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Abstract Nearest neighborhood classification is a flexible
classification method that works under weak assumptions.
The basic concept is to use theweighted or un-weighted sums
over class indicators of observations in the neighborhood of
the target value. Two modifications that improve the perfor-
mance are considered here. Firstly, instead of using weights
that are solely determined by the distances we estimate the
weights by use of a logit model. By using a selection proce-
dure like lasso or boosting the relevant nearest neighbors are
automatically selected. Based on the concept of estimation
and selection, in the second step, we extend the predictor
space. We include nearest neighborhood counts, but also
the original predictors themselves and nearest neighborhood
counts that use distances in sub dimensions of the predic-
tor space. The resulting classifiers combine the strength of
nearest neighbormethodswith parametric approaches and by
use of sub dimensions are able to select the relevant features.
Simulations and real data sets demonstrate that the method
yields better misclassification rates than currently available
nearest neighborhood methods and is a strong and flexible
competitor in classification problems.
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1 Introduction

Classification by nearest neighbors is an established non-
parametric tool, which does not assume a specific form of
the boundaries between classification regions as linear or
quadratic discrimination does. Therefore it is very adaptive
and can be used in situationswhere no reasonable assumption
on the distribution of variables is available. The basic con-
cept to use the class labels in the neighborhood of the target
value to be classified goes back to Fix and Hodges (1951).
The k-NN method, which uses the k nearest neighbors, has
been shown to be asymptotically optimal for increasing k if
the number of observations increases at a proper rate (Stone
1977).

Since then various extensions of the basic k-NN method
have been proposed. Instead of using a fixed number of
nearest neighbors one can assign weights to the labels of
the neighbors as proposed by Morin and Raeside (1981),
Parthasarthy and Chatterji (1990) and Silverman and Jones
(1989). Friedman (1994) proposed local flexible weights for
the predictors to account for their local relevance. Ghosh
(2007) used spatially adaptive selection of the number of
nearest neighbors, Ghosh (2012) showed how to extract use-
ful information also from unlabeled test cases.Alternative
approacheswhich choose themetric adaptivelywere givenby
Hastie andTibshirani (1996) andDomeniconi et al. (2002). A
connection between these adaptively chosenmetrics and ran-
dom forests was derived by Lin and Jeon (2006). A detailed
overview on further methods of nearest neighborhoods is
found in Ripley (1996), for basic concepts see also Hastie
et al. (2009).

A key issue in nearest neighbor classification is the selec-
tion of the number of nearest neighbors or, in weighted
nearest neighbor methods, the selection of the correspond-
ing tuning parameter. Another important topic, in particular
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in higher dimensions, is the selection of the relevant dimen-
sions, since the computation of distances may suffer from
the curse of dimensionality yielding poor performance in
high dimensional settings. These problems are tackled by a
novel approach to compute the weights on nearest neighbors.
Instead of using weights that are determined by distances
we use the labels of the nearest neighbors as predictors in a
regression model and estimate the corresponding parameters
by regularized estimation procedures that enforce selection
of predictors, for example lasso (Tibshirani 1996) or boosting
(Bühlmann and Yu 2003); (Bühlmann and Hothorn 2007).
One strength of the approach is that the relevant neighbors
are automatically selected. The main advantage, however, is
that one can, in addition to the labels of the nearest neighbors
include the original variables and/or transformations of them.
The selection generated by regularized estimation lets the
data decide if the nearest neighbors or the original predictors
are the most relevant features for classification purposes. A
further extension is the inclusion of nearest neighbors com-
puted for single or subsets of predictors, which allows to
select the relevant nearest neighbor dimensions. The method
is an extension of the nearest neighbor approach proposed by
Holmes and Adams (2003). The authors also use a logit rep-
resentation of the nearest neighbors and consider the option
to include original variables in the predictor. However, they
rely on a stepwise selection procedure to obtain a final model
and do not include distances built on single predictors.

The method proposed here can also be seen as a specific
ensemble method. In general, ensemble methods as bagging
(Breiman 1996a) and stacking (Breiman 1996c) combine a
collection of simple base models. An overview on ensemble
learning is found, for example, in Hastie et al. (2009). The
ensemble considered here combines original variables and
nearest neighbors on subsets of the predictor space. Alter-
native ensemble methods including nearest neighbors have
been considered before. Paik and Yang (2004) introduced
a method called adaptive classification by mixing (ACM).
They used combinations of k-NN classifiers with different
values for k and subsets of predictors, but used a quite
different way to weight the candidate models, namely by
sub-sampling and evaluation. Domeniconi and Yan (2004)
investigated ensembles of nearest neighbor classifiers based
on random subsets of predictors while performing adaptive
sampling. The approach is a two-step procedure, because in
a first step the relevance of all the feature needs to be deter-
mined by an adequate technique. Gertheiss and Tutz (2009)
considered a linear model for the probability and minimized
a specific loss function to obtain weights. A common feature
of these ensemble methods is that they combine neighbor-
hood methods but never include original variables, which is
a strength of the method proposed here. A further combina-
tion of nearest neighborhood methods has been considered
by Ghosh and Godtliebsen (2012).

In Sect. 2 we consider the basic nearest neighbor methods
and introduce the basic estimation concept. In Sect. 3 it is
extended to include original predictors and nearest neighbors
defined by single predictors. Section 4 is devoted to themulti-
class problem.

2 Classical and extended nearest neighborhood
methods

2.1 Basic nearest neighborhood methods

k-Nearest-neighbor method

Let the learning sample be given by (yi , xi ), i = 1, . . . , n, yi
∈ {0, 1}, where yi represents the class and xi a vector of pre-
dictors.Moreover, let d(x, x̃), x, x̃ ∈ Rp denote a distance in
feature space, which is used to define the nearest neighbors.
The basic procedure is simple. One determines for a new
observation xT0 = (x01, . . . , x0p) the k observation points
that are closest in distance to x0. This means that one seeks
the nearest neighbors x(1), . . . , x(k) with

d(x0, x(1)) ≤ · · · ≤ d(x0, x(k)),

where x(1), . . . , x(k) are values from the learning sample.
With y0(1), . . . , y0(k) denoting the corresponding classes, one
classifies, using the majority vote rule, by

δ̂(x0) = r ⇔ class r is the most frequent class in

×{y0(1), . . . , y0(k)}.

Thus, for a given x0, one looks within the learning sam-
ple for almost perfect matches of x0 and then classifies by
using the class labels of these observations. If ties occur, they
are broken at random. The resulting classifier is called the
k-nearest-neighbor (k-NN) classifier. The number of neigh-
bors k is a tuning parameter that can be chosen by cross
validation. Although the simple next neighbor rule 1-NN
often performs remarkably well, typically performance is
improved by increasing the number of neighbors. This is
supported by large sample behavior. Stone (1977) showed
that the risk for the k-NN rule converges in probability to the
Bayes risk under the assumptions k → ∞ and k/n → 0. Fur-
ther asymptotic results were given by Ripley (1996). More
recently, Hall et al. (2008) derived the optimal asymptotic
order of nearest neighbors.

