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Abstract Normalized random measures with independent
increments are a general, tractable class of nonparametric
prior. This paper describes sequential Monte Carlo methods
for both conjugate and non-conjugate nonparametric mix-
ture models with these priors. A simulation study is used to
compare the efficiency of the different algorithms for den-
sity estimation and comparisons made with Markov chain
Monte Carlo methods. The SMC methods are further illus-
trated by applications to dynamically fitting a nonparametric
stochastic volatility model and to estimation of the marginal
likelihood in a goodness-of-fit testing example.

Keywords Bayesian nonparametrics · Dirichlet process ·
Normalized generalized gamma process · Nonparametric
stochastic volatility · Slice sampling · Particle Gibbs
sampling

1 Introduction

The nonparametric mixture model has become a popular
method for Bayesian nonparametric density estimation and
clustering. It is assumed that a random sample y1, . . . , yn are
independent and that
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yt |γt ∼ k(yt | γt , φ) (t = 1, . . . , n) (1)

γt
i.i.d.∼ G (t = 1, . . . , n)

where k(x | γ, φ) is a probability density function for x with
parameters γ and φ, and G is a distribution which is given a
nonparametric prior. Themost popular instance of thismodel
is the Dirichlet process (DP) mixture model (Escobar and
West 1995) where G is given a DP prior. This prior is com-
putationally attractive but the choice can be restrictive and so
tractable generalizations have been proposed. Ishwaran and
James (2001) described the construction of stick-breaking
priors (such as thePoisson–Dirichlet process) and James et al.
(2009) discussed inference in the class of normalized random
measures with independent increments (NRMI). In all these
priors, G is a discrete distribution so that

G =
∞∑

k=1

wkδθk (2)

where δθ represents the Dirac measure that places measure 1
at θ , wk > 0 (k = 1, 2, . . .) and

∑∞
k=1 wk = 1. I will write

θ = (θ1, θ2, θ3, . . .) and w = (w1, w2, w3, . . .). Standard

choices of prior often imply that θ1, θ2, . . .
i.i.d.∼ H (whose

density is h if H is continuous) and that θ and w are inde-
pendent. The discreteness of G implies that the density of yt
is

p(yt ) =
∞∑

k=1

wk k(yt | θk, φ) (t = 1, . . . , n).

The construction of methods for posterior inference in
nonparametric mixture models is challenging since an infi-
nite number of parameters is involved and the posterior is
typically analytically intractable.ManyMarkov chainMonte
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Carlo (MCMC) methods have been proposed using differ-
ent representations of the nonparametric prior including:
Pólya urn scheme representations (Escobar and West 1995;
MacEachern and Müller 1998; Neal 2000; Favaro and Teh
2013), stick-breaking representations (Ishwaran and James
2001; Papaspiliopoulos and Roberts 2008; Walker 2007;
Kalli et al. 2011) and normalized Lévy process represen-
tations (Griffin and Walker 2011). These allow effective
inference for a wide-range of nonparametric prior for both
conjugate model (where k and H are conjugate) and non-
conjugate models in static inference problems.

The increasing range of applications of nonparametric
models has lead to inferential problems and modelling sit-
uations which are not well-suited to MCMC methods. For
example, in economics, Bayesian nonparametric mixture
models have been applied to stochastic volatility mod-
elling (Jensen and Maheu 2010; Delatola and Griffin 2011,
2013; Jensen and Maheu 2014) for a financial time series
y1, . . . , yn . These models assume a nonparametric mixture
model for the unknown distribution p(yt |σt ) where σt is
a scale parameter which evolves according to a stochastic
process. More generally, Caron et al. (2008) consider the use
of DP mixtures in dynamic linear models. In these models,
wemay be interested inmaking inference about the unknown
distribution at different time points. These results can be used
either to perform dynamic inference or to compute model
comparison measures such as log predictive scores (Geisser
and Eddy 1979) or h-step ahead root mean squared error. The
calculation of model marginal likelihoods, used in the calcu-
lation of Bayes factors, is another inferential problem that is
difficult withMCMCmethods and the estimation ofmarginal
likelihoods for nonparametric models has been particularly
challenging. Basu and Chib (2003) describe a method for
approximating marginal likelihood from MCMC output but
this can be time-consuming. Both these problems can be
addressed using sequential Monte Carlo (SMC) methods.

In this paper, I will develop SMC methods for the
wide-class of NRMI mixtures. SMC methods build an
approximation of the posterior with observations y1, . . . , yt
from an approximation of the posterior with observations
y1, . . . , yt−1. These have been heavily used with non-linear
state space models in dynamic problems where the posterior
distribution at each time point is needed for inference and
prediction. Repeated application of this process leads to the
posterior conditional on the full sample y1, . . . , yn and has
been proposed as an alternative to MCMCmethods for static
problems (e.g.Chopin 2002). The model in (1) can be repre-
sented in terms of allocation variables s1, . . . , sn which link
the observations to the components of the mixture model by
γt = θst . This alternative representation is

yt |st = k ∼ k(yt | θk, φ) (t = 1, . . . , n) (3)

p(st = k) = wk (t = 1, . . . , n; k = 1, 2, . . .).

This representation allows the nonparametric mixture model
to be written in the form of a state space model where
k(yt | θst , φ) is the observation equation, st is the state
and w, θ and φ are static parameters. SMC methods for
DP mixture models were initially developed by Liu (1996)
and MacEachern et al. (1999). They described sequential
importance sampling methods which exploited the Pólya
urn scheme representation of the DP and involved expensive
numerical integrations for non-conjugatemodels. In practice,
these algorithms can often perform poorly and lead to esti-
mates with large variances. Fearnhead (2004) extended their
algorithm to a Sampling-Importance-Resampling algorithm
(also known as a particle filter). Chopin (2002) described the
application of a similar algorithm to finite mixture models.
There has recently been renewed interest in SMCmethods for
nonparametric mixture models. Ulker et al. (2010) described
elaborations of the algorithm of Fearnhead (2004) and Car-
valho et al. (2010) described particle learning methods.

The paper is organised as follows. Section 2 reviews some
previous work on SMC methods for DP mixture models and
the wide class of NRMI’s which generalise the DP. Section 3
discusses SMC methods for conjugate and non-conjugate
NRMI mixtures. Section 4 briefly discusses the use of these
algorithms in particle Markov chainMonte Carlo (PMCMC)
samplers. Section 5 illustrates the use of these methods in
a range of situations. Section 6 gives a brief discussion of
the idea developed in the paper. The Online Appendix con-
tains implementation details for two commonly used classes
of NRMI’s: the DP and the normalized generalized gamma
process.

2 Background

In this section, I will review the use of SMC methods for DP
mixture models and the wide class of NRMI’s before con-
sidering the application of SMC methods to NRMI mixture
models in Sect. 3. The notation xi : j = (xi , . . . , x j ) will be
used as shorthand for vectors.

2.1 Sequential Monte Carlo methods for Dirichlet
process mixture models

Fearnhead (2004) described an SMC algorithm for themodel
in (1) where G is a given a DP prior to define a DP mix-
ture model. The Pólya urn scheme representation of the DP
(Blackwell andMacQueen1973) allows us towrite themodel
in (3) as

yt |s�
t = k ∼ k(yt | θ�

k , φ) (t = 1, . . . , n) (4)

pr
(
s�
t = k|s�

1:(t−1)

)

=
{ mt−1,k

M+t−1 if 1 ≤ k ≤ Kt−1
M

M+t−1 if k = Kt−1 + 1
(t = 1, . . . , n).

123



Stat Comput (2017) 27:131–145 133

where θ�
1:Kt

are the distinct values of γ1:t , mt,k = ∑t
k=1 I(

γk = θ�
k

)
and s�

1:t are defined by γt = θ�
s�t
. The allocation

variables s�
1:n are just a re-numbering of s1:n and θ�

1:Kt
is a

finite subset of θ .
If k and H are conjugate, we say that the DP mixture

model is conjugate. In this case,

pr
(
s�
t = k|s�

1:(t−1), y1:t
)

∝
{
mt−1,k k�

k(yt | s�
1:(t−1)) if 1 ≤ k ≤ Kt−1

M k�
new(yt ) if k = Kt−1 + 1

where

k�
k

(
yt |s�

1:(t−1)

)

=
∫
k(yt |θ)

∏
{ j |s�j=k,1≤ j≤t−1} k(y j | θ)dH(θ)

∫ ∏
{ j |s�j=k,1≤ j≤t−1} k(y j | θ)dH(θ)

and

k�
new(yt ) =

∫
k(yt | θ)dH(θ).

