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Abstract We propose a multiple imputation method to deal
with incomplete categorical data. This method imputes the
missing entries using the principal component method ded-
icated to categorical data: multiple correspondence analysis
(MCA). The uncertainty concerning the parameters of the
imputation model is reflected using a non-parametric boot-
strap. Multiple imputation using MCA (MIMCA) requires
estimating a small number of parameters due to the dimen-
sionality reduction property of MCA. It allows the user to
impute a large range of data sets. In particular, a high num-
ber of categories per variable, a high number of variables or
a small number of individuals are not an issue for MIMCA.
Through a simulation study based on real data sets, the
method is assessed and compared to the reference meth-
ods (multiple imputation using the loglinear model, multiple
imputation by logistic regressions) as well to the latest works
on the topic (multiple imputation by random forests or by the
Dirichlet process mixture of products of multinomial distri-
butions model). The proposed method provides a good point
estimate of the parameters of the analysis model considered,
such as the coefficients of a main effects logistic regression
model, and a reliable estimate of the variability of the esti-
mators. In addition, MIMCA has the great advantage that
it is substantially less time consuming on data sets of high
dimensions than the other multiple imputation methods.
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1 Introduction

Data sets with categorical variables are ubiquitous in many
fields such as social sciences, where surveys are conducted
through multiple-choice questions. Whatever the field, miss-
ing values frequently occur and are a key problem in
statistical practice sincemost of statistical methods cannot be
applied directly on incomplete data. In this paper, we pursue
the aim of achieving inference for a parameter of a statistical
analysis, denoted ψ , from an incomplete data set. It means
to get a point estimate and an estimate of its variance in a
missing values framework.

Under the classical missing at randommechanism (MAR)
assumption for the incomplete data (Schafer 1997), twomain
strategies are available to deal with missing values. The first
one consists in adapting the statistical analysis so that it
can be applied on an incomplete data set. For instance, the
maximum likelihood (ML) estimators of ψ can be obtained
from incomplete data using an Expectation-Maximization
(EM) algorithm (Dempster et al. 1977) and their standard
error can be estimated using a Supplemented Expectation-
Maximization algorithm (Meng and Rubin 1991). The ML
approach is suitable, but often difficult to establish (Allison
2012) and tailored to a specific statistical method.

That is why the second strategy namely multiple imputa-
tion (MI) (Rubin 1987; Little and Rubin 1987) seems to take
the lead. The principle of MI is to replace the missing values
by plausible values and repeat it M times in order to obtain
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M imputed data sets. The imputed values are generated from
an imputation model using M different parameters. This set
of parameters reflects the uncertainty on the parameters used
to perform the imputation. Then, MI consists in estimating
the parameters ψ of the statistical method (called analysis
model) on each imputed data set. Note that several analysis
models can be applied to a same multiply imputed data set,
e.g. a logistic regression, a chi-square statistics, a propor-
tion, etc. Lastly, the (̂ψm)1≤m≤M estimates of the parameters
are pooled to provide a unique estimation for ψ and for its
associated variability using Rubin’s rules (Rubin 1987). This
ensures that the variance of the estimator appropriately takes
into account the supplement variability due tomissing values.

To get valid inferences for a large variety of analysis mod-
els, a desirable property of aMImethod is to take into account
as many associations between variables as possible (Schafer
2003). The aim is to have an imputation model at least as
general as the analysis models. For instance, a proportion can
be estimated after using an imputation model not respecting
the relationships between variables, but these should be taken
into account for application of a logistic regressionwithmain
effects or calculation of chi-square statistics.

Suggesting a MI method for categorical data is a very
challenging task. Indeed, the imputation models suffer from
estimation issues as the number of parameters quickly grows
with large number of categories and variables. Ideally, one
would like an imputation model which requires a moderate
number of parameters, while preserving as much as possible
the relationships between variables.

In this paper, we develop a MI method based on mul-
tiple correspondence analysis (MCA) named MIMCA for
multiple imputation with multiple correspondence analysis.
MCA is the counterpart of principal component analysis
(PCA) for categorical data. Principal component methods
are often used to sum up the similarities between the individ-
uals and the relationships between variables using a small
number of synthetic variables (principal components) and
synthetic observations (loadings). These methods reduce the
dimensionality of the data while keeping as much as possi-
ble the information of the data. This property is particularly
relevant to analyse high dimensional categorical data, but
especially appealing to perform MI. Indeed, MCA proposes
an attractive trade-off between complexity of the model and
preservation of the data structure.

The remainder of this paper is organized as follows. We
briefly present in Sect. 2 the advantages and drawbacks of the
standard MI methods to deal with categorical data: MI using
the loglinear model (Schafer 1997), MI using logistic regres-
sions (Van Buuren 2012). We also quickly describe recent
propositions which tackle some of the issues of the former
methods such asMI using random forests (Doove et al. 2014)
and MI using the latent class model (Si and Reiter 2013). MI
using the normal distribution (King et al. 2001) will be dis-

cussed as well to highlight the differences with MIMCA. In
Sect. 3, we describe our method and give its properties. In
Sect. 4, a simulation study based on real data sets evaluates
the novel method and compares its performances to the other
main MI methods. All our results are reproducible and the
method is available in the package missMDA (Husson and
Josse 2015) of the open-source R software (R Core Team
2014). The proposed methodology is detailed on a data set
with the R software in Sect. 5.

2 Multiple imputation methods for categorical data

Hereinafter,matrices and vectorswill be in bold text,whereas
sets of random variables or single random variables will not.
Matrices will be in capital letters, whereas vectors will be in
lower case letters. We denote XI×K a data set with I individ-
uals and K variables and T the corresponding contingency
table.We note the observed part ofX byXobs and themissing
part by Xmiss , so that X = (Xobs, Xmiss). Let qk denote the
number of categories for the variable Xk and J = ∑K

k=1 qk
the total number of categories. We note P (X; θ) the distrib-
ution of the variables X = (X1, . . . , XK ) where θ is the set
of parameters of the distribution.

2.1 Multiple imputation using a loglinear model

MI using the loglinear model is considered as the gold
standard for MI on small incomplete categorical data sets
(Vermunt et al. 2008; van der Palm et al. 2014). The
loglinear model (Agresti 2013) assumes a multinomial dis-
tribution M (θ, I ) as joint distribution for T, where θ =
(

θx1...xK
)

x1...xK
is a vector indicating the probability to

observe each event (X1 = x1, . . . , XK = xK ). MI from the
loglinear model is achieved by drawing imputed values from
this joint distribution. To do so, a Bayesian treatment of this
model is used in which a Dirichlet prior is assumed for θ ,
implying a Dirichlet distribution for the posterior (Schafer
1997). This method is very attractive since it reflects all kind
of relationships between variables, which enables applying
any analysismodel.However, thismethod is dedicated to data
sets with a small number of categories because it requires a
number of independent parameters approximately equal to
the number of combinations of categories. For example, it
corresponds to 9 765 624 independent parameters for a data
set with K = 10 variables with qk = 5 categories for each of
them. This involves overfitting issues, i.e. the estimation pro-
cedure fits well the observed data whereas missing values are
badly predicted. The variability associated to the prediction
is far too large. Note that this phenomenon is not specific to
the missing data framework. For instance, overfitting is well
known for the linear regression model. It occurs when the
number of independent parameters is large compared to the
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number of observations. Regularization is a way to tackle
this issue in the regression framework. Concerning the log-
linear model, the issue is overcome by adding constraints on
θ to limit the number of independent parameters estimated
(Schafer 1997, pp. 289–331). A sparser model commonly
used is the model of homogeneous associations (Agresti
2013, p. 344) which takes into account two-way associa-
tions between variables only (whereas themultinomialmodel
takes into account higher-order associations). However, the
number of independent parameters remains equal to the num-
ber of pairs of categories that can be quite large (760 for the
previous example).

