel describes the surface tempera-
ture changes of an object at a rate proportional to its relative
temperature to the surroundings. These are just a few exam-
ples of ODEs.

The ODE model is the nonlinear regression model whose
regression function is expressed as the solution of an ODE.
TheODEmodel depicts the statistical situation ofmost appli-
cations where the parameters of anODE need to be estimated
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based on the noisy data. The statistical inference for ODE
model, however, poses computational challenges mainly due
to the lack of analytical solutions for most ODEs.

Bard (1974) suggested to minimize an objective function,
a suitablemeasure of lack of fit, in which the solution of ODE
is approximated by numerical integration. The minimization
is carried out by a gradient-based method. But the solutions
are often divergent, stay at a local minimizer and are sensitive
to initial values (Cao et al. 2011).

Varah (1982) proposed an estimation method with the fol-
lowing two steps: in the first step, the regression function is
expressed by cubic splines with fixed knots and estimated by
least squares method using the data; in the second step, the
parameters of the ODE are estimated by minimizing a dis-
tancemeasure between theODEand the estimated regression
function in the first step. Ramsay and Silverman (2005) intro-
duced a two step iterationmethodwhere thefirst step ofVarah
is modified to a penalized least squares method in which a
roughness penalty term is introduced to measure the differ-
ence between the ODE and the estimated mean function.

The parameter cascadingmethodwas proposed inRamsay
et al. (2007). In the parameter cascading approach, para-
meters are grouped into (1) regularization parameters, (2)
parameters inODEand (3) regression coefficients in the basis
expansion of the regression function. Parameters in each of
the three groups are estimated in sequence. First, the regres-
sion coefficients are estimated given the structural parameters
and regularization parameters, then the structural parameters
are estimated given the regularization parameters, and finally
the regularization parameters are estimated based on mini-
mizing penalized least squares.

Gelman et al. (1996) proposed a Bayesian computational
method for the inference of pharmacokinetic models. Huang
et al. (2006) suggested a hierarchical Bayesian procedure for
the estimation of parameters in a longitudinal HIV dynamic
system. As it turns out, Bayesian computational schemes for
ODE models using Markov Chain Monte Carlo type proce-
dures as in these two papers result in even bigger challenges.
Each time the parameters are sampled from a candidate dis-
tribution, numerical integration of ODE needs to be invoked
to evaluate the full likelihood. Campbell (2007) adopted
the collocation method to obtain an approximation to the
regression function expressed by a differential equation as
in Ramsey et al. (2007). The collocation method was subse-
quently combined with parallel tempering (Geyer 1992) to
overcome instability of the posterior surface. Incorporating
tempering overcomes instabilities but slows down computa-
tional speed significantly. Recently, Gaussian processes (GP)
have been used to avoid the heavy computation of the numer-
ical integration. Dondelinger et al. (2013) introduced the
adaptive gradient matching (AGM) approach which has a
link to numerical integration but without the corresponding
high computational cost.Wang andBarber (2014) introduced

the Gaussian process-ODE (GP-ODE) approach which pro-
vides a generativemodel and simpler graphmodel thanAGM
approach. Actually, GP-ODE approach makes an approx-
imation to allow a generative and proper graph model as
Macdonald et al. (2015) pointed out.

In this paper, to speed up the Bayesian computations,
we propose a Laplace approximated procedure (LAP) for
posterior inference in differential equation models. The mar-
ginal posterior density of the ODE parameter is computed
by the Laplace approximation (LA), in which the regres-
sion function is approximated by a one-step numerical solver
of ordinary differential equations. We use the Euler and
the fourth order Runge-Kutta procedures for illustrations.
Finally, posterior inference is carried out by grid sampling
or griddy Gibbs sampling from the marginal posterior of the
ODE parameters depending on its dimension.

The proposed method has the following advantages. First,
for an ODEmodel with the parameter dimension less than or
equal to four, the posterior computations utilizes the Monte
Carlo method (not the Markov Chain Monte Carlo method)
based on independent sampling; thus, its posterior sampling
is significantly faster than methods utilizing full Bayesian
computations. Even for moderate parameter dimensions, the
LAP runs and produces results within an acceptable compu-
tational time frame.

The second advantage is that the LAP produces more
accurate parameter estimates compared to the other exist-
ing methods. In a simulation study, we compared the LAP
with the parameter cascading method (Ramsay et al. 2007),
the delayed rejection adaptive Metropolis algorithm (Haario
et al. 2006), GP-ODE approach (Wang and Barber 2014) and
AGM approach (Dondelinger et al. 2013). In the FitzHugh-
Nagumo model where the regression function changes more
rapidly, the LAP estimator has better performance than
the delayed rejection adaptive Metropolis (DRAM), GP-
ODE and AGM approach in the sense of the root mean
squared error (rmse) and the log-likelihood at the parame-
ter estimates. The performance of LAP is comparable to the
parameter cascading (PC) method in the same sense. The lat-
ter criteria judges whether the chosen procedure achieves a
parameter estimate that is close to the maximum likelihood
by ascertaining the corresponding log-likelihood value.

Third, inference based on the LAP is numerically stable.
Frequentist methods need to maximize the log-likelihood
surface which has many ripples. So, depending on the start-
ing points, optimization algorithms can be trapped in local
maximums. However, in many examples, the ripples of the
log-likelihood surface occur at the periphery of the parame-
ter space and disappear from the likelihood surface when the
sample size n becomes large.

The rest of the paper is organized as follows. In Sect. 2,
we lay out inference framework of the differential equation
models and the priors considered in this paper. The proposed
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posterior computations are described in Sect. 3. In Sect. 4,
we prove that the approximated posterior converges to the
true posterior under certain regularity conditions. In Sect. 5,
using the simulated data sets from three models, we exam-
ine the quality of the LA based posterior. In the examples
we considered, inference based on LAP generates stable and
accurate approximations of the true posterior. We apply the
LAP to a real data set, U.S. Census data in Sect. 6. Discus-
sions are presented in Sect. 7whereas details of computations
and technical results are relegated to the Appendix.

2 Regression model defined by ODE

We consider the regression model

y(t) = x(t) + ε(t),

where y(t) is a p-dimensional vector of observation at time
t ∈ [T0, T1], 0 ≤ T0 < T1 < ∞ and ε(t) represents an
error term assumed to arise from Np(0, σ 2 Ip) with σ 2 > 0
where Np(μ,Σ) denotes the p-dimensional normal distrib-
ution with mean μ and covariance matrix Σ . The regression
function, x(t), of the regression model is defined as the solu-
tion of a differential equation

ẋ(t) = f (x, u, t; θ), t ∈ [T0, T1], (1)

where f is a p-dimensional smooth function of x(t), known
input function u(t), time t , and the unknown parameter θ ∈
Θ ⊆ Rq with q ≥ 1; ẋ(t) denotes the first derivative of x(t)
with respect to time t . The function x is determined by the
initial value of x , x(T0), θ and the functionu(·). The unknown
parameter θ needs to be estimated from observed data on
y(t)s and u(t)s which are given at certain pre-specified time
points.

We assume that observed data is collected at the time
points T0 ≤ t1 < t2 < . . . < tn ≤ T1. Letting yi = y(ti ),
xi = x(ti ) and εi = ε(ti ), we have the following regression
model

yi = xi + εi , i = 1, 2, . . . , n, (2)

where εi are drawn independently from Np(0, σ 2 Ip).
The value of each xi , i = 1, 2, . . . , n, is determined by the

initial value x1, θ and u(·) based on the differential equation
model (1). When we need to emphasize this dependence,
we will denote xi by xi ≡ xi (θ, x1, u) or xi (θ, x1) if x is
not dependent on u. For simplicity of exposition, the input
function u(t) is not considered further in the rest of the paper,
but analysis based on a known input function can be easily
accommodated into our inference framework.

The differential equation (1) involves only the first order
derivatives, but can be used to describe those with higher
order derivatives. For example, consider a second order equa-
tion ẍ(t) = f (ẋ, x, t; θ). By introducing z(t) = ẋ(t), the
differential equation model can be expressed as

Ẋ(t) ≡
(

ẋ(t)

ż(t)

)
=

(
f (x, t; θ)

f (z, x, t; θ)

)
≡ F(X, t; θ)

where X (t) ≡ (x(t)T , z(t)T )T is now a vector with an added
component for the dynamics of z(t). Since any higher order
differential equationmodels canbe converted into afirst order
differential equation model based on adding extra dynamical
systems and variables, without loss of generality, we consider
only the first order differential equation models for develop-
ing our inference procedures in the remainder of this paper.

