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Abstract We develop a fast variational approximation
scheme for Gaussian process (GP) regression, where the
spectrum of the covariance function is subjected to a sparse
approximation. Our approach enables uncertainty in covari-
ance function hyperparameters to be treated without using
Monte Carlo methods and is robust to overfitting. Our arti-
cle makes three contributions. First, we present a variational
Bayes algorithm for fitting sparse spectrum GP regression
models that uses nonconjugate variational message pass-
ing to derive fast and efficient updates. Second, we propose
a novel adaptive neighbourhood technique for obtaining
predictive inference that is effective in dealing with non-
stationarity. Regression is performed locally at each point
to be predicted and the neighbourhood is determined using a
measure defined based on lengthscales estimated from an ini-
tial fit. Weighting dimensions according to lengthscales, this
downweights variables of little relevance, leading to auto-
matic variable selection and improved prediction. Third, we
introduce a technique for accelerating convergence in non-
conjugate variational message passing by adapting step sizes
in the direction of the natural gradient of the lower bound.
Our adaptive strategy can be easily implemented and empir-
ical results indicate significant speedups.
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1 Introduction

Gaussian process (GP) models provide a flexible, probabilis-
tic approach to regression and are widely used. However,
application of GP models to large data sets is challeng-
ing as the memory and computational requirements scale
as O(n2) and O(n3) respectively, where n is the number
of training data points. Various sparse GP approximations
have been proposed to overcome this limitation. A uni-
fying framework of existing sparse methods is given in
Quiñonero-Candela and Rasmussen (2005). We consider the
stationary sparse spectrum GP regression model introduced
by Lázaro-Gredilla et al. (2010), where the spectrum of the
covariance function is sparsified instead of the usual spatial
domain. The SSGP algorithm developed by Lázaro-Gredilla
et al. (2010) for fitting this model uses conjugate gradi-
ents to optimize the marginal likelihoood with respect to the
hyperparameters and spectral points. Comparisonswith other
state-of-the-art sparse GP approximations such as the fully
independent training conditional model (first introduced as
sparse pseudo-input GP in Snelson and Ghahramani 2006)
and the sparse multiscale GP (Walder et al. 2008), showed
that SSGP yielded significant improvements. However, opti-
mization with respect to spectral frequencies increases the
tendency to underestimate predictive uncertainty and poses
a risk of overfitting in the SSGP algorithm.

In this paper, we develop a fast variational approxima-
tion scheme for the sparse spectrum GP regression model,
which enables uncertainty in covariance function hyperpa-
rameters to be treated. In addition, we propose an adaptive
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local neighbourhood approach for dealingwith nonstationary
data. Although accounting for hyperparameter uncertainty
may be of little importance when fitting globally to a large
data set, local fitting within neighbourhoods results in fitting
to small data sets even if the full data set is large, and here
it is important to account for hyperparameter uncertainty to
avoid overfitting.Our examples show that ourmethodology is
particularly beneficial when combined with the local fitting
approach for this reason. Our approach also allows hierar-
chical models involving covariance function parameters to
be constructed. This idea is implemented in the context of
functional longitudinal models by Mensah et al. (2014) so
that smoothness properties of trajectories can be related to
individual specific covariates.

GPs have diverse applications and various methods have
been developed to overcome their computational limitations
for handling large data sets. A good summary of approxi-
mations used in modelling large spatial data sets is given in
Ren et al. (2011). Computational costs can also be reduced
through local GP regression as a much smaller number of
training data is utilized in each partition. This approach
has been considered in machine learning (e.g. Snelson and
Ghahramani 2007; Nguyen-Tuong et al. 2009; Park and Choi
2010) and in spatial statistics (e.g. Vecchia 1988; Haas 1995;
Stein et al. 2004;Kimet al. 2005).Urtasun andDarrell (2008)
propose fitting GP models in local neighbourhoods which
are defined online for each test point. However, covariance
hyperparameters are estimated only for a subset of all pos-
sible local neighbourhoods. Different local experts are then
combined using a mixture model capable of handling mul-
timodality. Our idea of using adaptive nearest neighbours
in GP regression is inspired by techniques in classification
designed to mitigate the curse of dimensionality (Hastie
and Tibshirani 1996). For each test point, we fit two mod-
els. In the first instance, the neighbourhood is determined
using the Euclidean metric. Lengthscales estimated from the
first fitting are then used to redefine the distance measure
determining the neighbourhood for fitting the second model.
Experiments suggest that this approach improves prediction
significantly in data with nonstationarities, as hyperparame-
ters are allowed to vary across neighbourhoods adapted to
each query point.Weighting dimensions according to length-
scales downweights variables of little relevance and also
leads to automatic variable selection. Our approach differs
from methods where local neighbourhoods are built sequen-
tially to optimize the choice of the neighbourhood. Examples
include Vecchia (1988) and Stein et al. (2004), where the
Gaussian likelihood is approximated by the use of an order-
ing and conditioning on a subset of past observations. In
Gramacy andApley (2014), an empirical Bayesmean-square
prediction error criterion is optimized.While greedy searches
usually rely on fast updating formulae available only in the
Gaussian case, our approach works in non-Gaussian settings

as well. Stein et al. (2004) suggest making neighbourhoods
non-local to improve learning of covariance parameters, but
local neighbourhoods may work better when the motivation
is to handle nonstationarity. Lindgren et al. (2011) make a
connection between discrete spatial Markov random fields
and continuousGaussian randomfieldswith covariance func-
tions in the Matérn class.

For fitting the sparse spectrum GP regression model, we
derive a variational Bayes (VB, Attias 1999) algorithm that
uses nonconjugate variationalmessagepassing (Knowles and
Minka 2011) to derive fast and efficient updates. VBmethods
approximate the intractable posterior in Bayesian inference
by a factorized distribution. This product density assump-
tion is often unrealistic and can lead to underestimation
of posterior variance (Wang and Titterington 2005). How-
ever, optimization of a factorized variational posterior can be
decomposed into local computations that only involve neigh-
bouring nodes in the factor graph and this often gives rise to
fast computational algorithms. VB has also been shown to
be able to give reasonably good estimates of the marginal
posterior distributions and excellent predictive inferences
(e.g. Blei and Jordan 2006; Braun and McAuliffe 2010).
Variational message passing (Winn and Bishop 2005) is
a general-purpose algorithm that allows VB to be applied
to conjugate–exponential models (Attias 2000). Nonconju-
gate variationalmessage passing extends variationalmessage
passing to nonconjugate models by assuming that the factors
inVBaremembers of the exponential family.Weuse noncon-
jugate variational message passing to derive efficient updates
for the variational posteriors of the lengthscales, which are
assumed to be Gaussian. Ren et al. (2011) use VB for spa-
tial modelling via GP, where they also treat uncertainty in
the covariance function hyperparameters. However, they pro-
pose using importance sampling within each VB iteration
to handle the intractable expectations associated with the
covariance function hyperparameters. Variational inference
has also been considered in machine learning for sparse GPs
that select the inducing inputs and hyperparameters by maxi-
mizing a lower bound to the exactmarginal likelihood (Titsias
2009), and heteroscedastic GP regression models where the
noise is input dependent (Lázaro-Gredilla and Titsias 2011).