The availability of this distribution allows an algorithm to
be defined where N values s(1)

1:t , . . . , s
(N )
1:t are sampled from

p(s1:t |y1:t ) sequentially in t . The value s(i)
1:t is called the value

of s1:t in the i th particle and the notation z(i) is used generally
to represent the value of z in the i th particle. The details are
given in Algorithm 1. The algorithm can be very computa-

tionally efficient if k�
k

(
yt | s�

1:(t−1)

)
can be calculated using

sufficient statistics (Fearnhead 2004).

For t = 1, . . . , n, perform steps (1) and (2)

1. For i = 1, . . . , N perform steps (a) and (b)

(a) Sample s� (i)
t conditional on y1:t , and s� (i)

1:(t−1) from

q (k) ∝
{
m(i)

k,t−1 k
�
k

(
yt | s� (i)

1:(t−1)

)
if 1 ≤ k ≤ K (i)

t−1

M k�
new (yt ) if k = K (i)

t−1 + 1
.

(b) Calculate the unnormalized weight

ξ
(i)
t =Mk�

new (yt ) +
K (i)
t−1∑

k=1

m(i)
k,t−1k

�
k

(
yt | s� (i)

1:(t−1)

)
.

2. Re-weight the particles according to the weights ζi =
ξ

(i)
t∑N

i=1 ξ
(i)
t

(i = 1, . . . , N ).

Algorithm 1: SMC algorithm for conjugate DP mixture
models

The algorithm can be extended to non-conjugate mix-
ture models in several ways. Firstly, Algorithm 1 can be

directly used if k�
k

(
yt | s�

1:(t−1)

)
and k�

new (yt ) can be effi-

ciently approximated (using methods such as Monte Carlo
integration). This typically restricts us to problems where θ

is low-dimensional, often one-dimensional. Secondly, values
of θ�

1:Kt
can be included directly in the algorithm (rather than

integrating over their values) and a potential value of θ� (i)

K (i)
t−1+1

is generated from H (which is called θnew here). This algo-
rithm is summarized in Algorithm 2. The algorithm avoids
the need to approximate some integrals but introduces static
parameters into the SMC sampler with the associated poten-
tial problem of particle degeneracy (where the number of
distinct particles is far less than N ). Chopin (2002) suggests
alleviating this problem by introducing an extra Step 3) in
which θ

� (i)
j for j = 1, . . . , K (i)

t are updated for i = 1, . . . , N
using an MCMC step such as a Metropolis-Hastings random
walk step or a Gibbs step.

For t = 1, . . . , n, perform steps (1) and (2)

1. For i = 1, . . . , N perform steps (a) and (b)

(a) Sample θnew ∼ H and sample s� (i)
t conditional on y1:t , and

s� (i)
1:(t−1) from

q (k) ∝
{
m(i)

k,t−1 k
(
yt | θ

� (i)
k

)
if 1 ≤ k ≤ K (i)

t−1

M k (yt | θnew) if k = K (i)
t−1 + 1

.

(b) Calculate the unnormalized weight

ξ
(i)
t =Mk (yt | θnew) +

K (i)
t−1∑

k=1

m(i)
k,t−1k

(
yt | θ

� (i)
k

)
.

2. Re-weight the particles according to the weights ζi =
ξ

(i)
t∑N

i=1 ξ
(i)
t

(i = 1, . . . , N ).

Algorithm 2: SMC algorithm for non-conjugate DP mix-
ture models

The problem of particle degeneracy is most pronounced in
Algorithm 2 where static parameters θ�

1:Kt
are introduced but

there is always a potential problem of particle degeneracy in
all SMC methods for mixture models since s� (i)

1:t act as sta-
tic parameters when moving beyond the t th iteration. Ulker
et al. (2010) suggest sampling a block s�

(t−r):t conditional
on s�

1:(t−r−1) at the t th iteration to rejuvenate the particles.
Alternatively s�

1:t can be updated in Step 2.
Computational methods for approximating the marginal

likelihood p(y1, . . . , yn) are useful in the calculation of
Bayes factors for hypothesis testing and can be used in
PMCMC methods (Andrieu et al. 2010). Del Moral (2004)
shows that the marginal likelihood can be a simply, unbias-
edly estimated by

n∏

t=1

(
1

N

N∑

i=1

ξ
(i)
t

)
.
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which only uses the weights in an SMC sampler.

2.2 Normalized random measures with independent
increment mixtures

Bayesian inference for NRMI mixtures was discussed by
James et al. (2009). Only the class of homogeneous NRMI
will be considered in this paper where

G(B) = μ(B)

μ(Y)

where Y is the support of G and μ is a completely ran-
dom measure. If the completely random measure is suitably
defined, this implies that

μ =
∞∑

k=1

Jkδθk

where J1, J2, . . . are the jumps of a non-Gaussian Lévy
process (i.e. a subordinator) with Lévy density ρ(x) and θ is
independent of J . In this case, G can be written in the form
of (2) with w1, w2, w3, . . . defined by

wk = Jk∑∞
l=1 Jl

.

The process is well-defined if 0 <
∑∞

l=1 Jl < ∞ which
occurs if

∫∞
0 ρ(x) dx = ∞. The choice of ρ(x) controls

the rate at which the jumps of the Lévy process decay and
this interpretation can be used to define a prior. Several
previously proposed priors fit into this class. The Dirichlet
process (Ferguson 1973) with mass parameter M arises by
taking J1, J2, J3, . . . to be the jumps of a gamma process
which has Lévy density ρ(x) = Mx−1 exp{−x} (where
M > 0). The normalized generalized gamma (NGG) process
(Lijoi et al. 2007) occurs as the normalization of a general-
ized gamma process (Brix 1999) which has Lévy measure
ρ(x) = M

�(1−γ )
x−1−γ exp{−λx} (where M > 0, 0 < γ < 1

and λ > 0). A special case of this class is the Normalized
Inverse Gaussian process (Lijoi et al. 2005) which occurs
when γ = 1/2 and λ = 1.

The joint distribution of the allocations s�
1, . . . , s

�
t is par-

ticularly useful for the conjugate mixture model and can be
written

pr(s�
1:t ) = E

[ Kt∏

k=1

w
mk,t
k

]
.

This is referred to as the Exchangeable Product Partition For-
mula (EPPF) and it only depends on the values of s�

1:t through
m1,t , . . . ,mKt ,t and Kt . Following James et al. (2009), it is
useful to define the notation

τn(u) =
∫

sn exp{−us}ρ(s) ds

and

ψ(u) =
∫

(1 − exp{−us})ρ(s) ds.

James et al. (2009) used the identity
∫∞
0 exp{−vx} dv = 1

x
to show that the EPPF can be conveniently written as

pr(s�
1:t ) =

∫ ∞

0
· · ·

∫ ∞

0
E

⎡

⎣
Kt∏

k=1

J
mk,t
k exp

⎧
⎨

⎩−
t∑

j=1

v j

∞∑

l=1

Jl

⎫
⎬

⎭

⎤

⎦

× dv1 · · · dvt

= �(t)−1
∫ ∞

0
· · ·

∫ ∞

0
exp {−ψ (Ut )}

Kt∏

k=1

τmk,t (Ut )

× dv1 . . . dvt (5)

= �(t)−1
∫ ∞

0
Ut−1
t exp {−ψ (Ut )}

Kt∏

k=1

τmk,t (Ut )

× dUt (6)

where Ut = ∑t
j=1 v j . This result is particularly important

for deriving a tractable expression for the predictive distrib-
ution of s�

t which can be expressed as

pr
(
s�
t | s�

1:(t−1)

)
= pr

(
s�
1:t
)

pr
(
s�
1:(t−1)

) . (7)

In the MCMC literature (Favaro and Teh 2013), it is com-
mon to sample s�

1:t andUt from the distribution proportional
to

Ut−1
t exp {−ψ (Ut )}

Kt∏

k=1

τmk,t (Ut ) .