Weighted nearest neighbor method

An obvious extension of nearest neighbor methods that ame-
liorates the dependenceon the choice of the number of nearest
neighbors is the weighted k-nearest-neighbor method. Let
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K (., .) denote a symmetric kernel function. Simple exam-
ples are the tri-cube or Gaussian kernel.

Define weights based on the kernel function by

w(x0, x0( j)) = K (d(x0, x0( j))/τ )

/ k∑
j=1

K (d(x0, x0( j))/τ ),

where τ is the windowwidth. One obtains the weighted near-
est neighbor classifier

δ̂(x0) = 1 ⇔ π̂(x0) =
k∑
j=1

w(x0, x0( j))y0( j) ≥ 0.5.

The estimate π̂(x0) of π(x0) = P(y = 1|x0) is a loess-
type estimate, which corresponds to a Nadaraya–Watson
estimate for binary responses, see Nadaraya (1964), Watson
(1964) or Simonoff (1996).

The method uses two tuning parameters, the number of
next neighbors and the smoothing parameter τ . But if k is
chosen large, in the extreme case by k = n, the smoothing
parameter τ becomes the only tuning parameter that deter-
mines how many neighbors are actually used. Of course, if
one uses kernels with a finite support, the number of the
nearest neighbors is automatically determined by τ , see also
Ghosh and Godtliebsen (2012).

An alternative form of the estimate uses the transformed
data ỹi = 2yi − 1, which replaces the class labels 0, 1 by
−1, 1. With ỹ0( j) = 2y0( j) − 1 denoting the transformed
data of the nearest neighbors the score that can be used is

s(x0) =
k∑
j=1

w(x0, x0( j))ỹ0( j),

which yields the equivalent classifier with cut point zero

δ̂(x0) = 1 ⇔ s(x0) ≥ 0.

The representation is in particular useful for extended ver-
sions to be considered in the following.

2.2 Alternative forms of weighted nearest neighbors

The weighted nearest neighborhood classifier considered in
the previous section uses a linear score with weights that
are solely determined by the distances. In this section we
consider alternative ways to obtain a score with weights, in
particular, by explicitly estimating the weights.

An alternative representation of the classifier uses the logit
model. Although a linear model could be used if only nearest
neighbors are included, the logitmodel has the advantage that
further variables canbe includedwithout violating the restric-
tion that probabilities have to be from the interval (0, 1).

Moreover, in generalized linearmodels terminology, the logit
model uses the canonical link which has some computational
advantages. With the score from the previous section a logit
representation of the classifier is

δ̂(x0) = 1 ⇔ π̂(x0) = exp(s(x0))
1 + exp(s(x0))

≥ 0.5.

The score s(x0) is linear in the nearest neighbor dummy vari-
ables ỹ0(1), . . . , ỹ0(k). Therefore, one might estimate directly
the logit model π(xi ) = exp(ηi )/(1 + exp(ηi )) with linear
predictor

ηi = γ0 +
k∑
j=1

ỹi( j)γ j = γ0 + ỹTi,NNγ , (1)

where ỹTi,NN = (ỹi(1), . . . , ỹi(k)) is the vector of the k nearest
neighbors. It is easily shown that for k = 1 and positive
weight γ > 0 (and additionally omitted constant γ0) the rule
yields the same classifier as the 1-NN classifier.

In the general case, with k next neighbors in the predictor
the classifiers are not equivalent but typically show similar
performance. The approach has several advantages. With k
chosen large as inweighted nearest neighbormethods it is not
necessary that a tuning parameter has to be selected by cross
validation. The weights on nearest neighbors are automati-
cally determined by the fitting of a logit model. Therefore,
probabilities are estimated in a one step procedure without
the choice of tuning parameters. Moreover, the intercept γ0
automatically accounts for the mixing proportions of differ-
ent classes in the training set. In this section it is treated as
an alternative to weighted nearest neighbor methods, the real
potential of the approach is exploited in later sections.

Since it is not known how many neighbors should be
used, k is typically chosen large in weighted NN methods.
In estimation a large number of predictors can raise prob-
lems. Although estimates are easily stabilized by simple
ridging, it is much more attractive to use regularized esti-
mates that select predictors. One candidate is the lasso, which
was introduced by Tibshirani (1996) for linear models, but
is also available for the logit model, see, for example, Park
and Hastie (2007). The lasso maximizes the penalized log-
likelihood

l p(β) = l(β) − λ

2
J (β),

where l(β) is the usual log-likelihood of the logit model, λ
is a tuning parameter, and the penalty term J (β) is given by
the L1-norm J (β) = ∑k

j=1|γ j |. The use of the L1-norm in
the penalty enforces that some of the coefficients are shrunk
toward zero and therefore the relevant variables are selected
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(Tibshirani 1996). The effect is that the method for appro-
priately chosen tuning parameter automatically selects the
relevant nearest neighbors. As will be demonstrated in the
following it is not necessary to select among all the nearest
neighbors. There is no loss of accuracy if one uses sum-
mary measures that contain the nearest neighbors. Instead
of including the whole set of neighbors we use the sums of
nearest neighborhood values. For observation xi the sum

si(k) =
k∑
j=1

yi( j)

is the number of responses “1” among the k nearest neighbors
in the training sample. We use the predictor

ηi = γ0 +
m∑
j=1

si( j)γ j ,

which includes all the sums with a maximal value m. When
using the lasso the relevant neighborhoods are automatically
selected and weighted. We use a slightly reduced version by
including only sums with k odd. This reduces the computa-
tion time, which becomes important in extensions considered
in later sections where different forms of neighbors are
included. The omission of neighborhoods over even num-
bers is not crucial since asymptotically nearest neighborhood
methods with 2k and 2k − 1 have equal performance (Rip-
ley 1996). For the classification of a new observation x0 one
simply computes the sums s0(k) = ∑k

j=1 y0( j), which repre-
sents the number of responses “1” for the k nearest neighbors
of the new observation x0. We chosem = 45 as the maximal
number of nearest neighbors, which means 23 possible sums
of nearest neighbors.

For the specification of the link between the predictors and
the class we chose the logit model as did Holmes and Adams
(2002). Of course one could use alternative link functions,
for example the complementary log-log link. One advantage
of the logit model is that theory and programs for penalized
estimates as lasso are available for the logit model only. Also
alternative penalization approaches have been proposed as
the elastic net (Zou and Hastie 2005), SCAD (Fan and Li
2001) or the Dantzig selector (Candes and Tao 2007), which
could be used to select predictors.