VB is known to suffer from slow convergence when there
is strong dependence between variables in the factors. To
speed up convergence, Qi and Jaakkola (2006) propose para-
meter expanded VB to reduce coupling in updates, while
Tan and Nott (2013) considered partially noncentered para-
metrizations. Here, we introduce an adaptive strategy to
accelerate convergence in nonconjugate variational message
passing, which is inspired by adaptive overrelaxed bound
optimization methods (Salakhutdinov and Roweis 2003).
Previously, Tan and Nott (2014) showed that nonconjugate
variational message passing is a natural gradient ascent algo-
rithm with step size one and step sizes smaller than one
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correspond to damping. Here, we propose using step sizes
larger than one which can help to accelerate convergence
in fixed point iterations algorithms (see Huang et al. 2005).
Instead of searching for the optimal step size, we use an adap-
tive strategy which ensures that the lower bound increases
after each cycle of updates. Empirical results indicate signif-
icant speedups. Honkela et al. (2003) considered combining
parameter-wise updates to form a diagonal direction for a
line search. A general iterative algorithm for computing VB
estimators (defined as means of variational posteriors) has
also been proposed by Wang and Titterington (2006) and
its convergence properties investigated for normal mixture
models.

Section 2 describes the sparse spectrum GP regression
model andSect. 3 develops the nonconjugate variationalmes-
sage passing algorithm for fitting it. Section 4 presents an
adaptive strategy for accelerating convergence in nonconju-
gate variational message passing. Section 5 discusses how
the predictive distribution can be estimated and the mea-
sures used for performance evaluation. Section 6 describes
the adaptive neighbourhood approach for local regression.
Section 7 considers examples including real and simulated
data and Sect. 8 concludes.

2 Sparse spectrum Gaussian process regression

Given a data set {(xi , yi )|i = 1, . . . , n}, we assume each
output yi ∈ � is generated by an unknown latent function f
evaluated at the input, xi ∈ �d , and independently corrupted
by additive Gaussian noise such that

yi = f (xi ) + εi , εi ∼ N (0, γ 2).

A GP prior is assumed over f (x) for x ∈ �d . For any set of
inputs {xi |i = 1, . . . , n}, [ f (x1), . . . , f (xn)]T has a joint
Gaussian distribution, N (0, K ), where K is a covariance
matrix. We assume that the mean of the process is zero. It is
straightforward to allow for a nonzero mean, but a zero mean
is sufficient for the examples in this paper. The entries of K
are given by Ki j = E{ f (xi ) f (x j )} = k(xi , x j ) = k(h),
where h = (xi − x j ) ∈ �d and k is some stationary
covariance function. For example, we consider the stationary
squared exponential covariance function,

k(h) = σ 2 exp(− 1
2h

TΛh), (1)

where σ 2 > 0, Λ = diag([λ21, . . . , λ2d ]T ) and λl ≥ 0 for
l = 1, . . . , d.

Lázaro-Gredilla et al. (2010) introduced a novel perspec-
tive on GP approximation by sparsifying the spectrum of the
covariance function. They considered the linear regression
model,

f (x) ≈
m∑

r=1

{
ar cos(2πs

T
r x) + br sin(2πs

T
r x)

}
, (2)

where ar , br are independent and identically distributed
as N (0, σ 2

m ) and sr is a d-dimensional vector of spec-
tral frequencies. The power spectral density of a stationary
covariance function k is

Sk(s) =
∫

�d
exp(−2π isT h)k(h) dh, (3)

and Sk(s) is proportional to a probability density pk(s) such
that Sk(s) = k(0)pk(s). When {s1, . . . , sm} are drawn ran-
domly from pk(s), Lázaro-Gredilla et al. (2010) showed that
(2) can be viewed as a sparse GP that approximates the full
stationary GP by replacing the spectrum with a discrete set
of spectral points.

From (3), the probability density pk(s) associatedwith the
squared exponential covariance function in (1) is
N (0, 1

4π2 Λ
−1). If {s1, . . . , sm} is generated randomly from

N (0, Id), then { 1
2π Λ

1
2 s1, . . . ,

1
2π Λ

1
2 sm} is a random sample

from pk(s). From (2), a sparse GP approximation to f (x) is

f (x) ≈
m∑

r=1

{
ar cos(s

T
r Λ

1
2 x) + br sin(s

T
r Λ

1
2 x)
}

=
m∑

r=1

[
ar cos{(sr � x)T λ} + br sin{(sr � x)T λ}

]
,

(4)

where Λ
1
2 = diag(λ), λ = [λ1, . . . , λd ]T is a vector of

lengthscales and � denotes element by element multiplica-
tion of two vectors. Within the sparse GP approximation,
we can allow the components of λ to be negative. Let
s = [s1, . . . , sd ]T and x = [x1, . . . , xd ]T . Note that in (1)
λ j appears as its square in Λ so that k(h) remains positive
semidefinite. Ignoring the non-negativity constraint allows
us to use a Gaussian variational posterior for λ. The associ-
ated expectations in the variational lower bound can then be
derived in closed form (see Sect. 3). This is a highly novel
aspect of our algorithm allowing a fast method that still han-
dles covariance function hyperparameter uncertainty. This
is especially important when fitting locally as described in
Sect. 6 where training datasets may be small. The squared
exponential covariance function also implements automatic
relevance determination since the magnitude of λ j is a mea-
sure of how relevant the j th variable is. When λ j goes to
zero, the covariance function becomes almost independent
of the j th variable, essentially removing it from inference.
See Rasmussen and Williams (2006) for more discussion.
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Using the stationary sparse GP approximation in (4), we
consider variational inference for

yi =
m∑

r=1

[
ar cos{(sr � xi )

T λ} + br sin{(sr � xi )
T λ}

]

+εi , where εi ∼ N (0, γ 2).

Let α = [a1, . . . , am, b1, . . . , bm]T , y = [y1, . . . , yn]T , ε =
[ε1, . . . , εn]T and Z = [Z1, . . . , Zn]T , where

Zi = [cos{(s1 � xi )
T λ}, . . . , cos{(sm � xi )

T λ},
sin{(s1 � xi )

T λ}, . . . , sin{(sm � xi )
T λ}]T .

Then this model can be written as

y = Zα + ε, ε ∼ N (0, γ 2 In), (5)

whereα ∼ N (0, σ 2

m I2m). For Bayesian inference, we assume
the priors: λ ∼ N (μ0

λ,Σ
0
λ), σ ∼ half-Cauchy(Aσ ) and γ ∼

half-Cauchy(Aγ ), where the hyperparameters μ0
λ, Σ0

λ , Aσ

and Aγ are assumed to be known. The density function of a
randomvariable x distributed as half-Cauchy(A) is 2A

π(A2+x2)
,

where x > 0 and A > 0. While inverse-Gamma priors are
more commonly used for variance parameters in hierarchical
models due to the conditional conjugacy relationship with
Gaussian families, Gelman (2006) recommends use of the
half-Cauchy family as priors because resulting inferences
can be sensitive to inverse-Gamma hyperparameters when
variance estimates are close to zero.Wemade the same obser-
vation in our experiments with inverse-Gamma priors for σ 2

and γ 2. In particular, predictive inferences are sensitive to
inverse-Gamma priors in local regressions (see Section 6),
where only a small neighbourhood is used for fitting at each
test point.