The result in (6) implies that the marginal distribution of
pr
(
s�
1:t
)
with this distribution is the EPPF. The Pólya urn

scheme conditional on v1:t is

pr
(
s�
t | s�

1:(t−1), v1:t
)

= pr
(
s�
1:t |Ut

)

pr
(
s�
1:(t−1)|Ut

) . (8)

In the case of the NGG process, this leads to the following
expression for the conditional Pólya urn scheme (full details
are provided in Sect. 2 of Online Appendix)

p
(
s�
t = k | s�

1:(t−1), v1:t
)

=
{ mk,t−1−γ

M(λ+Ut )
γ +(t−1)−Kt−1γ

if k ≤ Kt−1
M(λ+Ut )

γ

M(λ+Ut )
γ +(t−1)−Kt−1γ

if k = Kt−1 + 1
.
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If γ = 0 and λ = 1, this reduces to the Pólya urn scheme
familiar from the DP. The probability of joining a previously
defined component is proportional to mk,t−1 which is the
number of observations previously allocated to that compo-
nent. The probability of joining a new cluster is proportional
to M . As γ increases, the probability of allocating to a pre-
viously defined component is reduced and the probability of
allocating to a new component is increased. This leads to a
prior distribution for the number of clusters in a sample of
size n which becomes increasingly dispersed.

A second important result derived by James et al. (2009)
is the posterior distribution of μ. Let y1, . . . , yt be inde-
pendent and identically distributed according to G then the
posterior of μ conditional on Ut and y1, . . . , yt is a com-
bination of a finite set of fixed points ( Ĵ , θ̂ ) where θ̂k is
equal to the kth distinct value of y1, . . . , yt and p( Ĵk | y) ∝
ρ( Ĵk) Ĵ

mk,t
k exp{− ĴkUt } and ( J̃ , θ̃ ) where J̃ is a Poisson

processwith intensityρ(J ) exp{−JUt } and θ̃k
i.i.d.∼ H (k =

1, 2, . . .).

3 Sequential Monte Carlo methods for NRMI
mixtures

3.1 Conjugate NRMI mixtures

An SMC algorithm for conjugate NRMI mixture models
could be defined by extending the methods for DP mixtures
described in Sect. 2.1. An expression for the conditional dis-
tribution of s�

t given s
�
1:(t−1) and v1:t for anyNRMImixture is

available using (7). This is a finite, discrete distribution but
it can be difficult to compute the probabilities of different
values of s�

t for many choices of ρ(x). Therefore, the pro-
posed SMC algorithm for conjugate NRMImixtures uses the
extended state (s�

t , vt ) whose joint prior distribution is

pr(s�
1:t , v1:t ) = �(t)−1 exp {−ψ (Ut )}

Kt∏

k=1

τmk,t (Ut ) . (9)

The predictive distribution of s�
t and vt can be expressed as

pr
(
s�
t , vt | s�

1:(t−1), v1:(t−1)

)

= pr
(
s�
t | s�

1:(t−1), v1:t
)
pr
(
vt | s�

1:(t−1), v1:(t−1)

)

where

pr
(
vt | s�

1:(t−1), v1:(t−1)

)
=

pr
(
s�
1:(t−1), v1:t

)

pr
(
s�
1:(t−1), v1:(t−1)

)

and

pr
(
s�
t | s�

1:(t−1), v1:t
)

= pr
(
s�
1:t , v1:t

)

pr
(
s�
1:(t−1), v1:t

) . (10)

It follows from (6) and (9) that

pr
(
s�
1:(t−1), v1:t

)

=
Kt−1+1∑

s�t =1

pr
(
s�
1:t , v1:t

)

×
Kt−1+1∑

s�t =1

E

[ Kt∏

k=1

J
mk,t
k exp

{
−Ut

∞∑

l=1

Jl

}]

= E

⎡

⎣
∞∑

l=1

Jl

Kt−1∏

k=1

J
mk,t−1
k exp

{
−Ut

∞∑

l=1

Jl

}⎤

⎦

= −E

⎡

⎣
Kt−1∏

k=1

J
mk,t−1
k

d

dvt
exp

{
−Ut

∞∑

l=1

Jl

}⎤

⎦

= − d

dvt

⎡

⎣exp {−ψ (Ut )}
Kt−1∏

k=1

τmk,t−1 (Ut )

⎤

⎦ .

This implies that

pr
(
vt | v1:(t−1), s

�
1:(t−1)

)
∝

− d

dvt

⎡

⎣
Kt−1∏

k=1

τmk,t−1 (Ut ) exp {−ψ (Ut )}
⎤

⎦

and, clearly, its distribution function is

∏Kt−1
k=1 τmk,t−1 (Ut ) exp {−ψ (Ut )}

∏Kt−1
k=1 τmk,t−1 (Ut−1) exp {−ψ (Ut )}

.

Values of vt can always be simulated using inversion sam-
pling. The conditional distribution of s�

t is

pr
(
s�
t = k | s�

1:(t−1), v1:t
)

=
pr
(
s�
1:(t−1), s

�
t = k, v1:t

)

p
(
s�
1:(t−1), v1:t

)

which is a finite, discrete distribution and so can be sampled
easily. The full algorithm for the conjugate NRMI mixture
model is shown in Algorithm 3. Unlike the algorithm for DP
mixtures described in Sect. 2.1, an adaptive resampling step
is introduced which can lead tomore accurate estimates from
the SMC method than resampling at every step (see e.g. Del
Moral et al. 2006). The resampling step uses the effective
sample size (ESS) which can be loosely interpreted as the
number of independent samples needed to produce estimates
with the same Monte Carlo error as the SMC algorithm. In
this (and subsequent algorithms), resampling only occurs if
the ESS is below some threshold aN (where a = 0.5 is a
standard value used throughout the SMC literature and in

123



136 Stat Comput (2017) 27:131–145

this paper). Posterior summaries are calculated as weighted
average so that e.g.

E[ f (s�
1:t )|y1:t ] =

∑N
i=1 ξ

(i)
t f

(
s� (i)
1:t

)

∑N
i=1 ξ

(i)
t

.

Choose a threshold a (0 < a < 1), initialize ξ
(1)
0 = 1, . . . , ξ (N )

0 = 1.
For t = 1, . . . , n, perform steps (1)–(3)

1. For i = 1, . . . , N perform steps (a)–(c)

(a) Sample v
(i)
t from the distribution v

(i)
t | s� (i)

1:(t−1),

v
(i)
1:(t−1).

(b) Sample s�
t
(i) from the probability mass function

q(k) ∝

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pr
(
s� (i)
t = k | s� (i)

1:(t−1), v
(i)
1:t
)
k�
k

(
yt | s� (i)

1:(t−1)

)

if k ≤ K (i)
t−1

pr
(
s� (i)
t = K (i)

t−1 + 1|s� (i)
1:(t−1), v

(i)
1:t
)
knew (yt )

if k = K (i)
t−1 + 1

.

(c) Update the unnormalized weight

ξ
(i)
t = ξ

(i)
t−1

[
pr
(
s� (i)
t = K (i)

t−1 + 1 | s� (i)
1:(t−1), v

(i)
1:t
)
knew (yt )

+
K (i)
t−1∑

k=1

pr
(
s� (i)
t = k | s� (i)

1:(t−1), v
(i)
1:t
)
kk
(
yt | s� (i)

1:(t−1)

)]
.

2. Calculate ESS =
(∑N

i=1 ξ
(i)
t

)2

∑N
i=1 ξ

(i) 2
t

.

3. If ESS < aN , then re-weight the particles according to the

weights ζi = ξ
(i)
t∑N

i=1 ξ
(i)
t

(i = 1, . . . , N ) and update s� (i)
1:t

(i = 1, . . . , N ) using MCMC. Set ξ (1)
t = 1, . . . , ξ (N )

t = 1.