2.2 Multiple imputation using a latent class model

To overcome the limitation of MI using the loglinear model,
another MI method based on the latent class model can be
used. The latent class model (Agresti 2013, p. 535) is a
mixture model based on the assumption that each individ-
ual belongs to a latent class from which all variables can be
considered as independent. More precisely, let Z denote the
latent categorical variable whose values are in {1, . . . , L}.
Let θZ = (θ�)1≤�≤L denote the proportion of the mixture,

θX =
(

θ
(�)
x

)

1≤�≤L
the parameters of the L components of

the mixture and let θ = (θZ , θX ) denote the parameters of
the mixture. Thus, assuming a multinomial distribution for
Z and Xk |Z , the joint distribution of the data is written as
follows:

P (X = (x1, . . . , xK ); θ) =
L

∑

�=1

(

θ�

K
∏

k=1

θ(�)
xk

)

(1)

The latent class model requires L × (J − K ) + (K − 1)
independent parameters, i.e. a number that linearly increases
with the number of categories.

Vidotto et al. (2014) reviews in detail different MI meth-
ods using a latent class model. One of the latest contributions
in this family of methods uses a non-parametric extension of
the model namely the Dirichlet process mixture of products
of multinomial distributions model (DPMPM) (Dunson and
Xing 2009; Si and Reiter 2013). This method uses a fully
Bayesian approach in which the number of classes is defined
automatically by specifying a stick breaking process (Ish-
waran and James 2001) for the mixture probabilities θZ . The
prior distribution for the parameters of the components of
the mixture θX is a Dirichlet distribution. Note that this MI
method based on the latent class model is not too computa-
tionally intensive (Vidotto et al. 2014).

Because the latent class model approximates quite well
any kind of relationships between variables, MI using this
model enables the use of complex analysis models such as
logistic regression with some interaction terms and provides

good estimates of the parameters of the analysis model. Nev-
ertheless, the imputation model implies that given a class,
each individual is imputed in the same way, whatever the
categories taken. If the class is very homogeneous, all the
individuals have the same observed values, and this behav-
iour makes sense. However, when the number of missing
values is high and when the number of variables is high, it
is not straightforward to obtain homogeneous classes. It can
explain why Vidotto et al. (2014) observed that the MI using
the latent class model can lead to biased estimates for the
analysis model in such cases.

2.3 Multiple imputation using a multivariate normal
distribution

Because MI based on the normal multivariate distribution is
a robust method for imputing continuous non-normal data
(Schafer 1997), imputation using the multivariate normal
model can be seen as an attractive method for imputing cate-
gorical variables recoded as dummy variables. The imputed
dummy variables are seen as a set of latent continuous vari-
ables from which categories can be independently derived.
Since the method we propose shares some common points
with this method, let us give more details. Let ZI×J denote
the disjunctive table coding for XI×K , i.e. the set of dummy
variables coding for the incomplete matrix. Note that one
missing value on xk implies qk missing values on zk , the
set of dummy variables in Z coding for the variable xk . The
following procedure implemented in Honaker et al. (2014),
Honaker et al. (2011) enables the MI of a categorical data set
using the normal distribution:

– perform a non-parametric bootstrap on Z: sample the
rows of Z with replacement M times. M incomplete dis-
junctive tables

(

Zboot
m

)

1≤m≤M are obtained;
– estimate the parameters of the normal distribution on
each bootstrap replicate: calculate the ML estimators of
(μm,Σm), themean and the variance of the normal distri-
bution for the mth bootstrap incomplete replicate, using
an EM algorithm;

– create M imputed disjunctive tables: impute Z from
the normal distribution using (μm,Σm)1≤m≤M and the
observed values of Z. The M imputed disjunctive tables
obtained are denoted (Zm)1≤m≤M . In Zm , the observed
values are still zeros and ones,whereas themissing values
have been replaced by real numbers;

– generate M imputed categorical data sets: from the latent
continuous variables contained in
(Zm)1≤m≤M , choose categories for each incomplete indi-
vidual.

Several ways have been proposed to get the imputed cat-
egories from the imputed continuous values. For example,
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Allison (2002) recommends to attribute the category cor-
responding to the highest imputed value, while Bernaards
et al. (2007), Demirtas (2009), Yucel et al. (2008) propose
some rounding strategies. However, “A single best round-
ing rule for categorical data has yet to be identified.” (Van
Buuren 2012, p. 107). A common strategy proposed by
Bernaards et al. (2007) is called Coin flipping. It consists
in considering the set of imputed continuous values of the qk
dummyvariables zk as an expectation given the observed val-

ues θk = E

[

(z1, . . . , zqk )|Zobs; μ̂, Σ̂
]

. Thus, the imputed

categories are obtained by randomly drawing one category
according to a multinomial distributionM (θk, 1). Note that
θk could be suitablymodified so that it remains between 0 and
1: the imputed continuous values lower than 0 are replaced
by 0, the imputed values larger than 1 are replaced by 1 and
the others are unchanged. In such a case, the imputed values
are scaled to respect the constraint that the sum is equal to
one per variable.

Because imputation under the normal multivariate dis-
tribution is based on the estimate of a covariance matrix,
the imputation under the normal distribution can detect only
two-way associations between categorical variables, which
is generally sufficient for the analysis model. Themain draw-
back of theMI using the normal distribution is the number of
independent parameters estimated. This number is equal to
(J−K )×(J−K+1)

2 + (J − K ), so approximately the square of
the total number of categories, which quickly leads to overfit-
ting. Moreover, the covariance matrix is not invertible when
the number of individuals is lower than (J − K ) or when
the collinearity between dummy variables is very high (Car-
penter and Kenward 2013, p. 191; Audigier et al. 2014a).
This can be a serious drawback for categorical data because
collinearity between dummy variables frequently occurs. In
this case the conditional distributions of the missing values
do not exist. To overcome these issues, it is possible to add a
ridge term on its diagonal to improve the conditioning of the
regression problem.

2.4 Fully conditional specification

Instead ofmakingMI by specifying a jointmodel for the vari-
ables (JM), like the previous MI methods, categorical data
can be imputed using a fully conditional specification (FCS)
approach (Buuren et al. 2006): for each variable with miss-
ing values, an imputation model is defined (i.e. a conditional
distribution) and each incomplete variable is sequentially
imputed according to this, while reflecting the uncertainty
on the model’s parameters. Implicitly, the choices of the
conditional distributions determine a joint distribution, in so
far as a joint distribution is compatible with these choices
(Besag 1974). Typically, the models used for each incom-
plete variable are some multinomial logistic regressions and

the variability of the models’ parameters is reflected using a
Bayesian point of view. The convergence to the joint distri-
bution is obtained by repeating the conditional imputations
several times. The procedure is performedM times in parallel
to provide M imputed data sets.

FCS is more computationally intensive than JM (Van
Buuren 2012; Vermunt et al. 2008). This is not a practical
issue when the data set is small, but it becomes so on a data
set of high dimensions. In particular, checking the conver-
gence becomes difficult.