3 Variational inference

We consider variational inference for the sparse spectrum
GP regression model in (5). Let θ = {α, λ, σ, γ } be the set
of unknown parameters and p(θ |y) be the true posterior of
θ . In variational approximation, p(θ |y) is approximated by a
q(θ) for which inference ismore tractable, and theKullback–
Leibler divergence between q(θ) and p(θ |y) is minimized.
This is equivalent to maximizing a lower bound L on the log
marginal likelihood log p(y), where p(y) = ∫

p(y, θ) dθ ,

L = Eq{log p(y, θ)} − Eq{log q(θ)}, (6)

and Eq denotes expectation with respect to q(θ).
Next, we review some important results in VB and non-

conjugate variational message passing, which will be used to

construct the variational algorithm. In VB, q(θ) is assumed
to factorize into

∏M
i=1 qi (θi ) for some partition {θ1, . . . , θM }

of θ . The optimal densities may be obtained from

qi (θi ) ∝ exp{E−θi log p(y, θ)}, i = 1, . . . , M, (7)

where E−θi denotes expectation with respect to
∏

j 	=i q j (θ j )

(see, e.g. Ormerod and Wand 2010). For conjugate–
exponentialmodels, the optimal densities have the same form
as the priors and it suffices to update the parameters of qi ,
such as in variational message passing (Winn and Bishop
2005). However, for nonconjugate models, the optimal den-
sities will not belong to recognizable density families. Apart
from the product assumption, nonconjugate variational mes-
sage passing (Knowles and Minka 2011) further assumes
each qi (θi ) is a member of some exponential family, that is,

qi (θi ) = exp{ηTi ti (θi ) − hi (ηi )},

where ηi is the vector of natural parameters and ti (·) are
the sufficient statistics. Hence, we only have to find each
ηi that maximizes the lower bound L. Nonconjugate varia-
tional message passing can be interpreted as a fixed point
iterations algorithm where updates are obtained from the
condition that the gradient or natural gradient (see Amari
1998; Hoffman et al. 2013) of L with respect to each ηi is
zero whenL is maximized. Suppose p(y, θ) = ∏

a fa(y, θ),

Sa = Eq{log fa(y, θ)} and let Vi (ηi ) = ∂2hi (ηi )
∂ηi ∂ηTi

denote

the variance–covariance matrix of ti (θi ). Provided Vi (ηi ) is
invertible, Tan and Nott (2014) showed that the natural gra-
dient of L with respect to ηi is

∇̃ηiL = Vi (ηi )
−1

∑

a∈N (θi )

∂Sa
∂ηi

− ηi . (8)

Therefore, the update for each ηi is

ηi ← Vi (ηi )
−1

∑

a∈N (θi )

∂Sa
∂ηi

, (9)

where the summation is over all factors in N (θi ), the neigh-
bourhood of θi in the factor graph of p(y, θ). Updates in
nonconjugate variational message passing reduce to those in
variational message passing when the factors fa are conju-
gate (see Knowles and Minka 2011; Tan and Nott 2013).
However, unlike variational message passing, the lower
bound L is not guaranteed to increase at each step and con-
vergence problemsmay be encountered sometimes. Knowles
and Minka (2011) suggest using damping to fix convergence
problems.
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When qi (θi ) = N (μ
q
θi
,Σ

q
θi
), Wand (2014) showed that

the update in (9) can be simplified to

Σ
q
θi

← −1

2

[
vec−1

( ∑

a∈N (θi )

∂Sa
∂vec(Σq

θi
)

)]−1

,

μ
q
θi

← μ
q
θi

+ Σ
q
θi

∑

a∈N (θi )

∂Sa
∂μ

q
θi

.

(10)

Here vec(A) denotes the vector obtained by stacking the
columns of a matrix A under each other, from left to right in
order.

3.1 Algorithm 1

We consider a variational approximation of the form

q(θ) = q(α)q(λ)q(σ, γ ). (11)

From (7), the optimal densities q(α) and q(σ, γ ) are q(α) =
N (μ

q
α,Σ

q
α ) and q(σ, γ ) = q(σ )q(γ ), where

q(σ ) = exp(−Cq
σ /σ 2)

H(2m − 2,Cq
σ , A2

σ )σ 2m(A2
σ + σ 2)

,

q(γ ) = exp(−Cq
γ /γ 2)

H(n − 2,Cq
γ , A2

γ )γ n(A2
γ + γ 2)

,

Algorithm 1 Nonconjugate variational message passing algorithm for sparse spectrum GP regression model

Initialize ϑ .
Cycle

1. Σ
q
λ ←

{
Σ0

λ

−1 + (F1 + F2)H(n,Cq
γ , A2

γ )/H(n − 2,Cq
γ , A2

γ )
}−1

, where

F1 = ∑n
i=1

∑m
r=1 yi exp(− 1

2 t
T
irΣ

q
λ tir ){μq

αr cos(t
T
irμ

q
λ) + μ

q
αm+r sin(t

T
irμ

q
λ)}tir t Tir ,

F2 = − 1
4

∑n
i=1

∑m
r=1

∑m
l=1

[
ν−
irl

{
(Arl + Drl ) cos(t

−
irl

T
μ
q
λ) + 2Brl sin(t

−
irl

T
μ
q
λ)
}
t−irl t

−
irl

T

+ ν+
irl

{
(Arl − Drl ) cos(t

+
irl

T
μ
q
λ) + 2Brl sin(t

+
irl

T
μ
q
λ)
}
t+irl t

+
irl

T
]
.

2. μ
q
λ ← μ

q
λ + Σ

q
λ

{
Σ0

λ

−1
(μ0

λ − μ
q
λ) − 1

2 (F3 + F4)H(n,Cq
γ , A2

γ )/H(n − 2,Cq
γ , A2

γ )
}
, where

F3 = −2
∑n

i=1
∑m

r=1 yi exp(− 1
2 t

T
irΣ

q
λ tir ){μq

αr+m cos(t Tirμ
q
λ) − μ

q
αr sin(t

T
irμ

q
λ)}tir

F4 = 1
2

∑n
i=1

∑m
r=1

∑m
l=1

[
ν−
irl

{
2Brl cos(t

−
irl

T
μ
q
λ) − (Arl + Drl ) sin(t

−
irl

T
μ
q
λ)
}
t−irl

+ ν+
irl

{
2Brl cos(t

+
irl

T
μ
q
λ) + (Drl − Arl ) sin(t

+
irl

T
μ
q
λ)
}
t+irl
]
.

3. Σ
q
α ←

{
Eq (ZT Z)H(n,Cq

γ , A2
γ )/H(n − 2,Cq

γ , A2
γ ) + mI2mH(2m,Cq

σ , A2
σ )/H(2m − 2,Cq

σ , A2
σ )
}−1

4. μ
q
α ← Σ

q
α Eq (Z)T y H(n,Cq

γ , A2
γ )/H(n − 2,Cq

γ , A2
γ )

5. Cq
σ ← m

2

{
μ
q
α
T
μ
q
α + tr(Σq

α )
}

6. Cq
γ ← 1

2

[
yT y − 2yT Eq (Z)μ

q
α + tr{(μq

αμ
q
α
T + Σ

q
α )Eq (ZT Z)}

]

until the increase in the lower bound L is negligible.

and H(p, q, r) = ∫∞
0 x p exp{−qx2 − log(r + x−2)} dx ,

p ≥ 0, r > 0. The variational parameter updates of μ
q
α ,

Σ
q
α , C

q
σ and Cq

γ can also be derived from (7). AsH(p, q, r)
can be arbitrarily large or small, Wand et al. (2011) suggest
evaluating logH(p, q, r) efficiently using quadrature. A dis-
cussion can be found in Appendix B of Wand et al. (2011)
and we follow their methods. For q(λ), p(y|α, λ, γ ) is not a
conjugate factor and we use nonconjugate variational mes-
sage passing. Assuming q(λ) = N (μ

q
λ,Σ

q
λ ), updates for μ

q
λ

andΣ
q
λ can be derived using (10) and matrix differential cal-

culus (see Magnus and Neudecker 1988). The expectations
with respect to q in (10) are given in Appendices 1 and 2.
Let ϑ = {μq

α,Σ
q
α , μ

q
λ,Σ

q
λ ,Cq

σ ,Cq
γ } denote the set of varia-

tional parameters. An iterative scheme for finding ϑ is given
in Algorithm 1.