As already mentioned in the introduction similar concepts
have been considered by Holmes and Adams (2002, 2003).
While Holmes and Adams (2002) focussed on the choice of
the size of the neighborhood and used Bayesian concepts, the
model considered by Holmes and Adams (2003) is an equiv-
alent representation of the model used here when using sums
in the predictor. The main difference is that in higher dimen-
sional settings Holmes and Adams (2003) rely on stepwise
variable selection whereas we prefer selection by penalty

terms or boostingmethods, which have the advantage of con-
tinuously reducing the impact of predictors in contrast to a
stepwise procedure, which is a discrete process and there-
fore less stable, see also Breiman (1996b). Moreover, we
also include nearest neighbors defined on single dimensions
and, in addition, original variables (Sect. 3).

The concept of Ghosh and Godtliebsen (2012) is quite
different. Their method does not combine nearest neighbors
and original variables on the variable level but on the model
level. They combine different classifiers in an ensemble. The
method of Gertheiss and Tutz (2009) uses a linear combina-
tion of posterior estimates obtained from nearest neighbors
computed for single dimensions of the predictor space. Thus
it forms an ensemble of nearest neighborhood methods but
does not include the classical nearest neighbors that are com-
puted for a distance measure on the whole predictor space.
In the present approach these are included, but also near-
est neighbors defined on single dimensions and, in addition,
original variables (see Sect. 3).

2.3 Comparison of nearest neighbor methods

In the following we briefly compare the performance of the
alternative forms of weighted nearest neighbors methods by
use of several real data sets. The glass data, ionosphere data
and the Australian credit data are available from the UCI
machine learning repository (Bache and Lichman 2013). The
glaucoma data are from the R package TH.data (Hothorn
2014). In the following the data sets are described.

Glass data Originally the glass data set was collected for
crime detection. It contains 6 different types of glass which
can be classified by 9 metric predictors—the refractive index
(RI) and the proportion of Sodium (NA), Magnesium (Mg),
Aluminium (Al), Silicon (Si), Potassium (K), Calcium (Ca),
Barium (Ba) and Iron (Fe). Since we are considering clas-
sification for two classes we only distinguish between float
processed building windows (70 observations) and non-float
processed building windows (76 observations).

Ionosphere data The data set consists of 351 radar returns
from the ionosphere. There are 34 normalized metric covari-
ates which can be used to identify “good” and “bad” radar
returns. The challenge is to take the very uneven distribution
of both classes (bad: 126 / good 225) into account.

Australian credit data The aim is to devise a rule for
assessing applications for credit cards. The data set has 14
covariates and 690 observations. Due to confidentiality nei-
ther the meaning of the covariates nor the exact meaning of
the two classes is known. Some categorical variables consist
of up to 14 categories.

Glaucoma data In medical studies one is often confronted
with many predictors and a very limited number of sam-
ples. To test the new method under these circumstances the
glaucoma data set is used. It contains information about 98
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patients and 98 controls. Due to the fact that age is known
to be a major risk factor for glaucoma, both populations are
matched by age and by gender to prevent bias. Altogether 62
covariates describing the eye morphology are available for
classification.

Figure 1 shows the misclassification rates for the four data
sets. The data set were split 30 times into a learning (70 % of
the data) and a test data set (30 % of the data) and misclassi-
fication was evaluated in the test data, which were not used
to find the classifier. When comparing NN methods in Fig. 1
we use the following abbreviations

knn: k-th nearest neighbor method, k chosen by
cross-validation based on predictive deviance,
programm package class (Venables and Ripley
2002)

wknn: weighted k-th nearest neighbor method with
the weights determined by a Gaussian ker-
nel, k was chosen by cross-validation based on
the predictive deviance (smoothing parameter
is automatically adapted), programm package
kknn (Schliep and Hechenbichler 2013)

logit.nnk: Fitting of a logit model with k nearest neighbor
dummies, k chosen by cross-validation based on
predictive deviance, programm package stats (R
Core Team 2013)

lasso.nnk: Fitting of a logit model with k nearest neighbor
dummies by lasso, cross-validated smoothing
parameter, programm package penalized (Goe-
man 2012)

lasso.sg: Fitting of a logit with the global sums by lasso,
programm package penalized (Goeman 2012)

In Fig. 1 we included only two methods with fixed number
of nearest neigbbors (logit.nn3 and logit.nn10) as representa-

tives of this approach. The methods lasso.nn10 and lasso.sg
include selection of nearest neighbors; the latter method
selects from all available 23 nearest neighbors. It is seen that
the weighted nearest neighbor does not always outperform
the simple k-NN method. In two of the data sets it showed
worse performance, for the ionosphere data it was definitely
poor. However, if weights are determined by estimation of
coefficients instead of simple weights derived from distances
the performance improves in three of the four data sets. Only
in the last data set (glaucoma) the performance is slightly
worse. It is noteworthy that the performance of all the meth-
odswith estimated coefficients is rather similar. In extensions
to be considered later we will always use the method with
global sums.

As noted in the description of themethodsweuse available
R packages. However, first some data preparation is neces-
sary. In particular we generate a data set that includes the
nearest neighbors and their sums and standardize variables
to have variance one since lasso is scale sensitive. A function
is provided that calculates the nearest neighbors based on the
Euclidean distance.When training themodels some hyperpa-
rameter tuning for the lasso penalization parameter is needed
which is done by 10 fold cross-validation. The training of the
models is done by adding the sums as additional parameters
to the original lasso function. No further modification of the
underlying model is necessary.

3 Combining nearest neighbors with alternative
distances and predictors

The concept of estimating NN-rules by selection of relevant
nearest neighbors or sums of them has even more potential to
improve classifiers. The first is that one can include nearest
neighbors computed in sub dimensions, the second is that one

Fig. 1 Classifiers for glass data, ionosphere data, Australian credit data, glaucoma data
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can combine nearest neighbors andpredictors themselves.By
using a selection method as the lasso, the relevant features
are automatically selected.

3.1 Selection of directions and use of covariates

When the set of predictors is large and contains predictors that
do not contribute to classification, simple classifiers without
selection of predictors fit noise and performance suffers. This
also holds for the nearest neighborhood method that uses
a simple distance like the Euclidean distance based on all
dimensions of the predictor space.With selection inmind one
can include various distance measures in the linear predictor
of the logit model. A simple choice is to include all one-
dimensional distances.