The imputation using multinomial logistic regressions on
each variable performs quite well, that is why this method
is often used as a benchmark to perform comparative stud-
ies (van der Palm et al. 2014; Doove et al. 2014; Shah et al.
2014; Si and Reiter 2013). However, the typical issues of
logistic regression can affect the MI procedure using this
model. Indeed,when separability problems occur (Albert and
Anderson 1984), when the number of individuals is smaller
than the number of categories (Agresti 2013, p. 195), or when
collinearity occurs (Agresti 2013, p. 208), it is not straightfor-
ward to get the estimates of the parameters. In addition, when
the number of categories becomes large, too many parame-
ters have to be estimated, implying overfitting.

Typically, the logistic regression models constructed to
impute each variable are main effects models. Thus, the
imputationmodel captures the two-way associations between
variables well (Agresti 2013; van der Palm et al. 2014).
Models taking into account interactions can be used, but the
choice of these models requires a certain effort by the user.
Note that the conditional distributions defined by the logistic
regressions with main effects can be deduced from the joint
distribution defined by the loglinear model with two-way
associations (Agresti 2013, pp. 353–356). Thus, the corre-
sponding MI methods are very close.

FCS using other conditional models than logistic regres-
sion can be used (see Van Buuren 2012 for instance). Among
those, conditional imputations using random forests have
been recently suggested (Doove et al. 2014; Shah et al.
2014). Random forests are non-parametric models based
on draws from the observed values. It captures complex
relationships between variables giving an accurate predic-
tion of the missing values whatever the structure of the
data set is (Stekhoven and Bühlmann 2012). Moreover, the
method can be used with any number of individuals, and any
number of variables, which can be an interesting property.
Thus, FCS using random forest seems to be a promising MI
method. However, it is more computationally intensive than
the one based on logistic regressions. In addition, because
the method is based on draws from the observed values, it
can provide poor imputation for rare categories (Audigier
et al. 2014b). According to Doove et al. (2014), an impu-
tation of one variable Xk given the others is obtained as
follows:
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– build a forest of 10 trees:

– draw 10 bootstrap samples from the individuals with-
out missing value on Xk ;

– fit one tree on each bootstrap sample: draw randomly
a subset of

√
K − 1 variables among the K − 1

explanatory variables for splitting the bootstrap sam-
ple at each node. Find the best split at each node
according to the given subset of explanatory vari-
ables.

Note that the uncertainty due to missing values is taken
into account by the use of several trees (the forest) instead
of using a unique tree;

– impute missing values according to the forest:

– for an individual i with a missing value on Xk , gather
all the individuals from the predictive leaf of the 10
trees and draw randomly one individual from it.

– repeat for all individuals with missing values on Xk .

Then, the procedure is performed for each incomplete vari-
able and repeated until convergence. The method is very
robust to the number of trees used, as well as to the number of
explanatory variables retained. Thus, the default choices for
these parameters (10 trees,

√
K − 1 explanatory variables)

are very suitable in most of the cases.

3 Multiple imputation using multiple
correspondence analysis

This section presents a novel MI method for categorical data
based on multiple correspondence analysis (Greenacre and
Blasius 2006; Lebart et al. 1984), i.e. the principal component
method dedicated to categorical data. Like the imputation
using the normal distribution, it is a JM method based on
the imputation of the disjunctive table. We first introduce
MCA as a specific singular value decomposition (SVD) of
the data matrix. Then, we describe how to perform this SVD
with missing values and how it is used to perform single
imputation. Next, we explain how to take into account the
uncertainty on the parameters of MCA to get a MI method.
Finally, the properties of themethod are discussed and the dif-
ferences with MI using the normal distribution highlighted.

3.1 MCA for complete data

MCA can be seen as the counterpart of PCA for categorical
data, whereas PCA is dedicated to continuous data. MCA is
a very popular method to describe, summarise and visualise
multidimensional data in order to understand the two-way
associations between variables as well as the similarities
between individuals. It is especially useful for high dimen-

sional data. Standard references included Benzécri (1973),
Nishisato (1980), Lebart et al. (1984), Greenacre (1984), Gifi
(1981) and Greenacre and Blasius (2006).

MCA is a dimensionality reduction method consisting
in searching for a subspace of dimension S providing the
best representation of the categorical data in the sense that
it maximises the variability of the projected points. Like any
principal component method, it boils down to performing a
SVD of the data matrix using weightings for the rows and
for the columns.

SVD is a powerful way to extract the structure of a matrix.
The rationale is to summarise the relationships between the
K variables by using a small number S of latent continuous
variables. These latent variables, called the principal compo-
nents, are linear combinations of the initial variables. Note
that the power of SVD explains why it is a well known tool to
compress high dimensional data. Indeed we need S principal
components only instead of K variables, allowing the use
of a smaller memory size to store the relevant information
contained in the data matrix.

More precisely, when performing MCA, the weighted
SVD can be defined as follows. Let the diagonal matrix
R denote the weighting for the rows. The standard choice
for R is 1

I 1I , with 1I being the identity matrix of dimen-
sion I , which corresponds to a uniform weighting. The
weighting for the columns is defined by the diagonal
matrix 1

K D−1
Σ with dimensions J × J where DΣ =

diag
(

px1
1 , . . . , px1

q1 , . . . , p
xK
1 , . . . , pxK

qK

)

and pxk
� is the pro-

portion of observations taking the category � on the variable
xk . Lastly, MI×J denotes the matrix where each row is equal
to the vector of the means of each column of Z (the disjunc-
tive table corresponding to XI×K ). From these weightings,
MCA consists in performing the SVD of the matrix triplet
(

Z − M, 1
K D−1

Σ , R
)

(Greenacre 1984) which is equivalent

to writing (Z − M) as

Z − M = U�1/2V� (2)

where the columns of UI×J are the left singular vectors
satisfying the relationship U�RU = 1J ; the columns of
VJ×J are the right singular vectors satisfying the relation-

ship V� 1
K D−1

Σ V = 1J and �
1/2
J×J = diag

(

λ
1/2
1 , . . . , λ

1/2
J

)

is the diagonal matrix of the singular values.

The first S principal components are given bŷUI×Ŝ�
1/2
S×S ,

the product between the first S columns ofU and the diagonal
matrix�1/2 restricted to its S first elements. In the sameway,
the first S loadings are given bŷVJ×S , the first S columns of
V.

The weighting used for the columns provides several
properties ofMCA. First, it ensures that all the variables con-
tribute in a same way to the analysis, independently of how
many categories each of them has (Greenacre and Blasius

123



506 Stat Comput (2017) 27:501–518

2006). It can be seen as the equivalent of scaling for contin-
uous variables in PCA. Moreover, the principal components
are the continuous variables which are the most linked to all
the variables in the sense of the squared correlation ratio,
i.e. the proportion of variance of the principal component
explained by a categorical variable, or in other words, the
ratio of the between-categories variability over the total vari-
ability. Lastly, rare categories are well considered by this
weighting because dummy variables with a low proportion
have a higher weight. It also allows individuals that take rare
categories to be highlighted, even if they constitute a small
part of the set of individuals only.

From Eq. (2), an estimate for Z can be derived:

̂Z = ̂Û�
1/2

̂V
� + M. (3)

̂Z is the best approximation ofZ with the constraint of rank S
(Eckart–Young theoremEckart andYoung 1936) in the sense
defined by the Hilbert–Schmidt norm

‖ A ‖ 1
K D−1

Σ ⊗R=
√

tr

(

A
1

K
D−1

Σ A�R
)

.