A unique aspect of our variational scheme is the way
covariance function uncertainty is handled, with the expec-
tations involving λ in the lower bound computable in closed
form. In particular, Eq(Z) and Eq(ZT Z) can be evaluated

in closed form (see Appendix 1). Let μq
αμ

q
α
T + Σ

q
α be parti-

tioned as
[
A BT

B D

]
where A, B and D are all m ×m matrices.

In algorithm 1, we define tir = sr � xi ,

t−irl = tir − til

t+irl = tir + til
and

ν−
irl = exp(− 1

2 t
−
irl

T
Σ

q
λ t

−
irl)

ν+
irl = exp(− 1

2 t
+
irl

T
Σ

q
λ t

+
irl)

for i = 1, . . . , n, r = 1, . . . ,m, l = 1, . . . ,m.
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The lower bound L defined in (6) is commonly used for
monitoring convergence. It can be evaluated in closed form
(see Appendix 2) and is given by

L = m logm + log(4Aσ Aγ /π2) + 1
2 log |Σ0

λ

−1
Σ

q
λ |

− 1
2 (μ

q
λ − μ0

λ)
TΣ0

λ

−1
(μ

q
λ − μ0

λ) − 1
2 tr(Σ

0
λ

−1
Σ

q
λ )

+ 1
2 log |Σq

α | + logH(n − 2,Cq
γ , A2

γ )

+ logH(2m − 2,Cq
σ , A2

σ ) + m + d
2 − n

2 log(2π).

(12)

The above expression applies only after the updates in steps
5 and 6 of Algorithm 1 have been made.

4 Adaptive nonconjugate variational message
passing

In the sparse spectrum GP regression model (5), Z and α are
intimately linked. Each time the lengthscales (λ) are changed
by a small amount, the amplitudes (α) will have to respond to
this change in order tomatch the observed y. In (11), we have
assumed that the variational posteriors of λ and α are inde-
pendent so that expectations with respect to q are tractable
and closed form updates can be derived for a fast algorithm.
However, strong dependence between λ and α implies that
only small steps can be taken in each cycle of updates and a
large number of iterations will likely be required for Algo-
rithm 1 to converge.

To accelerate convergence, we propose modifying the
updates in steps 1 and 2. Let ηλ be the natural parameter
of q(λ) and η̂λ be the update of ηλ in nonconjugate vari-
ational message passing. Tan and Nott (2014) showed that
nonconjugate variational message passing is a natural gra-
dient ascent method with step size one. At iteration t , we
consider

η
(t)
λ = η

(t−1)
λ + at ∇̃ηλL|

ηλ=η
(t−1)
λ

= η
(t−1)
λ + at

(
η̂

(t)
λ − η

(t−1)
λ

)
(from (8))

(13)

where η̂
(t)
λ = Vλ(η

(t−1)
λ )−1∑

a∈N (λ)
∂Sa
∂ηλ

∣∣
η

(t−1)
λ

. When at =
1, (13) reduces to the update in nonconjugate variationalmes-
sage passing. Taking at < 1 may be helpful when updates
in nonconjugate variational message passing fail to increase
L. From our experiments, instability in Algorithm 1 usu-
ally occur within the first few iterations. Beyond that, the
algorithm is usually quite stable and taking larger steps with
at > 1 can result in significant speed-ups.

Recall that nonconjugate variational message passing is a
fixed point iterations algorithm. Figure 1 illustrates in a single
variable case (where we are solving x = f (x)) how taking

Fig. 1 Solid line starting from x (0) indicates conventional path in fixed
point iterations while the dot dash line indicates path to convergence
with a step size greater than 1

steps larger than one can accelerate convergence. Instead of
taking x (t) = f (x (t−1)), consider x (t) = x (t−1) + at (x̂ (t) −
x (t−1)), where x̂ (t) = f (x (t−1)) and at > 1. The solid line
starting from x (0) indicates the conventional path in fixed
point iterations while the dot dash line indicates the path with
a step size greater than 1. The dot dash line moves towards
the point of convergence faster than the solid line. However,
it may overshoot if at is too large. In Algorithm 2, we borrow
ideas from Salakhutdinov and Roweis (2003) to construct an
adaptive algorithmwhere at is allowed to increase by a factor
ρ > 1 after each cycle of updates whilstL is on an increasing
trend and we revert to at = 1 when L decreases.

Algorithm 2 Adaptive nonconjugate variational message
passing algorithm for sparse spectrum GP regression model

Initialize ϑ(0). Set t = 0 and a0 = 1.
While δ > tolerance and t < maximum number of iterations,

1. t ← t + 1.

2. Compute F5 = Σ0
λ

−1 + H(n,Cq
γ ,A2

γ )

H(n−2,Cq
γ ,A2

γ )
(F1 + F2) and

F6 = Σ0
λ

−1
(μ0

λ − μ
q
λ) − H(n,Cq

γ ,A2
γ )

2H(n−2,Cq
γ ,A2

γ )
(F3 + F4).

3. (a) Compute Σ
q
λ ←

[
(1 − at )Σ

q
λ

−1 + at F5
]−1

.

(b) If Σ
q
λ is symmetric positive definite, proceed to step 4. Else,

at ← at/ρ and return to step 3(a).

4. μ
q
λ ← μ

q
λ + atΣ

q
λ F6.

5. Compute updates in steps 3–6 of Algorithm 1.

6. (a) Compute δ = L|ϑ(t) − L|ϑ(t−1) .

(b) If δ > 0, at = ρ at−1 and return to step 1. Else, at ← 1,
t ← t + 1 and return to step 3.

The adaptive nonconjugate variationalmessage passing algo-
rithm is given in Algorithm 2. In Appendix 3, we show that
(13) reduces to the updates:

Σ
q
λ ←

[
(1 − at )Σ

q
λ

−1 − 2atvec
−1
( ∑

a∈N (λ)

∂Sa
∂vec(Σq

λ )

)]−1

and μ
q
λ ← μ

q
λ + at Σ

q
λ

∑

a∈N (λ)

∂Sa
∂μ

q
λ

. (14)
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Step 3(b) has been added as a safeguard as the updated Σ
q
λ

may not be symmetric positive definite due to rounding errors
or when at is large. In this case, we propose reducing the step
size by a factor ρ until all eigenvalues of Σ

q
λ are positive. It

is useful to insert step 3(b) in Algorithm 1 after Σ
q
λ has been

updated as well as it can serve as damping. For both Algo-
rithms 1 and 2, we initialize μ

q
λ as [0.5, . . . , 0.5]T (which is

one half of the amplitudes of the inputs after any rescaling),
Σ

q
λ as diag[0.5, . . . , 0.5]T , Cq

γ as ( n2 − 1) · var(y)/4, Cq
σ as

(m − 1) · var(y), and μ
q
α and Σ

q
α are initialized using the

updates in steps 3–4 of Algorithm 1. We set the maximum
number of iterations as 500 and the algorithms are deemed to
have converged if the relative increase inL is less than 10−6.
Salakhutdinov andRoweis (2003) recommend taking the fac-
tor ρ to be close to but more than 1. Using this as a guide,
we have experimented with ρ taking values 1.1, 1.5 and 2.
While all these values lead to improvement in efficiency, we
find ρ = 1.5 to be more favourable, as the step sizes increase
rather slowly when ρ = 1.1 and too fast when ρ = 2, lead-
ing to many failed attempts to improve L. While Algorithm
2 does not necessarily converge to the same local mode as
Algorithm 1, results from the two algorithms are usually
very close. Algorithm 2 sometimes demonstrates the abil-
ity to avoid local modes with the larger steps that it takes. We
compare and quantify the performance of the two algorithms
in Sect. 7.1. Note that in Algorithm 2, each failed attempt to
improve L is also counted as an additional iteration in step
5(b) even though step 1 does not have to be reevaluated.