Algorithm3:SMCalgorithm for conjugateNRMImixture
models

3.2 Non-conjugate NRMI mixtures

The algorithm defined in the previous subsection exploit
the conjugacy of the mixture model and some properties of
NRMI priors to define an algorithm that works directly on the
allocation variables s�

1:t and v1:t . Non-conjugate nonparamet-
ricmixturemodels typically lead to additional computational
effort since the random measure cannot be analytically inte-
grated from the model.

Two SMC methods for non-conjugate NRMI mixture
models will be considered. The first directly extends the sam-
plers defined in Sect. 3.1 by integrating out the sizes of the
jumps, J1, J2, . . . and so extends Favaro and Teh (2013) from
MCMC to SMC. The second extends slice samplingmethods
for NRMI mixture models (Griffin and Walker 2011) from
MCMC to SMC.

The first method for non-conjugate mixture models is
defined in the spirit of Favaro and Teh (2013) who extend

Algorithm 8 of Neal (2000) for DP mixture models to NRMI
mixtures by including Ut as an auxiliary variable in an
MCMC framework. Algorithm 2 can be extended by sam-

pling m values θnew,1, . . . , θnew,m
i.i.d.∼ H �

t in Step 1(a) in
place of θnew. The algorithm allows for values of θnew drawn
from a distribution H �

t which can be chosen to reflect the
centring measure H and yt . The choice H �

t = H leads

to a simplification of the proposal distribution for s(i)
t and

the weight. The auxiliary particle filter (Pitt and Shephard

1999) would choose h�
t

(
θ̃

(i)
k

)
∝ h

(
θ̃

(i)
k

)
k
(
yt |θ̃ (i)

k

)
. If this

choice cannot be sampled straightforwardly then a choice of

h�
t

(
θ̃

(i)
k

)
that approximates this distribution could be used.

The full algorithm is presented as Algorithm 4. Step 1(a)
can be completed using the methods developed for conju-
gate NRMI mixture models and the updating in Step 3 can
be completed using theMCMCmethods described in Favaro
and Teh (2013).

Choose a threshold a (0 < a < 1), initialize ξ
(1)
0 = 1, . . . , ξ (N )

0 = 1.
For t = 1, . . . , n, perform steps (1)–(3)

1. For i = 1, . . . , N perform steps (a)–(d)

(a) Sample v
(i)
t from the distribution v

(i)
t | s� (i)

1:(t−1), v
(i)
1:(t−1).

(b) Sample θnew,1:m
i.i.d.∼ H �

t

(c) Sample s�
t
(i) from the probability mass function

q(k) ∝

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pr
(
s� (i)
t = k | s� (i)

1:(t−1), v
(i)
1:t
)
k�
k

(
yt | θ

� (i)
k

)

if k ≤ K (i)
t−1

pr
(
s� (i)
t = K (i)

t−1 + 1|s� (i)
1:(t−1), v

(i)
1:t
)

1
m

∑m
j=1 k

(
yt | θnew, j

) h(θnew, j )

h�
t (θnew, j )

if k = K (i)
t−1 + 1

.

If s� (i)
t = K (i)

t−1 + 1, then set θ� (i)

K (i)
t−1+1

= θnew, j with proba-

bility
k(yt |θnew, j )

h(θnew, j )

h�
t (θnew, j )

∑m
l=1 k(yt |θnew,l )

h(θnew,l )

h�
t (θnew,l )

.

(d) Update the unnormalized weight

ξ
(i)
t = ξ

(i)
t−1

[
pr
(
s� (i)
t = K (i)

t−1 + 1|s� (i)
1:(t−1), v

(i)
1:t
)

1

m

m∑

j=1

k
(
yt | θnew, j

) h(θnew, j )

h�
t (θnew, j )

+
K (i)
t−1∑

k=1

pr
(
s� (i)
t = k | s� (i)

1:(t−1), v
(i)
1:t
)
kk
(
yt | θ

� (i)
k

) ]
.

2. Calculate ESS =
(∑N

i=1 ξ
(i)
t

)2

∑N
i=1 ξ

(i) 2
t

.

3. If ESS < aN , then re-weight the particles according to the

weights ζi = ξ
(i)
t∑N

i=1 ξ
(i)
t

(i = 1, . . . , N ) and update s� (i)
1:t , θ� (i)

1:K (i)
t

(i = 1, . . . , N ) using MCMC. Set ξ (1)
t = 1, . . . , ξ (N )

t = 1.

Algorithm 4:Marginal SMC algorithm for non-conjugate
NRMI mixture models
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The second method is based on slice sampling. Slice sam-
plers are auxiliary variableMCMCmethods which introduce
latent variables that make all steps of the Gibbs sampler
involve only a finite number of the distinct values of G. Grif-
fin and Walker (2011) described two Gibbs samplers which
efficiently simulate from any NRMI mixture models without
truncation error. They define their Slice 1 sampler using the
allocation variables s1, . . . , sn (rather than s�

1, . . . , s
�
n used in

the previous section) by writing the likelihood contribution∏t
j=1 ws j k(y j | θs j ) in the following way

t∏

j=1

I(κ j < Js j )k(y j | θs j ) exp

{
−v j

∞∑

k=1

Jk

}
(11)

where I(·) is the indicator function. Integrating out v1, . . . , vt
and κ1, . . . , κt leads to the original likelihood contribution.
They defined their Slice 2 sampler by writing the likelihood
contribution in the alternative form

t∏

j=1

I(κ < αt )

αt
Js j k(y j | θs j ) exp

{
−v j

∞∑

k=1

Jk

}
.

where αt = min{Js j | j = 1, . . . , t}. The introduction of the
latent variables κ1, . . . , κt in Slice 1 and κ in Slice 2 leads to
likelihood contributions that only depend on a finite number
of jumps and locations.Afinite dimensional representation of
the posterior which is suitable for simulation can be defined
by integrating out all other jumps and locations.

The forms of the likelihood introduced in Slice 1 and Slice
2 are also convenient for SMC methods since the number of
latent parameters grows with the number of observations. In
addition to st , there are states κt and vt in sampler 1 and vt
in sampler 2 (with κ treated as a static parameter). However,
it is not immediately clear how to sample from their joint
predictive distributions. The following method is a simple
solution which works for both Slice 1 and Slice 2. In Slice 1,
we firstly integrate all jumps ( Ĵ and J̃ defined at the end of
Sect. 3) from the model then the latent variable vt is sampled
using the method for a conjugate model. The latent variable
κt is sampled by first simulating another latent variable dt
according to the conditional distribution of st given in (10).
If dt is associated with a new jump then a new value is drawn
from the centring distribution H and added to θ̂ . A random
variable νt is introduced with νt = 1 if dt is associated with
a new jump and νt = 0 otherwise. The points in Ĵ are then
simulated conditional on s1:(t−1) and νt and associated with

θ̂ . Finally, κt is simulated from U
(
0, Ĵdt

)
. This allows us to

simulate the Rt jumps with size in (κt ,∞) and no observa-
tion allocated. These are denoted J̃1, . . . , J̃Rt which follow a
Poisson process with intensity exp {−J Ut } ρ(J ). Values of
θ̃ are simulated from H and associated with each point of J̃ .
The sample of κt , Ĵ and J̃ are from the joint distribution of κt

and J (restricted to (κt ,∞)) conditional on previous values.
This allows us to sample st from its conditional distribution
defined by (11).

Once all particles have been sampled, they are re-
weighted. Algorithm 5 describes all necessary steps. The
algorithm for Slice 1 can be easily adapted to the latent
variables construction in Slice 2. Firstly, the sampling step
for κt in Slice 1 can be replaced by the following sam-
pling step for κ , simulated according to κ ∼ U(0, βt )

where βt is the minimum of Js1 , . . . , Jst−1 and Jdt and J̃ is
now from a Poisson process with intensity exp{−JUt }ρ(J )

restricted to the interval (κ,∞). The allocation st is then
simulated from the conditional distribution q (st = k) ∝
max {Jk, αt−1} k (yt | θk). Once all particles have been sam-
pled, they are re-weighted. Algorithm 6 describes the full
method.