In the model (1) and (2), there are three unknowns, x1,
θ and σ 2, whose priors are denoted by π(x1 | σ 2), π(θ)

and π(σ 2) (or π(τ 2) with τ 2 = 1/σ 2), respectively. In the
following, we will take the following specific priors for τ 2

and x1:

τ 2 ∼ Gamma(a, b) (3)

x1 | τ 2 ∼ Np(μx1, cτ−2 Ip), (4)

where c > 0 and Gamma(a, b) is the gamma distribution
with parameters a, b > 0 and mean a/b. The prior selec-
tion for (τ 2, x1) is guided by conjugacy considerationswhich
enable components of the posterior to be integrated in closed
form. Onemay select other types of priors for (τ 2, x1). How-
ever, for large sample sizes, like the ones considered in this
paper, the impact of these priors will be minimal since most
of the inference will be driven and guided by the likelihood
component of the posterior.

3 Posterior computation

3.1 Posterior of θ , τ 2 and x1

The full joint posterior of θ , x1 and τ 2 given the observations
yn = (y1, y2, . . . , yn)T has the expression π(θ, τ 2, x1 | yn)

∝ p(yn | θ, τ 2, x1)π(x1 | τ 2)π(τ 2)π(θ)

=
[

n∏
i=1

det (τ−22π Ip)
−1/2e− τ2

2 ‖yi −xi (θ,x1)‖2
]

× det (2πcτ−2 Ip)
−1/2e− τ2

2c ‖x1−μx1‖2

× ba

Γ (a)
(τ 2)a−1e−bτ 2 × π(θ)

∝ (τ 2)
1
2 (n+1)p+a−1 × e

− τ2
2

(
ngn(x1,θ)+ ‖x1−μx1 ‖2

c +2b

)
π(θ),
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where gn(x1) = gn(x1, θ) = ∑n
i=1 ‖yi − xi (θ, x1)‖2/n and

‖x‖ denotes the Euclidean norm of the vector x , and π(θ)

is any prior on θ . The choice of π(θ) can be arbitrary as it
does not affect the inference on θ for large sample sizes n as
is well known.

In most cases, θ and τ 2 are the parameters of primary
interest whereas x1 is the nuisance parameter. The details
of obtaining the posterior distributions of θ and τ 2 are out-
lined as follows: In the first step, the posterior of θ and τ 2,
π(θ, τ 2 | yn), is obtained by marginalizing (i.e., integrating
out) x1. In this marginalization step, two approximations are
implemented: (i) a one-step numerical method for calculat-
ing each xi , i = 1, 2, . . . , n, and (ii) the Laplace method for
integrating out x1. In the next step, as a consequence of con-
jugacy, it can be shown that the posterior of τ 2 given θ and yn

follows a gamma distribution, which has the advantage that
it can be easily and directly sampled from. In the third step,
after marginalizing τ 2, θ is sampled from its posterior distri-
bution, π(θ | yn), using either grid sampling or griddy Gibbs
sampling depending on its dimension q. By eliminating x1
and τ 2 from the full posterior in the first two stages above,
we reduce the dimension of the posterior from p + q + 1
to q, making it easier for thorough exploration of its surface
using grid based sampling as in the third stage.

3.2 Marginalization of x1: joint posterior of θ and τ 2

In the marginalization of x1, we use two approximations.
In the first approximation, xi (θ, x1) is successively approxi-
mated by a numerical procedure:

xi ≈ xi−1 + (ti − ti−1)φ(xi−1, ti−1; θ), i = 2, . . . , n,

where different forms of φ represent different numerical
solvers of differential equation. For example, the Euler
method is represented by

φ(xi−1, ti−1; θ) = f (xi−1, ti−1; θ);

while the 4th order Runge-Kutta is represented by

φ(xi−1, ti−1; θ) = 1

6
(ki−1,1 + 2ki−1,2 + 2ki−1,3

+ ki−1,4), (5)

where

ki−1,1 = f (xi−1, ti−1; θ),

ki−1,2 = f

(
xi−1 + 1

2
ki−1,1, ti−1 + 1

2
(ti − ti−1); θ

)
,

ki−1,3 = f

(
xi−1 + 1

2
ki−1,2, ti−1 + 1

2
(ti − ti−1); θ

)
,

ki−1,4 = f (xi−1 + ki−1,3, ti ; θ).

Let h = max2≤i≤n(ti − ti−1) and xh be the approximation
of x . The global error of the numerical method is defined by

sup
t∈[T0,T1]

‖x(t) − xh(t)‖.

If the global error is O(hK ) for some integer K , we call
K to be the order of the numerical method. Under some
smoothness conditions, the order of the 4th order Runge-
Kutta numerical procedure (given in (5)) is K = 4 (Mathews
and Fink 2004; Süli 2014).

In the second approximation, we integrate out x1 based on
its prior π( x1 | τ 2) defined in (4) and full likelihood using
Laplace approximation for the corresponding integral. Using
results from Tierney and Kadane (1986) and Azevedo-Filho
and Shachter (1994), the marginal likelihood of θ and τ 2 can
be approximated by

L(θ, τ 2) =
∫

π(x1 | τ 2)L(θ, τ 2, x1)dx1

∝
∫

(τ 2)(n+1)p/2e
− τ2

2

(
ngn(x1)+ ‖x1−μx1 ‖2

c

)
dx1

∝ (τ 2)(n+1)p/2 e− τ2
2 u(θ) det

(
ng̈n(x̂1) + 2

c
Ip

)−1/2

× (τ 2)−p/2
(
1 + O(n−3/2)

)

= (τ 2)np/2 e− τ2
2 u(θ)− 1

2 v(θ)
(
1 + O(n−3/2)

)
,

where

g̈n(x1) = ∂2 gn(x1, θ)

∂x21
, x̂1 ≡ x̂1(θ) is given by

x̂1(θ) = argmin
x1

(
ngn(x1, θ) + ‖x1 − μx1‖2

c

)
,

u(θ) = ngn(x̂1) + ‖x̂1 − μx1‖2
c

, and

v(θ) = log det
(

ng̈n(x̂1) + 2

c
Ip

)
.

It follows from the last expression for L(θ, τ 2) that
the approximate posterior of θ and τ 2 given yn , based on
independent priors π(θ) and Gamma(a, b) on θ and τ 2,
respectively, is given by

π(θ, τ 2 | yn) ∝ π(θ) × (τ 2)
np
2 +a−1e

−τ 2
(

1
2 u(θ)+b

)

× det
(

ng̈n(x̂1) + 2

c
Ip

)−1/2
. (6)

Details for the computation of g̈n(x1) is given in the
Appendix. We used the gradient descent and Newton-
Raphson procedures for obtaining the maximizer x̂1(θ) in
our examples.
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3.3 Marginalization of τ 2: posterior of θ

We note from equation (6) that the posterior of τ 2 given θ

and yn is proportional to

π(τ 2 | θ, yn) ∝ (τ 2)
np
2 +a−1e

−τ 2
(

1
2 u(θ)+b

)
;

thus, the conditional posterior distribution of τ 2 given θ and
yn is given by

τ 2 | θ, yn ∼ Gamma(a∗, b∗),

where a∗ = np/2 + a and b∗ = u(θ)/2 + b. Now, by inte-
grating out τ 2 from the product of L(θ, τ 2) and the prior of
τ 2, we get the marginal likelihood of θ given by

L(θ) ∝
∫

(τ 2)
np
2 +a−1 e

−τ 2
(

1
2 u(θ)+b

)
dτ 2

× det
(

ng̈n(x̂1) + 2

c
Ip

)−1/2

= Γ (
np
2 + a)(

1
2u(θ) + b

) np
2 +a

det
(

ng̈n(x̂1) + 2

c
Ip

)−1/2
.

Consequently, the posterior of θ is

π(θ | yn) ∝ π(θ)(
1
2 u(θ) + b

) np
2 +a

det
(

ng̈n(x̂1) + 2
c Ip

)1/2 .

(7)

To numerically approximate π(θ | yn), we propose grid
sampling or griddy Gibbs sampling depending on the dimen-
sion of θ .When the dimension q of θ is not large (say, q ≤ 4),
the grid sampling is conceptually simple and numerically
fast. When q is relatively large, we recommend the griddy
Gibbs sampling.

3.4 Posterior sampling of θ

When q ≤ 4, we recommend the grid sampling to sample
θ from the marginal posterior π(θ | yn) of θ in (7). Let
GΘ ⊂ Θ be a grid set that covers Θ and let πd(θ | yn)

be the discrete distribution with support GΘ whose value at
θ ∈ GΘ is proportional to π(θ | yn). We will sample θ from
πd(θ | yn).