We note that Algorithms 1 and 2 are not guaranteed to
converge due to the fixed point updates in nonconjugate vari-
ational message passing. However, convergence issues can
usually be mitigated by rescaling variables and varying the
initialization values.As the fixed point updatesmay not result
in an increase inL, it is possible to computeL after perform-
ing the updates and reduce at if necessary. However, this
requires computing a lower bound of a more complex form
than (12) at each iteration. Our experiments indicate that a
decline in L is often due to Σ

q
λ not being symmetric posi-

tive definite, and hence installing step 3(b) suffices in most
cases. We also find that checking the simplified form of L in
(12) at the end of each cycle and simply reverting at to 1 if
necessary is more economical. If premature stopping occurs
in Algorithms 1 or 2 due to a decrease in the lower bound
at some iteration, this can be detected by examination of
the lower bound values and remedied if needed by damping
where values at < 1 are considered.

5 Predictive distribution and performance
evaluation

Let D = {(xi , yi )|i = 1, . . . , n} and T = {(x∗
j , y

∗
j )| j =

1, . . . , n∗} be the training and testing data sets respectively.

Let S = {s1, . . . , sm} be the set of spectral frequen-
cies randomly generated from N (0, Id). Bayesian predictive
inference is based on the predictive distribution,

p(y∗
j |x∗

j , S, D) =
∫

p(y∗
j |x∗

j , S, α, λ, γ )

·p(α, λ, γ |D, S) dα dλ dγ,

assuming y∗
j is conditionally independent of D givenα,λ and

γ . We replace p(α, λ, γ |D) with our variational approxima-
tion q(α, λ, γ ) = q(α)q(λ)q(γ ) so that

p(y∗
j |x∗

j , S, D) ≈
∫

p(y∗
j |x∗

j , S, α, λ, γ )

·q(α)q(λ)q(γ ) dα dλ dγ. (15)

From (15), the posterior predictive mean of y∗
j is

μ∗
j =

∫
y∗
j p(y∗

j |x∗
j , S, D) dy∗

j

≈ Eq

{∫
y∗
j p(y∗

j |x∗
j , S, α, λ, γ ) dy∗

j

}
= Eq(Z

∗
j )
Tμq

α,

where

Z∗
j = [cos{(s1 � x∗

j )
T λ}, . . . , cos{(sm � x∗

j )
T λ},

sin{(s1 � x∗
j )

T λ}, . . . , sin{(sm � x∗
j )

T λ}]T

and Eq(Z∗
j ) can be computed using results in Appendix 1.

The posterior predictive variance is

σ ∗
j
2 ≈

∫
y∗
j
2 p(y∗

j |x∗
j , S, D) dy∗

j − {Eq(Z
∗
j )
Tμq

α}2

≈ Eq{γ 2 + (Z∗
jα)2} − μq

α
T Eq(Z

∗
j )Eq(Z

∗
j )
Tμq

α

= H(n−4,Cq
γ ,A2

γ )

H(n−2,Cq
γ ,A2

γ )
+ tr{(μq

αμq
α
T + Σq

α )Eq(Z
∗
j
T Z∗

j )}
− μq

α
T Eq(Z

∗
j )Eq(Z

∗
j )
Tμq

α.

In the examples, we follow Lázaro-Gredilla et al. (2010)
and evaluate performance using two quantitative measures:
normalized mean square error (NMSE) and mean negative
log probability (MNLP). These are defined as

NMSE =
1
n∗
∑n∗

j=1(y
∗
j − μ∗

j )
2

1
n∗
∑n∗

j=1(y
∗
j − ȳ)2

and

MNLP = 1

2n∗
n∗∑

j=1

{
(y∗

j − μ∗
j )
2

σ ∗
j
2 + log σ ∗

j
2 + log(2π)

}
.

TheMNLP is implicitly based on a normal predictive distrib-
ution for y∗

j with mean μ∗
j and variance σ ∗

j
2, j = 1, . . . , n∗.
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6 Adaptive neighbourhoods approach for
predictive inference

Wepropose a new technique of obtaining predictive inference
by fittingmodels locally using adaptive neighbourhoods. Our
proposed approach consists of two stages: For each test point
x∗
j , j = 1, . . . , n∗,

1. we first find the k nearest neighbours of x∗
j in D (that are

closest to x∗
j in terms of Euclidean distance) and denote

the index set of these k neighbours by N1. We use Algo-
rithm 2 to fit a sparse spectrumGP regressionmodel,M1,
to {(xi , yi )|i ∈ N1}.

2. Next, we use the variational posterior mean of the length-
scales, μq

λ, from M1 to define a new distance measure:

d(x∗
j , xi ) =

√
(x∗

j − xi )T diag(μ
q
λ

2
)(x∗

j − xi ), (16)

where the dimensions are weighted according to μ
q
λ

2
.

This will effectively downweight or remove variables of
little or no relevance. Using this new distance measure,
we find the k nearest neighbours of x∗

j in D and denote the
index set of these k neighbours by N2. We use Algorithm
2 to fit a sparse spectrum GP regression model, M2, to
{(xi , yi )|i ∈ N2} and use the variational posterior from
M2 for predictive inference.

In summary, the first fitting (M1) is used to find out which
variables are more relevant in determining the output. From
(1), a large value of λl indicates that the covariance drops
rapidly along the dimension of l and hence the neighbour-
hood should be shrunk along the lth dimension. Using μ

q
λ

from the first fit as an estimate of the lengthscales, the neigh-
bourhood is then adapted before performing a second fitting
(M2) to improve prediction. We do not recommend iterating
the fitting process further since this may result in cyclical
behaviour with the neighbourhood successively expanding
and contracting along a certain dimension as the iterations
proceed. In the examples, when the SSGP algorithm is imple-
mented using this adaptive neighbourhood approach, we
replace the variational posterior mean value μ

q
λ (which does

not exist for the SSGP method since it does not estimate a
variational posterior distribution for λ) by the point estimates
of the lengthscales λ̂ obtained by the SSGP approach.

The adaptive neighbourhood approach is well-placed to
handle data with nonstationarities as stationarity is only
assumed locally and local fitting can adapt the noise and
the degree of smoothing to the nonstationarities. Adapting
the neighbourhood can also be very helpful in improving
prediction when there are many irrelevant variables due
to automatic relevance determination implemented via the
lengthscales. A major advantage of the variational approach

is that it allowsuncertainty in the covariance hyperparameters
to be modelled within a fast computational scheme. This is
especially importantwhenfitting using local neighbourhoods
as plug-in approaches to estimating hyperparameters will
tend to underestimate predictive uncertainty when the data
set is small. This approach is advantageous for dealing with
large data sets as well. As we only consider fitting models to
a small subset k of data points at each test point, a smaller
number of basis functions (m)might suffice. While the com-
putational requirements grow linearly with the number of
prediction locations, this approach is trivially parallelizable
to get a linear speed-up with the number of processors.