Equation (3) is called the reconstruction formula. Note that,
contrary to Z,̂Z is a fuzzy disjunctive table in the sense that
its cells are real numbers and not only zeros and ones as in
a classic disjunctive table. However, the sum per variable
is still equal to one (Tenenhaus and Young 1985). Most of
the values are contained in the interval [0, 1] or close to it
because ̂Z is as close as possible to Z which contains only
zeros and ones, but values out of this interval can occur.

Performing MCA requires J − K parameters corre-
sponding to the terms useful for the centering and the
weighting of the categories, plus I S for the left singu-
lar vectors, minus S, because of centering constraint and
minus S(S+1)

2 for the orthonormal constraint. The number
of independent parameters for the right singular vectors
((J − K )S − S − S(S+1)

2 ) are obtained in the same way.
Thus, the total number of independent parameters forMCA is
J −K + S (I − 1 + (J − K ) − S) (Josse and Husson 2011;
Candès and Tao 2009). This number of parameters increases
linearly with the number of cells in the data set.

3.2 Single imputation using MCA

Josse et al. (2012) proposed an iterative algorithm called
“iterative MCA” to perform single imputation using MCA.
The main steps of the algorithm are as follows:

1. initialization � = 0: recode X as disjunctive table Z, sub-
stitute missing values by initial values (the proportions)
and calculate M0 and D0

Σ on this completed data set.

2. step �:

(a) perform the MCA, in other words the SVD of
(

Z�−1 − M�−1, 1
K

(

D�−1
Σ

)−1
, 1
I 1I

)

to obtain Û
�
,

V̂
�
and

(

�̂
�
)1/2

;

(b) keep the S first dimensions and use the reconstruction
formula (3) to compute the fitted matrix:

Ẑ
�

I×J = Û
�

I×S

(

Λ̂
�

S×S

)1/2 (

V̂
�

J×S

)� + M�−1
I×J

and the new imputed data set becomes Z� = W ∗
Z + (1 − W) ∗ Ẑ

�
with ∗ being the element-wise

product, 1I×J being a matrix with only ones and W
a weighting matrix where wi j = 0 if zi j is missing
and wi j = 1 otherwise. The observed values are the
same but the missing ones are replaced by the fitted
values;

(c) from the new completed matrix Z�, D�
Σ and M� are

updated.

3. steps (2.a), (2.b) and (2.c) are repeated until the change
in the imputed matrix falls below a predefined threshold
∑

i j (ẑ
�−1
i j − ẑ�i j )

2 ≤ ε, with ε equals to 10−6 for example.

The iterative MCA algorithm leads to an imputation of the
disjunctive table, as well as to an estimate of the MCA
parameters. Josse et al. (2012) showed that this method is
powerful to obtain MCA parameters from incomplete data
compared to other procedures described in (Van der Heijden
and Escofier 2003). However, the iterative MCA is used to
impute the data set and does not aim at performing MCA
with missing values.

The algorithm can suffer from overfitting issues, when
missing values are numerous,when the relationships between
variables are weak, or when the number of observations is
low. To overcome these issues, a regularized version of it has
been proposed (Josse et al. 2012). The rationale is to remove
the noise in order to avoid instabilities in the prediction by

replacing the singular values

(√

λ̂
�

s

)

1≤s≤S
of step (2.b) by

shrunk singular values

(

√

λ̂
�

s −
1

J−K−S

∑J−K
t=S+1 λ�

t
√

λ̂
�

s

)

1≤s≤S

. In

this way, singular values are shrunk with a greater amount of
shrinkage for the smallest ones. Thus, the first dimensions of
variability take a more significant part in the reconstruction
of the data than the others. Assuming that the first dimensions
of variability are made of information and noise, whereas the
last ones aremade of noise only, this behaviour is satisfactory.
Note that regularization strategies of singular values moti-
vates numerous researches for continuous data (Verbanck
et al. 2013; Shabalin and Nobel 2013; Josse and Sardy 2015;
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Gavish et al. 2014). Geometrically, the regularization makes
the individuals closer to the center of gravity. Concerning the
cells of ̂Z, the regularization makes the values closer to the
mean proportions, more stable and more often in the interval
[0, 1].

The regularized iterative MCA algorithm enables us to
impute an incomplete disjunctive table but not an initial
incomplete categorical data set. A strategy to go from the
imputed disjunctive table to an imputed categorical data set
is required. We also suggest the use of the coin flipping
approach (Sect. 2.3). Let us note that for each set of dummy
variables coding for one categorical variable, the sum per
row is equal to one, even if it contains imputed values. More-
over, most of the imputed cells are in the interval [0, 1] or
are close to it. Consequently, modifications of these cells are
rarely required.

3.3 MI using MCA

To perform MI using MCA, we need to reflect the uncer-
tainty concerning the principal components and loadings. To
do so, we use a non-parametric bootstrap approach based
on the specificities of MCA. Indeed, as seen in Sect. 3.1,
MCA enables us to assign a weight to each individual. This
possibility to include a weight for the individual is very use-
ful when the same rows of the data set occur several times.
Instead of storing each replicate, a weight proportional to the
number of occurrences of each row can be used, allowing
the storage only of the rows that are different. Thus, a non-
parametric bootstrap, such as the one used for the MI using
the normal distribution, can easily be performed simply by
modifying the weight of the individuals: if an individual does
not belong to the bootstrap replicate, then its weight is null,
otherwise, its weight is proportional to the number of times
the observation occurs in the replicate. Note that individuals
with a weight equal to zero are classically called supplemen-
tary individuals in the MCA framework (Greenacre 1984).

Thus, we define a MI method called multiple imputation
using multiple correspondence analysis (MIMCA). First, the
algorithm consists in drawing M sets of weights for the
individuals. Then, for each set, a single imputation is per-
formed: at first, the regularized iterative MCA algorithm is
used to impute the incomplete disjunctive table using the
given weights for the individuals; next, coin flipping is used
to obtain categorical data and mimic the distribution of the
categorical data. At the end,M imputed data sets are obtained
and any statistical method can be applied on each one. In
detail, the MIMCA algorithm is written as follows:

1. Reflect the variability on the set of parameters of the
imputation model: draw I values with replacement in
{1, .., I } and define a weight ri for each individual pro-

portional to the number of times the individual i is drawn.
The weights are gathered in the weighting matrix Rboot .

2. Impute the disjunctive table according to the previous
weighting:

(a) initialization � = 0: recode X as a disjunctive table
Z, substitute missing values by initial values (the pro-
portions) and calculateM0 andD0

Σ on this completed
data set.

(b) step �:
i. perform the SVD of

(

Z�−1 − M�−1,
1

K

(

D�−1
Σ

)−1
, Rboot

)

to obtain Û
�
, V̂

�
and

(

λ̂
�
)1/2

;

ii. keep the S first dimensions and compute the fit-
ted matrix:

Ẑ
� = Û

�
(

λ̂
�

shrunk

)1/2 (

V̂
�
)� + M�−1

where
(

�̂
�

shrunk

)1/2
is the diagonal matrix con-

taining the shrunk singular values and derive the

new imputed data setZ� = W∗Z+(1−W)∗Ẑ
�

iii. from the new completed matrix Z�, D�
Σ and M�

are updated.
(c) step (2.b) is repeated until convergence.

3. Mimic the distribution of the categorical data set using
coin flipping on Z� :

(a) if necessary, modify suitably the values of Z�: neg-
ative values are replaced by zero, and values higher
than one are replaced by one. Then, for each set of
dummy variables coding for one categorical variable,
scale in order to verify the constraint that the sum is
equal to one.

(b) for imputed cells coding for one missing value, draw
one category according to a multinomial distribution.