In practice, the choice of the grid matrix GΘ can be a
nontrivial task (Joshi and Wilson 2011). To choose a grid
set, we adopt the reparametrization technique used by Rue
et al. (2009). Let θ0 be the initial guess for the center of the
grid set, and let Σ̂ = H−1 where H is the negative Hessian
matrix of π(θ |yn) at θ0. If H is not a positive definite matrix,

we replace the negative eigenvalues of H with the minimum
positive eigenvalue of it. We express θ with a standardized
variable z by

θ(z) = θ0 + U D1/2z

where Σ̂ is diagonalized with Σ̂ = U DU T , U =
(u1, . . . , uq) and D = diag(λ j ). λ j is the eigenvalue of Σ̂ ,
and u j is the corresponding eigenvector, j = 1, 2, . . . , q.
The grid points are selected for the parametrization of z.
We recommend the two step approach in choosing the range
of the grid points. In the first step, the grid points for
the i th coordinate zi is chosen by dividing [−4, 4] into
2M1 equal length intervals resulting 2M1 + 1 points. Note
[−4, 4] comes from the rough normal approximation. For
each (2M1 + 1)q grid points, we evaluate π(θ(zi )|yn), i =
1, 2, . . . , (2M1 + 1)q . With these values, we determine the
range [Ai , Bi ] of each coordinate zi , i = 1, 2, . . . , q. Ai and
Bi are defined by the minimum and maximum of zi with
π(θ(z1, . . . , zi , . . . , zq)|yn) > η where η is a small num-
ber close to 0. In our examples, we used η = 10−5. If the
interval [−4, 4] is not big enough to contain the mass of the
posterior and Ai and Bi can not be selected, we perform the
first step one more time with larger interval than [−4, 4].
The larger interval can be obtained by approximating the
marginal posterior with normal density with larger standard
deviation.

After [Ai , Bi ] are chosen, we move to the second step
and determine the grid points for accurate computation. The
purpose of the first step is to determine the grid set, and M1

is chosen as a small positive integer such that (2M1 + 1)q is
not overwhelmingly large computationally. In our examples,
we used M1 = 5.

In the second step, [Ai , Bi ] is divided into 2M2 intervals
of equal length. The discrete approximation of the posterior
is constructed by evaluating the posterior at (2M2 + 1)q grid
points. Grid sampling is done first by sampling θ(i) from
the discrete approximation and the conditionally on θ(i), τ 2

is sampled from Gamma(np/2 + a, u(θ(i))/2 + b). In our
examples, we used M2 = 15 or 25. Note that the samples
from this algorithm are independent samples. When q is not
very large, the algorithm is very fast.

We summarize the algorithm below.

1. Step 1 Reparameterization step. Compute the initial
guesses of the center θ0 and of the posterior covariance
Σ̂ . Reparametrize θ using the standardized variable z by

θ(z) = θ0 + U D1/2z

where Σ̂ = U DU T .
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2. Step 2 Finding ranges of zi . For each zi , divide the
interval [−4, 4] into 2M1 intervals of equal length. Let

Ai = min{zi : π(zi | yn) ≥ η}
Bi = max{zi : π(zi | yn) ≥ η}.

3. Step 3 Grid sampling. Divide the intervals [Ai , Bi ] into
2M2 intervals of equal length and construct grid points.

1. For each θ ∈ GΘ , calculate π(θ |yn) using (7) and
construct πd(θ | yn).

2. Sample θ(1), θ (2), . . . , θ (N ) i id∼ πd(θ | yn).

3. For each i = 1, 2, . . . , N , sample τ 2
(i) ∼ Gamma

(np/2 + a, u(θ(i))/2 + b).

When q is large (q ≥ 5), the construction of the discrete
approximation πd by evaluating the posterior at all the grid
points can be computationally prohibitive. In this case, we
recommend to replace the grid sampling by the griddy Gibbs
sampling in the above algorithm. In the griddy Gibbs sam-
pling, the coordinates of z is sampled from the conditional
posterior and it does not require the evaluation of the poste-
rior at all grid points.

To improve accuracy of the numerical solution of differen-
tial equation, we divided the interval [ti−1, ti ] to m intervals
and added intermittent time points in computing x . If the
differential equation is smooth enough, m = 4 and 1 usu-
ally suffice for Euler and 4th order Runge–Kutta method
not to add error rate to that of the Laplace approximation,
respectively. SeeTheorem2.But in practice sometimes larger
values of m are required. We apply larger values in turn, and
if the change in the mean of the posterior is less than 0.1%,
we stopped. In our examples, we used the sequence of m as
1, 2, 4, 8, 14, 20, 30, . . ..

4 Convergence of the approximated posterior

4.1 Convergence of the approximated posterior as m
increases

In this section, we show that the posterior with Laplace
approximation andnumericalmethod,π L P

m , converges point-
wise to the true posterior with an relative error of O(n−3/2)

as m → ∞, under some regular conditions.
For convenience, let πm ≡ π L P

m . We assume h ≡ ti+1− ti
for all i = 2, 3, . . . , n and each [ti−1, ti ] is divided into m
segments; thus, the length of one segment is h/m. Let xm be
the approximation of x by numerical methodwithm segment
and xm(t1) = x(t1) for all m.

The theorem requires the following assumptions.

A1. {x(t) : t ∈ [T0, T1]} is a compact subset of Rp;

A2. {y(t) : t ∈ [T0, T1]} is a bounded subset of Rp;
A3. the K th order derivative of f (x, t; θ) with respect to t

exists and is continuous in x and t , where K is the order
of the numerical method φ; and

A4. the function ngn(x1) + ‖x1 − μx1‖2/c has the unique
minimum x̂1.

Theorem 1 Suppose that f (x, t; θ) is Lipschitz continuous
in x, and A1 – A4 hold. Then, for sufficiently large n,

lim
m→∞ πm(θ, σ 2 | yn) = π(θ, σ 2 | yn) × (1 + O(n−3/2)),

for all θ and σ 2.

The proof of theorem is given in Appendix.

4.2 Suitable rate of step size with respect to sample size

In this section, we analyze the relation between the step size
h/m and the approximation error rate of the posterior, which
is motivated byXue et al. (2010).We assume that the number
of the observation goes to infinity and h/m = O(n−α). The
large sample size and small step size give accurate inference,
but theymay cause heavy computation.We are interested in a
reasonable choice of the step size h/m when the sample size
n is growing. Here, reasonable choice means that it does not
raise the relative error rate O(n−3/2) caused by the Laplace
approximation.

Let K be the order of the numerical methodφ. If we divide
intervals [ti−1, ti ] into m segments, max1≤i≤n ‖xi − xm

i ‖ =
O((h/m)K ) = O(n−Kα).

Theorem 2 Suppose that f (x, t; θ) is Lipschitz continuous
in x, and A1− A3 hold. Let K be the order of the numerical
method φ and h/m = O(n−α). If α ≥ 5/(2K ), then, for
sufficiently large n,

πm(θ, τ 2 | yn) = π(θ, τ 2 | yn) × (1 + O(n−3/2)),

for all θ and τ 2.

Theorem 2 says that if we set h/m = O(n−5/(2K )), the
numerical approximation does not raise the order of the rel-
ative error caused by the Laplace approximation. Moreover,
even if we take h/m � n−5/(2K ), it does not reduce the error
rate O(n−3/2) and only raise the computational cost.

5 Simulated data examples

In this section, we test our LAP inference with data sets
simulated from three ODE models. The data are generated
with predetermined parameter value θ , the initial value x1
and error variance σ 2.
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For the examples in 5.1, we use both the Euler and the
4th order Runge–Kutta method to approximate ODE solu-
tions. For the examples in 5.2 and 5.3, we use the 4th order
Runge–Kutta method to approximate ODE solutions. The
LAP inference can be extended to other numerical methods
by changing the function φ(x, t; θ).

5.1 Newton’s law of cooling

5.1.1 Model description and data generation

English physicist Isaac Newton believed that temperature
change of an object is proportional to the temperature differ-
ence between the object and its surroundings. This intuition
is captured by Newton’s law of cooling, which is an ODE
given by

ẋ(t) = θ1(x(t) − θ2), (8)

where x(t) is the temperature of the object in Celcius at time
t , θ1 is a negative proportionality constant and θ2 is the tem-
perature of the environment. See Incropera (2006) for the
details. The solution of the ODE (8) is known and is

x(t) = θ2 − (θ2 − x1)e
θ1t

where x1 ≡ x(0). Since the analytic form of the solution is
known, it is not necessary to resort to the proposed approx-
imate posterior computation method to fit the ODE model
with (8). We have chosen this example as a testbed for the
proposed method. We compare the true posterior without
approximation with the approximate posterior obtained by
the proposed method.

The model parameters were fixed at x1 = 20, θ =
(−0.5, 80)T and σ 2 = 25, and y(ti ) were generated at
ti = h(i − 1) for i = 1, 2, . . . , n. We generated 4 data
sets with sample sizes n = 20, 50, 100, 150, which have
step sizes h = 0.75, 0.3, 0.15, 0.1, respectively. The effect
of sample size on the approximation is investigated below.
The data set with sample size n = 20 and the true mean
function is given in Figure 1.

The priors were set by

x1 | τ 2 ∼ N (μx1 = y1, 100/τ
2)

τ 2 ∼ Gamma(a, b)

θ = (θ1, θ2) ∼ Uni f orm(−200, 0)

× Uni f orm(−200, 500). (9)

where a = 0.1, b = 0.01 and y1 = 15.515.