7 Examples

Wecompare the performanceof the variational approachwith
the SSGP algorithm using three real data sets: the pendulum
data set, the rainfall-runoff data set and the Auto-MPG data
set. The implementation of SSGP inMatlab is obtained from
http://www.tsc.uc3m.es/~miguel/simpletutorialssgp.php.
There are two versions of the SSGP algorithm: SSGP (fixed)
uses fixed spectral points while SSGP (optimized) optimizes
the marginal likelihood with respect to the spectral points.
We will only consider SSGP (fixed). We observe some sen-
sitivity in predictive performance to the basis functions and
adopt the following strategy for better results: for each imple-
mentation of Algorithm 1 (or 2), we randomly generate ten
sets of spectral points from N (0, Id), perform 2 iterations
of the algorithm, and select the set with the highest attained
lower bound to continue to full convergence. A similar strat-
egy was used by Lázaro-Gredilla et al. (2010) to initialize
the SSGP algorithm. Due to the zero mean assumption, we
center all target vectors, y by subtracting the mean ȳ from y.
In the examples, “VA” refers to the variational approxima-
tion approach implemented via Algorithm 2, “global” refers
to using the entire training set for fitting while “local” refers
to the adaptive neighbourhood approach described in Sect. 6.

7.1 Pendulum data set

The pendulum data set (available at http://www.tsc.uc3m.es/
~miguel/simpletutorialssgp.php) has d = 9 covariates and
contains 315 training points and 315 test points. The tar-
get variable is the change in angular velocity of a simulated
mechanical pendulum over 50 ms and the covariates consist
of different parameters of the system. Lázaro-Gredilla et al.
(2010) used this example to show that SSGP (optimized) can
sometimes fail due to overfitting. We rescale the input vari-
ables in the training set to lie in [−1, 1] and consider the
number of basis functions, m ∈ {10, 25, 50, 100, 200}. We
compare the performance of Algorithm 2 with SSGP (fixed)
using NMSE and MNLP values averaged over ten repeti-
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Fig. 2 Pendulum data set.
NMSE (left) and MNLP (right)
values produced by Algorithm 2
(global VA) and global SSGP
(fixed) and averaged over ten
repetitions plotted against
number of basis functions (m)

Fig. 3 Pendulum data set. Left
Plot of lower bound attained at
convergence against index of
runs. Right Plot of number of
iterations required for
convergence against index of
runs. Solid circles correspond to
Algorithm 2 with ρ = 1.5 while
empty circles correspond to
Algorithm 1

Fig. 4 Pendulum data set. Run
33. Left Plot of lower bound
against iteration number (solid
line corresponds to Algorithm 2
with ρ = 1.5 while dashed line
corresponds to Algorithm 1).
Right Plot of the adaptive step
size (at ) used in Algorithm 2
against iteration number (t)

tions. We set ρ = 1.5, Aσ = Aγ = 25 for the half-Cauchy
priors, following Gelman (2006) and Wand et al. (2011) and
μ0

λ = 0, Σ0
λ = 10Id for the lengthscales in Algorithm 2.

For this data set which is quite small, we note that the
adaptive neighbourhood approach did not yield significant
improvements as all inputs are relevant and there is no strong
nonstationarity. Hence we report only results for global fits,
which are shown in Figure 2. The NMSE and MNLP values
produced by Algorithm 2 are comparable with that of SSGP
(fixed) for small m and are better for large m. On the whole,
Algorithm 2 produces reasonably good NMSE performance
and is less prone to overfitting than the SSGP algorithm.
The ability of the variational approach to treat uncertainty in
the covariance function hyperparameters reduces underesti-
mation of predictive uncertainty, resulting in better MNLP
performance.

Next, we compare the performance of Algorithm 1 with
Algorithm 2 both in terms of efficiency and the lower bound
attained at convergence. We use Algorithm 1 to re-perform
the runs for m ∈ {10, 25, 50, 100}, using the same sets of
spectral points that were used in Algorithm 2. These runs
are indexed from 1 to 40 (there are ten repetitions for each

m). Figure 3 shows a plot of the lower bound attained at
convergence on the left and a plot of the number of itera-
tions required for convergence on the right for each of the
40 runs. Figure 3 indicates that, except for runs 3 and 40,
the lower bound attained by Algorithms 1 and 2 are almost
indistinguishable. However, Algorithm 2 required a much
smaller number of iterations to converge than Algorithm 1.
Excluding runs 3 and 40 where the lower bound attained by
Algorithms 1 and 2 differs significantly, using Algorithm 2
instead of Algorithm 1 leads on average to a reduction of
49 % in the number of iterations required for convergence.
The highest reduction observed is 84 % at run 9. At run 3,
Algorithm 2 was able to escape a local mode and attained a
higher lower bound at convergence. However, at run 40, it
was caught in a local mode. We re-performed run 40 using
ρ = 1.1 and Algorithm 2 was then able to attain the same
lower bound as Algorithm 1 but in around half the number
of iterations.

The typical behaviour of Algorithm 2 is illustrated in Fig.
4. On the left is a plot of the lower bound against iteration
number and on the right is a plot of the adaptive step size
(at ) used in Algorithm 2 against iteration number (t) for
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run 33. The step size typically increases by a factor of 1.5
at each iteration but falls back to 1 when the lower bound
fails to increase. The step size may also be reduced by fac-
tors of 1.5 due to the requirement that the covariance matrix
be symmetric positive definite in step 2(b) of Algorithm 2.
The reduction in the number of iterations that Algorithm 2
takes to converge as compared to Algorithm 1 is 74 % for
run 33.

7.2 Performance of SSGP and VA with adaptive
neighbourhood approach

For the next four subsections, our discussion concerns perfor-
mance of the adaptive neighbourhood approach.We compare
the performance using two real datasets: the rainfall-runoff
data set and the Auto-MPG data set. We fit these data glob-
ally using SSGP (fixed), VA and MCMC, and compare
results with the adaptive neighbourhood approach, imple-
mented using both SSGP (fixed) and Algorithm 2 with factor
ρ = 1.5. For the priors, we set Aσ = Aγ = 25, μ0

λ = 0. For
Σ0

λ , we set Σ0
λ = 100Id for the rainfall-runoff data where

a less smooth mean function is expected and Σ0
λ = Id for

the Auto-MPG data. The prior variance for the lengthscales
can be chosen empirically by predictive performance on a
test set or using prior knowledge. Prior knowledge about the
hyperparameters in the covariance function can be elicited
by thinking about the prior degree of expected correlation of
the mean function for covariates separated by lag one in each
dimension when the covariates are standardized. For both the
global SSGP (fixed) and VA approach, we consider the num-
ber of basis functionsm ∈ {20, 40, 60, 80, 100}. In addition,
we generate ten artificial covariates on top of the existing
covariates in both the rainfall-runoff and Auto-MPG data set
to test the capability of Algorithm 2 in automatic relevance
determination.

7.3 Rainfall-runoff data

In this example, we consider data from a deterministic
rainfall-runoff model, which is a simplification of the Aus-
tralianWater BalanceModel (AWBM, Boughton 2004). The
AWBM estimates catchment streamflow using time series
of rainfall and evapotranspiration data and is widely used
in Australia for estimating catchment water yield or design
flood estimation. The model has three parameters—the max-
imum storage capacity S, the base flow index BFI and
the baseflow recession factor K . We have model simula-
tions for around eleven years of average monthly potential
evapotranspiration and daily rainfall data for the Barrington
River catchment, located inNewSouthWales, Australia. The
model was run for 500 different values of the parameters
(S, K , BF I ) generated using a maximin Latin hypercube
design. This data contains 500 data points for each of 3700

days, with a total of 1.85 million data points. For each day,
the total rainfall is also recorded. A subset of this data has
been studied in Nott et al. (2012).