4. Create M imputed data sets: for m from 1 to M alternate
steps 1, 2 and 3.

3.4 Properties of the imputation method

MI using MCA is part of the family of joint modelling MI
methods, which means that it avoids the runtime issues of
FCS. Most of the properties of the MIMCA method are
directly linked toMCAproperties.MCAprovides an efficient
summary of the two-way associations between variables, as
well as the similarities between individuals. The imputation
benefits from these properties and provides an imputation
model sufficiently complex to apply then an analysis model
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focusing on two-way associations between variables, such as
a main effects logistic regression model. In addition, because
of the relatively small number of parameters required to per-
form MCA, the imputation method works well even if the
number of individuals is small or if the number of variables
is large. These properties have been highlighted in previ-
ousworks on imputation using principal componentmethods
(Audigier et al. 2014a, b) in comparison with MI using the
normal distribution. Lastly, rare categories are well consid-
ered, and do not constitute an issue for the method.

Since these twomethods,MIMCA and the multiple impu-
tation with the normal distribution, reflect the uncertainty on
their parameters using a bootstrap procedure, provide several
imputations of the disjunctive table, and then use the same
strategy to go from the disjunctive table to the categorical
data set, they seem very close. However, due to the different
imputation models used, the imputation of each disjunctive
tables differ on many points and MIMCA is much more than
an adaptation of multiple imputation using the normal distri-
bution.

The first one is that the imputation of the disjunctive table
by MCA is a deterministic imputation, replacing a missing
value by the most plausible value given by the estimate of the
principal components and the estimate of the loadings. Then,
coin flipping is used to mimic the distribution of the categor-
ical data. On the contrary, the multiple imputation based on
the normal distribution uses stochastic regressions to impute
the disjunctive table, that is to say, a Gaussian noise is added
to the conditional expectation given by the observed values.
Then, coin flipping is used, adding uncertainty a second time.

The second difference between the two methods is the
covariance of the imputed values. Indeed, the matrix̂Z

�
con-

tains the reconstructed data by the iterative MCA algorithm

and the product ̂Z
��

̂Z
�
provides the covariance matrix of

this data. The rank of it is S. On the contrary, the rank of
the covariance matrix used to perform imputation using the
normal distribution is J − K (because of the constraint that
the sum is equal to one per variable). Consequently, the rela-
tionships between imputed variables are different.

The third difference is the number of estimated parame-
ters. Indeed, the number of parameters is a major draw-
back for the normal distribution because it approximately
increases with the square of the number of columns of the
disjunctive table. Thus, the multiple imputation using the
normal distribution cannot be used for a data set with a high
number of categories. On the contrary, the imputation using
MCA requires a number of parameters linearly dependent on
the number of cells. This property is essential from a practi-
cal point of view because it makes it easy to impute data sets
with a high number of categories.

The fourth difference is the way to impute the disjunctive
table conditionally to the observed values. Imputation using

the normal distribution requires to inverse the covariance
matrix. This can be a serious drawback for categorical data
because collinearity between dummy variables frequently
occurs. In this case the conditional distributions of the miss-
ing values do not exist. The issue can be overcome by adding
a ridge term on the diagonal of the covariance matrix, but this
term needs to be tuned. On the contrary, MCA imputes the
disjunctive table using the reconstruction formula (Eq. 3) that
does not require any matrix inversion. This is very appealing
since the method can deal with data sets where the relation-
ships between variables are strong.

4 Simulation study

As mentioned in the introduction, the aim of MI methods
is to obtain an inference on a quantity of interest ψ . Here,
we focus on the parameters of a logistic regression without
interaction, which is a statistical method frequently used for
categorical data. At first, we present how to make inference
for the parameters from a multiply imputed data set. Then,
we explain how we assess the quality of the inference built,
that is to say, the quality of the MI methods. Finally, the MI
methods presented in Sects. 2 and 3 are compared through a
simulation study based on real data sets. It thus providesmore
realistic performances from a practical point of view. The
code to reproduce all the simulations with the R software (R
Core Team 2014), as well as the data sets used, are available
on the webpage of the first author.

4.1 Inference from imputed data sets

Each MI method gives M imputed data sets as outputs.
Then, the parameters of the analysis model (for instance the
logistic regression) as well as their associated variance are
estimated from each one. We denote

(

̂ψm
)

1≤m≤M the set of
the M estimates of the model’s parameters and we denote
(

V̂ ar
(

̂ψm
)

)

1≤m≤M
the set of the M associated variances.

These estimates have to be pooled to provide a unique esti-
mate of ψ and of its variance using Rubin’s rules (Rubin
1987).

This methodology is explained for a scalar quantity of
interest ψ . The extension to a vector is straightforward, pro-
ceeding in the sameway element by element. The estimate of
ψ is simply given by the mean over the M estimates obtained
from each imputed data set:

ψ̂ = 1

M

M
∑

m=1

ψ̂m, (4)

while the estimate of the variance of ψ̂ is the sum of two
terms:
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V̂ ar(ψ̂) = 1

M

M
∑

m=1

V̂ ar
(

ψ̂m

)

+
(

1 + 1

M

)

1

M − 1

M
∑

m=1

(

ψ̂m − ψ̂
)2

. (5)

The first term is the within-imputation variance, corre-
sponding to the sampling variance. The second one is the
between-imputation variance, corresponding to the variance
due to missing values. The factor

(

1 + 1
M

)

is due to the fact
that ̂ψ is estimated from a finite number of imputed tables.

Then, the 95 % confidence interval is calculated as:

ψ̂ ± tν,.975

√

V̂ ar(ψ̂)

where tν,.975 is the .975 critical value of the Student’s t-
distributionwith ν degrees of freedomestimated as suggested
by (Barnard and Rubin 1999).

4.2 Simulation design from real data sets

The validity of MI methods are often assessed by simulation
(VanBuuren 2012, p. 47).Wedesign a simulation study using
real data sets to assess the quality of the MIMCA method.
Each data set is considered as a population data and denoted
Xpop. The parameters of the logistic regression model are
estimated from this population data and they are considered
as the true coefficientsψ . Then, a sampleX is drawn from the
population. This step reflects the sampling variance. The val-
ues of the response variable of the logistic model are drawn
according to the probabilities defined by ψ . Then, incom-
plete data are generated completely at random to reflect the
variance due to missing values (Brand et al. 2003). The MI
methods are applied and the inferences are performed. This
procedure is repeated T times.

The performances of aMImethod aremeasured according
to three criteria (Van Buuren 2012, p. 47) the bias given by
1
T

∑T
t=1

(

ψ̂t − ψ
)

, the median (over the T simulations) of

the confidence intervals width as well as the coverage. This
latter is calculated as the percentage of cases where the true
value ψ is within its 95 % confidence interval.

A coverage sufficiently close to the nominal level is
required to consider that the inference is correct, but it is not
sufficient, the confidence interval width should be as small
as possible.

To appreciate the value of the bias and of the width of
the confidence interval, it is useful to compare them to those
obtained from two other methods. The first one consists in
calculating the criteria for the data sets without missing val-
ues, which we named the “Full data” method. The second
one is the listwise deletion. This consists in deleting the
individuals with missing values. Because the estimates of

the parameters of the model are obtained from a subsample,
the confidence intervals obtained should be larger than those
obtained from multiple imputation.

