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Abstract Statistical model learning problems are tradition-
ally solved using either heuristic greedy optimization or
stochastic simulation, such as Markov chain Monte Carlo
or simulated annealing. Recently, there has been an increas-
ing interest in the use of combinatorial search methods,
including those based on computational logic. Some of these
methods are particularly attractive since they can also be
successful in proving the global optimality of solutions, in
contrast to stochastic algorithms that only guarantee optimal-
ity at the limit. Here we improve and generalize a recently
introduced constraint-based method for learning undirected
graphical models. The new method combines perfect elimi-
nation orderings with various strategies for solution pruning
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and offers a dramatic improvement both in terms of time
and memory complexity. We also show that the method is
capable of efficiently handling a more general class of mod-
els, called stratified/labeled graphical models, which have an
astronomically larger model space.
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1 Introduction

Score-based optimization or structural learning of statistical
models is typically performed over finite classes of models,
where the topology of the search space poses a challenge
for building an algorithm that can efficiently traverse across
hills and valleys shaping a multimodal target function to be
optimized. In particular in Bayesian model learning it is fre-
quently possible to score individual models based on data
using analytical formulas for the log unnormalized posterior,
either exactly or approximately. Algorithms for stochastic
simulation, such as Markov chain Monte Carlo (MCMC)
and simulated annealing, represent popular ways to identify
posterior optimal models. Learning of undirected graphi-
cal models, also known as Markov networks, is a widely
considered application of such tools (Corander et al. 2008;
Dellaportas and Forster 1999; Giudici and Castello 2003;
Giudici and Green 1999; Madigan and Raftery 1994). One
attractive property of these algorithms is their consistency at
the limit, i.e., they are known to identify an optimal model
with certainty as the number of iterations goes towards infin-
ity. On the other hand, this does not guarantee anything
concerning their performance for a finite number of itera-
tions.
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Statistical model learning has traditionally not been con-
sidered from the perspective of Boolean propositional logic,
given the apparent separation of the two research tradi-
tions. However, learning of Bayesian networks and Markov
networks has recently attained considerable interest in the
computational logic and machine learning communities, and
subsequently the use of various constraint-based methods,
such as integer programming, maximum satisfiability, and
answer set programming, has been proposed (Bartlett and
Cussens 2013;Berg et al. 2014;Corander et al. 2013;Cussens
2008; Parviainen et al. 2014).

Graphical models are an essential tool when considering
modular representations of multivariate systems. Despite of
the versatility ofMarkov networks to encode the dependence
structure over a set of discrete variables, certain more subtle
types of independencies cannot be expressed in such models.
The dependence structure induced byMarkov networks may
be unnecessarily stringent in that it can only convey condi-
tional independencies that hold in the entire outcome space
of the variables involved. This has motivated the develop-
ment of new classes of models. Using the theory of log-linear
models for contingency tables, Markov networks have been
generalized in a number of ways (Corander 2003; Eriksen
1999, 2005; Højsgaard 2003, 2004). The common basis of
these models is that conditional independence is augmented
by an independence that holds only in a subset of the joint
state space of the variables included in a particular condi-
tion. A similar construction has been proposed for Bayesian
networks in context-dependent Bayesian networks (Boutilier
et al. 1996; Friedman andGoldszmidt 1996;Koller andFried-
man 2009; Pensar et al. 2015).

Recently, a class of Markov networks that belong to
the general family of context-specific graphical models was
introduced (Nyman et al. 2014). Termed as stratified graphi-
calmodels (alternatively called as labeledMarkov networks),
this is the first class of undirected graphical models that
allows for the graphical representation of both conditional
and context-specific independencies, while simultaneously
enabling fully Bayesian learning under an explicit factor-
ization of the joint probability distribution. A non-reversible
Markov chainMonte Carlo (MCMC) algorithm has been uti-
lized for learning the maximum a posteriori (MAP) model
from data by Nyman et al. (2014).

In this paper, we develop further a constraint-based
learning method introduced for ordinary Markov networks
(Corander et al. 2013) by significantly extending applicabil-
ity with respect to network size and by also allowing context-
specific independence restrictions. The earlier method is not
directly applicable to larger Markov networks or labeled
networks due to the impractically large number of possible
model elements that need to be explicitly considered. This
prompted us to develop several formal pruning criteria. They
allow for reducing the number of relevant elements dramat-

ically, so that constraint-based methods become applicable.
Our pruning criteria are based on statistical arguments, such
that they act consistently in model rejection as the number of
samples available for model learning tends towards infinity.
In additionwe replace the balancing condition andmaximum
spanning tree considerations in (Corander et al. 2013) by a
perfect elimination ordering, which is much better suited for
obtaining a compact representation in terms of model con-
straints. We demonstrate the feasibility of this approach with
examples that have model cardinalities ranging from very
large to an astronomic size.

The structure of the paper is as follows. We start by intro-
ducing Markov networks and labeled Markov networks in
Sect. 2. Section 3 presents the principles we use for pruning
the set of candidate cliques to improve efficiency. A charac-
terization of chordal graphs in terms of perfect elimination
orderings is given in Sect. 4. Section 5 provides a constraint-
based representation of ordinary Markov networks and a
respective extension to labeled networks. An experimental
evaluation of the proposed method is given in Sect. 6, and
Sect. 7 concludes the paper.

2 Markov networks and their generalization

In the following we provide a brief introduction to graphical
models and summarize results derived for context-depen-
dent (labeled) Markov networks (Nyman et al. 2014). For
a more comprehensive presentation of the theory of proba-
bilistic graphical models see the standard references (Koller
and Friedman 2009; Lauritzen 1996; Whittaker 1990). An
undirected graph G = 〈N , E〉 consists of a set N of nodes
standing for random variables and a set E ⊆ N × N of
undirected edges. Two nodes δ and γ are adjacent in G if
{δ, γ } ∈ E . A path is a sequence of nodes such that every
two consecutive nodes in the sequence are adjacent. Two sets
A and B of nodes are separated by a third set D of nodes if
every path between a node in A and a node in B contains at
least one node in D. An undirected graph is chordal if, for
every path X1, . . . , Xn, X1 with n ≥ 4, there are two non-
consecutive nodes on the path connected by an edge. A clique
c is a set of nodes such that every pair of nodes in c is adja-
cent. Given the set C of maximal cliques in a chordal graph,
the multiset of separators can be obtained as intersections of
the cliques ordered by a spanning tree of the respective clique
graph (Golumbic 1980). Some details of this construction are
given in Sect. 5.

A Markov network consists of a graph G = 〈N , E〉 and
a joint distribution PN over the variables XN . The graph
specifies the dependence structure of the variables and PN
factorizes according to G (see below for chordal graphs).
Given G it is possible to ascertain whether two sets XA and
XB of variables are conditionally independent given another
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set XD of variables, due to the global Markov property

XA ⊥ XB | XD, if D separates A from B in G.

For a chordal graph G the probability of a joint outcome
xN ∈ XN , whereXN denotes the state space of the variables
XN , factorizes as

PN (xN ) =
∏

c∈C Pc(xc)
∏

s∈S Ps(xs)
.

We assume that all outcomes have strictly positive proba-
bilities and that the prior distribution for the model parame-
ters factorizes with respect to the graph. Then, the marginal
likelihood of a dataset X given a chordal graph (Dawid and
Lauritzen 1993) can be written as

P(X | G) =
∏

c∈C Pc(Xc)
∏

s∈S Ps(Xs)
. (1)

By employing aDirichlet distribution to assign prior prob-
abilities to outcomes xc ∈ Xc, the terms Pc(Xc) and Ps(Xs)

can be calculated analytically. These properties are inher-
ited by the class of decomposable labeled Markov networks,
which allow a full factorization of the probability for all joint
outcomes including context-specific independencies within
maximal cliques. In addition context-specific independen-
cies can be expressed in such Markov networks through
labels. The assumption of decomposability of labeled net-
works permits an analytical scoring function, which has been
customarily used also for ordinary Markov networks in the
Bayesian approaches to model learning.

Definition 1 (Label) Let (G, PN ) be aMarkov network. For
all {δ, γ } ∈ E , let L{δ,γ } denote the set of nodes adjacent to
both δ and γ . For a non-empty L{δ,γ }, define the label of the
edge {δ, γ } as the subsetL{δ,γ } of outcomes xL{δ,γ } ∈ XL{δ,γ }
for which Xδ and Xγ are independent given XL{δ,γ } = xL{δ,γ } ,
i.e.,

L{δ,γ } = {
xL{δ,γ } ∈ XL{δ,γ } : Xδ ⊥ Xγ | XL{δ,γ } = xL{δ,γ }

}
.