3.3 Estimating hyperparameters

In many applications of Bayesian nonparametric methods,
there are static parameters which we would like to infer.
For example, the parameter φ in (1) is a static parameter.
Similarly, there may be parameters that control the random
probability measure (such as the mass parameter M in the
Dirichlet process) or the centring distribution H may have
parameters. The estimation of static parameters in SMC sam-
plers is difficult. The simplest method include the parameters
as extra dimensions of the particle. However, this can lead
to particle degeneracy and poor estimation of the posterior
distribution of the parameters. Alternatively, the parameters
could be integrated out from themodel. This paper adopts the
alternative method of updating the static parameters using a
Gibbs step when the particles are resampled.

4 Particle Markov chain Monte Carlo methods

Particle Markov chain Monte Carlo methods (Andrieu et al.
2010) use SMC methods in MCMC algorithms for static
inference. There are two main cases of method: particle
Metropolis–Hastings and particle Gibbs sampler. Consider
the model in (4). The marginal posterior distribution of φ can
be sampled using a particle Metropolis–Hastings method.
An SMC method is used to unbiasedly estimate the mar-
ginal likelihood p(y|φ). This estimate is used in place of the
actual marginal likelihood in the usual Metropolis–Hastings
sampler. Algorithm 7 gives further details and Andrieu et al.
(2010) show that this sampler produce draws from the pos-
terior distribution of φ.

In order to perform cluster or density estimation, a pos-
terior sample from s�

1:n is needed and so I will concentrate
on particle Gibbs methods which can produce such a sam-
ple. Particle Gibbs methods use an SMC algorithm to jointly
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update states in a Gibbs sampler. In MCMC samplers where
the Pólya urn scheme representation is used such as meth-
ods for conjugate mixtures and auxiliary variable samplers
(Favaro and Teh 2013), particle Gibbs methods can be used
to jointly update the allocations s�

1:n . In so-called conditional
methods, the allocations are jointly updated conditional on
some jumps of the mixing measure (e.g. Papaspiliopoulos
and Roberts 2008; Kalli et al. 2011; Griffin andWalker 2011)
and so particle Gibbs methods offer no benefit.

Choose a threshold a (0 < a < 1), initialize U (1)
0 = 0, . . . ,U (N )

0 = 0 and ξ
(1)
0 = 1, . . . , ξ (N )

0 = 1. For t = 1, . . . , n, perform steps (1)–(3)

1. For i = 1, . . . , N , perform steps (a)–(g)

(a) Sample v
(i)
t from the distribution v

(i)
t | s(i)

1:(t−1), v
(i)
1:(t−1) and set U (i)

t = U (i)
t−1 + v

(i)
t .

(b) Sample d(i)
t from the distribution proportional to p

(
s(i)
t | s(i)

1:(t−1), v
(i)
1:t
)

, If d(i)
t = K (i)

t−1 + 1, simulate θ̃
(i)

K (i)
t−1+1

∼ H �
t . Set K

� (i)
t =

K (i)
t−1 + 1 if d(i)

t = K (i)
t−1 + 1 and K � (i)

t = K (i)
t−1 otherwise.

(c) Sample Ĵ (i)
1 , . . . , Ĵ (i)

K � (i)
t

. The density of Ĵ (i)
k is proportional to

(
Ĵ (i)
k

)m(i)
k,t−1+I

(
d(i)
t =k

)

exp
{
− Ĵ (i)

k U (i)
t

}
ρ
(
Ĵ (i)
k

)
.

(d) Sample κ
(i)
t ∼ U

(
0, Ĵ (i)

d(i)
t

)

(e) Sample J̃ (i)
1 , . . . , J̃ (i)

R(i)
t

from a Poisson process on
(
κ

(i)
t ,∞

)
with intensity exp

{
−JU (i)

t

}
ρ(J ). Simulate θ̃

(i)
1 , . . . , θ̃

(i)

R(i)
t

i.i.d.∼ H �
t .

(f) Let J (i) =
{
Ĵ (i), J̃ (i)

}
and θ(i) =

{
θ̂ (i), θ̃ (i)

}
. Sample s(i)

t according to

p(s(i)
t = k) ∝

⎧
⎪⎨

⎪⎩

I
(
Ĵk > κ

(i)
t

)
k
(
yt | θ̂

(i)
k

)
1 ≤ k ≤ K � (i)

t

I
(
J̃k > κ

(i)
t

)
k
(
yt | θ̃

(i)
k

)
h(θ

(i)
k )

h�
t (θ

(i)
k )

K � (i)
t + 1 ≤ k ≤ K � (i)

t + R(i)
t

.

(g) Update the unnormalized weight

ξ
(i)
t = ξ

(i)
t−1

∑
I
(
Ĵ (i)
k > κ

(i)
t

)
k
(
yt | θ̂

(i)
k

)
+ ∑

I
(
J̃ (i)
k > κ

(i)
t

)
k
(
yt | θ̃

(i)
k

)
h(θ̃

(i)
k )

h�
t (θ̃

(i)
k )

∑
I
(
Ĵ (i)
k > κ

(i)
t

)
+ ∑

I
(
J̃ (i)
k > κ

(i)
t

) .

2. Calculate ESS =
(∑N

i=1 ξ
(i)
t

)2

∑N
i=1 ξ

(i) 2
t

.

3. If ESS < aN , then re-weight the particles according to the weights ζi = ξ
(i)
t∑N

i=1 ξ
(i)
t

(i = 1, . . . , N ) and update all parameters using MCMC.

Set ξ (1)
t = 1, . . . , ξ (N )

t = 1.

Algorithm 5: Slice 1 SMC algorithm for non-conjugate NRMI mixture models

It is assumed that the posterior distribution of s� and φ for
the model in (4) is to be sampled using a Gibbs sampler. In
particleGibbs sampling,φ is updated from its full conditional
distribution and s� is updated using a conditional particle fil-
ter (Andrieu et al. 2010) which uses the current value of
s� as a reference trajectory in an SMC algorithm. A condi-
tional particle filter for a conjugate NRMI mixture model is
described in Algorithm 8. The first particle is the reference
trajectory which is fixed in the particle filter. Otherwise, the
algorithm evolves according to Algorithm 3 with new states

proposed and weights calculated (for all states including the
reference trajectory). This algorithm generalizes the original
CPF method by allowing different re-weighting schemes (as
discussed by Chopin and Singh 2013) and using adaptive
resampling (e.g. Andrieu et al. 2010). The basic algorithm
of Andrieu et al. (2010) arises if a = 1 and the particles are
re-weighted using multinomial sampling. A full description
of extension to stratified and residual resampling schemes
is given by Chopin and Singh (2013). Other variations on
the conditional particle filter have been proposed including

backward sampling (Whiteley 2010; Whiteley et al. 2010)
and updating of the trajectory in the SMC algorithm (Lind-
sten et al. 2014).

5 Illustrations

5.1 Comparison of SMC methods

The infinite mixture of normals model is one of the most
popular in Bayesian nonparametrics andwas a natural testing
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ground for the methods developed in this paper. The infinite
mixture model introduced by Griffin (2010) was used

Choose a threshold a (0 < a < 1), initialize U (1)
0 = 0, . . . ,U (N )

0 = 0 and ξ
(1)
0 = 1, . . . , ξ (N )

0 = 1. For t = 1, . . . , n, perform steps (1)–(3)

1. For i = 1, . . . , N , perform steps (a)–(h)

(a) Sample v
(i)
t from the distribution v

(i)
t | s(i)

1:(t−1), v
(i)
1:(t−1) and set U (i)

t = U (i)
t−1 + v

(i)
t .

(b) Sample d(i)
t from the distribution proportional to p

(
s(i)
t | s(i)

1:(t−1), v
(i)
1:t
)

. If d(i)
t = K (i)

t−1 + 1, simulate θ̃
(i)

K (i)
t−1+1

∼ H �
t . Set K

� (i)
t =

K (i)
t−1 + 1 if d(i)

t = K (i)
t−1 + 1 and K � (i)

t = K (i)
t−1 otherwise.