Fig. 1 The solid lineis the true temperature as a function of time from
the Newton’s law of cooling model with x1 = 20, θ = (−0.5, 80)T

and n = 20. The scatter plot of the generated data of temperatures and
times is also drawn

The true posterior of θ and τ 2 can be obtained as follows:

τ 2 | θ, yn ∼ Gamma
(np

2
+ a,

1

2
ũ(θ) + b

)

θ | yn ∼ 1(
1
2 ũ(θ) + b

) np
2 +a

I (−200 < θ1 < 0)

×I (−200 < θ2 < 500),

where

ũ(θ) = μ2
x1/100 +

n∑
i=1

z2i −
(
1/100 +

n∑
i=1

e2θ1(i−1)h
)−1

×
(
μx1/100 +

n∑
i=1

zi e
θ1(i−1)h

)2
,

zi = zi (θ) = yi − θ2 + θ2eθ1(i−1)h .

Since the dimension of θ is only 2, the grid sampling is
deemed to be adequate for sampling θ . For this example, we
ended up setting M = 25 and h0 = (1, 1)T where h0 is
the vector of step sizes for grid matrix. The center of the grid
matrix was chosen as θ0 = (−0.547, 80.933)T by parameter
cascading method. In total, we have 2,601 grid points. In the
rest of the paper, we got 10,000 posterior sample from each
example.

5.1.2 Assessment of the performance of the approximate
posteriors

TheLAP inference has two approximations: Laplace approx-
imation for the marginal posterior of θ and τ 2 and numerical
approximation method for the regression function x . With
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Fig. 2 The true posterior densities and the approximate posterior densities with Laplace approximation are shown. The data are generated from
Newton’s law cooling model with sample size n = 20. The red lines represent true values of the parameters, θ = (−0.5, 80)T and σ 2 = 25

this example, we investigate the quality of these two approx-
imations. In particular, we examine (1) the effect of sample
size on the Laplace approximation and (2) that of the numer-
ical approximation. For the numerical approximation part,
we compare the performance of the Euler method and the
4th order Runge-Kutta method.

To see the effect of sample size on the Laplace approxima-
tion, the true posterior π(θ, τ 2 | yn) was compared with the
posterior with only Laplace approximation π L P (θ, τ 2 | yn).
Figure 2 shows the true posterior densities and Laplace
approximated posterior densities of each parameter when the
sample size n = 20. Even when the sample size is as small
as n = 20, the Laplace approximated posterior densities are
almost indistinguishable from the true posterior.Althoughwe
have not shown here, we tried the same comparison plots for
the samples with sample sizes as small as 5 and 10 and con-
cluded that the approximation is still good. Table 1 shows the
similar story; that is, the summary statistics of the Laplace
approximated posterior are quite close to those of the true
posterior. Table 1 shows only the summary statistics of θ1,
but the same conclusion has been reached for θ2 and τ 2.

To see the effect of the approximation due to the numeri-
cal methods, the true posterior π(θ, τ 2 | yn) was compared
with the approximate posteriors obtained by applying the
Laplace and the numerical methods. In this example, we
used the Euler method and 4th order Runge-Kutta method
for the numerical method. The intervals between observa-
tions [ti−1, ti ] were divided into m segments with m =
1, 2, 4, 8, 14, 20, 30, . . .. The approximate posteriors are
denotedbyπ

L P,E
m (θ, τ 2 | yn) andπ

L P,RK
m (θ, τ 2 | yn)where

E and RK stand for the Euler and Runge–Kutta, and m is
the number of segments. Figure 3 shows the posterior den-
sities with different m and the true posterior density when
the sample size n = 20. The approximate posteriors π

L P,E
m

and π
L P,RK
m are shown in the first row and the second row,

respectively. The approximate posteriors π
L P,RK
m are gener-

ally close to the true posterior even for m = 1, but π
L P,E
m

show different behavior. For θ2 and τ 2, π
L P,E
m are close to

the true posterior even for m = 1, but the marginal pos-

Table 1 Posterior summary statistics of θ1 from the true posterior,
Laplace approximated posterior, posterior with Laplace approximation
and numerical approximationmethodwith varying values of the number
of steps m and sample sizes n in Newton’s law of cooling model

n Case θ1

Mean Median 90% Credible interval

n = 20 π −0.563 −0.555 (−0.734, −0.421)

π L P −0.563 −0.555 (−0.734, −0.421)

π L P,E

m=1 −0.457 −0.453 (−0.565, −0.360)

m=20 −0.563 −0.553 (−0.736, −0.423)

m=50 −0.567 −0.557 (−0.740, −0.425)

m=60 −0.567 −0.559 (−0.742, −0.425)

π L P,RK

m=1 −0.569 −0.561 (−0.744, −0.427)

m=2 −0.569 −0.561 (−0.744, −0.427)

n = 50 π −0.589 −0.585 (−0.711, −0.482)

π L P −0.589 −0.585 (−0.711, −0.482)

π L P,E

m=1 −0.581 −0.581 (−0.585, −0.576)

m=20 −0.589 −0.585 (−0.711, −0.482)

m=50 −0.591 −0.586 (−0.711, −0.482)

m=60 −0.591 −0.587 (−0.711, −0.482)

π L P,RK

m=1 −0.592 −0.588 (−0.711, −0.482)

m=2 −0.591 −0.588 (−0.711, −0.482)

terior of θ1 of π
L P,E
m deviates from the true posterior. The

deviation disappears as m gets larger. These results can be
also confirmed in Table 1 which includes the posterior sum-
mary statistics of θ1 with different values of m and n. We
represent the results for the Euler with m = 1, 20, 50, 60
and the Runge-Kutta with m = 1, 2. Based on these obser-
vations, we recommend the Euler with m = 50 and the
Runge-Kutta with m = 1. In Sect. 4, we present a theo-
rem, a theoretical basis for this observation. TheRunge-Kutta
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Fig. 3 The true posterior density and the approximate posteriors with
Laplace approximation and numerical methods for the Newton’s law of
cooling model are drawn when n = 20. The true parameter values are

θ = (−0.5, 80)T and σ 2 = 25. As m grows, the approximate posterior
is getting closer to the true posterior

method with m = 1 does not reduce the error rate obtained
by Laplace method, while Euler with m = 1 does reduce the
error rate and the larger value of m is needed for the Euler
method. The computation times for the numerical methods
with various values of m and n in this example are shown in
Table 2.

5.2 FitzHugh–Nagumo model

5.2.1 Model description and data generation

The action of spike potential in the giant axon of squid neu-
rons is modeled by Hodgkin and Huxley (1952). FitzHugh
(1961) and Nagumo et al. (1962) simplified this model with
two variables. The reduced model with no external stimulus
is given below:

ẋ1(t) = θ3

(
x1(t) − 1

3
x31(t) + x2(t)

)
,

ẋ2(t) = − 1

θ3
(x1(t) − θ1 + θ2x2(t)),

where −0.8 < θ1, θ2 < 0.8, 0 < θ3 < 8, and x1(t)
and x2(t) are the voltage across an membrane and out-
ward currents at time t and called the voltage and recovery
variables, respectively. We use this parameter space for
stable cyclical behavior of the system (Campbell 2007).
With this example, we show that the Laplace approxi-

Table 2 The computation times (s) for numericalmethodswith varying
values of step size m and sample sizes in numerical approximation
method for Newton’s law of cooling model

n m Euler m 4th order Runge–Kutta

20 1 0.370 1 1.107

20 1.809

50 4.095 2 1.750

60 4.663

50 1 4.955 1 2.535

20 4.178

50 9.243 2 3.821

60 10.981

100 1 1.454 1 4.618

20 8.015

50 18.138 2 7.192

60 21.793

150 1 1.992 1 6.452

20 11.315

50 25.936 2 9.944

60 30.459

mated posterior inferenceworkswellwith appropriate choice
of m.

We generated a simulated data set with model para-
meters θ = (0.2, 0.2, 3)T , x1 = x(t1) = (−1, 1)T and
σ 2 = 0.25. The time interval was fixed at ti − ti−1 = 0.2 for
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Fig. 4 Approximate marginal
posterior densities for each
parameter with varying values
of m for FitzHugh-Nagumo
model. The red lines represent
true values of the parameters,
θ = (0.2, 0.2, 3)T and
σ 2 = 0.25. As m grows, the
approximate posterior seems to
be stabilized

Table 3 Posterior summary
statistics with varying values of
step size m in 4th order
Runge–Kutta method for
FitzHugh–Nagumo model

m Mean Median 90% C.I. Mean Median 90% C.I.