A label establishes a context in which a specific con-
ditional independence holds. An edge {δ, γ } is said to be
labeled if L{δ,γ } is well-defined and non-empty. Restricting
a Markov network with the collection L of all labels induces
a labeled Markov network.

Definition 2 (Labeled Markov network) A labeled Markov
network is defined by the triple (G, L , PN ), where G is the
underlying graph, L equals the joint collection of all labels
L{δ,γ } for the edges of G, and PN is a joint distribution
over XN that factorizes according to the restrictions imposed
by G and L .

Fig. 1 Labeled graph
encompassing the
context-specific independence
X2 ⊥ X3|X1 = 1

X3

X1 X2

X1 = 1

The pair (G, L) constitutes a labeled graph GL . Figure 1
shows the graphical representation of a labeled Markov net-
work containing three conditionally dependent variableswith
the context-specific independence X2 ⊥ X3|X1 = 1.

Imposing certain restrictions to the labeled graph will
enable the factorization of P(X | GL) according to (1) as
well as an analytic expression of Pc(Xc) and Ps(Xs).

Definition 3 (Decomposable labeled graph) Let (G, L) be
a labeled graph such thatG is chordal. Further, let EL denote
the set of labeled edges, Ec the set of all edges in a maximal
clique c, and ES the set of all edges in the separators of G.
The labeled graph is decomposable if

EL ∩ ES = ∅

and, for all c ∈ C ,

EL ∩ Ec = ∅ or
⋂

{δ,γ }∈EL∩Ec

{δ, γ } 
= ∅.

A labeled graph is decomposable ifG is chordal, there are
no labels for edges in separators, and in each maximal clique
all labeled edges have at least one node in common.A labeled
Markov network with a decomposable labeled graph is a
decomposable labeledMarkov network. The first two restric-
tions will allow for PN to be factorized according to (1). The
third restriction will enable an ordering (X1, . . . , X |c|) of the
variables in Xc, such that the variables in {X1, . . . , X |c|−1}
can be considered dependent on each other regardless of the
context, and the variable X |c| may or may not be independent
of a subset of {X1, . . . , X |c|−1} depending on the context.

If X |c| is the variable corresponding to the node in com-
mon to all labeled edges in a maximal clique, the variables
{X1, . . . , X |c|−1} can be considered parents of X |c|, denoted
by �|c|. In a Markov network each outcome of the variables
in �|c| would induce a specific conditional distribution for
X |c|. However, for labeled Markov networks some outcomes
of�|c| may be grouped together, with all outcomes in a group
inducing the same conditional distribution for X |c| (Boutilier
et al. 1996). This creates a partition of the outcome space of
�|c|, where each cell in the partition forms a distinguishable
parent combination for X |c|.
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For decomposable labeled graphs, Pc(Xc) can be calcu-
lated (Nyman et al. 2014) using the formula

|c|∏

j=1

q j∏

l=1

�
(∑k j

i=1 α j il

)

�
(
n(π l

j ) + ∑k j
i=1 α j il

)

k j∏

i=1

�
(
n(xij | π l

j ) + α j il

)

�(α j il)
,

(2)

where q j is the number of distinguishable parent combina-
tions for variable X j (i.e., there are q j distinct conditional
distributions for variable X j ), k j is the number of possible
outcomes for variable X j , α j il is the hyperparameter in the
Dirichlet distribution corresponding to the outcome i of vari-
able X j given that the parental combination of X j equals l,
n(π l

j ) is the number of observations of the combination l

for the parents of variable X j , and finally, n(xij | π l
j ) is the

number of observations, where the outcome of variable X j

is i given that the observed outcome of the parents of X j

equals l. Note that for X |c| a parent configuration l is not
necessarily comprised of a single outcome of�|c|, but rather
the set of outcomes inducing the same conditional distribu-
tion for X |c|.

The following choice of hyperparameters for the Dirichlet
distribution is motivated by the desideratum that the ordering
of the variables in �|c| should be irrelevant for statistical
learning of the model structure:

αjil = αjl = |Xc| · λjl

π j · kj ,

whereπ j is the total number of possible outcomes for the par-
ents of variable X j and k j is the number of possible outcomes
for variable X j . Further, λ jl equals the number of outcomes
for the parents of variable X j in group l with an equivalent
effect on X j , if X j is the last variable in the ordering. Oth-
erwise, λ jl equals one. The distribution Ps(Xs) can also be
calculated using (2). Note that our choice of hyperparame-
ters need not lead to a hyper-consistent prior distribution, as
defined in Dawid and Lauritzen (1993). However, research
in the machine learning field has clearly demonstrated that
Dirichlet priorswhich are not necessarily hyper-consistent do
in fact allow for the correct underlying dependence structure
to be better learned than priors which ensure consistency.
Marginal likelihood under a Dirichlet prior with constant
hyperparameters has been shown to be very robust against
scoring models with consistent priors, such as the BDe score
(Silander et al. 2007, 2008, 2010).

Given a labeled Markov network, the marginal likelihood
of a dataset can be calculated by combining (1) and (2),
and for practical purposes we consider only the logarith-
mic value log P(X|GL). Introducing the notation v(c, L) =
log Pc(Xc), which for non-empty label sets is dependent on
the value of L , the log marginal likelihood can be written as

log P(X|GL) =
∑

c∈C
v(c, L) −

∑

s∈S
v(s, L). (3)

The learning problem we consider consists of finding the
labeled graph GL that maximizes the posterior distribution

P(GL |X) = P(X|GL)P(GL)
∑

GL∈G P(X|GL)P(GL)
,

which can be reduced to identifying the model that optimizes
P(X|GL)P(GL). Here G denotes the set of all graphs under
consideration and P(GL) is the prior probability assigned to
GL . Here we use a prior penalizing dense graphs

P(GL) ∝ 2|N |− f ,

where |N | is the number of nodes in G and f is the num-
ber of free parameters in a distribution PN obeying G. This
choice of prior is motivated by the fact that adding a label
to a sparse graph often induces a context-specific indepen-
dence in a larger context than adding a label to a dense graph.
The value 2 f −|N | is a numerically convenient approximation
of the number of unique dependence structures that can be
derived by adding labels to G.

Different types of MCMC methods are often applied to
model optimization problems.While offering statistical con-
sistency for the resulting estimates, a drawback of such an
approach is that when the model space grows the num-
ber of iterations required to sample an optimal model even
once may become prohibitively high. In addition, there are
no general guarantees that a finite sample estimate corre-
sponds to a true posterior optimal model. These aspects
are particularly relevant when considering labeled Markov
networks as the size of the model space is astronomical
even for a moderate number of nodes. For Markov networks
the model space grows according to the formula 2d(d−1)/2,
where d is the number of nodes in the graph. For decompos-
able labeled Markov networks over a set of binary nodes a
lower bound for the cardinality of the model space is given
by

d · 22d−2·(d−1) − d + 1 − d(d − 1)

2
· (22

d−2 − 1),

which is the number of different label combinations for a
maximal clique with d nodes while satisfying the restric-
tions of a decomposable labeled graph. Using this result,
Table 1 shows the size of the model space relative to dif-
ferent numbers of nodes in Markov networks and labeled
Markov networks.
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Table 1 Size of model space given the number of nodes in the system

Nodes Markov networks Labeled Markov networks

3 8 >37

4 64 >16291

5 1024 >2.15 × 1010

6 32768 >7.25 × 1024

7 2.10 × 106 >4.39 × 1058

8 2.68 × 108 >5.81 × 10135

3 Filtering clique candidates

To apply a constraint-based learningmethod of the type intro-
duced in Corander et al. (2013) it is necessary to construct a
database containing the scores (log unnormalized posteriors)
v(c, L) for all possible clique candidates c (for Markov net-
works) and the respective labelings L of edges (for labeled
Markov networks). Due to the rapidly increasing number
of alternatives, it would be infeasible to obtain a reasonably
sized input for constraint solvers without pruning clique can-
didates.

Therefore, we present a number of principles that can be
used in practice to cut down the size of the clique database. A
labeling L of a chordal graph is proper iff L satisfies the con-
ditions of Definition 3. Thus, given a decomposable labeled
graph GL , the labeling L is proper by definition.