(c) Sample Ĵ (i)
1 , . . . , Ĵ (i)

K � (i)
t

. The density of Ĵ (i)
k is proportional to

(
Ĵ (i)
k

)m(i)
k,t−1+I

(
d(i)
t =k

)

exp
{
− Ĵ (i)

k U (i)
t

}
ρ
(
Ĵ (i)

)
.

(d) Let α(i)
t−1 = min

{
Ĵ (i)
1 , . . . , Ĵ (i)

K (i)
t−1

}
and β

(i)
t = min

{
Ĵ (i)
1 , . . . , Ĵ (i)

K � (i)
t

}
.

(e) Sample κ(i) ∼ U
(
0, β(i)

t

)

(f) Sample J̃ (i)
1 , . . . , J̃ (i)

R(i)
t

from a Poisson process on
(
κ(i),∞)

with intensity exp
{
−JU (i)

t

}
ρ(J ). Simulate θ̃

(i)
1 , . . . , θ̃

(i)

R(i)
t

i.i.d.∼ H �
t .

(g) Let J (i) =
{
Ĵ (i), J̃ (i)

}
and θ(i) =

{
θ̂ (i), θ̃ (i)

}
. Sample s(i)

t according to

q
(
s(i)
t = k

)
∝

⎧
⎪⎨

⎪⎩

max
{
Ĵ (i)
k , α

(i)
t−1

}
k
(
yt | θ̂

(i)
k

)
1 ≤ k ≤ K � (i)

t

max
{
J̃ (i)
k , α

(i)
t−1

}
k
(
yt | θ̃

(i)
k

)
h(θ̃

(i)
k )

h�
t (θ̃

(i)
k )

K � (i)
t + 1 ≤ k ≤ K � (i)

t + R(i)
t

.

(h) Update the unnormalized weight

ξ
(i)
t = ξ

(i)
t−1

∑
max

{
Ĵ (i)
k , α

(i)
t−1

}
k
(
yt | θ̂

(i)
k

)
+ ∑

max
{
J̃ (i)
k , α

(i)
t−1

}
k
(
yt | θ̃

(i)
k

)
h(θ̃

(i)
k )

h�
t (θ̃

(i)
k )

∑
max

{
Ĵ (i)
k , α

(i)
t−1

}
+ ∑

max
{
J̃ (i)
k , α

(i)
t−1

}

2. Calculate ESS =
(∑N

i=1 ξ
(i)
t

)2

∑N
i=1 ξ

(i) 2
t

.

3. If ESS < aN , then re-weight the particles according to the weights ζi = ξ
(i)
t∑N

i=1 ξ
(i)
t

(i = 1, . . . , N ) and update all parameters using MCMC.

Set ξ (1)
t = 1, . . . , ξ (N )

t = 1.

Algorithm 6: Slice 2 SMC algorithm for non-conjugate NRMI mixture models

yt |μt ∼ N(μt , aσ 2), t = 1, . . . , n (12)

μt ∼ G, t = 1, . . . , n

G ∼ NGG(γ, 1, M, H)

where H is a normal distribution with mean μ0 and variance
(1 − a)σ 2. Inference for the posterior distribution on the
full sample y1, . . . , yn only was considered to allow com-
parsion to MCMC methods. SMC methods for this model
were applied to two datasets: the ever-popular galaxy data
and the log acidity data. The data were standardized to have
mean 0 and variance 1 and the parameter values μ0 = 0 and
σ = 1 were chosen. The parameter a was fixed to 0.03 for
the galaxy data and 0.16 for the log acidity (these are similar

to the values estimated by Griffin 2010). The data were ran-
domly permuted and the SMC algorithms was run with 5000
particles.

1. Initialize φ and calculate an approximation L of p(y|φ) using
an SMC sampler.

2. Suppose that the current value of the parameter is φ and that a
new value φ′ is proposed according to the conditional density
q
(
φ′|φ). Calculate an approximation L ′ of p(y|φ′) using an

SMC sampler and

α
(
φ, φ′) = L ′ p(φ′)q

(
φ|φ′)

Lp (φ) q (φ′|φ)
.

If α
(
φ, φ′) < u, accept (φ′, L ′), otherwise retain (φ, L).

3. Return to Step 2.

Algorithm 7: General particle Metropolis-Hastings algo-
rithm CPF algorithm for an NRMI mixture models

Initially, a comparison of the methods for conjugate
Dirichlet process mixture model was performed. The meth-
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ods considered were Algorithms 3, 4 (with m = 3, 27, 250)
and 5. The number of clusters was used as the parameter of
interest to calculate the effective sample size (ESS) using the
method ofCarpenter et al. (1999). They assumed that the pos-
terior expectation to be approximated was ξ = E[g(η)|y1:t ]
where η were parameters of the model being estimated and
that R runs of the SMC method were performed. If the

estimate of ξ on the r th run was zr = ∑N
i=1 ζ

(i)
r g

(
η

(i)
r

)

and vr = ∑N
i=1 ζ

(k)
r g

(
η

(i)
r

)2 − z2r , the ESS was estimated

by M ν̄∑R
r=1(zr−z̄)2

where ν̄ and z̄ were the sample means of

ν1, . . . , νR and z1, . . . , zR respectively. The computational
time was calculated using the “tic-toc” function of Matlab.
The relative efficiency (R.E.) was defined to be the ratio of
the ESS and the computational time and so represented the
effective number of samples per unit of computational time.

Choose a threshold a (0 < a < 1), initialize ξ
(1)
0 = 1, . . . , ξ (N )

0 = 1.

Set the reference trajectory to be s� (1)
1:n and v

(1)
1:n .

1. For t = 1, . . . , n,

(a) For i = 2, . . . , N ,
i. Sample v

(i)
t from the distribution v

(i)
t |

s� (i)
1:(t−1), v

(i)
1:(t−1).

ii. Sample s�
t
(i) from the probability mass function

q(k) ∝

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

pr
(
s� (i)
t = k | s� (i)

1:(t−1), v
(i)
1:t
)

k�
k

(
yt | s� (i)

1:(t−1)

)
if k ≤ K (i)

t−1

pr
(
s� (i)
t = K (i)

t−1 + 1|s� (i)
1:(t−1), v

(i)
1:t
)

knew (yt ) if k = K (i)
t−1 + 1

.

(b) For i = 1, . . . , N , update the unnormalized weight

ξ
(i)
t = ξ

(i)
t−1

[
pr
(
s� (i)
t = K (i)

t−1 + 1 | s� (i)
1:(t−1), v

(i)
1:t
)
knew (yt )

+
K (i)
t−1∑

k=1

pr
(
s� (i)
t = k | s� (i)

1:(t−1), v
(i)
1:t
)
kk
(
yt | s� (i)

1:(t−1)

)]
.

(c) Calculate ESS =
(∑N

i=1 ξ
(i)
t

)2

∑N
i=1 ξ

(i) 2
t

.

(d) If ESS < aN , then re-weight the particles according to the

weights ζi = ξ
(i)
t∑N

i=1 ξ
(i)
t

(i = 1, . . . , N ) and update s� (i)
1:t

(i = 1, . . . , N ) using MCMC. Set ξ (1)
t = 1, . . . , ξ (N )

t = 1.

2. Simulate j from the distribution with probability mass function

p( j) = ζ j∑N
k=1 ζk

, j = 1, . . . , N . Return s� ( j)
1:n and v

� ( j)
1:n .

Algorithm 8:General CPF algorithm for conjugate NRMI
mixture models

Results are presented in Table 1. Algorithm 3 gave the
largest ESS for both data sets and was used as a benchmark
against which the non-conjugate samplers (Algorithms 4 and

Table 1 The ESS of estimating the posterior mean number of clusters
from 5000 particles with a DP mixture model

Algorithm Galaxy Log acidity

ESS Time R.E. ESS Time R.E.

Algorithm 3 3048 32 95.3 2233 81 27.6

Algorithm 4 (m = 3) 736 85 8.7 536 210 2.6

Algorithm 4 (m = 27) 2004 90 22.3 1373 224 6.1

Algorithm 4 (m = 250) 2136 103 22.5 1660 257 6.5

Algorithm 5 593 142 4.2 428 327 1.3

Table 2 The ESS of estimating the posterior mean number of clusters
from 5000 particles with an NGG process prior

Algorithm Galaxy Log acidity

ESS Time R.E. ESS Time R.E.