θ1 θ2

1 0.199 0.190 (0.150, 0.248) 0.130 0.132 (−0.074, 0.350)

2 0.198 0.198 (0.150, 0.247) 0.135 0.134 (−0.071, 0.352)

4 0.198 0.198 (0.149, 0.246) 0.135 0.134 (−0.070, 0.352)

θ3 σ 2

1 3.057 3.057 (2.968, 3.143) 0.284 0.282 (0.241, 0.335)

2 3.059 3.061 (2.972, 3.143) 0.285 0.283 (0.241, 0.335)

4 3.060 3.061 (2.972, 3.143) 0.285 0.282 (0.241, 0.335)

In the table, C.I. denotes the credible interval

i = 2, 3, . . . , n with n = 100. We divided [ti−1, ti ] into 100
segments and applied the 4th order Runge-Kutta method to
got the true mean function for simulated data.

For the prior, we had x1 | τ 2 ∼ N2(μx1 = y1, 100/τ 2 I2),
τ 2 ∼ Gamma(a, b) and θ ∼ Uni f (A) where a = 0.1, b =
0.01, y1 = (−1.449, 1.092)T and A = {(θ1, θ2, θ3) :
−0.8 < θ1, θ2 < 0.8, 0 < θ3 < 8}.

5.2.2 Assessment of the performance of the approximate
posteriors

We applied the procedure in Sect. 3, to choose the range and
the center of the grid matrix. For the final analysis, we set

M = 15 and h0 = (7, 7, 4)T , so we have 29,791 grid points.
The center of the grid matrix θ0 was (0.199, 0.131, 3.056)T .
Figure 4 shows the posterior densitieswith differentm. In this
example, different values of m shows slight changes in the
posterior approximations. Table 3 shows the posterior sum-
mary statistics with varying values of step size. We applied
the procedure to choose m described in Sect. 3 and in the
final analysis m = 2 was used, and Table 4 contains the
computation times for m = 1, 2 and n = 100, 200.

Figure 5 contains the scatter plots of the observations, the
true mean functions, 90% credible lines for the mean func-
tions, and the posterior mean functions as well as prediction
values at 10 future time points when m = 2.

123



Stat Comput (2017) 27:679–698 689

Table 4 The computation times (s) with varying values of step size m
and sample size in numerical approximation method for the FitzHugh–
Nagumo model

n m 4th order Runge–Kutta

100 1 111.137

2 172.215

200 1 131.46

2 200.973

5.2.3 Comparison with existing methods

We compare the performance of the LAP inference and
the other existing methods: the parameter cascading method
(Ramsayet al. 2007), the delayed rejection adaptiveMetropo-
lis (DRAM) algorithm (Haario et al. 2006) with numerical
integration, the Gaussian Process-ODE (GP-ODE) approach
(Wang and Barber 2014) and the adaptive gradient match-
ing (AGM) approach (Dondelinger et al. 2013). We generate
100 simulated data set as above and compute the absolute
bias, the standard deviation, the root mean squared error
(rmse) and the log-likelihood to use as the measure of per-
formance. However, for the GP-ODE approach (Wang and
Barber 2014) and AGM approach (Dondelinger et al. 2013),
only 20 data set were used because of their long computa-
tion times. This long computation times is mainly due to the
fact that the implementations of the two approaches were
based on the pure MATLAB codes. For the data generation,
θ = (0.2, 0.2, 3)T , x1 = (−1, 1)T , σ 2 = 0.25, h = 0.2 and
n = 30 were used.

We are using the method of Ramsay et al. (2007) based
on parameter cascading (PC). PC is also called generalized
profiling. We give the details below.

To represent the state of the ODE, x(t), the PC method-
ology uses the collocation method: The collocation method
uses a series of basis expansion to represent the p dimen-
sional vector x(t), that is,

x(t) = (x1(t), x2(t), . . . , x p(t)) = Φ(t)C (10)

where Φ(t) = (Φ1(t), . . . , ΦK (t)) is a set of K bases evalu-
ated at time t , and the K ×pmatrixC contains the coefficients
of the basis functions of each variable in its columns. In other
words, expanding (10), the i-th component of x(t) at time t
has the basis function expansion

xi (t) = Φ(t)ci =
K∑

k=1

cikΦk(t), (11)

where ci is a column vector of coefficients cik of length K ,
for i = 1, 2, . . . , p. The ODEmodel whose parameters need
to be estimated is given by

ẋi (t) = fi (x(t), θ) (12)

for i = 1, 2, . . . , p.
PC involves a penalized likelihood criteria J ≡ J (C, θ,λ)

which is based on the coefficients of basis expansions C, the
unknown parameter θ to be estimated and λ ≡ (λ1, . . . , λp),
the penalty (or smoothing) parameters. The criteria J is
reflects two competing goals based on two competing terms.

Fig. 5 Scatter plotof the observations generated from the FitzHugh–
Nagumo model, and plots of 90% credible set lines and true states are
drawn when m = 2. Predictions of 10 time points ahead are also drawn.
The upper, lower and middle dotted lines are the 95 and 5% quantiles

and mean of the posterior, respectively. The solid line in the middle
is the true value of the state x(t), and the star-shaped points are the
observations
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The first term in J (C, θ,λ)measures howwell the state func-
tion values fit the datawhereas the second termmeasures how
closely each of the state functions satisfy the correspond-
ing differential equation (12). The smoothing parameters
measures the weight of each competing term; when λi s,
i = 1, 2, . . . , p, are large, more and more emphasis is put on
having xi (t)s in (11) satisfy the differential equation in (12),
as opposed to fitting the data and vice versa when λi s tend
to zero.

PC optimization is based on two levels: An inner opti-
mization step nested within an outer optimization. In the
inner optimization, θ and λ components are held fixed, and
an inner optimization criterion is optimized with respect
to the coefficients in matrix C only. In effect, this makes
J = J (C(θ, λ), θ,λ) a function of θ and λ only. In the outer
optimization step, J is optimized with respect to θ keeping
λ fixed. This essentially makes J ≡ J (C(θ(λ), λ), θ(λ),λ)

now a function of λ only. The smoothing parameters λ and
number of basis functions K are finally chosen based on
numerical stability of the parameter estimates. This is the
key idea underlying the generalized profiling or parameter
cascade algorithms in Ramsay (2007) and Cao and Ramsay
(2009).

The implementation of the PC method was carried out
using the CollocInfer package (Hooker et al. 2014) in
R. This package uses B-spline basis functions forΦk(t), k =
1, . . . , K . B-spline basis functions are constructed by join-
ing polynomial segments end-to-end at junctions specified by
knots. Since our method used m = 2, we set 2n − 1 equally
spaced knots on [t1, tn] to get a twice number of knots than
the data points. The finer knots gave negligible improvement
in parameter estimate while slowing down the computational
speed. We chose the three-order of B-spline basis which was
used in Ramsay et al. (2007) for the same model. For the
choice of the tuning parameter λ, we used both the manual
procedure and the automatic procedure. We adopted the pro-
cedure of Ramsay et al. (2007) which tries larger values of
λ and chooses λ manually which gives a stable result. The
quartiles of the parameter estimates for 100 simulation data
sets were obtained as λ is varied from 10−2 to 106. After that,
this λ set at 105. For the automatic procedure, the forward
prediction error (FPE) in Hooker et al. (2010) was used. We
divided the each data set into ten part, from t1 to t10, and t11
to t20, and so on. For one data set, the averaged FPE was
obtained as λ is varied from 10−2 to 106, and the optimal λ

which minimizes FPE was chosen.
The DRAM algorithm (Haario et al. 2006) is a variant

of the standard Metoropolis-Hastings algorithm (Metropolis
et al. 1953; Hastings 1970). We chose the DRAM algo-
rithmwith numerical integration to compare the computation
time with our LAP inference. To implement it, we used the
modMCMC function from the FME package (Soetaert and Pet-
zoldt 2010) inR. Themaximal number of tries for the delayed

rejection was fixed to 1, so actually we used the adaptive
Metropolis algorithm (Haario et al. 2001). The initial val-
ues were set by the modFit function which finds the best
fit parameters using optimization approaches. The variance
of the proposal distribution was set by sample covariance
of parameters (x1, θ) scaled with 2.44/(p + q) in every
100 iteration. We got 10,000 posterior sample from the
DRAMalgorithm.TheDRAMwas used here as a benchmark
method for obtaining exact results based on Markov Chain
Monte Carlo procedures but at the expense of computational
time.

Gaussian processes (GP) have been used to avoid the
heavy computation of the numerical integration. AGM (Don-
delinger et al. 2013) and GP-ODE (Wang and Barber 2014)
are two state-of-art paradigms for modelling the differen-
tial equation models using GP. The gradient matching (GM)
approach (Calderhead et al. 2009) was developed to infer
the differential equation models based on GP. However, GM
approach has disadvantages that the posterior of hyperpara-
meter of GP does not depend on the differential equation
system and it is not a generative model. Dondelinger et
al. (2013) tried to remedy the former problem by substitut-
ing the directed edges between the hyperparameter and the
GP with the undirected edges. This modification improved
the performance of the inference, but it is still not a gen-
erative model. GP-ODE approach was developed by Wang
and Barber (2014) to construct a simple generative model.
They developed a different paradigm from gradient match-
ing approaches and argued the GP-ODE approach performs
at least as well as the AGM. However, GP-ODE has been
shown to be conceptually problematic. Recently, Macdon-
ald et al. (2015) pointed out that GP-ODE approach makes
an undesirable approximation: GP-ODE eliminates the edge
between the true state variable x(t) and the latent vari-
able x̃(t) which should be same to the true state variable.
Macdonald et al. (2015) showed that AGM achieves better
result than GP-ODE for the simple ODEmodel having miss-
ing values and comparable result for the FitzHugh-Nagumo
system.