Lemma 1 Consider a chordal graph G and two different
sets L and L∗ of proper labelings. Let Ec

L and Ec
L∗ denote

the set of edges of a maximal clique c labeled by L and L∗,
respectively. If Ec

L ⊆ Ec
L∗ and v(c, L) > v(c, L∗), then

v(c, L∗) is irrelevant for model optimality.

Proof Since L and L∗ are both proper and Ec
L ⊆ Ec

L∗ , any
restrictions to the set of labeled edges in c satisfied by L∗
will automatically be satisfied by L . Further, as v(c, L) >

v(c, L∗), c cannot be labeled by L∗ in an optimal labeled
graph and thus the labeling L∗ and its score v(c, L∗) can be
omitted. �

A consequence of Lemma 1 is that for anymaximal clique
c ∈ C and any proper labeling L∗ such that v(c,∅) >

v(c, L∗), the clique c cannot be labeled by L∗ in an optimal
labeled graph and L∗ need not be considered. Thus the main
purpose of Lemma 1 is to prune the collection of cliques and
the related information, i.e., scores and labels, before apply-
ing constraint-based search methods. In the following, we
sometimes use the abbreviation v(c) = v(c,∅).

There are, however, further criteria that can be used to
filter clique candidates more aggressively. The downside of
applying such filtering methods is that too aggressive prun-
ing may sacrifice optimal models. It is worth noting that
Bayesian score-based pruning of models as part of the search

was proposed in Madigan and Raftery (1994) already. Our
first pruning principle is based on Bayes factors (Kass and
Raftery 1995) and can be used to identify edges that are
weakly supported (or unsupported) by the data. Applying
the scoring functions defined in the context of the log mar-
ginal likelihood (3), we provide the following definition. For
later reference, we introduce the abbreviation bforig standing
for the original Bayes factor.

Definition 4 (bforig) Let {X,Y } be a clique of two random
variables. The mutual dependence of X and Y is weakly
supported by the data X if the log Bayes factor

bf(X,Y ) = v({X,Y })−v({X})−v({Y }) < log(10−k), (4)

where k = 0, 1, 2, . . . is a parameter.

It is worth pointing out that (4) does not mention the label-
ing L since two-element cliques cannot have labels, making
the scores independent of L . The condition can be used to
remove any clique candidate c such that {X,Y } ⊆ c. More-
over, the parameter k = 0, 1, 2, . . . controls the depth of
filtering: the higher the value k takes, the fewer cliques will
be pruned. However, as far as any larger clique candidates c
are considered, condition (4) does not properly take the con-
text created by c into account. This suggests a generalization
of the log Bayes factor bf(X,Y ) in the context of c.

Definition 5 (Bayes factor) Given a clique c and variables
X,Y ∈ c, define

bf(X,Y | c) =
v(c) − v(c \ {X}) − v(c \ {Y }) + v(c \ {X,Y }). (5)

Definition 5 allows us to generalize condition (4) for larger
cliques while omitting labelings, which effectively amounts
to assuming an empty labeling ∅. Depending on the point of
interest, we introduce the abbreviations node, part, and edge
for the following three generalizations.

Definition 6 (node, part, edge) A clique c is weakly sup-
ported by the dataX if one of the following conditions holds:

1. node: There is a variable X ∈ c such that

∑

Y∈c\{X}

bf(X,Y | c)
|c| − 1

< log(10−k). (6)

2. part: There is a partitioning of c into c1 � c2 such that

∑

X∈c1,Y∈c2

bf(X,Y | c)
|c1||c2| < log(10−k). (7)
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3. edge: There are two variables X,Y ∈ c such that

bf(X,Y | c) < log(10−k). (8)

By setting c = {X,Y }, c1 = {X}, and c2 = {Y }, the
conditions (6)–(8) coincide with (4) but their intended use is
different. The principle of Definition 4 applies to any clique
containing a suspicious edge, whereas the ones of Defini-
tion 6 are clearly clique-specific criteria. Since these criteria
aim at checking the consistency of scores at edge level, fac-
tors (6) and (7) are averaged by the respective numbers of
edges |c| − 1 and |c1||c2| involved. These nominators have
no effect when k = 0 and log(10−k) = 0, but they regulate
the effect of pruning when k > 0 grows: the higher the value
of k, the fewer cliques will be pruned.

Proposition 1 Given a clique candidate c, condition (6)
implies condition (7) that implies condition (8).

Proof The first implication is clear by setting c1 = {X} and
c2 = c \ {X}. For the second implication, suppose that (7)
holds for c = c1 � c2 but for each X,Y ∈ c, bf(X,Y | c) ≥
log(10−k). This contradicts (7), since the sum of log Bayes
factors

∑
X∈c1,Y∈c2 bf(X,Y | c) ≥ |c1||c2| log(10−k). �

Under the assumption that the data generating distribution
is faithful (Koller and Friedman 2009) to a chordal graph, the
conditions defined in (4) and (6)–(8) will not prune essential
cliques when the size of the data goes to infinity. Here, a
distribution is said to be faithful to a graph if any marginal
or conditional independence present in the distribution can
be determined from the graph. In such a scenario, as the size
of the data goes to infinity, we can assume that an optimal
graph, which maximizes the marginal likelihood, will cor-
rectly convey all conditional and marginal independencies
in the generating distribution. We can further assume that
implementations (4) and (5) of the Bayes factor will perform
consistently. Consider a clique c in an optimal graph and any
pair {X,Y } ⊆ c. As there is an edge between X and Y , we
know that they are conditionally dependent in the generat-
ing distribution given any other set of variables, including
the empty set and c \ {X,Y }. This means that the functions
bf(. . .), defined in (4) and (5), will tend to infinity as the size
of data tends to infinity. Subsequently, the essential clique c
will not be pruned.

In this paper, the experiments are performed on three
datasets concerning heart disease (6 binary variables), eco-
nomical behavior (8 binary variables), or election behavior
(25 binary variables), respectively. See, e.g., (Nyman et al.
2014; Pensar et al. 2015) for further details on these datasets
abbreviated by heart, econ, and hs in the sequel. The sets
heart and econ are based on complete clique databases,
whereas that of hs contains all candidates up to size 8. To
illustrate the effect of filtering, the column all of Table 2

gives the numbers of cliques involved in the datasets. In the
labeled case, potential labelings have already been pruned
using Lemma 1. The original numbers of candidates for
heart-lab and econ-lab were 506 and 2, 038, respectively.
The mnemonics of the last four columns refer back to Def-
initions 4 and 6. The filtering scheme bforig is based on
the deletion of cliques c containing an edge {X, Y } such
that condition (4) holds. The filtering schemes node, part,
and edge amount to the three conditions (6)–(8) for clique
removal, respectively. Each scheme is implemented so that
the resulting clique database remains downward closed, i.e.,
if a particular clique c is present in the database so are its all
proper subcliques. This is essential for scoring based on per-
fect eliminationorderings to be introduced in the next section.
Summarizing Table 2, the edge scheme provides the greatest
pruning effect, having the negative effect of an increased risk
of sacrificingoptimalmodels (cf. Table 7). In the labeled case,
the relationships between the pruning criteria are somewhat
blurred by the nonuniform distribution of different labelings
over clique candidates, which are nevertheless filtered in the
same way as without labels.

We consider filtering as off-line computation that is per-
formed only once. In fact, the implementation was not
designed to be particularly efficient. For econ and heart, fil-
tering takes only fractions of a second and is thus negligible.
In case of hs, the number of cliques subject to filtering is
essentially higher. When k = 0, the filtering times are 211,
501, 8833, and 299 seconds for the schemes bforig, node,
part, and edge, respectively. The times do not vary substan-
tially when k = 1 and k = 2. The considerably longer
filtering time for the part scheme is due to the high num-
ber of cliques as well as the variety in which each clique can
be partitioned.

4 Perfect elimination orderings

Undirected trees have the following recursive property: if a
leaf node and the respective edge are eliminated, the result is
still a tree and the entire tree can be eliminated in this way.
This gives rise to an elimination ordering for the nodes of the
tree. Since chordal graphs generalize undirected trees, the
same idea can be applied to chordal graphs (Chandran et al.
2003; Galinier et al. 1995).

Definition 7 (Perfect elimination ordering) LetG = 〈N , E〉
be an undirected graph. Further, let X1 < · · · < Xn be a strict
total ordering of N . Define N>(X) as the set of neighbors
of X that follow X in the ordering. Then, < is a perfect
elimination ordering (PEO) for G if N>(X) is a clique of G
for every X ∈ N .