The procedure is obtained by using the augmented data

yi , y
(1)
(1) (xi ), . . . , y

(1)
(k) (xi ), . . . , y

(p)
(1) (xi ), . . . , y

(p)
(k) (xi ), xi ,

where y( j)
(l) (xi ) is the class of the l-th nearest neighbor to xi

based on the distance d(xi j , xl j ), that is, the distance of the
j-th component. Then one uses the predictor

ηi = γ0 +
p∑

j=1

( y( j)
i,NN)T γ j ,

where y( j)
i,NN = (y( j)

i(1), . . . , y
( j)
i(k))

T with y( j)
i(k) = y( j)

(k) (xi ).
Now the predictor includes all nearest neighbors built for
single dimensions of the predictor space. If it is high-
dimensional the number of predictors strongly increases and
the choice of the direction is evenmore important. Therefore,
we again replace the whole predictor y( j)

i,NN by the corre-

sponding sums of the j-th dimension s( j)
i(k) = ∑k

l=1 y
( j)
i(l) for

all odd values k that are smaller than 46. With lasso-type
methods the directions most useful for classification should
be selected.

Basedon the augmenteddata one can also use the predictor

ηi = γ0 +
p∑

j=1

( y( j)
i,NN)T γ j + xTi β,

which, in addition to the neighbors, includes a linear pre-
dictor xTi β that contains the original variables. Selection
procedures like the lasso or boosting methods are used to
determinewhich of the predictors have discriminatory power.

The augmented data given previously also contain the
original predictors themselves. The linear predictor is built by
sums of nearest neighbors in various directions and the orig-
inal predictors. Then, in the fitting procedure it is decided
how much weight is given to the next neighbors and how
much to the original predictors.

3.2 Illustration of the working of the classifier

For simplicity we consider a benchmark scenario that has
only two dimensions. It is used to demonstrate how selection
of relevant features works. The predictors were generated
by use of mlbench.threenorm from the R package mlbench
of Leisch and Dimitriadou (2010). The distributions of the
predictors are visualized in Fig. 2, which shows one data set.

We use the following abbreviations:

lasso.cov: Fitting of a logit model by lasso with the
available original covariates,

lasso.cov.sg: Fitting of a logit model by lasso with avail-
able covariates and global sums,

lasso.cov.sd: Fitting of a logit model by lasso with avail-
able covariates and all one-dimensional
(directional) sums,

lasso.cov.sg.sd: Fitting of a logit model by lasso with
available covariates, global sums, and all
one-dimensional (directional) sums.

Figure 3 shows the variable importance measured as the
proportion of the absolute value of the parameter under con-
sideration and the absolute value of the largest parameter for
30 repetitions. Thus if the proportion is 1 the variable had the
largest parameter value, if the proportion is 0 it was deleted.
For ease of presentation here we use only the sums over 5,
10 and 25 variables, in all the other investigations we use all
sums over odd numbers of nearest neighbors neighbors up to
45 as specified before. It is seen from Fig. 3 that if one uses
the original variables only (lasso.cov) both predictors were
selected in most of the simulated data sets and variable x2
showed slightly stronger impact. Selection of both variables

Fig. 2 Distribution of predictors in benchmark data set, points are
observations from class one, circles are observations from class two

123



Stat Comput (2016) 26:1039–1057 1045

Fig. 3 Variable importance for selection by lasso (benchmark data).
Variable importance is measured as the proportion of the absolute value
of the parameter under consideration and the absolute value of the

largest parameter. x1, x2 refer to to the parameter weights on the origi-
nal variables, sg.k and sd.k refer to the parameters linked to global and
directional sums for k nearest neighbors

was to be expected because both covariates contribute to the
separation of classes. If in addition the sums of neighbor-
hoods are included (lasso.cov.sg), the sumover the 25 nearest
neighbors carries the most information followed by the sum
over the 10 nearest neighbors. If one used only one dimen-
sional distances and the original variables (lasso.cov.sd) the
sums over the 25 nearest neighbors are the most important
variables but also the original variables and some nearest
neighbor distances for variable x2 show strong values. If one
adds the global sums the dominating feature is again the sum
over the 25 nearest neighbors since single directions are less
important as is seen from Fig. 2. The mean misclassifica-
tion errorswere 0.163 (lasso.cov), 0.106 (lasso.cov.sg), 0.122
(lasso.cov.sd) and 0.106 (lasso.cov.sg.sd), which supports
that for these data the nearest neighbors built for the whole
feature space yield the strongest tool to separate classes. Con-
sequently, they had strong impact if they were available as
predictors as in the methods lasso.cov.sg and lasso.cov.sg.sd.

3.3 Comparison of methods: simulations

In the following the performance of the methods is inves-
tigated by use of simulation scenarios that have been used
before in classification problems. We use 200 observations
in the training sample and 500 observations in the test sample
and consider the following settings.

Easy The example is taken from Hastie et al. (2009)
and describes another classification problem with difficul-
ties arising from noise variables. Altogether there are 10
independent predictors X j ( j = 1, . . . , 10), each uniformly
distributed on [0, 1]. In this setting the binary response y
only depends on the first predictor X1 and is defined by
y = I (x1 > 0.5).

Difficult As in the easy classification problem each pre-
dictor is uniformly distributed between 0 and 1. However, in
this setting the response y depends on the combination of the
predictors X1, X2 and X3 and is specified by

y = I

(
sign

{(
x1 − 1

2

)
·
(
x2 − 1

2

)
·
(
x3 − 1

2

)}
> 0

)

Unstructured This example refers to the unstructured
problem of Hastie and Tibshirani (1996) and possesses an
extremely disconnected class structure. We use a slightly
modified version. Instead of 4 classes the problem is reduced
to 2 classes. These are defined as a mixture of 5 spheri-
cal bivariate normal subclasses with a standard deviation of
0.25. The means of the 10 subclasses are chosen at random
(without replacement) from the 25 possible combinations
between the integers [1, 2, . . . , 5] × [1, 2, . . . , 5]. Therefore
each subclass has its own distribution, which is used to draw
20 observations per subclass.

123



1046 Stat Comput (2016) 26:1039–1057

Unstructured noise The data generating mechanism is the
same as in the previous example, but augmented by 8 noise
variables taken from a standard normal distribution.

In addition to the extended weighted neighborhood meth-
ods we include the following procedures:

lda: Linear discriminant analysis, package MASS
(Venables and Ripley 2002)

qda: Quadratic discriminant analysis, packageMASS
(Venables and Ripley 2002)

logit: Logistic discrimination glm(.) from package
stats (R Core Team 2013)

mboost: Gradient boosting, package stats (Hothorn et al.
2013)

svm: Support vector machine, package e1071 (Meyer
et al. 2014)

rf : Random forest, package randomForest (Liaw
and Wiener 2002)

Gradient boosting is an alternative to lasso. Boosting
methods as proposed by Friedman et al. (2000), Bühlmann
and Yu (2003), Tutz and Binder (2006) and Bühlmann and
Hothorn (2007) also select predictors in an efficient way.
While boosting is often used as a general method to combine
classifiers the so-called componentwise boosting focusses

on variable selection. If one uses as base learner just one lin-
ear component of a predictor and selects the best one, only
one variable is updated within one iteration. When the itera-
tion is stopped typically not all variables have been selected
yielding a predictor that contains a reduced number of vari-
ables. Support vector machines are described in Cortes and
Vapnik (1995), random forests in Breiman (2001). For the
support vectormachine (package e1071) we used radial basis
functions, type = “C-Classification” and the hyperparame-
ters were chosen by grid.search (tune.svm). For RF we used
mtry = sqrt (number of predictors) and ntree = 1000. We
use throughout the same notation as for lasso, the ending
cov means that covariates are used, sg means global sums
over nearest neighbors and sd directional sums over nearest
neighbors. For lasso we used the package penalized and for
boosting the package mboost.