To compare our LAP inference with the GP based
approaches, we illustrated the results from both GP-ODE
and AGM approaches. The MATLAB code for GP-ODE
is available from github, and Macdonald et al. (2015) pro-
vided the MATLAB code for the AGM approach. All
parameters were sampled from griddy Gibbs sampling. The
range for each parameter component θi was chosen by
[θ̂ R

i ± 4ŝd(θ̂ R
i )] where θ̂ R

i is the estimate from the para-
meter cascading method (Ramsay et al. 2007). We devided
it into 31 intervals of equal length to set the same num-
ber of grid for each parameter. For the variance function
of GP, we chose squared exponential function cφ j (t, t ′) =
σ x

j exp(−l j (t − t ′)2) and discretized the parameters σ x
j , l j
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Table 5 The table of mean of the absolute biases, the standard devi-
ations (sd), the root mean squared errors (rmse) for θ̂ , log-likelihoods
with estimated parameters and computations times (s) in the FitzHugh-
Nagumo model

LAP PC PC FPE

Absolute bias θ1 0.179 0.256 0.264

θ2 0.222 0.246 0.257

θ3 0.598 0.815 0.762

sd θ1 0.220 0.290 0.369

θ2 0.308 0.370 0.470

θ3 0.679 0.825 0.913

rmse θ1 0.298 0.493 0.488

θ2 0.400 0.578 0.576

θ3 0.954 1.299 1.290

Log-likelihood −7.128 −7.059 −7.665

Computation time 64.033 3.476 34.452

Software R and Fortran90 R and C/C++ R and C/C++

DRAM GP-ODE AGM

Absolute bias θ1 0.239 0.159 0.457

θ2 0.512 0.193 0.168

θ3 0.654 1.439 1.842

sd θ1 0.295 0.336 0.089

θ2 0.621 0.411 0.267

θ3 0.756 0.511 0.074

rmse θ1 0.397 0.405 0.472

θ2 0.833 0.472 0.333

θ3 1.071 1.563 1.844

Log-likelihood −8.551 −28.247 −25.567

Computation time 85.327 6222.268 5235.615

Software R and C/C++ MATLAB MATLAB

The results for the Laplace approximated posterior (LAP) inference,
parameter cascading (PC) method, delayed rejection adaptiveMetropo-
lis (DRAM) algorithm, GP-ODE approach and adaptive gradient
matching (AGM) approach are shown. PC method with forward pre-
diction error (FPE) criterion for the choice of λ is denoted by PC FPE

over the ranges [0.1, 1], [5, 50] with intervals 0.1, 5, respec-
tively. We got 10,000 posterior sample from the GP-ODE
and AGM approaches.

As we have concluded in the above simulation, we used
the 4th order Runge-Kutta method with m = 2 for the LAP
inference and got 10, 000 posterior sample from each simu-
lation data set. The same grid set as GP-ODE was chosen for
fair comparison.

Table 5 shows the table of mean of the absolute biases, the
standard deviations, the root mean squared errors (rmse) for
θ̂ , log-likelihoods with estimated parameters and computa-
tions times. The absolute bias term is calculated by

|Biass(θi )| = |θi − θ̂ s
i |, i = 1, 2, 3

where Biass is the bias in s-th simulation and θ̂ s is the esti-
mate of θ in s-th simulation and θ = (0.2, 0.2, 3)T . For
the Bayesian procedures, we use the posterior mean as the
estimate of the parameter.

Table 5 shows that the LAP inference has better perfor-
mance than the other methods in terms of rmse. The LAP
has lower rmse and higher log-likelihood than those of the
DRAM method, while taking 25% less computational time
compared to DRAM. The PC method with λ = 105 has
the fastest computation time and has a slightly higher log-
likelihood value than that of LAP, while the automatic choice
of λ (PC FPE) has a comparable rmse and a relatively lower
log-likelihood value as shown in Table 5. The GP-ODE and
AGM do not perform well in terms of the computational
speed and accuracy (as determined by rmse).

We have also checked the values of log-likelihood at the
parameter estimates for each method which are shown in
Table 5. Note that LAP consistently achieves the higher log-
likelihood value corresponding to its parameter estimates
(which is comparable to PC and DRAM) than GP-ODE
and AGM. Note that if there was a parameter estimate from
another method, different from the LAP estimate but com-
parable in explaining the data, the log-likelihood at that
parameter value (for the other method) should be close to
the log-likelihood value corresponding to the LAP estimate.
But Table 5 shows that in terms of the log-likelihood values,
this is not the case; GP-ODE and AGM yield significantly
lower log-likelihood values suggesting suboptimal parame-
ter estimates from them.

To understand suboptimal parameter estimates, we note
that the Fitz–Hugh–Nagumo ODE model has large regions
of the likelihood corresponding to unidentifiable parame-
ter values. However, this (large regions of the likelihood
where parameter values are unidentifiable) does not arise
for parameter values close to the maximum likelihood point
(MLE) and for large sample size n. Our method based on
Laplace approximation finds this maximum likelihood esti-
mate and hence the bias is of order O(n−1/2). As seen from
the log-likelihood values in Table 5, GP-ODE and AGMgive
parameter estimates away from the MLE, and hence may
belong to these regions of unidentifiability. In other words,
parameter estimates from GP-ODE and AGM are genuinely
deviating away from the true parameter value. Over repeated
simulation experiments, these genuine deviations get trans-
lated into the large overall biases and standard deviations
given in Table 5 (especially component θ3).

The coverage probabilities of 95% credible interval of
the LAP inference are comparable to those of the confidence
intervals obtained by the other methods. The coverage prob-
abilities for θ1, θ2, θ3 of the LAP inference are 0.94, 0.96,
0.94, while those of the PC method and DRAM algorithm
are 0.84, 0.91, 0.81 and 0.96, 0.93, 0.97, respectively.
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5.3 Predator-prey system

Fussmann et al. (2000) suggested a mathematical model
for predator-prey food chain between two microbials. The
following system of equations describes the predator-prey
oscillation between Brachionus calyciflorus and Chlorella
vulgaris:

ẋ1(t) = δ(N∗ − x1(t)) − θ1x1(t)x2(t)

θ2 + x1(t)

ẋ2(t) = θ1x1(t)x2(t)

θ2 + x1(t)
− θ3x2(t)x4(t)

θ4 + x2(t)
· 1

θ5
− δx2(t)

ẋ3(t) = θ3x2(t)x3(t)

θ4 + x2(t)
− (δ + θ6 + θ7)x3(t)

ẋ4(t) = θ3x2(t)x3(t)

θ4 + x2(t)
− (δ + θ6)x4(t).

In the above model, x1, x2, x3, x4 represent the concentra-
tions of nitrogen, Chlorella, reproducing Brachionus and
total Brachionus, respectively. The unit of Chlorella and
Brachionus is μmol L−1. N∗ is the inflow concentration of
nitrogen, and δ is dilution rate. We have seven positive para-
meters, θ = (θ1, . . . , θ7)

T . θ1 and θ2 are the maximum birth
rate and the half-saturation constant of Chlorella. θ3 and θ4
represent the maximum birth rate and the half-saturation
constant of Brachionus. θ5, θ6, and θ7 are the assimilation
efficiency, the mortality and the decay of fecundity of Bra-
chionus.

The dimension of the parameter is 7which is too big for the
grid sampling. Instead,we applied the griddyGibbs sampling
method. We generated a simulated data set with model para-
meters θ = (3.3, 0.43, 2.25, 1.5, 2.5, 0.055, 0.4)T , x1 =
(1, 3, 5, 5)T , σ 2 = 1 and N∗ = 8, δ = 0.68. We used the
absolute value of the data because the concentrations should
be positive. The parameter settings come from Cao et al.
(2008). We just modified the scale of x1, x2, θ2, θ4, θ5 and
N∗ to control the scale of x1 and x2. The time interval was
fixed at ti − ti−1 = 0.1 for i = 2, 3, . . . , n where n = 100.
We applied the 4th order Runge-Kutta method to get the true
mean function for simulated data with m = 1.