Perfect elimination orderings enable a chordality test.
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Table 2 The effects of different
filtering schemes based on the
number of remaining clique
candidates for given sets of
conditions

Dataset |N | k all bforig node part edge

heart 6 0 63 20 18 18 17

1 39 32 32 24

2 63 44 44 41

heart-lab 6 0 156 41 34 34 31

1 95 69 73 47

2 156 108 108 96

econ 8 0 255 57 115 88 41

1 191 139 115 64

2 255 160 141 97

econ-lab 8 0 512 140 331 234 86

1 432 416 329 152

2 512 460 424 253

hs 25 0 1,807,780 5818 11,792 7968 1235

1 188,689 17,727 12,896 2399

2 1,807,780 26,101 20,202 4713

Theorem 1 (Dirac 1961; Rose 1970) A graph is chordal iff
it has a perfect elimination ordering.

This connection of chordality and PEOs leads to a proce-
dure in which nodes of a graph are eliminated one by one.
Any node in the remaining graph that is part of a clique (con-
sisting of one or more nodes) and is not adjacent to nodes
outside the clique is eligible for elimination. If all nodes can
be eliminated, then the original graph is chordal. Note that the
above definition of PEO is equivalent with the standard defi-
nition of perfect ordering (Lauritzen 1996), however, below
we utilize PEOs also for labeled graphs which are not con-
sidered in Lauritzen (1996).

Example 1 Figure 2 illustrates the application of the above
procedure to an 8-node Markov network (a chordal graph
having random variables as its nodes) according to the PEO
A < C < H < F < B < E < G < D. Since all nodes are
eliminated in the end, the graph is chordal by Theorem 1.

Many other orderings are applicable as well. It is also
possible to eliminate nodes in parallel. For example A, C ,

H , and F could all be eliminated first, and then the clique
{B, D, E,G} can be eliminated node by node in four steps.

�
To enable the scoring of Markov networks, the expression

(3) of log marginal likelihood can be reformulated to better
fit the purposes of constraint-based optimization.

Proposition 2 Let X1 < . . . < Xn be a PEO for a labeled
decomposable graph GL.

If si = N>(Xi ) and ci = si ∪ {Xi } are the cliques of GL

induced by X1 < . . . < Xn for 1 ≤ i ≤ n, and v(ci , L) is
defined as v(ci ,∅) for non-maximal cliques ci , then the log
marginal likelihood of a dataset X given GL is

log P(X | GL) =
n∑

i=1

v(ci , L) −
n∑

i=1

v(si , L).

The score differences d(ci , Xi , L) = v(ci , L) − v(si , L)

for 1 ≤ i ≤ n thus enable a differential calculation

Fig. 2 Applying a perfect
elimination ordering to a
chordal graph
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log P(X | GL) =
n∑

i=1

d(ci , Xi , L). (9)

The preceding scheme can be further adjusted by isolating
the effects of labelings L on scores. In the following, we
let d(c, Xi ) = v(c) − v(c \ {Xi }), where c is a clique and
Xi ∈ c a variable. In the special case that c = {Xi }, we have
d({Xi }, Xi ) = v({Xi }) − v(∅) = v({Xi }). The effect of a
labeling L on the score of c can be formalized as a reward

r(c, L) = v(c, L) − v(c,∅) (10)

that is independent on the nodes of c and guaranteed to be
positive by Lemma 1. Thus (9) can be rewritten as

log P(X | GL) =
n∑

i=1

d(ci , Xi ) +
n∑

i=1

r(ci , L). (11)

5 Learning Markov networks by constraint
optimization

Representing the structure learning problem of decompos-
able Markov networks is feasible in constraint satisfaction
frameworks such asBoolean satisfiability (SAT) (Cook1971)
and its extension by optimization capabilities, i.e., maximum
satisfiability (MAXSAT) (Johnson 1974). Also other exten-
sions such as SAT modulo theories (SMT) (Sebastiani and
Tomasi 2012) and integer programming (IP) (Gomory 1958)
could be used. Answer set programming (ASP) (Brewka
et al. 2011; Lifschitz 2002; Marek and Truszczyński 1999;
Niemelä 1999) offers similar primitives in the form of rules
rather than propositional formulas or linear equations. We
begin by reviewing the proof-of-concept representation of
the learning problem for Markov networks (Corander et al.
2013). These ideas form the starting point for developing an
improved encoding for Markov networks and generalizing
the encoding to the labeled case.

Definition 8 (Solutions (Corander et al. 2013)) Given a set
N of nodes representing randomvariables and a scoring func-
tion v : 2N → R based on log marginal likelihoods (3), a
set C = {c1, . . . , cn} of cliques is a solution to the network
learning problem iff

1. every node is covered by a clique, i.e.,
⋃n

i=1 ci = N ,
2. cliques in C are set-inclusion maximal,
3. the graph 〈N , E〉 with E = ⋃

c∈C Ec is chordal,
4. the set C has a maximum weight spanning tree labeled

by a set S = {s1, . . . , sm} of separators, and
5. C and S maximize v(C, S) = ∑

c∈C v(c) − ∑
s∈S v(s).

The constraints on solutions given in Definition 8 can
be encoded in any of the mentioned formalisms for con-
straint optimization. For instance, if a Boolean (0-1) variable
inc represents that a clique c is a part of a candidate solu-
tion, the first constraint can be formalized by a disjunction
inc1 ∨ . . .∨ inck , where c1, . . . , ck are all cliques that contain
a particular node. Using dedicated variables ei, j to represent
the edges of the resulting graph, expressing themaximality of
cliques is straightforward. In contrast, obtaining a compact
representation for chordality and the existence of a maxi-
mum weight spanning tree gets far more involved. For small
graphs, however, chordality could be enforced by explicitly
denying chordless cycles of length four or more. For the
spanning tree condition, a key idea of Corander et al. (2013)
is that the maximum weight of separators can be replaced
by a balancing condition: every node occurs in the chosen
cliques exactly once more than in the respective separators.
This enables the recognition of separators in terms of stan-
dard cardinality constraints (Sinz 2005) and hence allows for
determining the overall score (3) of the resulting network.

5.1 Encoding based on PEOs

In what follows, we present an encoding of the Markov net-
work learning problem that improves the one summarized
above in a number of ways. In particular, the idea is to exploit
PEOs in the encoding of the chordality check and the results
of Sect. 4 for scoring Markov networks. The goal is to avoid
the determination of separators as far as possible. This is
because the connection of a separator to the cliques it sep-
arates from each other gives rise to a cubic relation in the
number of candidate cliques, i.e., substantial space complex-
ity. We thus restate the requirements from Definition 8.

Definition 9 (Solutions reformulated) Given a function d :
2N × N → R, a graph 〈N , E〉 based on N = {X1, . . . , Xn}
is a solution to the Markov network learning problem iff

1. every node Xi has a clique ci as its context of elimination,
where Xi ∈ ci and E = ⋃n

i=1 ci ,
2. there is a perfect elimination ordering for 〈N , E〉, and
3.

∑n
i=1 d(ci , Xi ) corresponding to the log marginal likeli-

hood (9) is maximized.

The elimination of Xi in the context of ci means that Xi

and all edges of ci incidentwith Xi are removed. For instance,
the node A is removed in the context of {A, B, D,G} in
Fig. 2. To select a candidate graph, we introduce a Boolean
variable inci for each node Xi and clique candidate c with
Xi ∈ c. If c1, . . . , cm are the clique candidates containing Xi ,
the choice of the elimination context for Xi can be expressed
by inc1i ∨. . .∨incmi . This disjunction should bemade exclusive
by adding ¬in

c j
i ∨ ¬incki for all 1 ≤ j < k ≤ m, or by
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Table 3 Boolean variables used in the PEO-based encoding

Variable Intuitive reading

inci Variable Xi is eliminated in context c

eli, j Variable Xi is eliminated at step j

elci, j Variable Xi is eliminated before step j or off context c

crci Variable Xi creates edges for context c

sf i, j The j first score fragments of Xi count

adding an equivalent cardinality constraint allowing only one
of the variables inc1i , . . . , incmi to be true for Xi . The Boolean
variables utilized by the encoding are collected in Table 3 for
the reader’s convenience.