Even though the size of the data is large, the computa-
tional demands of the adaptive neighbourhood approach will
depend mostly on the number of query points and the neigh-
bourhood size. This makes our approach highly suitable for
this data set. This is especially true since emulation of the
model will be most interesting near values of peak rainfall
input and generally for events of hydrological significance,
where there might be a flood risk for example. So the pro-
portion of interesting query points in this example is a small
fraction of the total data set size and furthermore we expect
the model output to vary rapidly in some parts of the para-
meter space but very little in other parts so the ability of
the local method to smooth adaptively is very attractive for
this problem. We will consider prediction for the two days
with the highest rainfall inputs. We take AWBM streamflow
response as the target y, and S and K as covariates, omitting
BFI. A small amount of independent normal random noise
with standard deviation 0.01 was added to y to avoid degen-
eracies in regions of the space where the response tends to be
identically zero. For each day, we randomly selected 100 data
points as the test set and use the remaining 400 data points
as the training set. These data are highly nonstationary with
large flat regions, a few rapidly varying regions and the noise
level changes a lot over the space.

Figure 5 shows the NMSE and MNLP values aver-
aged over ten repetitions for the rainfall-runoff data with
peak rainfall. For global SSGP (fixed), we observe a slight
improvement in NMSE values as m increases, while MNLP
values remain largely constant at around 3.75 even for large
m. Due to the nonstationary nature of this data, a global
stationary fit does very poorly in MNLP. For the adaptive
neighbourhood approach, we consider neighbourhoods of
size k = 20, 40, 60, 80, 100, fixing the number of basis
functions, m = 20. For the local methods, the dotted lines
correspond to results from the initial fitting where the k near-
est neighbours are determined based on Euclidean distance.
The solid lines correspond to results from the final fit where
the k nearest neighbours are determined using the new dis-
tance measure with dimensions weighted according to the
lengthscales. The improvement brought about by adapting
the neighbourhood is more apparent in VA than in SSGP
(fixed).

Figure 6 shows the NMSE and MNLP values averaged
over ten repetitions for the rainfall-runoff data with the sec-
ond highest rainfall. In this example we also observe that a
global stationary fit does very poorly in MNLP, again due to
the nonstationary nature of the data. Similarly,when adapting
the neighbourhood approach, there are greater improvements
in VA than in SSGP (fixed). It is clear that the adaptive neigh-
bourhood approach is critical for this data set where themean
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Fig. 5 Rainfall-runoff data on day with peak rainfall. NMSE and
MNLP values averaged over ten repetitions plotted against the number
of basis functions (first column) and against the number of neighbours

(second and third columns). Number of basis functions used in the local
methods was 20. Lower MNLP is better
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Fig. 6 Rainfall-runoff data on daywith second highest rainfall. NMSE
and MNLP values averaged over ten repetitions plotted against the
number of basis functions (first column) and against the number of

neighbours (second and third columns). Number of basis functions used
in the local methods was 20. Lower MNLP is better
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Fig. 7 Rainfall-runoff data on
day with peak rainfall. Plot of
neighbourhood of test point
determined using Euclidean
distance (left) and new weighted
distance measure (right).
Circles denote neighbours and
solid circle denotes test point

Table 1 Computation times in seconds for VA, SSGP (fixed) and
MCMC for rainfall-runoff data on day with peak rainfall

Global approach

m VA SSGP MCMC (2000 iterations)

20 2.626 0.177

40 8.315 0.268

60 17.545 0.491 2068.596

80 32.920 0.638

100 55.223 0.836

Adaptive neighbourhood approach (m = 20)

k VA SSGP MCMC (2000 iterations)

20 257.773 16.361 653.690

40 247.744 17.964 2253.453

60 265.194 22.695 5182.298

80 320.416 23.091 9229.747

100 279.356 24.774 14441.828

function varies rapidly over some parts of the space but very
little over other parts. The variational approach performs very
well when using just a small neighbourhood about each test
point both in terms of NMSE and MNLP.

Figure 7 illustrates how the neighbourhood of a test point
changes from the initial to the final fit for the case k = 60,
when Algorithm 2was being used. The plot on the left shows
the neighbours (denoted by circles) of a test point (denoted
by solid circle) determined using Euclidean distance. The
plot on the right shows the neighbours of the same test point
determined using the new distance measure. In this case, the
component of μ

q
λ corresponding to the covariate S is much

larger than that corresponding to the covariate K , resulting
in the neighbourhood being shrunk along the S axis. The
adapted neighbourhood leads to an improvement in the esti-
mation of the predictive mean and especially the predictive
variance of the test point.

Table 1 shows the computation times of the VA, SSGP
(fixed) and MCMC algorithms on the rainfall-runoff data

with peak rainfall input.We ran theMCMCusingRstan (Stan
Development Team 2014) on a dual processor Windows PC
3.30 GHzworkstation and both SSGP (fixed) and VA inMat-
lab using a 3.2 GHz Intel Core I5 Quad Core iMac. For the
global approach, computation times for SSGP (fixed) and
VA are averaged over 10 repetitions, while MCMC is based
on a single run with 2000 iterations. For the adaptive neigh-
bourhood approach, Table 1 shows the total time it takes to
run all 100 test points. Note that the timing for the local
approaches can be significantly reduced by parallelizing. In
terms of computation speed, SSGP (fixed) is the fastest fol-
lowed byVA.We observe thatMCMC is substantially slower
than the other methods and the computation time increases
significantly when the size of neighbourhood increases. We
do not observe such significant increase in computation times
for VA and SSGP (fixed).

7.4 Rainfall-runoff with simulated data

We consider rainfall-runoff data on the day with peak rain-
fall and generate ten additional covariates artificially. As
both covariates S and K lie in the interval [0, 1], we sim-
ulate each of the ten additional covariates randomly from
the uniform distribution on the interval [0, 1]. We compare
the performance of SSGP (fixed) and Algorithm 2 using a
global fit with the adaptive neighbourhood approach. We set
ρ = 1.5 in Algorithm 2 and use the same priors as in Sect.
7.3. For the global approach, we consider the number of basis
functions, m ∈ {20, 40, 60, 80, 100} while for the adaptive
local neighbourhood approach, we consider neighbourhoods
of size k = 20, 40, 60, 80, 100, fixing the number of basis
functions, m = 20. The results are shown in Fig. 8.

For the global approach, the results of SSGP (fixed) are
quite similar to those in the 2 covariates case. For the local
approach, a small neighbourhood with k = 20 does not
work well for both SSGP (fixed) and VA, indicating that
a larger neighbourhood is likely required for high dimen-
sional problems. There is a clear improvement in the MNLP
values from adapting the neighbourhood according to the
lengthscales and Algorithm 2 achieved the lowest MNLP
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Fig. 8 Rainfall-runoff simulated data. NMSE and MNLP values averaged over ten repetitions plotted against the number of basis functions (first
column) and against the number of neighbours (second, third and fourth columns). Number of basis functions used in the local methods was 20

values among the methods that were studied, using a smaller
neighbourhood. The MNLP values achieved by Algorithm
2 are close to those attained in Sect. 7.3, indicating that the
adaptive neighbourhood approach is effective in eliminat-
ing covariates of little relevance. The variational approach is
able to provide significant improvement in this aspect and is
much more robust to overfitting for small neighbourhoods.
However, the NMSE values obtained in the adaptive neigh-
bourhood approach are higher than those obtained in the
global approach. Finally, we note that a good neighbourhood
size is dependent on the number of covariance function para-
meters to be estimated and on the degree of nonstationarity,
which is very much problem specific. Some experimentation
with different neighbourhood sizes is probably necessary.