For the prior, we had x1 | τ 2 ∼ N4(μx1 = y1, 100/τ 2 I4),
τ 2 ∼ Gamma(a, b) and θ ∼ Uni f (A) where a =
0.1, b = 0.01, y1 = (0.103, 3.185, 6.298, 5.137)T and A =
{(θ1, . . . , θ7) : 0 < θ1, θ3, θ4, θ5 < 70, 0 < θ2, θ6, θ7 <

10}.
For this example, we ended up setting M = 15 and h0 =

(0.35, 0.40, 0.15, 0.17, 0.40, 0.07, 0.06)T , so we have 31
grid points for each θ j , j = 1, . . . , 7. The center of the grid
matrix θ0 was chosen as (3.295, 1.444, 2.225, 1.393, 3.883,
0.248, 0.397)T .

Total 50,000 posterior sample was drawn by the griddy
Gibbs sampling and every 5-th draw was used as sample
for the posterior inference; finally we got 10,000 posterior

sample. It took 19.454 hours for this simulation. Figure 6
shows the approximate marginal posterior densities for some
parameters. The summary statistics for the posterior is given
at Table 6 with true value of the parameters θ and σ 2.

Figure 7 contains the scatter plots of the observations for
x1, x2, x3, x4, the true mean functions, 90% credible lines
for the mean functions, and the posterior mean functions as
well as prediction values at 10 future time points.

As commented by one of the referees,we have adjusted the
amount of error in our simulations to make the SNR (signal-
to-noise-ratio) close to 10 to resemble real life situations.
For the predator-prey model, the scale of some parameters
were chosen to control the variance of signal. As a result, on
the Newton’s law of cooling model, the SNR for the differ-
ent dataset sizes were obtained as follows: when n = 20,
SNR = 10.493, when n = 50, SRN = 8.313, when
n = 100, SNR = 7.660, when n = 150, SNR = 7.450.
For the FitzHugh-Nagumo system, the SNR on species 1 is
8.598 and on species 2 is 1.928. For the predator-prey system,
the SNRs on x1, x2, x3, x4 are 5.712, 6.112, 5.696, 8.369,
respectively.

6 U.S. census data: logistic equation

A simple logistic equation describing the evolution of an
animal population over time is

ẋ(t) = θ1

θ2
x(t)(θ2 − x(t)), (13)

where x(t) is the population size at time t , θ1 is the rate of
maximum population growth, θ2 is the maximum sustain-
able population sometimes called carrying capacity (Bacaër
2011). The analytic form of the solution to (13) can be found.
See Law et al. (2003) for the details. In this example, how-
ever, we will use only the differential equation (13) to fit the
model.

U.S. takes a census of its population every 10 years which
is mandated by the U. S. Constitution. It has important ram-
ifications for many aspects. For instance, the census results
are used in the decision of government program funding,
congressional seat, and electoral votes. This data set repre-
sents U.S. population from 1790 to 2010. The population is
represented by one million units.

Since the census has been conducted every 10 years
from 1790 to 2010, we have total n = 23 observations,
(y1, . . . , y23), with h = ti − ti−1 = 10, i = 1, 2, . . . , n.

We set the prior as x1 | τ 2 ∼ N (μx1 = y1, 100/τ 2), τ 2 ∼
Gamma(a, b) and θ ∼ Uniform(0, 1)×Uniform(300, 1000),
where a = 0.1, b = 0.01 and y1 = 3.929. The lower limit of
θ2 was set to 300 which is slightly lower than the population
in year 2010, y23 = 308.746.
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Fig. 6 Approximate marginal posterior densities for θ1 (top left), θ2
(top right), θ3 (bottom left) and σ 2 (bottom right) for Predator-prey
model. The step size m = 1 in 4th order Runge–Kutta method is used.

We omit the densities for the rest of the parameters, and the red lines
represent true values of the parameters

Table 6 Posterior summary statistics with step size m = 1 in 4th order
Runge–Kutta method for Predator-prey model

θ1 θ2 θ3 θ4 θ5

True value 3.3 0.43 2.25 1.5 2.5

Mean 3.298 1.410 2.351 1.214 3.634

Median 3.202 1.338 2.345 1.212 3.563

5% quantile 2.828 0.911 2.145 0.985 3.030

95% quantile 3.948 2.084 2.585 1.484 4.523

θ6 θ7 σ 2

True value 0.055 0.4 1

Mean 0.229 0.450 0.940

Median 0.211 0.445 0.937

5% quantile 0.117 0.381 0.834

95% quantile 0.416 0.525 1.056

To apply the grid samplingmethod, we used the parameter
cascading estimate as a center of an initial grid set. For the
final analysis, we set M = 35, h0 = (0.12, 0.4)T and θ0 =
(0.020, 532.125)T .

We tried several step sizes m and concluded that with
m = 1 the posterior had been stabilized sufficiently. For the
numerical approximation,we used the 4th orderRunge-Kutta
method. The marginal posterior densities of θ1, θ2 and σ 2

when m = 1 are given in Fig. 8. Figure 9 includes the scatter
plot of the observations, the 90% credible interval lines and
posterior mean as well as prediction values of populations at
10 future time points. Table 7 shows the summary statistics
for the posterior.

7 Discussion

In this paper, we proposed a posterior computation method,
the LAP, based on the Laplacemethod and numerical approx-
imation for ODE. There are three advantages of the proposed
method. First, when the dimension of the parameter is small,
the computation is fast. The main issue of the proposed
method is computation time when the dimension of θ is high.

Second, the proposedmethod produces accurate estimator
which has comparable or better performance than the other
methods: the PC method, the DRAM, the GP-ODE and the
AGM. Although it is not entirely clear, we suspect that the
spline approximation of the PC method and the GP approx-
imation of the GP based approaches to x(t) may cause loss
of efficiency. This issue also needs further investigation.

Third, the proposed method is numerically stable. The
frequentist methods need tomaximize the log-likelihood sur-
facewhich hasmany ripples. However, inmany examples the
ripples of the log-likelihood surface occurs at periphery of
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Fig. 7 Scatter plot of the observations generated from the Predator–
prey model, and plots of 90% credible set lines and true x(t) values
are drawn when m = 1. Predictions of 10 time points ahead are also
drawn. The upper, lower and middle dotted lines are the 95 and 5%

quantiles and mean of the posterior, respectively. The solid line in the
middle is the true value of the state x(t), and the star-shaped points are
the observations

Fig. 8 The marginal posterior densities of θ1, θ2 and σ 2 in the logistic model with U.S. census data when the step parameter m = 1

the parameter space and disappear in the likelihood surface
as the sample size n increases.

Referees pointed that there is a potential to use lattice rule
or sparse grid construction which can control the computa-
tional costs of the proposed method. It is an attractive way to
reduce the computation time of LAP when q is large. How-
ever, there were several challenges that need to be overcome.
For the lattice rule, the best way of transforming integra-
tion domain to optimize its performance in the case of ODE
models is not clear. It should be chosen carefully because
poor transformation will cause the evaluations of ratios of
densities under the lattice rule to be quite unstable. For the

sparse grid, the existence of negative weights prevents com-
puting the posterior probability on each grid point: we can
compute the posterior moments only. To get the posterior
probability on each grid point, the weights should be positive
everywhere. Furthermore, in our experiment, the estimate
from the sparse grid heavily depended on the range of the
grid set and the accuracy of the sparse grid. We applied the
sparse grid construction to the proposedmethod for predator-
prey system. The Gauss-Legendre quadrature rule on [0, 1]
was used with accuracy level 10. The integration domain
was transformed to the same domain in Sect. 5.3 using lin-
ear transformation. In this settings, we obtained the mean
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Fig. 9 Scatter plot of the U.S. census, 90% credible interval lines and
posterior mean when the step parameter m = 1. Prediction values of
populations at 10 future time points are also drawn

Table 7 Posterior summaries with m = 1 for U.S. census data

θ1 θ2 σ 2

Mean 0.020 534.528 28.276

Median 0.020 532.125 26.314

90% C.I. (0.019, 0.021) (482.817, 597.867) (16.430, 46.367)

C.I. denotes the credible interval

value (2.868, 1.281, 1.969, 1.225, 2.696, 0.116, 0.362)T for
θ . The estimated mean or other moments were quite unstable
to the choice of the domain and accuracy level.

Although we concluded that these problems are not easy
to get around, the lattice rule and sparse grid are interesting
idea to enhance the practical use of our LAP inference. Thus,
we decided that applying the lattice rule or sparse grid to LAP
inference deserves a separate investigation and publication.
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Appendix 1: Computation of g̈n(x1).

Recall that

gn(x1) = 1

n

n∑
i=1

‖yi − xi‖2,

where xi = x(ti ) for i = 1, 2, . . . , n and x(t) =
(x1(t), x2(t), . . . , x p(t))T . For the following discussion, we

use the following convention for vectors and matrices. Sup-
pose we have an array of real numbers ai jk with indices
i = 1, 2, . . . , I , j = 1, 2, . . . , J and k = 1, 2, . . . , K . Let
(ai jk)(i) denote the column vector with dimension I

(ai jk)(i) = (a1 jk, a2 jk, . . . , aI jk)
T

and (ai jk)( j,k) denote the matrix with dimensions J × K

(ai jk)( j,k) =

⎡
⎢⎢⎣

ai,1,1 ai,1,2 . . . ai,1,K

ai,2,1 ai,2,2 . . . ai,2,K

. . . . . . . . . . . .

ai,J,1 ai,J,2 . . . ai,J,K

⎤
⎥⎥⎦ .