Our next objective is to enforce the chordality of the
selected graph. This will be achieved by checking the exis-
tence of a PEO for the graph as formalized by Theorem 1.
However, rather than insisting on a total ordering of the
nodes, we allow for parallel eliminations to limit the number
of steps and to achieve a more compact encoding. If parallel
eliminations are considered, the worst case can be illustrated
by an n-element clique {X1, X2, . . . , Xn}whose elimination
requires n elimination steps using some arbitrary ordering as
PEO (cf. the clique {B, D, E,G} in Fig. 2). The reason is
that the potential removals of B, D, E , and G compete over
the same resources (edges) and cannot be done at once in
view of the differential score calculation (9).

To formalize the chordality test for a variable Xi , we intro-
duce Boolean variables eli, j and elci, j for each elimination
step 1 ≤ j ≤ n and clique candidate c such that Xi ∈ c. The
role of elci, j is to signal the elimination of Xi in context c at
step j−1 to the elements of c\{Xi }, whichmay then be elim-
inated from step j on. In turn, let c1, . . . , cm be all possible
elimination contexts for variables Xi1 ∈ c1, . . . , Xim ∈ cm
such that Xi ∈ c1 \ {Xi1}, . . . , Xi ∈ cm \ {Xim }. Then, Xi

can be eliminated once all Xik for 1 ≤ k ≤ m whose elimi-
nation context is ck , as indicated by in

ck
ik
, are. This condition

is captured by

eli, j ↔ elc1i1, j ∧ . . . ∧ elcmim , j , (12)

where the idea that elckik , j is true if Xik is eliminated at some
earlier step than j or in another context than ck is recursively
formalized by

elckik , j ↔ elik , j−1 ∨ ¬inckik (13)

for j > 1 as well as elckik ,1 ↔ ¬inckik for the base case j = 1.
The definitions above aim at expressing chordality as

el1,n ∧ . . . ∧ eln,n,

Fig. 3 Illustration of the
encoding of the chordality test

X3

X1 X2

X4

requiring the elimination of all nodes in the end.Due to recur-
sion over elimination steps, the overall space complexity is
quadratic in n. However, depending on the target formalism,
a linear representation can be feasible. This holds, e.g., for
encodings in ASP that natively support recursion.

Example 2 To illustrate the encoding of the chordality con-
dition, let us consider the Markov network in Fig. 3 and the
following candidates:

c1 = {X1}, c2 = {X2},
c3 = {X3}, c4 = {X4},
c5 = {X1, X2}, c7 = {X2, X3},
c6 = {X1, X3}, c8 = {X2, X4},

c9 = {X3, X4},
c10 = {X1, X2, X3}, c11 = {X2, X3, X4}.

Since X1 is mentioned by cliques c1, c5, c6, and c10, the
choice of an elimination context is expressed by

inc11 ∨ inc51 ∨ inc61 ∨ inc101 ,

¬inc11 ∨ ¬inc51 , ¬inc11 ∨ ¬inc61 , ¬inc11 ∨ ¬inc101 ,

¬inc51 ∨ ¬inc61 , ¬inc51 ∨ ¬inc101 , ¬inc61 ∨ ¬inc101 .

Analogous formulas are needed for the nodes X2, X3, and X4.
Let us then consider a concrete elimination scenario, where
X1 and X4 are first removed in parallel, then X2 is removed,
and finally X3. This scenario can be realized by setting the
variables inc101 , inc72 , inc33 , and inc114 true. The resulting order
of elimination is depicted in Fig. 4a. Since inc101 is true, the
other variables inc11 , inc51 , and inc61 concerning X1 are falsified
by mutual exclusion. Respective in

c j
i -variables related with

X2, X3, and X4 get similarly falsified. Let us then consider
the satisfaction of formulas of forms (12) and (13). For X1

and the elimination step j = 1, the relevant instances are

el1,1 ↔ elc52,1 ∧ elc63,1 ∧ elc102,1 ∧ elc103,1,

elc52,1 ↔ ¬inc52 , elc63,1 ↔ ¬inc63 ,

elc102,1 ↔ ¬inc102 , elc103,1 ↔ ¬inc103 .

Due tomutual exclusions explained above, the variables elc52,1,
elc63,1, el

c10
2,1, and el

c10
3,1 must be set to true. This, in turn, makes

el1,1 true, indicating that X1 is removed at step j = 1. Since
X4 is symmetric to X1, we may conclude that el4,1 is also
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X3
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X4 X3

X1 X2

X4 X3

X1 X2
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(a) (b) (c)

Fig. 4 Illustration of elimination contexts and the resulting orderings
of nodes

made true by analogous equivalences introduced for X4. On
the other hand, the respective formulas for X2 and X3 falsify
both el2,1 and el3,1 since both inc101 and inc114 are true. Thus
X2 and X3 are not eliminated at step j = 1. As regards the
subsequent elimination of X2 at step j = 2, the following
instances of formulas (12) and (13) become relevant:

el2,2 ↔ elc51,2 ∧ elc73,2 ∧ elc84,2 ∧ elc101,2 ∧ elc103,2 ∧ elc113,2 ∧ elc114,2,

elc51,2 ↔ el1,1 ∨ ¬inc51 , elc73,2 ↔ el3,1 ∨ ¬inc73 ,

elc84,2 ↔ el4,1 ∨ ¬inc84 ,

elc101,2 ↔ el1,1 ∨ ¬inc101 , elc103,2 ↔ el3,1 ∨ ¬inc103 ,

elc113,2 ↔ el3,1 ∨ ¬inc113 , elc114,2 ↔ el4,1 ∨ ¬inc114 .

Tocheck the satisfactionof the conjunction in the equivalence
for el2,2, it is sufficient to note that el1,1 and el4,1 have been
set to true before, and the truth of inc73 , inc103 , and inc113 is
excluded by the truth of inc33 . Thus el2,2 must be true. The
analogous formulas for X1 and X4 force el1,2 and el4,2 to be
true. To the contrary, el3,2 is falsified since inc72 is true and
el2,1 is false. Our last observations concern the elimination
step j = 3, where X3 becomes eligible for elimination in
the context of c3. Since the equivalence for el3,3 depends
positively on el1,2, el2,2, and el4,2 only, it is clear that el3,3
is set to true. The same can be stated about the other nodes,
i.e., el1,3, el2,3, and el4,3 are made true by the respective
equivalences. This illustrates the persistence of elimination:
if Xi is eliminated at step j , it will remain eliminated at step
j + 1. In particular, the formula el1,3 ∧ el2,3 ∧ el3,3 ∧ el4,3 is
true as an indication of chordality in the scenario discussed
so far.

In order to demonstrate further aspects of the chordality
encoding, two other scenarios deserve attention. First, let
us assume that inc51 , inc82 , inc63 , and inc94 have been chosen
to be true. This creates an interdependency for the selected
elimination contexts, so that no node can be eliminated as
illustrated in Fig. 4b. On the logical side this implies that eli, j
will be falsified for each Xi and j = 1, . . . , 4. Indeed, a graph
in which the diagonal edge from Fig. 3 has been removed is
not chordal, also witnessed by the falsity of el1,4 ∧ el2,4 ∧
el3,4 ∧ el4,4.

Second, let us pick inc101 , inc82 , inc93 , and inc44 to be true.
This represents a scenario in which X1 is removed at step
j = 1 with c10 = {X1, X2, X3} as its elimination context.
This suggests that the edge {X2, X3} is present in the graph
but, unfortunately, the elimination contexts of X2 and X3 do
not include this edge, colored gray in Fig. 4c. The formulas of
the chordality encoding will still set the variables el1,1, el2,2,
el3,2, and el4,3 to true. Therefore, we observe that further
constraints are necessary to ensure that the structure claimed
to exist by the chosen elimination contexts of the nodes is
indeed present in the graph. �

A newBoolean variable crci captures the idea that node Xi

is responsible for the creation of the structure present in the
clique c when elimination contexts are initially chosen. The
constraint we want to impose on the elimination context c of
a node Xi is essentially

inci → crc
′
i1 ∨ . . . ∨ crc

′
ik , (14)

where c′ = c \ {Xi } = {Xi1 , . . . , Xik } gives the remainder
of c if Xi is eliminated in this context. It remains to provide
a formula defining the truth value of crci :

crci ↔ inci ∨ crc1i ∨ . . . ∨ crcki , (15)

where c1 = c∪{X1}, . . . , ck = c∪{Xk} are all clique candi-
dates extending c by one node. The effect of these formulas
is illustrated next.