Figures 4, 5, 6 and 7 show the boxplots of the resulting
misclassification rates. For the setting easy, where only one
variable is relevant and nine variables have no discriminatory
power it is seen that simple nearest neighbors, represented by
lasso.sg, perform poorly. If variables are included and pre-
dictors are selected, the nearest neighbor methods (mboost
and lasso, right part of the panel) improve but performance
is not yet satisfying. If one allows for nearest neighbors built
by distances for single variables (directional nearest neigh-

Fig. 4 Misclassification rates
for easy data

Fig. 5 Misclassification rates
for difficult data
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Fig. 6 Misclassification rates
for unstructured data

Fig. 7 Misclassification rates
for unstructured noise data

bors represented by the form .sd) and the procedure can also
select among the predictors the discrimination ismuch better.
The example shows that the inclusion of directional nearest
neighbors can select relevant variables yielding much better
performance than simpleNNmethods. Themethod distinctly
outperforms classical linear and quadratic discrimination.
It is also seen that the strong competitors support vector
machine (SVM) and random forests (RF) also profit from
the inclusion of directional nearest neighbors. In particular
for the SVM the performance is much better if these sums
are included. Random forest as one of the strongest tools
in classification shows good performance also without these
sums.

The second setting, difficult, is characterized by an inter-
action of three variables. Consequently, classical linear and
quadratic discrimination yield poor results while the meth-
ods that use nearest neighbors work well. The best classifier
in this case was the simple 1-NN method (misclassification
error 0.391) closely followed by lasso.sg ( misclassification
error 0.408). All the methods that include global sums show
good performance. Also SVM and RF, which do not perform
well with covariates only, profit from the inclusion of nearest
neighbors. Due to the interaction effect methods that include
only directional sums show poor performance.

Also the third setting, unstructured, with the extremely
disconnected class structure favors the nearest neighbor

approach. The qualitative results are very similar to the dif-
ficult setting with a strong performance of methods that
include nearest neighbors in the predictor.

The fourth setting, unstructured noise is the same as
unstructured, but now with additional noise variables. It is
seen that the methods with selection of neighbors in dif-
ferent directions outperform all the other methods with the
exception of random forests, which have a built-in variable
selection procedure. All other methods strongly profit from
the implicit selection of variables by using directional sums.
It makes the methods much stronger than methods that build
nearest neighbors over the whole feature space.

Table 1 shows the resulting misclassification rates includ-
ing the 1-NN, k-NN and weighted nearest neighbor method.
The two best methods are given in boldface and standard
errors are given in brackets.

From Table 1 and Figs. 4, 5, 6 and 7 it is not seen whether
the differences are significant. Therefore we include test
results. Table 2 shows the p values for McNemar tests under
the null hypothesis that the error rates of two approaches
are equal. Since comparing all of the differences yields too
many values we choose lasso.cov as the reference. Thus the
p value shows if the method differs significantly from the
performance of lasso.cov. It is seen, for example, that for
the unstructured noise data (Fig. 7) all the methods differ
significantly from the reference method.
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Table 1 Misclassification rates
of classifiers for simulated data
sets (computed on test data);
standard errors are given in
brackets

Easy Difficult Unstructured Unstructured noise

nn1 0.18 (0.018) 0.391 (0.024) 0.027 (0.013) 0.346 (0.059)

knn 0.124 (0.022) 0.439 (0.041) 0.019 (0.011) 0.308 (0.068)

wknn 0.094 (0.021) 0.433 (0.026) 0.019 (0.011) 0.298 (0.072)

lasso.sg 0.08 (0.017) 0.408 (0.030) 0.019 (0.011) 0.292 (0.073)

logit.cov 0.022 (0.014) 0.498 (0.025) 0.337 (0.104) 0.319 (0.092)

lda 0.033 (0.011) 0.498 (0.025) 0.338 (0.104) 0.327 (0.095)

qda 0.042 (0.01) 0.497 (0.025) 0.227 (0.104) 0.278 (0.093)

svm.cov 0.066 (0.014) 0.449 (0.022) 0.04 (0.035) 0.279 (0.082)

svm.cov.sg 0.069 (0.014) 0.419 (0.029) 0.019 (0.011) 0.282 (0.081)

svm.cov.sd 0.004 (0.006) 0.498 (0.024) 0.071 (0.074) 0.119 (0.094)

svm.cov.sg.sd 0.006 (0.006) 0.469 (0.023) 0.020 (0.010) 0.095 (0.087)

rf.cov 0.002 (0.002) 0.469 (0.028) 0.028 (0.013) 0.053 (0.067)

rf.cov.sg 0.022 (0.011) 0.422 (0.03) 0.021 (0.012) 0.159 (0.07)

rf.cov.sd 0.001 (0.002) 0.503 (0.021) 0.055 (0.062) 0.073 (0.088)

rf.cov.sg.sd 0.001 (0.002) 0.488 (0.02) 0.018 (0.011) 0.062 (0.084)

mboost.cov 0.01 (0.007) 0.500 (0.021) 0.313 (0.095) 0.334 (0.09)

mboost.cov.sg 0.019 (0.006) 0.418 (0.029) 0.019 (0.01) 0.276 (0.076)

mboost.cov.sd 0.000 (0.002) 0.504 (0.025) 0.108 (0.092) 0.096 (0.107)

mboost.cov.sg.sd 0.000 (0.002) 0.460 (0.031) 0.020 (0.010) 0.090 (0.099)

lasso.cov 0.015 (0.009) 0.506 (0.023) 0.315 (0.112) 0.343 (0.106)

lasso.cov.sg 0.019 (0.007) 0.427 (0.046) 0.019 (0.01) 0.272 (0.083)

lasso.cov.sd 0.000 (0.002) 0.508 (0.020) 0.096 (0.095) 0.094 (0.109)

lasso.cov.sg.sd 0.000 (0.002) 0.460 (0.036) 0.021 (0.01) 0.092 (0.103)

Table 2 P values for McNemar
tests that compare the
classification outcomes in the
test sets with reference to
lasso.cov