Algorithm 3 3349 334 10.0 1747 581 3.0

Algorithm 4 (m = 3) 389 378 1.0 321 739 0.4

Algorithm 4 (m = 27) 1311 370 3.5 930 738 1.3

Algorithm 4 (m = 250) 2188 427 5.1 1009 811 1.2

Algorithm 5 625 531 1.0 511 1258 0.4

Table 3 The ESS of estimating the posterior mean number of a from
5000 particles with a DP mixture model

Algorithm Galaxy Log acidity

ESS Time R.E. ESS Time R.E.

Algorithm 3 1107 45 24.6 814 81 10.0

Algorithm 4 (m = 3) 38 103 0.4 190 204 0.9

Algorithm 4 (m = 27) 190 104 1.8 385 207 1.9

Algorithm 4 (m = 250) 382 127 3.0 274 217 1.3

Algorithm 5 170 144 1.2 302 270 1.1

5) which do not exploit the conjugacy of the mixture model
were compared. Algorithm 4 outperformed Algorithm 5 for
both data sets. The value ofm inAlgorithm4had a substantial
effect on the ESS which was roughly three times larger for
m = 250 compared to m = 3 and was much closer to the
ESS for Algorithm 3. The effect on average computational
time of increasing m is small and so large values of m are
preferable.

Results for the same model with an NGG process prior
with γ = 0.2 for the mixing distribution are given in Table 2.
The relative performances of algorithmswere broadly similar
to thosewith aDPmixturemodel. Algorithm 3 outperformed
bothAlgorithms4 and5withm playing a crucial role in deter-
mining the ESS in Algorithm 4. In this case, the Algorithms
4 and 6 have similar ESS’s if m is small (in fact, Algorithm
4 withm = 9 (results not shown) had a similar ESS to Algo-
rithm 5 for both data sets).
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Table 4 The ESS of estimating the posterior mean number of a from
5000 particles with a NGG process prior

Algorithm Galaxy Log acidity

ESS Time R.E. ESS Time R.E.

Algorithm 3 1018 323 3.2 735 581 1.3

Algorithm 4 (m = 3) 40 384 0.1 156 745 0.2

Algorithm 4 (m = 27) 197 386 0.5 334 754 0.4

Algorithm 4 (m = 250) 411 407 1.0 478 755 0.6

Algorithm 5 289 547 0.5 319 1066 0.3

Table 5 The ESS of estimating the posterior mean number of clusters
with DP mixture model using different MCMC samplers

Algorithm Galaxy Log acidity

ESS Time R.E. ESS Time R.E.

Pólya urn scheme 801 6 133.5 553 11 50.3

Algorithm 8 (m = 3) 686 8 85.8 694 15 46.3

Algorithm 8 (m = 27) 545 9 60.6 601 17 35.4

Slice 2 307 11 27.9 234 16 14.6

The previous results assumed a fixed value for the parame-
ter a which effects the modality and shape of the unknown
density of the data. Often, we would want to estimate this
parameter with the unknown density. Table 3 shows results
for the DP mixture model with a given a uniform prior on
(0, 1). The ESS was now calculate with the posterior mean
of a as the parameter of interest. The ESS’s for the non-
conjugate methods (Algorithms 4 and 6) were noticeably
smaller relative to the ESS for Algorithm 3 compared to the
case where a was known. Between the methods for non-
conjugate mixtures, Algorithm 4 provided the largest ESS
for the two data sets but only when m was large and the
Algorithm 5 method provided a much ESS to Algorithm 4
than the case where a was known.

The parameter γ in the NGG process prior controls the
flatness of the prior on the number of clusters in a sample of
size n (Lijoi et al. 2007). Larger values of γ favouring a larger
number of clusters of which many have a small size. The
results with anNGGproces prior with γ = 0.2 on themixing
distribution are shown in Table 4. These indicated a broadly
similar pattern of results to those for the DP mixture model
but with slightly larger ESS values. These results indicated
that all SMC algorithms gave good performance for posterior
computation and that a large value of m was preferable for
Algorithm 4.

Table 5 shows the ESS (estimated using the initial positive
sequence estimator of Geyer 1992) and computational times
for three MCMC methods for NRMI mixtures: Conjugate
marginalized sampler (Favaro and Teh 2013), the generaliza-
tion of Neal’s algorithm 8 method to NRMI mixture models
with m auxiliary variables (Favaro and Teh 2013) and the

Table 6 TheESSof estimating the posteriormean of awithDPmixture
model using different MCMC samplers

Algorithm Galaxy Log acidity

ESS Time R.E. ESS Time R.E.

Pólya urn scheme 75 8 9.4 80 13 6.2

Algorithm 8 (m = 3) 35 9 3.9 80 16 5.0

Algorithm 8 (m = 27) 64 10 6.4 101 18 5.6

Slice 2 37 12 3.1 61 20 3.1

Slice 2 sampler (Griffin andWalker 2011) for non-conjugate
mixture models. The results clearly showed that the MCMC
methods dominated the SMCmethods in terms of the relative
efficiency for both conjugate and non-conjugate DP mixture
model samplers. The results for posterior inference about
the parameter a in the DP mixture models using MCMC are
shown in Table 6. In the conjugatemethods, the SMCmethod
had a larger relative efficiencies than the MCMCmethod for
both data sets. The SMC method was 1.9 times more effi-
cient for the log acidity data and 4.5 times more efficient
for the galaxy data. However, in non-conjugate methods, all
MCMC methods were more efficient than all SMC meth-
ods for both data sets. The difference in ordering of relative
efficiency performance of SMC and MCMC methods for
conjugate and non-conjugate models can be explained by
two factors. Firstly, the non-conjugate SMC methods have
between two and three time longer computational times than
MCMC methods. This difference is not explained by dif-
ferences in computational complexity and is probably due
to implementation issues in Matlab. Secondly, the MCMC
methods have similar ESS for conjugate and non-conjugate
mixture models but SMCmethods have much larger ESS for
conjugate than non-conjugate mixture models.

Particle Gibbs methods were described in Sect. 4. Gibbs
sampler with four conditional particle filters were considered
with different resampling schemes: multinomial resampling,
stratified resampling, adaptive multinomial resampling and
adaptive stratified resampling. The methods were run on the
infinite mixture model in (12) with a fixed value of a (chosen
as in the SMC examples). The results are shown in Fig. 1.
Some results with a small number of particles have been
excluded due to biased results produced in the runs. Multino-
mial resampling (Andrieu et al. 2010) led to relatively low
ESS’s for both data sets. Stratified resampling (Chopin and
Singh 2013) led tomuch larger ESS’s with a roughly ten-fold
increase in the ESS’s compared to multinomial resampling.
The addition of an adaptive updating step led to improved
ESS’s for both resamplingmethods. The addition of adaptive
updating led to a larger improvement for stratified resampling
with the log acidity data than the galaxy data. Overall, the
difference between the two resampling schemes is small if
adaptive updating is included. The methods with adaptive
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Fig. 1 The ESS and relative efficiencies of estimating the posterior
mean number of clusters with DP mixture model particle Gibbs sam-
plerswith different re-weighting schemeswithm particles. The schemes
were: multinomial (diamond), stratified (circle), adaptive multinomial
(plus), and adaptive stratified (times)

Table 7 The ESS of estimating the posterior mean number of clusters
with NGG process prior using different MCMC samplers

Algorithm Galaxy Log acidity

ESS Time R.E. ESS Time R.E.

Pólya urn scheme 924 8 115.5 683 14 48.8

Algorithm 8 (m = 3) 880 9 97.8 522 16 32.6

Algorithm 8 (m = 27) 822 10 82.2 645 18 35.8

Slice 2 333 52 6.4 369 56 6.6

Table 8 The ESS of estimating the posterior mean of a with an NGG
process prior using different MCMC samplers

Algorithm Galaxy Log acidity

ESS Time R.E. ESS Time R.E.