Example 3 Let us continue from the last scenario in Example
2, i.e., Fig. 4c. The relevant instance of (14) is inc101 → crc72 ∨
crc73 , implying the consequent crc72 ∨ crc73 . Thus either X2 or
X3 is responsible for creating the structure present in c7. To
check this, we need to evaluate the respective instances of
(15):

crc72 ↔ inc72 ∨ crc102 ∨ crc112 ,

crc73 ↔ inc73 ∨ crc103 ∨ crc113 ,

crc102 ↔ inc102 , crc112 ↔ inc112 ,

crc103 ↔ inc103 , crc113 ↔ inc113 .

But since inc72 , inc73 , inc102 , inc103 , inc112 , and inc113 have been set
to false, the variables crc72 , crc73 , crc102 , crc103 , crc112 , and crc113
must be falsified in turn. This rules out the possibility of
satisfying crc72 ∨ crc73 inferred above, i.e., the scenario under
consideration is no longer possible. �

Our last requirement for solutions to the Markov network
learning problem concerns the score of a chordal graph for
which a PEOcan be identified. The idea is to use a differential
score d(c, Xi ) based on (9) that is compatible with Xi being
eliminated in the context of c. If c1, . . . , cm is the collection
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of candidate cliques, the resulting objective function can be
written as

∑m
j=1

∑
Xi∈c j d(c j , Xi )in

c j
i .

The representation of the objective function can be mod-
ularized by taking the variable view. So, let Xi be one of
the variables with 1 ≤ i ≤ n and c1, . . . , ck the cliques con-
taining Xi . Since clique candidates are known in advance, we
may assume that d(c1, Xi ) ≥ . . . ≥ d(ck, Xi )without loss of
generality. Because Xi must have an elimination context, it is
clear that Xi will be assigned at least the first score d(c1, Xi )

and potentially some smaller score fractions expressible as
d(c j , Xi ) − d(c j−1, Xi ) for 1 < j ≤ k. To control which
fractions are needed, we introduce Boolean variables sf i, j
for each clique c j with 1 < j < k. The activation of score
fractions is determined by the formula

sf i, j ↔ in
c j
i ∨ sfi,j+1, (16)

where 1 < j < k refers to an elimination context c j of Xi .
The base case j = k, is covered by the formula

sf i,k ↔ incki . (17)

The idea is that, if sf i, j is set to true, then all other variables
sf i, j ′ with j ′ < j are set to true as well. In this way, the
contribution of Xi to the objective function is

o(i) = d(c1, Xi )+
k∑

j=2

(d(c j , Xi )− d(c j−1, Xi ))sf i, j . (18)

The sum o(i) equals to d(c j , Xi ) for the chosen elimination
context c j of Xi . The goal of this encoding is to allow smooth
changes of scores when the elimination contexts of Xi are
switched in accordance with the order c1, . . . , ck .

Theorem 2 Let N = {X1, . . . , Xn} be a set of random vari-
ables and d : 2N ×N → R a scoring function. An undirected
graph 〈N , E〉 is a solution to the Markov network learning
problem iff

1. the elimination formulas (12) are satisfied for each Xi

and step 1 ≤ j ≤ n together with all instances of (13),
2. the formula el1,n ∧ . . . ∧ eln,n is satisfied,
3. the context creation formulas (14) and (15) are satisfied

for each Xi and each clique c such that Xi ∈ c, and
4. the graph 〈N , E〉maximizes the sum∑n

i=1 o(i) of objec-
tives (18), while satisfying all formulas (16) and (17)
defining score fractions.

Proof sketch We argue that a graph 〈N , E〉 based on N is
chordal iff the requirements 1–3 are met.

(�⇒) Let 〈N , E〉 be a chordal graph. By Theorem 1,
the underlying graph 〈N , E〉 has a PEO based on a strict

total ordering of N . This ordering can be relaxed by recur-
sively taking at step j as many as possible variables Xi from
the ordering not competing for edges. In this way, the con-
text elimination formulas get satisfied. The context creation
formulas are satisfied because every variable Xi subject to
elimination in its context ci is connected to a clique ci \{Xi }.

(⇐�) Suppose that requirements 1–3 are met by 〈N , E〉
and let I be the satisfying assignment. A variable Xi is elim-
inated at step j ≥ 1 if eli, j is true in I and each eli, j ′ with
1 ≤ j ′ < j is false in I . A PEO can be constructed by taking
variables eliminated at the same step j in any order. Since I
satisfies the context creation formulas, it is guaranteed that,
when Xi is eliminated, it is connected to a clique c such that
a context ci = c ∪ {Xi } of elimination is determined for Xi .
Thus 〈N , E〉 is chordal by Theorem 1.

Finally, we note that objective functions used for scoring,
i.e.,

∑n
i=1 d(ci , Xi ) and

∑n
i=1 o(i), coincide.

Theorem 2 is applicable to any downward closed collec-
tion of cliques, where d may be a partial scoring function.

5.2 Encoding labels for Markov networks

The labels representing context-dependent conditional prob-
abilities can be incorporated by an orthogonal extension to
the basic encoding. It is essential to ensure that edges subject
to a labeling L are not contained in the separators of the under-
lying chordal graph. Because the encoding developed in Sect.
5.1 avoids the formalization of separators altogether, we have
to detect them somehow. For the sake of space efficiency,
we concentrate on identifying edges involved in separators
rather than identifying separators themselves (Table 4). Thus
a Boolean variable ei, j is introduced for each pair Xi , X j of
nodes with 1 ≤ i < j ≤ n, to be set to true if and only if
the edge between Xi and X j is present. If c1, . . . , ck are the
cliques containing both Xi and X j , we obtain the formula

ei, j ↔ inc1i ∨ inc1j ∨ . . . ∨ incki ∨ inckj . (19)

When the edge between Xi and X j is present in a graph, we
are interested in other nodes Xk that are connected by an edge
to both Xi and X j . To detect such nodes, we use a Boolean
variable mi, j,k and a formula

mi, j,k ↔ e′
i,k ∧ e′

j,k, (20)

Table 4 Boolean variables used in the encoding of labels

Variable Intuitive reading

ei, j The edge between Xi and X j is present

mi, j,k Variable Xk connects to both Xi and X j

si, j The edge between Xi and X j belongs to a separator

xlc Clique c is labeled by some superclique

xlci Labeling Li is excluded for c
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where e′
i,k = ei,k (or e′

j,k = e j,k) if i < k (or j < k), while
e′
i,k = ek,i (or e′

j,k = ek, j ) otherwise. The edge between Xi

and X j belongs to a separator if and only if it is connected—
in the sense specified above—to two distinct nodes Xk and Xl

that are not connected by an edge. A Boolean variable si, j is
introduced to capture this condition and its truth value is set
in terms of

si, j ↔
∨

1≤k<l≤n

mi, j,k ∧ mi, j,l ∧ ¬ek,l . (21)

Example 4 Recall the first scenario of Example 2 in which
inc101 , inc72 , inc33 , and inc114 were set to true. The formulas of
the form (19) force the variables e1,2, e1,3, e2,3, e2,4, and e3,4
to be true, whereas other edge variables remain false.

Thus formulas (20) make variables m2,3,1 and m2,3,4 true.
Other such variables are not relevant for our analysis.

The truth assignments reported above ensure that m2,3,1∧
m2,3,4 ∧ ¬e1,4 evaluates to true. This sets s2,3 to true by
the respective instance of formula (21), indicating that the
edge between X2 and X3 is involved in a separator, i.e., s =
c10 ∩ c11. �

It remains to decide the labeling for cliques.Asworked out
in the endof Section 4, labelings L1, . . . , Lk modify the score
of a clique c by rewards r(c, L1), . . . , r(c, Lk) according
to (10), where r(c, L1) ≥ . . . ≥ r(c, Lk) can be assumed
without loss of generality and Lemma 1 implies that Lk is
the empty labeling ∅. Since we aim at maximizing the score
for c, we should pick the first labeling from the sequence
L1, . . . , Lk that satisfies the labeling condition. It is worth
noting that Lk = ∅ satisfies the condition trivially, so that
eventually some labeling can be found.

To formalize this idea, we introduce a Boolean variable
xlc denoting that c is labeled by some of its supercliques, and
Boolean variables xlci denoting that a particular labeling Li

is excluded for c. The truth value of the variable xlc can be
determined by the formula

xlc ↔
∨

Xk /∈c,X j∈c∪{Xk }
inc∪{Xk }

j . (22)

As regards variables xlci , the following formula is used to set
its truth value in the base case i = 1, but only if k > 1, i.e.,
L1 is different from the empty labeling ∅:

xlc1 ↔
⎛

⎝
∨

X j∈c
incj

⎞

⎠ ∧ (xlc ∨
∨

{s j,k | L1 labels {X j , Xk}}).