Easy Difficult Unstructured Unstructured
noise

nn1 0.000 0.000 0.000 0.004

knn 0.000 0.000 0.000 0.000

wknn 0.000 0.000 0.000 0.000

lasso.sg 0.000 0.000 0.000 0.000

logit.cov 0.000 0.231 0.000 0.010

lda 0.000 0.230 0.001 0.001

qda 0.000 0.007 0.000 0.000

svm.cov 0.000 0.000 0.000 0.000

svm.cov.sg 0.000 0.000 0.000 0.000

svm.cov.sd 0.000 0.112 0.000 0.000

svm.cov.sg.sd 0.000 0.000 0.000 0.000

rf.cov 0.000 0.000 0.000 0.000

rf.cov.sg 0.000 0.000 0.000 0.000

rf.cov.sd 0.000 0.194 0.000 0.000

rf.cov.sg.sd 0.000 0.000 0.000 0.000

mboost.cov 0.000 0.557 0.000 0.000

mboost.cov.sg 0.034 0.000 0.000 0.000

mboost.cov.sd 0.000 0.609 0.000 0.000

mboost.cov.sg.sd 0.000 0.000 0.000 0.000

lasso.cov.sg 0.000 0.000 0.000 0.000

lasso.cov.sd 0.000 0.923 0.000 0.000

lasso.cov.sg.sd 0.000 0.000 0.000 0.000
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Fig. 8 Variable importance for variables x1 (carries information) and
x3 (irrelevant). Variable importance is measured as the proportion of the
absolute value of the parameter under consideration and the absolute

value of the largest parameter. x1, x3 refer to to the parameter weights
on the original variables, sg.k and sd.k refer to the parameters linked
to global and directional sums for k nearest neighbors

In simulations one can investigate if the right terms are
selected.We illustrate the selection for the unstructured noise
data, where only the first two variables carry information and
the others are irrelevant.Although all variableswere included
in the fitting process in Fig. 8 the selection of predictors is
visualized for only two variable namely x1, which carries
information and the correspondingdirectional sums (first part
of figure) and x3, which is one of the irrelevant variables and
corresponding directional sums (second part of the figure).

In the third part of the figure selection of the global sums is
shown. It is seen that most of the irrelevant terms are set to
zero. The variable x1 and in particular the sum over 19 neigh-
bors is selected from the x1 based distances and for the global
sums the three nearest neighbors are selected. Thus in the
selection procedure the irrelevant terms connected to x3 are
rarely selected and one obtains a sparse representation that
contains the relevant terms. The pictures for the other irrele-
vant termswere very similar to the picture for the variable x3.
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3.4 Comparison of methods: real data sets

For the comparison of methods we use one more data set,
which represents the “small n large p” case.

DLBCL data The gene expression data on lymphomas
was collected from 77 patients on 6817 genes. The classes
are determined by diffuse large B-cell lymphomas (DLBCL)
with n=58 patients and follicular lymphomas (FL) with n=19
patients. The analysis was carried out using the data for all
77 patients.We used the 100most significant genes that were
foundbyusing themethod to identify differentially expressed

genes provided by the samr package in R (Tibshirani et al.
2011).

Figures 9, 10, 11, 12, 13 and Table 3 show the results for
the real data sets. They show the misclassification in the test
samples over 30 splits of the data sets. As in Sect. 2.3 the data
sets were split into learning (70 % of the data) and test data
sets (30 % of the data) and misclassification was evaluated
in the test data, which were not used to find the classifier.
For the glass data the random forest and the SVM perform
best.While the RF does not profit from the inclusion of direc-
tional distances the SVM obtains the good performance only

Fig. 9 Misclassification rates
for glass data

Fig. 10 Misclassification rates
for ionosphere data

Fig. 11 Misclassification rates
for Australian credit data

123



Stat Comput (2016) 26:1039–1057 1051

Fig. 12 Misclassification rates
for glaucoma data

Fig. 13 Misclassification rates
for DLBCL data

Table 3 Misclassification rates
of classifiers for real data sets
(computed on test data);
standard errors are given
in brackets

Glass Ionosphere Credit Glaucoma DLBCL

nn1 0.205 (0.053) 0.129 (0.031) 0.222 (0.019) 0.203 (0.049) 0.217 (0.075)

knn 0.284 (0.061) 0.129 (0.031) 0.184 (0.02) 0.169 (0.04) 0.174 (0.06)

wknn 0.273 (0.062) 0.210 (0.052) 0.196 (0.018) 0.153 (0.045) 0.217 (0.071)

lasso.sg 0.205 (0.039) 0.105 (0.027) 0.169 (0.024) 0.169 (0.041) 0.217 (0.075)

logit.cov 0.318 (0.053) 0.133 (0.032) 0.157 (0.023) 0.271 (0.056) 0.478 (0.11)

lda 0.295 (0.048) 0.138 (0.038) 0.145 (0.025) 0.254 (0.041) –

qda 0.386 (0.057) 0.133 (0.029) 0.203 (0.029) 0.424 (0.102) –

svm.cov 0.227 (0.047) 0.057 (0.02) 0.15 (0.022) 0.153 (0.036) 0.152 (0.074)

svm.cov.sg 0.205 (0.049) 0.062 (0.019) 0.150 (0.024) 0.161 (0.042) 0.130 (0.058)

svm.cov.sd 0.159 (0.049) 0.081 (0.026) 0.167 (0.026) 0.169 (0.032) 0.239 (0.067)

svm.cov.sg.sd 0.159 (0.051) 0.071 (0.023) 0.143 (0.022) 0.169 (0.033) 0.239 (0.067)

rf.cov 0.148 (0.057) 0.067 (0.02) 0.126 (0.018) 0.153 (0.037) 0.130 (0.074)

rf.cov.sg 0.205 (0.051) 0.067 (0.024) 0.140 (0.023) 0.169 (0.038) 0.130 (0.067)

rf.cov.sd 0.227 (0.136) 0.067 (0.022) 0.176 (0.023) 0.178 (0.034) 0.217 (0.067)

rf.cov.sg.sd 0.227 (0.126) 0.067 (0.021) 0.145 (0.022) 0.178 (0.033) 0.217 (0.073)

mboost.cov 0.273 (0.058) 0.119 (0.032) 0.140 (0.021) 0.178 (0.044) 0.043 (0.069)

mboost.cov.sg 0.205 (0.038) 0.095 (0.026) 0.150 (0.019) 0.169 (0.054) 0.087 (0.07)

mboost.cov.sd 0.193 (0.169) 0.076 (0.027) 0.143 (0.02) 0.212 (0.049) 0.261 (0.071)

mboost.cov.sg.sd 0.159 (0.171) 0.081 (0.024) 0.145 (0.021) 0.195 (0.044) 0.239 (0.072)

lasso.cov 0.295 (0.068) 0.124 (0.026) 0.145 (0.021) 0.169 (0.047) 0.087 (0.056)