The indices in the the subscript with parenthesis are the
indices running in the vector or the matrix. The object with
one running index is a column vector, while the object with
two running indices a matrix where the first and the second
running index are for the row and column, respectively.

Note that

gn(x1) = 1

n

n∑
i=1

gni (x1),

where gni (x1) = yT
i yi − 2xT

i yi + xT
i xi . Thus, the (l, k)th

element of g̈n(x1) is

∂2gn

∂x1l∂x1k
= 1

n

n∑
i=1

∂2gni

∂x1l∂x1k
.

Note

∂gni

∂x1k
= −2

p∑
j=1

yi j
∂xi j

∂x1k
+ 2

p∑
j=1

xi j
∂xi j

∂x1k

and

∂2gni

∂x1l∂x1k
= −2

p∑
j=1

yi j
∂2xi j

∂x1l∂x1k

+2
p∑

j=1

(∂xi j

∂x1l

∂xi j

∂x1k
+ xi j

∂2xi j

∂x1l∂x1k

)
.

The above equation can be written in a matrix form

( ∂2gni

∂x1l∂x1k

)
(l,k)

= −2
p∑

j=1

( ∂2xi j

∂x1l∂x1k

)
(l,k)

yi j

+ 2
(∂xi j

∂x1l

)
(l, j)

(
∂xi j

∂x1k

)
( j,k)

+ 2
p∑

j=1

( ∂2xi j

∂x1l∂x1k

)
(l,k)

xi j
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= 2
(∂xi j

∂x1l

)
(l, j)

( ∂xi j

∂x1k

)
( j,k)

+ 2
p∑

j=1

( ∂2xi j

∂x1l∂x1k

)
(l,k)

(xi j − yi j ).

Thus,

g̈n(x1) = 2

n

n∑
i=1

((∂xi j

∂x1l

)
(l, j)

( ∂xi j

∂x1k

)
( j,k)

+
p∑

j=1

( ∂2xi j

∂x1l∂x1k

)
(l,k)

(xi j − yi j )

)
.

Thederivatives of xi with respect to x1 can be computed by
using the sensitivity equation for ODE. See Hooker (2009).
Let

z jl(t) = ∂x j (t)

∂x1l
or Z(t) =

(∂x j (t)

∂x1l

)
( j,l)

, j, l = 1, . . . , p

be the sensitivity of the state x j with respect to the initial
value x1l . The sensitivity equation is given by

ż jl(t) = ∂

∂t

∂x j (t)

∂x1l
= ∂

∂x1l
ẋ j (t)

=
p∑

u=1

∂ f j (x, t; θ)

∂xu(t)

∂xu(t)

∂x1l

=
p∑

u=1

∂ f j (x, t; θ)

∂xu(t)
zul(t),

or in matrix notation,

Ż(t) =
(∂ f j (x, t; θ)

∂xu(t)

)
( j,u)

· Z(t) (14)

with an initial condition Z(t1) = Ip. For given θ and t ,
the coefficient ∂ f j (x, t; θ)/∂xu(t) is calculated easily. It is
a linear ODE problem whose initial condition is known. We
can solve (14) using some numericalmethods such asRunge-
Kutta method. ∂2xi j/(∂x1l∂x1k) can be computed similarly.

Appendix 2: Proof of Theorem 1

Proof The results of Tierney and Kadane (1986) and
Azevedo-Filho and Shachter (1994) assume several regu-
larity conditions such as the existence of a unique global
maximum as well as the existence of higher order derivatives
(up to sixth order) of the likelihood function. In particular,
our methods for approximating the ODE model work only
under the assumption of a unique maximum of the likelihood

function. Thus, we assume that the likelihood surface does
not include any ridges (that is, continuum regions with equal
values of the global maximum).

Using the result in Tierney and Kadane (1986) and
Azevedo-Filho and Shachter (1994), we have

πm(θ, τ 2 | yn) = c−1
m

∫
Lm(θ, τ 2, x1)π(θ, τ 2, x1)dx1

×(1 + O(n−3/2)),

where cm = ∫
Lm(θ, τ 2, x1)π(θ, τ 2, x1)dx1dθdτ 2. Note

the full likelihood L(θ, τ 2, x1) is

L(θ, τ 2, x1) ∝ e− τ2
2 ngn(x1) × (τ 2)np/2,

and Lm(θ, τ 2, x1) is the corresponding termwith gn replaced
by gm

n . If Lm(θ, τ 2, x1) converges to L(θ, τ 2, x1) asm → ∞
for all θ ∈ Θ, τ 2 > 0, x1 ∈ R

p and yn , by the dominated
convergence theorem, cm −→ c as m → ∞. Thus,

lim
m→∞ πm(θ, τ 2 | yn) = c−1

∫
L(θ, τ 2, x1)π(θ, τ 2, x1)dx1

×(1 + O(n−3/2))

= π(θ, τ 2 | yn) × (1 + O(n−3/2))

which is the desired result.
To complete the proof, we need to prove Lm(θ, τ 2, x1)

−→ L(θ, τ 2, x1) as m → ∞, and it suffices to prove
ngm

n (x1) −→ ngn(x1) as m → ∞. Since we assume the
Lipschitz continuity of f , the ODE has a unique solution
with initial condition x(t1) = x1. Assumptions A1 and A3
implies

sup
x,t

‖ d K

dt K
f (x, t; θ)‖ =: B < ∞

for some constants B > 0. The local errors of the K th order
numerical method are given by

‖x(ti ) − x(ti−1) − hφ(xi−1, ti−1; θ)‖
≤ B ′hK+1, i = 2, . . . , n

for some B ′ > 0,whichdependsonlyon supt ‖d K f (x, t; θ)/

(dt K )‖ ≤ B (Palais and Palais 2009). Thus, the local errors
are uniformly bounded. It implies the global errors uniformly
bounded

‖xi − xh
i ‖ ≤ ChK

for some constant C > 0.
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Thus,

|ngn(x1) − ngm
n (x1)| =

∣∣∣
n∑

i=1

‖yi − xi‖2 −
n∑

i=1

‖yi − xm
i ‖2

∣∣∣

=
n∑

i=1

(
‖yi − xi‖ + ‖yi − xm

i ‖
)

×
∣∣∣‖yi − xi‖ − ‖yi − xm

i ‖
∣∣∣

≤
n∑

i=1

(
2‖yi − xi‖ + ‖xi − xm

i ‖
)
‖xi − xm

i ‖

≤
n∑

i=1

(
2Cy + 2Cx + ‖xi − xm

i ‖
)
‖xi − xm

i ‖

≤
n∑

i=1

(
2Cy + 2Cx + C

( h

m

)K )
C

( h

m

)K

� n
( h

m

)K
, as m −→ ∞, (15)

where supt∈[T0,T1] ‖y(t)‖ < Cy < ∞, supt∈[T0,T1] ‖x(t)‖ <

Cx < ∞. This completes the proof. ��

Appendix 3: Proof of Theorem 2

Proof If α > 5/(2K ), as n goes to infinity, n(h/m)K =
O(n1−αK ) = O(n−3/2) and it converges to to zero. Under
A1 − A3, we have shown in the proof of Theorem 1 that
|ngn(x1) − ngm

n (x1)| = O(n(h/m)K ). For fixed τ 2 > 0,

e− τ2
2 ngm

n (x1) = e− τ2
2 [ngn(x1)+ngm

n (x1)−ngn(x1)]

= e− τ2
2 ngn(x1) × e− τ2

2 [ngm
n (x1)−ngn(x1)]

= e− τ2
2 ngn(x1) × e

− τ2
2 O

(
n

(
h
m

)K )

= e− τ2
2 ngn(x1) ×

(
1 + O

(
n
( h

m

)K ))

because ex = 1 + O(x) for sufficiently small x . It implies

πm(θ, τ 2 | yn) ∝
∫

Lm(θ, τ 2, x1)π(θ, τ 2, x1)dx1

×(1 + O(n−3/2))

=
∫

L(θ, τ 2, x1)π(θ, τ 2, x1)dx1

×(1 + O(n−3/2)) ×
(
1 + O

(
n
( h

m

)K ))

∝ π(θ, τ 2 | yn) × (1 + O(n−3/2))

×
(
1 + O

(
n
( h

m

)K ))

for sufficiently large n. If α > 5/(2K ), i.e., n(h/m)K ≤
n−3/2, (1 + O(n−3/2)) × (1 + O(n(h/m)K )) is (1 +
O(n−3/2)). ��
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