(23)

When 1 < i < k, a recursive formula is used:

xlci ↔ xlci−1 ∧
(
xlc ∨

∨
{s j,k | Li labels {X j , Xk}}

)
. (24)

To implement the objective function (11) in the labeled
case, we observe that rewarding an admissible label Li for
1 ≤ i < k is equivalent to penalizing the exclusion of Li

(and all L j such that 1 ≤ j < i) by a negative reward frac-
tion r(c, Li+1)−r(c, Li ). Thus the required extension to the
objective function is

r(c, L1) +
k−1∑

i=1

(r(c, Li+1) − r(c, Li ))xl
c
i . (25)

In the special case k = 1, the sum above reduces to r(c,∅) =
v(c,∅)−v(c,∅) = 0. This means that the given extension is
not needed for cliques that only have one possible labeling,
i.e., the empty labeling ∅ acting as the default labeling.

Theorem 2 can be generalized for labeled Markov net-
works by extending the set of requirements for a graph
candidate 〈N , E〉. First, the edges involved in separators are
detected by satisfying all instances of formulas (19)–(21).
Once these have been identified, the best possible labelings
for the cliques of 〈N , E〉 can be orthogonally determined
by satisfying the formulas (22)–(24). Finally, the resulting
rewards (25) are taken into account in the objective function.

6 Experimental evaluation

We have evaluated our constraint-based approach to Markov
network structure learning using a number of fully automated
off-the-shelf constraint solvers. To this end, we encoded1 the
conditions and optimization measures described in Section 5
in the input language of ASP and used the tool LP2ACYC
(Gebser et al. 2014) for automatic translation to MAXSAT
as well as IP format. Our comparison includes the solvers

– CLASP (version 3.1.1) (Gebser et al. 2012),
– PWBO (version 2.2) (Martins et al. 2012),
– SAT4J (version 2.3.5) (Berre and Parrain 2010), and
– CPLEX (version 12.6.0) [126].

As CLASP has been originally devised for ASP solving,
we also compare it on input in ASP format, without transla-
tion to MAXSAT, and below denote this system variant by
CLASP. Note that all solvers apply branch-and-bound tech-
niques that successively refine an upper bound on solution
quality, while unsatisfiability-based optimization approaches
[cf. Manquinho et al. (2009)] turned out ineffective for the
Markov network learning problem and are omitted here. The
experiments were run sequentially on a Linux machine hav-
ing 2.70 GHz Intel Xeon E5-4650 CPUs and 256 GB RAM,

1 http://research.ics.aalto.fi/software/asp/encodings/.
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Table 5 Solver runtimes in seconds for learning context-dependent Markov networks from heart and econ datasets with different filtering schemes

heart econ

k = 0 k = 1 k = 2 k = 0 k = 1 k = 2

b n p e b n p e b n p e bforig node part edge bforig node part edge bforig node part edge

CLASP 0 0 0 0 0 0 0 0 0 0 0 0 1 24 4 0 305 61 19 1 900 131 74 5

CLASP 0 0 0 0 1 1 1 0 7 1 1 1 326 7008 2300 3 50,903 13,920 9014 127 TO 26,056 15,783 1672

PWBO 0 0 0 0 3 2 2 0 45 5 5 2 11,828 TO TO 14 TO TO TO 3416 TO TO TO 59,414

SAT4J 1 1 1 1 4 6 6 1 36 9 8 4 740 10,218 20,430 14 TO 50,318 9809 233 TO TO 53,838 6101

CPLEX 0 0 0 0 3 1 1 0 146 6 5 3 282 13,264 1250 5 TO 54,860 14,210 86 TO TO 51,561 1543

lab

CLASP 0 0 0 0 0 0 0 0 1 0 0 0 2 136 14 0 452 286 84 1 1014 480 331 22

CLASP 0 0 0 0 2 1 1 0 43 4 5 1 500 14,692 3066 3 44,111 36,138 13,051 135 73,661 50,430 38,638 1976

PWBO 0 0 0 0 9 5 5 0 257 11 12 3 12,259 TO TO 17 TO TO TO 2111 TO TO TO 67,131

SAT4J 1 1 1 1 13 11 11 1 168 19 17 7 771 41,525 20,183 18 TO TO 35,454 255 TO TO TO 7587

CPLEX 0 0 0 0 58 19 19 0 1777 71 71 27 2735 TO 55,804 57 TO TO TO 2579 TO TO TO 60,594

by imposing a time limit of 86,400 seconds (one day) per run.
Timeouts are indicated by entries “TO” in tables that follow.

Table 5 provides runtimes in seconds on heart and econ
datasets, relative to the filtering schemes b(forig), n(ode),
p(art), and e(dge) from Sect. 3, parametrized by k = 0, 1, 2.
For both benchmarks, the upper five rows refer to the unla-
beled problem variants, and the lower five rows to the case
of labeled Markov networks. Despite of performance gaps
between solvers, the runtimes tightly correlate with the num-
ber of clique candidates in the input. As shown in Table 2,
this number is regulated by the parameter k as well as the fil-
tering scheme, where bforig and edge tend to prune cliques
least or most aggressively, respectively. Notably, the bforig
scheme along with k = 2 yields no pruning at all and thus
reflects the performance on unfiltered datasets. Recalling the
account of filtering times from Sect. 3, the filtering of clique
candidates leads to effective savings in runtime.

Moreover, we note that the performance differences
between unlabeled and labeled inputs obtainedwith the same
filtering scheme are rathermoderate, given that best labelings
can be read off PEOs (cf. Sect. 5.2) to avoid an (additional)
model space explosion as reported in Table 1. Comparing the
solvers to each other exhibits that CLASP, run as an ASP
solver, performs best on all inputs, leading to the shortest
runtimes highlighted in boldface in each column. This advan-
tage is due to the native support of recursion in ASP, which
permits a more compact internal problem representation and
resulting improvements in search efficiency (in terms of con-
flicts) by one to two orders of magnitude in comparison to
CLASP applied to instances in MAXSAT format. However,
the performance of the MAXSAT solvers CLASP, PWBO,
and SAT4J as well as the IP solver CPLEX follows a simi-
lar pattern, witnessing a consistent impact of the number of
clique candidates. As a reference, note that the MCMC algo-

Table 6 File sizes of solver inputs in different formats

Dataset ASP MAXSAT IP

heart 41 kB 1375 kB 483 kB

Corander et al. (2013) 197 kB 3120 kB TO

econ 300 kB 13,345 kB 3212 kB

Corander et al. (2013) 4300 kB 133,120 kB TO

rithm in Nyman et al. (2014) has been reported to take tens
of minutes for converging to an optimum on heart-lab and
econ-lab datasets, still without proving optimality in view of
incompleteness of the method.

Regarding the compactness of encodings, the file sizes in
Table 6 give an account of the progress relative to Corander
et al. (2013), where the unlabeled heart and econ datasets
have also been investigated. Hence, comparing the rows
for either benchmark shows a considerable size reduction
due to exploiting PEOs rather than maximal cliques and
the balancing condition for scoring. In particular, the space
requirements are decreased by one order of magnitude on
the econ dataset, for both ASP and MAXSAT format, and
the IP column further quantifies space savings in compar-
ison to the translation from ASP to MAXSAT. Moreover,
Corander et al. (2013) reported a shortest solver runtime of
three days for the econ dataset, while CLASP is now able
to find and verify an optimal model within 15 minutes (cf.
upper rows for bforig with k = 2 in Table 5). Finally, we
note that the size of inputs is primarily governed by con-
ditions on PEOs and not significantly increased by adding
labels.