lasso.cov.sg 0.205 (0.037) 0.086 (0.028) 0.152 (0.019) 0.161 (0.045) 0.087 (0.061)

lasso.cov.sd 0.182 (0.17) 0.086 (0.027) 0.145 (0.021) 0.220 (0.049) 0.261 (0.075)

lasso.cov.sg.sd 0.170 (0.177) 0.086 (0.028) 0.150 (0.021) 0.195 (0.042) 0.217 (0.085)
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if they are included. The extended nearest neighbor methods
with selection come close in terms of misclassification rate,
in particular if directional distances are included. Parametric
approaches perform poorly. For the ionosphere data the per-
formance of the NN methods and the parametric approaches
is very similar to the performance for the glass data.However,
the SVMnow dominates the RF and is overall the best classi-
fier. The extendedNNmethods do not attain the same level of
performance but strongly improve if directional distances are
included. For the credit data also the linear approaches work
well. The NN approaches are slightly better than the SVM.
SVM again profits from directional distances while RF does
not, but performs best. For the glaucoma data NN methods
perform distinctly better than linear and quadratic discrimi-
nation methods. The weighted NN method is, together with
RF, the best classifier. Nevertheless, one of the NN methods
with selection is second best. For the very high dimensional
data set DLBCL data boosting and lasso with global sums
and covariates perform best and even outperform RF and the
SVM, although the latter tend to profit from the inclusion of
global sums. However, all methods suffer when directional
sums are included. It seems that in the the “small n large
p” case the inclusion of directional sums, which in our case
enlarges the sum of available predictors by 2300, selection
of predictors does not work well. This is also supported by
simulations of the “small n large p” case, which are not pre-

sented. Nevertheless, NNmethodswith covariates and global
sums perform well. The parametric methods lda and qda are
not available, logit.covwas computed by adding a small ridge
penalty. Table 4 shows the corresponding p values forMcNe-
mar tests that compare the classification outcomes in the test
sets with reference to lasso.cov.

In summary, considering simulations and the analysis
of real data, it is seen that the combination of covariates
and global sums combined with selection typically yields
improved NN classifiers. The performance is much better
than for classical NNmethods in almost all of the considered
simulation scenarios and data sets. Exceptions are the diffi-
cult scenario and the glaucoma data set, for which classical
NN methods perform very well, but also for these data sets
the lasso NN with covariates and global sums performs not
much worse. The inclusion of directional sums can strongly
or moderately improve the performance (easy, unstructured
noise, glass, ionosphere) but in some cases can also be coun-
terproductive (difficult, glaucoma, DLBCL). In particular,
if the number of predictors is very large when compared to
the number of observations (glaucoma, DLBCL), one should
be cautious with the inclusion of directional sums. Sup-
port vector machines and random forests are always strong
competitors in classification problems and show good perfor-
mance, in particular in the real data sets. NN methods with
selection showed better performance only for the DLBCL

Table 4 P values for McNemar
tests that compare the
classification outcomes in the
test sets with reference to
lasso.cov

Glass Ionosphere Australian
credit

Glaucoma DLBCL

nn1 0.000 0.290 0.000 0.011 0.000

knn 0.067 0.290 0.000 0.637 0.000

wknn 0.080 0.000 0.000 0.012 0.000

lasso.sg 0.000 0.000 0.000 0.548 0.000

logit.cov 0.841 0.202 0.001 0.000 0.000

lda 0.649 0.042 0.116 0.000 –

qda 0.000 0.461 0.000 0.000 –

svm.cov 0.000 0.000 0.377 0.016 0.000

svm.cov.sg 0.000 0.000 0.315 0.045 0.000

svm.cov.sd 0.000 0.000 0.000 0.451 0.000

svm.cov.sg.sd 0.000 0.000 0.482 0.320 0.000

rf.cov 0.000 0.000 0.000 0.013 0.000

rf.cov.sg 0.000 0.000 0.964 0.142 0.001

rf.cov.sd 0.025 0.000 0.000 0.712 0.000

rf.cov.sg.sd 0.000 0.000 0.594 0.709 0.000

mboost.cov 0.090 0.841 0.101 0.374 1.000

mboost.cov.sg 0.000 0.000 0.556 0.108 0.345

mboost.cov.sd 0.000 0.000 0.720 0.002 0.000

mboost.cov.sg.sd 0.000 0.000 0.910 0.008 0.000

lasso.cov.sg 0.000 0.000 0.329 0.210 0.850

lasso.cov.sd 0.000 0.000 0.809 0.000 0.000

lasso.cov.sg.sd 0.000 0.000 0.623 0.001 0.000
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data set. In the simulation studies the results were less in
favor of support vector machines and random forests with
covariates only. They dominate the NN methods with selec-
tion only for the unstructured noise scenario. Moreover, also
support vector machines and random forests can profit from
the inclusion of nearest neighbors. In almost all of the scenar-
ios, with the exception of the ionosphere and the glaucoma
data sets, one of the versions of the support vector machine
with nearest neighbors shows better performance than the
support vector machine with covariates only. The effect is
less pronounced for random forests, which can suffer from
the inclusion of nearest neighbors despite their in-built selec-
tion procedure.

3.5 Comparison of methods: computation time

In applications computation time can be an important
aspect. To investigate the computation time we generated
several data sets with the function mlbench.threenorm. The
number of observations was n = 500, 1000, 2000, 3000 and
the number of variables nvar = 2, 5, 10, 15, 20, 25.We split
the data sets into a learning (70 % of the data) and a test data
set (30 % of the data) and evaluated the time needed for the
computation of the classifier on the learning data and the fol-
lowing classification of the test data set. Computation times
of all classifiers for every combination averaged over five rep-
etitions are shown in Tables 5 and 6. As was to be expected
computation time increases with sample sizes and number
of variables for all of the methods. The times of nn1 and
knn are similar to the parametric approaches lda, qda. Vari-
able selection procedures by lasso or boosting are more time
consuming, in particular if all the directional distances are
included. However, for directional distances the number of
parameters fromwhich one selects is obtained bymultiplying
the number of variables by 23 for the directional distances
plus the 23 global sums over nearest neighbors. Even then
computation time for 25 variables is manageable in reason-
able time. It should be noted that boosting has an advantage
over lasso in terms of computation time ifmany predictors are
included. The nonparametric approaches RF and SVM need
much more computation time, in particular the fit of SVM is
very time consuming. For example, for n = 3000, p = 25
(cov.sg.sd) 55.882 seconds are needed to fit the SVMas com-
pared to 22.612 for RF and 1.622 for boosting.