4.3 Results

The methods described in this paper are performed using the
followingRpackages:missMDA (Husson and Josse 2015) for
MIMCA, cat (Harding et al. 2012) forMI using the saturated
loglinear model, Amelia (Honaker et al. 2014, 2011) for MI
using a normal distribution, mi (Gelman et al. 2013) for MI
using theDPMPMmethod,mice (VanBuuren andGroothuis-
Oudshoorn 2014; Buuren and Groothuis-Oudshoorn 2011)
for the FCS approach using iterated logistic regressions
and random forests. This latter package will also be used
to pool the results from the imputed data sets. The tuning
parameters of each MIMCA competitors are chosen accord-
ing to their default values implemented in the R packages.
Firstly, the tuning parameter of the MIMCA method, that
is to say, the number of components, is chosen to provide
accurate inferences. Its choice will be discussed later in
Sect. 4.3.3.

The MI methods are assessed in terms of the quality of
the inference as well as the time consumed from data sets
covering many situations. The data sets differ in terms of the
number of individuals, the number of variables, the number of
categories per variable, the relationships between variables.

The evaluation is based on the following categorical data
sets. For each data set a categorical response variable is avail-
able.

– Saheart: This data set (Rousseauw et al. 1983) provides
clinical attributes of Ipop = 462 males of the Western
Cape in South Africa. These attributes can explain the
presenceof a coronaryheart disease.Thedata set contains
K = 10 variables with a number of categories between
2 and 4.

– Galetas: This data set (AppliedMathematics Department
2010) refers to the preferences of Ipop = 1192 judges
regarding 11 cakes in terms of global appreciation and
in terms of color aspect. The data set contains K = 4
variables with two that have 11 categories.

– Sbp: The Ipop = 500 subjects of this data set are
described by clinical covariates explaining their blood
pressure (GlaxoSmithKline 2003). The data set contains
K = 18 variables that have 2 to 4 categories.

– Income: This data set, from theRpackage kernlab (Karat-
zoglou et al. 2004), contains Ipop = 6876 individuals
described by several demographic attributes that could
explain the annual income of an household. The data set
contains K = 14 variables with a number of categories
between 2 and 9.
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Table 1 Bias over the several quantities of interest for severalmethods (Listwise deletion, Loglinearmodel, DPMPM,Normal distribution,MIMCA,
FCS using logistic regressions, FCS using random forests, Full data) for the data set Titanic

ψ1 = 2.25 ψ2 = 0.86 ψ3 = −0.16 ψ4 = −0.92 ψ5 = −1.06 ψ6 = −2.42

LD 0.74 −0.06 −0.14 −0.24 −0.41 −0.35

Loglinear −0.10 −0.06 0.00 −0.04 0.16 −0.09

DPMPM −0.77 −0.01 0.29 0.45 0.43 0.24

Normal −0.86 −0.07 0.19 0.32 0.45 0.41

MIMCA 5 0.15 −0.01 −0.05 −0.15 0.00 −0.18

FCS-log 0.22 −0.06 −0.09 −0.19 −0.01 −0.22

FCS-forests −1.24 0.00 0.33 0.57 0.47 0.73

Full data 0.10 −0.02 −0.03 −0.10 −0.01 −0.11

– Titanic: This data set (Dawson 1995) provides infor-
mation on Ipop = 2201 passengers on the ocean liner
Titanic. The K = 4 variables deal with the economic
status, the sex, the age and the survival of the passengers.
The first variable has four categories, while the other ones
have two categories. The data set is available in the R
software.

– Credit: German Credit Data from the UCI Repository
of Machine Learning Database (Lichman 2013) contains
Ipop = 982 clients described by several attributes which
enable the bank to classify themselves as good or bad
credit risk. The data set contains K = 20 variables with
a number of categories between 2 and 4.
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Fig. 1 Distribution of the coverages of the confidence intervals for
all the parameters, for several methods (Listwise deletion, Loglinear
model, Normal distribution, DPMPM, MIMCA, FCS using logistic
regressions, FCS using random forests, Full data) and for different data
sets (Saheart, Galetas, Sbp, Income, Titanic, Credit). The horizontal

dashed line corresponds to the lower bound of the 95 % confidence
interval for a proportion of 0.95 from a sample of size 200 according to
the Agresti-Coull method (Agresti and Coull 1998). Coverages under
this line are considered as undesirable
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The simulation design is performed for T = 200 simula-
tions and 20 % of missing values generated independently
and completely at random in each variable. The MI methods
are performed with M = 5 imputed data sets which can be
considered as satisfactory (Rubin 1987).

4.3.1 Assessment of the inferences

First of all, we can note that some methods cannot be applied
on all the data sets. As explained previously, MI using the
loglinear model can be applied only on data sets with a small
number of categories such as Titanic or Galetas. MI using
the normal distribution encounters inversion issues when the
number of individuals is small compared to the number of
categories. That is why no results are provided for MI using
the normal distribution on the data sets Credit and Sbp. The
others MI methods can be on all the data sets.

For each data set and each method, the coverages of all
the confidence intervals of the parameters of the model are
calculated from T simulations. Note that the number of para-
meters is between 6 and 30 (see Table 3 in Appendix 1 for
more details on these models). All the coverages are sum-
marized with a boxplot (see Fig. 1). The biases for one of
the data set are provided in Table 1, similar results can be
observed for the others (see Fig. 4 in Appendix). Exhaustive
results for the confidence interval width are provided in Fig. 5
in Appendix.

As expected, MI using the loglinear model performs well
on the two data setswhere it can be performed. The coverages
are close to the nominal levels, the biases are close to zero,
and the confidence interval widths are small.

MI using the non-parametric version of the latent class
model (DPMPM) performs quitewell sincemost of the quan-
tities of interest have a coverage close to 95 %. However,
some inferences are incorrect from time to time such as on the
data setCredit orTitanic. This behaviour is in agreementwith
the study of Si and Reiter (2013) which also presents some
unsatisfactory coverages. Vidotto et al. (2014) note that this
MI model may have some difficulties in capturing the asso-
ciations among the variables, particularly when the number
of variables is high or the relationships between variables
are complex, that can explain the poor coverages observed.
Indeed, on the data set Credit, the number of variables is the
highest among the data sets considered, while on the data set
Titanic, the relationships between variables can be described
as complex, in the sense that the survival status of the pas-
sengers is linked to all the other variables, but these are not
closely connected.

MI using the normal distribution can be applied on three
data sets only. On these data sets, the coverages can be too
small (see Titanic in Fig. 1). This highlights that despite the
fact that this method is still often used in practice to deal with
incomplete categorical data, it is not suitable and we do not

recommend using such a strategy. However, Schafer (1997)
showed that this method could be used to impute mixed data
(i.e. with continuous and categorical data) but only for com-
plete categorical variables.

The FCS using logistic regressions encounters difficulties
on the data sets with a high number of categories such as
Galetas and Income. This high number of categories implies
a high number of parameters for each conditional model that
may explain the undercoverage on several quantities.

The FCS using random forests performs well except for
the Titanic data set. The difficulties encountered for the data
set can be explained by the step of subsampling variables in
the imputation algorithm (Sect. 2.4). Indeed each tree is built
with

√
K − 1 variables whereas the relationships between

the variables are weak and all the variables are important to
predict the survival response. Thus, it introduces too much
bias in the individual tree prediction which may explain the
poor inference. Even if, in the most practical cases, MI using
random forests is very robust to the misspecification of the
parameters, on this data set, the inference could be improved
in increasing the number of explanatory variables retained
for each tree.

Concerning MI using MCA, all the coverages observed
are satisfying. The confidence interval width is of the same
order of magnitude than the other MI methods. In addition,
the method can be applied whatever the number of categories
per variables, the number of variables or the number of indi-
viduals. Thus, it appears to be the easiest method to impute
categorical data.