To estimate the trade-off between filtering schemes and
solution quality, Table 7 provides a summary of optimal net-
work scores for the unlabeled and labeled heart and econ

123



128 Stat Comput (2017) 27:115–130

Table 7 Quality of optimal
Markov networks relative to
different filtering schemes

Dataset k bforig node part edge

heart 0, 1, 2 −6,714.637 −6,714.637 −6,714.637 −6,714.637

heart-lab 0, 1, 2 −6,716.879 −6,716.879 −6,716.879 −6,716.879

econ 0 −2,685.724 −2,682.597 −2,682.597 −2,688.747

1 −2,682.597 −2,682.597 −2,682.597 −2,685.724

2 −2,682.597 −2,682.597 −2,682.597 −2,682.597

econ-lab 0 −2,691.971 −2,690.404 −2,690.404 −2,695.188

1 −2,689.989 −2,690.404 −2,690.404 −2,691.971

2 −2,689.989 −2,689.989 −2,689.989 −2,690.404

datasets, where global optima (Nyman et al. 2014) are high-
lighted in boldface. For both heart variants, it turns out that
optimal models are preserved regardless which scheme and
parameter value are used for pruning clique candidates. This
does not apply to the more complex econ dataset. In the unla-
beled case, too small k-values decrease the solution quality
with the bforig scheme, which does not take the contexts
given by cliques into account, as well as the aggressive edge
scheme. Given that the investigated filtering schemes assume
empty labelings anddonot consider potential alternatives, the
usage of small k-values is particularly risky for the labeled
econ variant. In fact, although the schemes node and part
with k ≤ 1 as well as the edge scheme with k = 2 come
close to the global optimum, they still deteriorate the log
marginal likelihood by 0.015 %. This suggests that labels
should be taken into account in order to performmore aggres-
sive yet informed pruning in the case of labeled Markov
networks.

We further assessed the scalability of our approach on
samples of the hs dataset of increasing size, using the edge
scheme along with k = 0, 1, 2 for filtering clique candi-
dates. The samples in the upper five rows of Table 8, with

numbers of nodes given at the top, have been obtained by
maximizing the density of the subgraph induced by a selec-
tion of the 25 nodes available in total, while the density is
minimized in the lower five rows, with numbers of nodes
given at the bottom. For both kinds of samples, the reported
runtimes include the greatest numbers of nodes for which
CLASP, again performing best when run as an ASP solver,
was able to find and verify an optimal model within the time
of one day. Similar to the econ dataset, the depth of filter-
ing regulated by the parameter k has a significant impact on
the resulting difficulty ofMarkov network structure learning.
Moreover, samples of size 8 turn out to be much harder to
solve than inputs obtained by applying the edge scheme with
same k-value to the econ dataset, where the number of nodes
is also 8. As the difficulty rapidly increases with sample size,
optimization succeeds on dense subgraphswith up the 13, 10,
or 9 nodes, respectively, depending on the k-value used for
pruning. Although this value remains relevant, samples such
that the density isminimized exhibit a considerably smoother
scaling behavior and can be successfully handled up to 20,
18, or 15 nodes, respectively. This observation emphasizes
the impact of problem structure as well as the importance of

Table 8 Solver runtimes in seconds on samples of the hs dataset with varying numbers of nodes and parameter values for the edge filtering scheme

k = 0 k = 1 k = 2

6 7 8 9 10 11 12 13 6 7 8 9 10 6 7 8 9

max

CLASP 0 2 55 204 1909 4856 15,420 65,670 1 17 144 1684 13,199 1 21 383 10,042

CLASP 49 1604 38,441 85,279 TO TO TO TO 1043 13,774 TO TO TO 476 26,493 TO TO

PWBO 421 TO TO TO TO TO TO TO 34, 298 TO TO TO TO 16,765 TO TO TO

SAT4J 102 5293 TO 84,097 TO TO TO TO 2387 TO TO TO TO 2625 TO TO TO

CPLEX 38 642 21,400 TO TO TO TO TO 264 6662 TO TO TO 109 6049 TO TO

min

CLASP 0 3 11 42 151 485 5879 42,044 1 19 69 382 31,025 7 27 209 19,525

CLASP 8 137 981 2218 6855 67,245 TO TO 78 812 6789 27,334 TO 273 2370 17,253 TO

PWBO 66 1763 32,719 71,380 TO TO TO TO 1478 17,123 TO TO TO 4712 TO TO TO

SAT4J 55 340 2144 13,550 60,848 TO TO TO 173 1841 17,139 TO TO 714 6025 TO TO

CPLEX 31 234 1781 3427 7147 TO TO TO 42 1136 5481 48,095 TO 689 9673 70,689 TO

13 14 15 16 17 18 19 20 11 13 14 15 18 11 12 13 15
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filtering in view of an input size (number of clique candi-
dates) that, in the worst case, grows exponentially with the
number of nodes.

7 Conclusion

Our experiments and the recent interest in graphical model
learning using integer programming, maximum satisfiability,
and answer set programming demonstrate that computa-
tional logic holds a largely untapped valuable resource for
statistical inference. The main challenge lies in finding
effective translations from the statistical learning problem
into logical constraints, to make optimization scalable to
large problem instances. As the diversity of approaches
adopted here and in Bartlett and Cussens (2013), Berg
et al. (2014), Corander et al. (2013), Cussens (2008), and
Parviainen et al. (2014) shows, there is a lot of room for
creativity in this translation task, and the choices made can
strongly impact the performance of solvers. In addition,
adopting strong pruning methods can be critical for reducing
the space of candidate solutions. For instance, the approach
based on dynamic programming (Kangas et al. 2014) suffers
from exponential growth of memory consumption when the
number of variables is increased.

We have first theoretically studied which models can be
automatically recognized as inferior to others, such that the
model space can be reduced without eliminating globally
optimal models. Then, we introduced statistical pruning cri-
teria for more extensive filtering of candidates, guaranteeing
that best solutions are preserved asymptotically when the
number of input data vectors increases. In future research it
will be useful to study the effect of pruning strategies fur-
ther and to develop translations of learning problems beyond
graphical models.
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Marek, V., Truszczyński, M.: Stable models and an alternative logic
programming paradigm. In: The Logic Programming Paradigm:
A 25-Year Perspective, pp. 375–398. Springer (1999)

Martins, R., Manquinho, V., Lynce, I.: Parallel search for maximum
satisfiability. AI Commun. 25(2), 75–95 (2012)

Niemelä, I.: Logic programming with stable model semantics as a con-
straint programming paradigm. Ann. Math. Artif. Intell. 25(3–4),
241–273 (1999)

Nyman, H., Pensar, J., Koski, T., Corander, J.: Stratified graphi-
cal models-context-specific independence in graphical models.
Bayesian Anal. 9(4), 883–908 (2014)

Parviainen, P., Farahani, H.S., Lagergren, J.: Learning bounded tree-
width Bayesian networks using integer linear programming. In:
Proceedings of the 17th International Conference on Artificial
Intelligence and Statistics, pp. 751–759. JMLR.org (2014)

Pensar, J., Nyman, H., Koski, T., Corander, J.: Labeled directed
acyclic graphs: a generalization of context-specific independence
in directed graphical models. Data Min. Knowl. Discov. 29(2),
503–533 (2015)

Rose, D.J.: Triangulated graphs and the elimination process. J. Math.
Anal. Appl. 32(3), 597–609 (1970)

Sebastiani, R., Tomasi, S.: Optimization in SMTwith LA(Q) cost func-
tions. In: Gramlich, B., Miller, D., Sattler, U. (eds.) Automated
Reasoning, pp. 484–498. Springer, Heidelberg (2012)

Silander, T., Kontkanen, P., Myllymäki, P.: On sensitivity of the MAP
Bayesian network structure to the equivalent sample size parame-
ter. In: Proceedings of the The 23rd Conference on Uncertainty
in Artificial Intelligence (UAI-2007), pp. 360–367. AUAI Press
(2007)

Silander, T., Roos, T., Kontkanen, P., Myllymäki, P.: Factorized NML
criterion for learning Bayesian network structures. In: Proceedings
4thEuropeanWorkshop onProbabilisticGraphicalModels (PGM-
2008) (2008)

Silander, T., Roos, T.,Myllymäki, P.: Learning locallyminimax optimal
Bayesian networks. Int. J. Approx. Reason. 51(5), 544–557 (2010)

Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality
constraints. In: Proceedings of the 11th International Conference
on Principles and Practice of Constraint Programming, pp. 827–
831. Springer (2005)

Whittaker, J.: Graphical Models in Applied Multivariate Statistics.
Wiley, New York (1990)

123


	Learning discrete decomposable graphical models via constraint optimization
	Abstract
	1 Introduction
	2 Markov networks and their generalization
	3 Filtering clique candidates
	4 Perfect elimination orderings
	5 Learning Markov networks by constraint optimization
	5.1 Encoding based on PEOs
	5.2 Encoding labels for Markov networks

	6 Experimental evaluation
	7 Conclusion
	Acknowledgements
	References