4 Extension to multi-class problems

In multi-class problems the proposed method can be applied
if one uses strategies like pairwise comparison of classes
or one class against all. However, it is more natural to treat
the multi-class case directly by using the multinomial logit
model. Let xi(1), . . . , xi(n) denote the nearest neighbors of

observation xi . Withm classes the class corresponding to the
kth nearest neighbor is now represented by a vector yTi(k) =
(yi(k)1, . . . , yi(k)m−1), where yi(k) j = 1 if the observation
is from class j and yi(k) j = 0 otherwise. The total vector
for all the k nearest neighbors is then given by yTi,NN =
( yTi(1), . . . , y

T
i(k)). With Y ∈ {1, . . . ,m} denoting the class

the corresponding logit model has the form

P(Y = r |xi ) = exp(ηir )

1 + ∑m−1
s=1 exp(ηis)

, r = 1, . . . ,m − 1,

with the predictors

ηir = γ0 + yTi,NNγ r + xTi βr , r = 1, . . . ,m − 1. (2)

The predictor (2) is given in the general form including
nearest neighbors and covariates that may contribute to clas-
sification. As in the case of two classes the nearest neighbor
indicators yi(k) j can be replaced by the sums

si(k) j =
k∑

s=1

yi(s) j ,

which represent the number of observations from class j
among the k nearest neighbors.

Since the multinomial logistic model contains category-
specific parameters with one set of parameters for each
category selection of the relevant features is even more
important than in the case of two classes. Inclusion of too
many and irrelevant predictors typically yields unstable esti-
mates. Lasso-type selection procedures that focus on the
selection of variables have been proposed recently by Tutz
et al. (2015). Their categorically structured lasso uses the
penalty

J (β) =
p∑

j=1

||β . j || =
p∑

j=1

(β2
1 j + · · · + β2

k−1, j )
1/2, (3)

where ||u|| = ||u||2 = √
uT u denotes the L2-norm and

βT
. j = (β1 j , . . . , βm−1, j ) collects all the parameters linked

to the jth predictor. The advantage of this version of a
group lasso penalty is that it selects variables not parame-
ters. Straightforward use of the lasso penalty by using

J (β) = ||β||1 =
k−1∑
r=1

||βr ||1 =
k−1∑
r=1

p∑
j=1

|βr j |. (4)

enforces parameter selection but not variable selection. An
elastic net version of the latter penalty was used by Friedman
et al. (2010).
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Table 6 Computation time of classifiers for mlbench.threenorm data

n nvar svm.cov svm.cov.sg svm.cov.sd svm.cov.sg.sd rf.cov rf.cov.sg rf.cov.sd rf.cov.sg.sd

500 2 0.824 0.906 1.038 1.196 0.174 0.322 0.412 0.546

500 5 0.926 1.032 1.512 1.620 0.156 0.318 0.636 0.706

500 10 1.316 1.498 3.046 3.338 0.168 0.284 1.028 1.104

500 15 1.652 1.742 5.468 5.984 0.192 0.252 1.534 1.550

500 20 2.038 2.150 10.934 12.026 0.210 0.284 2.324 2.390

500 25 2.426 2.516 21.316 24.024 0.230 0.280 3.652 3.866

1000 2 1.932 2.124 2.272 2.454 0.290 0.712 0.942 1.168

1000 5 2.290 2.472 3.198 3.448 0.310 0.724 1.542 1.744

1000 10 2.992 3.162 5.440 5.856 0.384 0.680 2.542 2.740

1000 15 3.650 3.776 8.304 8.804 0.444 0.596 3.378 3.408

1000 20 4.372 4.498 14.510 15.500 0.522 0.702 4.950 5.142

1000 25 5.078 5.170 25.434 28.120 0.562 0.608 6.576 6.524

2000 2 6.676 6.892 7.476 7.866 0.628 1.898 2.752 3.554

2000 5 6.954 7.590 9.300 9.382 0.730 1.828 4.496 4.958

2000 10 8.412 8.666 12.180 12.536 0.902 1.746 6.962 7.676

2000 15 9.544 9.830 17.402 17.730 1.098 1.716 8.942 8.774

2000 20 10.956 11.188 25.166 25.854 1.298 1.804 11.920 11.812

2000 25 12.258 12.402 37.972 39.754 1.448 1.588 14.820 13.520

3000 2 13.782 15.154 15.160 16.970 0.966 3.080 4.716 6.192

3000 5 14.528 15.326 18.300 18.656 1.130 3.058 8.606 9.210

3000 10 15.956 16.674 23.330 23.738 1.442 3.060 12.206 12.742

3000 15 17.938 18.534 30.646 30.660 1.822 3.062 16.604 16.418

3000 20 19.888 20.124 40.224 39.512 2.116 2.770 21.022 18.730

3000 25 21.940 22.054 55.568 55.882 2.442 2.732 25.842 22.612

Times were measured in seconds and were averaged over five runs for every classifier

Fig. 14 Misclassification rates
for simulated data with four
(left) and 10 classes (right)
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Fig. 15 Misclassification rates for glass data

It should be noted that for simplicity the structured lasso
penalty (3) is given for the covariates x. For the nearest neigh-
bors included in the predictor (2) a similar form can be used
but to obtain variable selection also the grouping of all the
dummy variables linked to one nearest neighbor has to be
taken into account, which yields a more complicated form
of the penalty (see Tutz et al. 2015). We used the R pack-
age MLSP (Pößnecker 2014) that uses the structured lasso
penalty.

For illustration we first use simulated data that have the
structure proposed by Hastie and Tibshirani (1996). There
are 4 classes that are defined as a mixture of 3 spherical
bivariate normal subclasses with a standard deviation of
0.25. The means of the 12 subclasses are chosen at random
(without replacement) from the 25 possible combinations
of the integers [1,2,3,4,5] × [1,2,3,4,5]. The training sam-
ple is made up of 1200 observations and the test sample
contains 1200 observations. In an extended version we con-
sider 10 classes defined as the same mixture of 3 spherical
bivariate normal subclasses but with the combinations drawn
from [1, . . . , 8] × [1, . . . , 8]. In the latter case the training
sample and the test data contain 1500 observations each.
It is seen from Fig. 14 that the inclusion of distances for
single variables distinctly dominates simple NN and para-
metric methods. As real data example we again consider the
glass data from Sect. 2.3 by including the third class of non-
window glass with 51 observations. It is seen from Fig. 15
that the dominance of the NN approaches with directional
sums is less strong but still yields the best results.

5 Concluding remarks

The proposed method aims at combining the best of two
worlds nonparametric classification by nearest neighbors
and parametric classification by the inclusion of linear or
other parametric terms. Regularization techniques are used
to select which parts are the most relevant. The combination
is shown to distinctly improve simple nearest neighborhood
estimates in most scenarios and real data sets. The perfor-
mance is close and in some cases better than for SVM and
random forests, which are among the strongest available
classifiers. The inclusion of directional sums can strongly
improve the performance if irrelevant variables are present
and not too many variables are present. In the “small n large
p” case global sums of nearest neighbors perform well but
directional sums seem counterproductive.
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