7.5 Auto-MPG data

In this example, we consider the Automobile city-cycle fuel
consumption in miles per gallon (Auto-MPG) data taken
from the CMU Statistics library. This dataset was used in
the 1983 American Statistical Association Exposition and is
available at http://archive.ics.uci.edu/ml/datasets.html. The
dataset contains 398 instances and nine attributes. Quinlan
(1933) used this data to predict the attribute “MPG”, which
is the city-cycle fuel consumption in miles per gallon. The
other eight attributes include two multi-valued discrete, four

continuous attributes and two categorical variables. We drop
the two categorical variables, car name and origin, and keep
the four continuous attributes and two multi-valued discrete
variables. Six of the data points are removed as they have
missing entries in some of the input variables. We randomly
select 80 data points as the test set, and use the remaining
312 data points as the training set.

Figure 9 shows the NMSE and MNLP values averaged
over ten repetitions. For the global SSGP (fixed) and VA
methods, we observe slight improvements in both the NMSE
andMNLPvalues asm increases. TheMNLPandNMSEval-
ues for MCMC and global VA are also better than for global
SSGP (fixed). For the adaptive neighbourhood approach, we
consider neighbourhoods of size k = 20, 40, 60, 80, 100,
while fixing the number of basis function m = 20. For local
VA, the final fit is slightly better than the initial fit. There is
an improvement brought about by adapting the neighbour-
hood as Figure 9 shows that the MNLP values of both the
initial and final fits are lower than the MCMC method for
neighbourhood size of 40, 60, 80 and 100.

For local SSGP (fixed), we observe that their performance
is worse than MCMC. Moreover, it seems that the initial fit
is better than the final fit, for neighbourhood size of 80 and
100. This may be because the lengthscales are not accurate
enough to be used for the final fit.We also examined the local
SSGP approach with larger neighbourhood sizes of 150, 200
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Fig. 9 Auto-MPG data. NMSE and MNLP values averaged over ten repetitions plotted against the number of basis functions (first column) and
against the number of neighbours (second and third columns). Number of basis functions used in the local methods was 20

and 250. We found that, at a neighbourhood size of 150, the
performance of the final fit of local SSGP (fixed) (MNLP and
NMSE of 2.38 and 0.129 respectively) is slightly better than
MCMC. Adapting the neighbourhood approach is still more
apparent in the variational approach as it is able to achieve
MNLP and NMSE value of 2.26 and 0.117 respectively at
neighbourhood size of 60.

7.6 Auto-MPG with simulated data

We now consider the Auto-MPG data and look at the influ-
ence of irrelevant covariates on the model. This is again done
by generating ten additional covariates artificially and ran-
domly from the uniform distribution on the interval [0,1].
Once again, like the rainfall-runoff data, it seems that a larger
neighbourhood is required to attain the best performance
for the variational approach when irrelevant covariates are
added. In this example, for the variational approach,we found
that neighbourhood size of 100 produces the best peformance
withMNLP andNMSE values of 2.30 and 0.127 respectively
(see Fig. 10). Again, after examining the local SSGP (fixed)
approach with larger neighbourhood sizes, we found that it
attains the best performance (MNLP and NMSE of 2.43 and
0.141 respectively) at a neighbourhood size of 150.

In order to explain why there is a difference in the sta-
bility of the adaptive neighbourhood approach between VA

and SSGP (fixed), we examined the estimated predictive
mean and variance for one test point from the Auto-MPG
test set with 10 simulated irrelevant covariates. We imple-
ment the adaptive neighbourhoods approach based on just the
initial fitting,which uses the shortest Euclidean distance. Fig-
ure 11 shows 100 posterior predictive means and variances
from SSGP (fixed) and VA with the adaptive neighbourhood
approach. In the 100 replications, only the spectral points
change. Since VA accounts for hyperparameter uncertainty,
it is more robust towards the choice of spectral points. We
observe that the posterior predictive means and variances are
concentrated around a smaller range of values even when the
size of neighbourhood is small. On the other hand, for local
SSGP (fixed), the posterior predictive means vary more for
different choices of the spectral points with the values rang-
ing from 0 to 20 and with many of the posterior predictive
variances small when the size of the neighbourhood is small.

8 Conclusion

In this paper, we have presented a nonconjugate variational
message passing algorithm for fitting sparse spectrum GP
regression models where closed form updates are possible
for all variational parameters, except for the evaluation of
H(p, q, r). We note that H(p, q, r) can be evaluated very
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Fig. 10 Auto-MPG data with 10 simulated covariates. NMSE and
MNLP values averaged over ten repetitions plotted against the number
of basis functions (first column) and against the number of neighbours

(second and third columns). Number of basis functions used in the local
methods was 20
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Fig. 11 Auto-MPG data with 10 simulated covariates. Histogram of estimated posterior predictive means and variances over 100 repetitions.
Number of basis functions used in the local methods was 20

efficiently using quadrature and there is almost no com-
putational overhead when compared to updates based on
conditionally conjugate Inverse-Gamma priors for the vari-

ance parameters. However, half-Cauchy priors lead to much
better predictive inference especially in the adaptive neigh-
bourhood approach where the amount of training data is
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small. A Bayesian approach has been adopted for parameter
estimationwhich allows covariance function hyperparameter
uncertainty to be treated and empirical results suggest that
this improves prediction (especially in the MNLP values)
and prevents overfitting. We also propose a novel adaptive
neighbourhood technique for obtaining predictive inference
which is adept at handling data with nonstationarities and
this approach can be extended to large data sets as well. The
simulated data sets showed that weighting the dimensions
according to the lengthscales estimated from an initial fit is
very effective at downweighting variables of little relevance,
leading to automatic variable selection and improved predic-
tion. In addition, we introduce a technique for accelerating
convergence in nonconjugate variational message passing by
taking step sizes larger than one in the direction of the natural
gradient of the lower bound. We do not attempt to search for
the optimal step size but adopt an adaptive strategy that can
be easily implemented, and empirical results indicate signif-
icant speed-ups. Algorithm 2 is thus an attractive alternative
for fitting sparse spectrum GP regression models, which is
stable, robust to overfitting for small data sets and capable of
dealing with highly nonstationary data as well when used in
combination with the adaptive neighbourhood approach.
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Appendix 1: Derivation of Eq(Z) and Eq(ZT Z)

Lemma 1 Suppose λ ∼ N (μ,Σ) and t1, t2 are fixed vectors
the same length as λ. Let t−12 = t1 − t2 and t

+
12 = t1 + t2, then
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(17)+ (19) gives the first equation of the lemma, (17)– (19)
gives the second and (18)+ (20) gives the third. ��

Using Lemma 1, we have
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and tir = sr � xi for i = 1, . . . , n, r = 1, . . . ,m. We also
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t−irl = tir − til , t
+
irl = tir + til for r = 1, . . . ,m, l = 1,

. . . ,m.

Appendix 2: Derivation of lower bound

From (6), the lower bound is given by

L = Eq{log p(y, θ)} − Eq{log q(θ)}

where
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Eq{log q(θ)} = Eq{log q(α)} + Eq{log q(λ)}
+Eq{log q(σ )} + Eq{log q(γ )}.

The terms in the lower bound can be evaluated as follows:
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Putting these terms together and making use of the updates
in steps 5 and 6 of Algorithm 1 gives the lower bound in (12).

Appendix 3: Derivation of simplified updates in
Algorithm 2

It can be shown (seeWand 2014; Tan and Nott 2013) that the
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The first line of (21) simplifies to
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