Pólya urn scheme 63 10 6.3 75 14 5.4

Algorithm 8 (m = 3) 58 10 5.8 68 16 4.3

Algorithm 8 (m = 27) 167 11 15.2 89 28 3.2

Slice 2 59 41 1.4 108 56 1.9

updating led to ESS’s in the thousands with only m = 5
particles. The ESS is larger than the ESS for the conjugate
methods with either SMC or MCMC. However, the compu-
tational time is much larger in the current implementation.
Interestingly, the ESS’s with adaptive resampling and 60 par-
ticles were over 4000 indicating that the draws were close to
independent (Tables 7, 8).

5.2 Nonparametric stochastic volatility modelling

Stochastic volatility models are a popular approach to mod-
elling a time series of prices of a financial asset, p1, . . . , pT

recorded over a fixed period time (e.g. daily). In a simple sto-
chastic volatilitymodel, the log returns rt = log pt+1−log pt
are modelled as

rt = β exp{ht/2}εt

and

ht+1 = μ + φ(ht − μ) + νt

where (εt , νt )
ind.∼ F . The variance of rt conditional on ht is

β2ψ exp{ht } where ψ = V[εt ] and so ht , which is called the
log volatility, allows the conditional variance of rt to change
over time. The model is usually made identifiable by set-
ting β = 1 or μ = 0. The distribution G is often assumed
to be a bivariate normal distribution. A non-zero correlation
between εt and νt allows modelling of the leverage effect,
which is the empirically observed difference in the effect on
log volatility of negative and positive log returns of the same
magnitude. Bayesian nonparametric approaches to estimat-
ing the distribution of εt are described in Jensen and Maheu
(2010) and Delatola and Griffin (2011) and to the estimation
of the joint distribution of εt and νt are described by Jensen
and Maheu (2014) and Delatola and Griffin (2013). I con-
sider a slight variation on the model of Jensen and Maheu
(2014)

(
εt
νt

)∣∣∣∣μt,1:2, ρt

∼ N

((
μt,1

μt,2

)
,

(
a1σ 2 √

a1a2σσhρt√
a1a2σσhρt a2σ 2

h

))
,

(μt,1:2, ρt ) ∼ G

where G is a given a DP prior with M = 1 and centring
measure

N

((
μ1

μ2

) ∣∣∣∣

(
0
0

)
,

(
(1 − a1)σ 2

(
1 − √

a1a2
)
σσhρ(

1 − √
a1a2

)
σσhρ (1 − a2)σ 2

h

))

×TN−1,1(ρ|μρ, σ 2
ρ ),

TNa,b(μ, σ 2) represents a normal distribution with mean μ

and variance σ 2 truncated to (a, b) and 0 < a1 < 1 and
0 < a2 < 1. The model allows different values of μ1, μ2

and ρ (which is the correlation) in each component and so
allows for a non-normal joint distribution of ηt and νt and a
non-linear leverage effect. The priors are φ ∼ Be(20, 1.5),
σ−2
h ∼ Ga(0.1, 0.1), σ−2 ∼ Ga(0.1, 0.1), μρ ∼ U(−1, 1)

and σ 2
ρ ∼ Ga(1, 100). This implies that the prior mean of

σ 2
ρ is 0.01 and supports small differences in the correlation

between different components.
Themodel is non-conjugate and an extension toAlgorithm

5 to allow parameter updating was used to fit data from the
FTSE100 index from17May2008 to 1May2012,which had
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Fig. 2 Estimated return distribution and log volatility at three dates:
14/12/2009, 22/2/2011 and 1/5/2012. The top row shows the filtered
median log volatility (solid line) with 95%credible interval estimated at
each date and the bottom row shows the filteredmean return distribution
at each date

1000 observations.We use a1 = a2 = 0.1which allows quite
substantial departures from bivariate normality (see Griffin
2010, for more details in the univariate context) and 5000
particles. The posterior distribution of the log volatility and
the posterior mean joint density of ηt and νt are shown at
three dates: 14 December 2009, 22 February 2011 and 1May
2012 which are the 400th, 700th and 1000th (final) returns.
The posterior mean densities show clear dependence and so
accommodate the leverage effect. The results also show a
much stronger negative dependence for more extreme values
of εt . However, the estimates seem to be very similar at the
three different time points.

5.3 Testing a parametric model against a nonparametric
alternative

The problem of testing a parametric model against a non-
parametric alternative using Bayesian methods has received
some attention in the literature. Carota and Parmigiani (1996)
use a DP based (rather than mixture of DP based) method
whereas Berger and Guglielmi (2001) uses a method based
on Polya trees. Consistency issue are considered by Dass
and Lee (2004). More recently, McVinish et al. (2009) have
proposed a method using mixtures of triangular distributions
and considered its consistency (Fig. 2).

The “schoolgirls” data set of the DPpackage in R records
the heights of 20 girls at ages 6–10 (in years). We consider
the problem of specifying a random effects model which has
the form

yi,t = β0 + (t − t̄)β1 + γi + εi,t ,

i = 1, . . . , n, t = 1, . . . , T

Fig. 3 The posterior mean
distribution of the random
effects in the nonparametric
model applied to the
“schoolgirl” data set

−20 0 20
0

0.1

0.2

0.3

γ

f( γ
)

where t is the age, t̄ = 8 is the average age, γi ∼ F is a ran-
dom effect and εi,t ∼ N(0, σ 2). A parametric specification
where F is a normal distributionwithmean zero and variance
σ 2

γ is tested against a nonparametric alternative where

γi ∼ N
(
μi , aσ 2

γ

)
, μi ∼ G, G ∼ DP(MH)

and H is a normal distribution with mean 0 and variance (1−
a)σ 2

γ . The parameter a is set equal to 0.03 to allow for awide-
range of distributions of the random effects. The other priors
are common to both models: β = (β0, β1)

T ∼ N(0, 1002),
σ−2 ∼ Ga(0.01, 0.01) and σ−2

γ ∼ Ga(0.01, 0.01). The pos-
terior mean of F for the nonparametric model is shown in
Fig. 3 and indicates a departure from a normal distribution.
To test the strength of this effect, we run Algorithm 3 to
calculate the log marginal likelihood for the nonparametric
model which is estimated to be −219.8. The log marginal
likelihood for the parametric model can be estimated using a
SMC giving a value of −218.5. This implies that the Bayes
factor in favour of the parametric model is e1.3 = 3.7 which
represents weak evidence against the nonparametric model.

6 Discussion

There has been little work on the use of SMC methods for
fitting nonparametric mixture models which are not based
on Dirichlet processes. This paper has described SMCmeth-
ods for the wide-class of NRMI mixture models with both
conjugate and non-conjugate structure. These can be used
to estimate nonparametric mixture models sequentially, esti-
matemarginal likelihoods or as components in particleGibbs
samplers. The results suggest that SMC methods work well
in conjugate mixture models. In particular, SMC methods
can outperform Gibbs samplers for parameter estimation
problems in static inference problems. I have considered
two methods for non-conjugate mixture models: one based
on slice sampling (Algorithms 5 and 6) and one based on
marginalization (Algorithm 4). The marginalization method
tends to outperform the slice sampling methods. Both meth-
ods provide useful inference in the problems considered. The
number of auxiliary variables (m) plays an important role in
the sampler. Suitable choice will depend on the problem at
hand but large values ofm (in the hundreds) seem appropriate
if values from H �

t can be generated cheaply. Particle Gibbs
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methods are an interesting approach formixturemodels since
these can jointly update s�

1, . . . , s
�
n in marginalized samplers.

The results in this paper indicate that the resampling mecha-
nism can have a substantial effect on the performance of the
algorithm. Adaptive resampling methods perform best in the
examples considered in this paper. These can produce rela-
tively uncorrelated samples with small numbers of particles
(an ESS over 1000 with five particles in both examples) and
near independent samples with a relatively small number of
particles. This is encouraging and is a promising direction for
future research. The NRMI class of priors underlies recently
developed time-series and spatial nonparametric priors (see
e.g. Griffin et al. 2013; Chen et al. 2013; Lijoi et al. 2014;
Bassetti et al. 2014) and extensions of SMCmethods to these
models will be an area of future research.
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