4.3.2 Computational efficiency

MI methods can be time consuming and the running time of
the algorithms could be considered as an important property
of aMImethod from a practical point of view. Table 2 gathers
the times required to impute M = 5 times the data sets with
20 % of missing values.

First of all, as expected, the FCSmethod is more time con-
suming than the others based on a joint model. In particular,
for the data set Income, where the number of individuals and
variables is high, the FCS using random forests requires 6329
seconds (i.e. 1.75 h), illustrating substantial running time
issues. FCS using logistic regressions requires 881 seconds,
a time 6 times higher than MI using the latent class model,
and 15 times higher thanMImethod usingMCA. Indeed, the
number of incomplete variables increases the number of con-
ditionalmodels required, aswell as the number of parameters
in each of thembecausemore covariates are used. In addition,
the time required to estimate its parameters is non-negligible,
particularly when the number of individuals is high. Then,
MI using the latent class model can be performed in a rea-
sonable time, but this is at least two times higher than the
one required for MI using MCA. Thus, the MIMCA method
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Table 2 Time consumed (in
seconds) to impute data sets
(Saheart, Galetas, Sbp, Income,
Titanic, Credit), for different
methods (Loglinear model,
DPMPM, Normal distribution,
MIMCA, FCS using logistic
regressions, FCS using random
forests)

Saheart Galetas Sbp Income Titanic Credit

Loglinear NA 4.597 NA NA 0.740 NA

DPMPM 20.050 17.414 56.302 143.652 10.854 24.289

Normal 0.920 0.822 NA 26.989 0.483 NA

MIMCA 5.014 8.972 7.181 58.729 2.750 8.507

FCS log 20.429 38.016 53.109 881.188 4.781 56.178

FCS forests 91.474 112.987 193.156 6329.514 265.771 461.248

The imputation is done for M = 5 data sets. Calculation has been performed on an Intel®Core™2 Duo
CPU E7500, running Ubuntu 12.04 LTS equipped with 3 GB ram. Some values are not provided because all
methods cannot be performed on each data set

should be particularly recommended to impute data sets of
high dimensions.

Having a method which is not too expensive enables the
user to produce more than the classical M = 5 imputed data
sets. This leads to a more accurate inference.

4.3.3 Choice of the number of dimensions

MCA requires a predefined number of dimensions S which
can be chosen by cross-validation (Josse et al. 2012). Cross-
validation consists in selecting S which minimizes an error
of prediction. More precisely, a small part of missing values
is added completely at random to the data set X (by default
5 %). Then, the missing values of the incomplete disjunctive
table Z are predicted using the regularized iterative MCA
algorithm. Themean squared error of prediction is calculated
according to 1

Card(U)

∑

(i, j)∈U (zi j − ẑi j )2, whereU denotes
the set of the addedmissing values. The procedure is repeated
nbsim times for each number of dimensions (by default
nbsim = 100). The chosen number of dimensions is the one
minimizing the mean of the nbsim mean squared errors of
prediction. This procedure of ‘repeated cross-validation’ can
be used whether the data set contains missing values or not.

To assess how the choice of S impacts on the quality of
the inference, we performed the simulations using number of
dimensions closed to the one provided by the cross-validation
procedure. Note that in the specific case of a simulation
study from real data sets, the ‘true’ number of dimensions
is unknown and its estimation by cross-validation may vary
according to the incomplete sample drawn. For this reason,
we used the most frequent number of dimensions obtained
by cross-validation on ten incomplete data sets. Figure 2
presents how this tuning parameter influences the coverages
in the previous study. The impacts on the width of the con-
fidence intervals are reported in Fig. 6 and the ones on the
bias in Fig. 7 in Appendix 2.

Except for the data set Titanic, the coverages are stable
according to the chosen number of dimensions. In particu-
lar, the number of dimensions suggested by cross-validation
provides coverages close to the nominal level of the con-

fidence interval. In the case of the data set Titanic, the
cross-validation suggests retaining 5 dimensions, which is
the choice giving the smallest confidence intervals, while
giving coverages close to 95 %. But retaining less dimen-
sions leads toworse performances since the covariates are not
closely related (Sect. 4.3.1). Indeed, these covariates cannot
be well represented within a space of low dimensions. Con-
sequently, a high number of dimensions is required to reflect
the useful associations to impute the data. Titanic illustrates
that underfitting can be problematic. The same comment is
made by Vermunt et al. (2008) who advise choosing a num-
ber of classes sufficiently high in the case of MI using the
latent class model.

Note that cross-validation increases the time required to
apply the algorithm. However, performing repeated cross-
validation for a small number of times nbsim, the total
computational time consumed remains small. For instance,
nbsim = 3 is sufficient for the Income data set, adding
44 seconds to the MIMCA procedure. Thus, it remains the
quicker strategy to impute categorical data.

5 Real data analysis

In this section we illustrate how to analyse an incomplete
categorical data set using the Titanic data set (described in
Sect. 4.3) as an example. We first detail how to tune the
parameter of the method MIMCA. Then, we show how to
perform multiple imputation step-by-step: generating multi-
ple imputed data sets, applying a statistical method on each
of them and combining the obtained results according to the
Rubin’s rules. The MIMCA method is implemented in the
R package missMDA (Husson and Josse 2015; Josse and
Husson 2015).

5.1 Number of dimensions

To generate multiple imputed data sets with MIMCA, the
first step consists in estimating the number of dimensions.
Several cross-validation procedures are implemented in the
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Fig. 2 Distribution of the coverages of the confidence intervals for
all the parameters for the MIMCA algorithm for several numbers of
dimensions and for different data sets (Saheart, Galetas, Sbp, Income,
Titanic, Credit). The results for the number of dimensions provided by
cross-validation are in grey. The horizontal dashed line corresponds to

the lower bound of the 95 % confidence interval for a proportion of
0.95 from a sample of size 200 according to the Agresti-Coull method
(Agresti and Coull 1998). Coverages under this line are considered as
undesirable

function estim_ncpMCA. The first one is leave-one-out
cross-validation, which consists in predicting independently
each observed cells of the data set with MCA. It can be run
as follows:

> library(missMDA)
> data(TitanicNA)
> res.ncp <- estim_ncpMCA(TitanicNA,

method.cv="loo")

The function outputs a list with the cross-validation error
for each number of components, as well as the number of
dimensionsminimizing the cross-validation error.Aprogress
bar indicates the speed to complete the run. If it is too
slow, then the repeated cross-validation method detailed in
Sect. 4.3.3 can be used. This method is less computation-
ally intensive, but it is based on a simulation process which
introduces a simulation error on the estimated number of
dimensions. This method requires to specify additional para-
meters: the percentage ofmissing values added (pNA) and the
number of missing data patterns generated (nbsim). Note
that the percentage of missing values has to be small to pre-
serve the data structure. By default, 5 % of missing values
are added completely at random (pNA=0.05). The default
number of missing data patterns simulated is nbsim=100.

A lower value makes the run faster, while a higher value
decreases the simulation error. We recommend to run the
method with the default parameters. Then, if the run is too
slow, the process can be stopped and a smaller value of
nbsim could be considered. Repeated cross-validation with
twenty generated missing data patterns is performed as fol-
lows:
> res.ncp.kfold <- estim_ncpMCA(TitanicNA,
+ method.cv = "kfold", nbsim = 20)

The sensitivity of the results to the value of nbsim can
be assessed with the plot of the cross-validation error with
respect to the number of dimensions retained. This plot can
be obtained as follows:

> plot(names(res.ncp.kfold$criterion),
+ res.ncp.kfold$criterion,
+ xlab="number of dimensions", + ylab=
"cv error")

A clear trend indicates that the simulation error does not
modify the number of dimensions minimising the cross-
validation error. Consequently, the choice for nbsim can
be considered as suitable. Otherwise, if the curve is chaotic,
then nbsim should be increased, even if the time required is
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Fig. 3 Cross-validation error according to the number of dimensions
used for the data set Titanic

important. For the data set Titanic, nbsim=20 seems suffi-
cient.

Figure 3 indicates to keep 5 dimensions for multiple
imputation. Note that this number is provided in the object
res.ncp.kfold$ncp.

5.2 Multiple imputation

Wegenerate imputed data setswith the number of dimensions
previously defined using the MIMCA function as follows:

> res.MIMCA <- MIMCA(TitanicNA,
+ ncp = res.ncp.kfold$ncp)

By default, nboot=100 imputed data sets are generated.
To apply a statistical method on each imputed data set

obtained from theMIMCA function and to combine the analy-
sis results, we suggest using the R packagemice (VanBuuren
and Groothuis-Oudshoorn 2014).

For instance, to predict the survival status of the passen-
gers of the ocean liner Titanic according to their age, sex and
economic status, a logistic regression model can be applied
as follows:

> # transform the MIMCA output as a
mids object

> imp<-prelim(res.MIMCA,TitanicNA)
> # perform analysis
> fit <- with(data=imp,
+ exp=glm(SURV˜CLASS+AGE+SEX,family =

"binomial"))
> # pool the analysis results
> summary(pool(fit))

The classical outputs with the coefficient estimates and
their variance are obtained. Note that other R packages
than mice can be used to make inference from the multi-
ply imputed data set (e.g. the BaBooN package Meinfelder
and Schnapp 2015).

6 Conclusion

This paper proposes an original MI method to deal with cat-
egorical data based on MCA. The principal components and
the loadings that are the parameters of the MCA enable the
imputation of data. To perform MI, the uncertainty on these
parameters is reflected using a non-parametric bootstrap,
which results in a specific weighting for the individuals.

From a simulation study based on real data sets, this
MI method has been compared to the other main available
MI methods for categorical variables. We highlighted the
competitiveness of MIMCA to provide valid inferences for
an analysis model requiring two-way associations (such as
logistic regression without interaction, or loglinear model
with two-way associations, proportion, odds ratios, etc).

We showed that MIMCA can be applied to various con-
figurations of data. In particular, the method is accurate for
a large number of variables, for a large number of categories
per variable and when the number of individuals is small.
Moreover, MIMCA runs fairly quickly, allowing the user to
generate more imputed data sets and therefore to obtain more
accurate inferences (Van Buuren 2012, p. 49 recommends to
choose M between 20 and 100). Thus, MIMCA is very suit-
able to impute data sets of high dimensions that require more
computation. Note that MIMCA depends on a tuning para-
meter (the number of components), but the performances of
the MI method are robust to a misspecification of it.

The multiple imputation method based on MCA is imple-
mented in the packagemissMDA (Husson and Josse 2015) of
the R software. The function named MIMCA takes as input
the incomplete data set, the number of dimensions used to
impute the data, as well as the number of imputed tables M
and returns a list with the imputed data sets.

Because of the intrinsic properties of MCA, MI using
MCA is appropriate when the analysis model contains
two-way associations between variables such as logistic
regression without interaction. To consider the case with
interactions, one solution could be to introduce to the data set
additional variables corresponding to the interactions. How-
ever, the newvariable “interaction” is considered as a variable
in itself without taking into account its explicit link with the
associated variables. It may lead to imputed values which
are not in agreement with the others. This topic is a subject
of intensive research for continuous variables (Seaman et al.
2012; Bartlett et al. 2014).

MIMCA is dedicated to perform multiple imputation for
categorical data only. Another structure of data that is very
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common is multilevel data. It should be interesting to inves-
tigate extension of MCA for such data. Note that a popular
approach to handle such data is the method based on latent
normal model suggested in (Carpenter and Kenward 2013)
and implemented in the R package Jomo (Quartagno and
Carpenter 2015) or the REALCOM-IMPUTE software (Car-
penter et al. 2011). This method is also under investigation
to handle unclustered categorical data.

In addition, MIMCA considered ordered categorical vari-
ables as nominal ones. Taking into account this specificity
could improve the imputation and the subsequent inferences.

Lastly, the encouraging results of the MIMCA to impute
categorical data prompt the extension of themethod to impute
mixed data. The first research in this direction (Audigier et al.
2014b) has shown that the principal component method ded-
icated to mixed data (called Factorial Analysis for Mixed
Data) is efficient to perform single imputation, but the exten-
sion to a MI method requires further research.

Appendix 1: Simulation design: analysis models
and sample characteristics

See Table 3.

Appendix 2: Simulation study: complementary
results

See Figs. 4–7.

Table 3 Set of the sample characteristics and of the analysis models used to perform the simulation study (Sect. 4.2) for the several data sets
(Saheart, Galetas, Sbp, Income, Titanic, Credit)

Data set Number of
individuals

Number of
variables

Sample size Logistic regression model Number of quantities
of interest

Saheart 462 10 300 chd = famhist + tobacco + alcohol 30

Galetas 1192 4 300 galle = grupo 6

Sbp 500 18 200 sbp = smoke + exercise + alcohol 12

Income 6876 14 1500 income = sex 8

Titanic 2201 4 300 surv = class+age+sex 6

Credit 982 20 300 class = checking_status + duration
+ credit_history + purpose
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Fig. 4 Distribution of the relative bias (bias divided by the true value)
over the several quantities of interest for severalmethods (Listwise dele-
tion, Loglinear model, DPMPM, Normal distribution, MIMCA, FCS

using logistic regressions, FCS using random forests, Full data) for dif-
ferent data sets (Saheart, Galetas, Sbp, Income, Titanic, Credit). One
point represents the relative bias observed for one coefficient
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Fig. 5 Distribution of the median of the confidence interval for the
several quantities of interest for several methods (Loglinear model,
DPMPM,Normal distribution,MIMCA,FCSusing logistic regressions,
FCS using random forests, Full data) for different data sets (Saheart,
Galetas, Sbp, Income, Titanic, Credit). One point represents the median

of the confidence interval observed for one coefficient divided by the
one obtained by Listwise deletion. The horizontal dashed line corre-
sponds to a ratio of 1. Points over this line corresponds to confidence
interval higher than the one obtain by listwise deletion
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Fig. 6 Distribution of themedian of the confidence interval for the sev-
eral quantities of interest for theMIMCA algorithm for several numbers
of dimensions for different data sets (Saheart, Galetas, Sbp, Income,
Titanic, Credit). One point represents the median of the confidence
interval observed for one coefficient divided by the one obtained by

Listwise deletion. The horizontal dashed line corresponds to a ratio
of 1. Points over this line corresponds to confidence interval higher
than the one obtain by listwise deletion. The results for the number of
dimensions provided by cross-validation are in grey
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Fig. 7 Distribution of the relative bias (bias divided by the true value)
over the several quantities of interest for the MIMCA algorithm for
several numbers of dimensions for different data sets (Saheart, Gale-

tas, Sbp, Income, Titanic, Credit). One point represents the relative bias
observed for one coefficient. The results for the number of dimensions
provided by cross-validation are in grey
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