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Abstract Seemingly unrelated linear regression models are
introduced in which the distribution of the errors is a finite
mixture of Gaussian distributions. Identifiability conditions
are provided. The score vector and the Hessian matrix are
derived. Parameter estimation is performed using the maxi-
mum likelihood method and an Expectation–Maximisation
algorithm is developed. The usefulness of the proposed
methods and a numerical evaluation of their properties are
illustrated through the analysis of simulated and real datasets.

Keywords EM algorithm · Gaussian mixture model ·
Hessian matrix · Score vector

1 Introduction

“Seemingly unrelated regression equations” is an expression
first used by Zellner (1962). It indicates a set of equations
for modelling the dependence of D variables (D ≥ 1)
on one or more regressors in which the error terms in the
different equations are allowed to be correlated and, thus,
the equations should be jointly considered. The range of
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situations for which models composed of seemingly unre-
lated regression equations are appropriate is wide, including
cross-section data, time-series data and repeated measures
(see, e.g., Srivastava and Giles 1987; Park 1993). For exam-
ple, these models can be used to study the effect of prices
and promotional activities on sales for different brands of
a given product. In particular, when D = 2 brands (A and
B) are considered, the following system of equations can be
defined:

{
Yi1 = β01 + β11xi1 + β12xi2 + εi1
Yi2 = β02 + β21xi3 + β22xi4 + εi2

i = 1, . . . , I, (1)

where Yi1, xi1 and xi2 are the log unit sale, the measure of
a display activity and the log price, respectively, registered
in week i for brand A; Yi2, xi3 and xi4 provide the same
information for brand B. In this situation, in order to account
for a possible correlation between the error terms εi1 and εi2,
the linear regression models that compose system (1) should
be jointly examined.

Seemingly unrelated regression models have been studied
through many approaches. In Zellner (1962, 1963) feasible
generalized least squares estimators are introduced and their
properties are analysed. The maximum likelihood estimator
from a Gaussian distribution for the error terms is investi-
gated, for example, in Kmenta and Gilbert (1968), Oberhofer
and Kmenta (1974), Magnus (1978), Park (1993). Further
developments have been obtained by using bootstrap meth-
ods (see, e.g., Rocke 1989; Rilstone and Veall 1996) and a
likelihood distributional analysis (Fraser et al. 2005). Many
studies have been performed also in a Bayesian framework
(see, e.g., Zellner 1971; Percy 1992; Ando and Zellner 2010;
Zellner and Ando 2010a). Most of these methods have been
developed under the assumption that the distribution of the
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Fig. 1 Canned tuna dataset: scatterplot and Q–Q plots of the standardized residuals

error terms isGaussian. Some of them are implemented in the
R package systemfit (Henningsen and Hamann 2007).

As an example, the above-mentioned methods can be
employed to estimate parameters of system (1) using data
taken from Chevalier et al. (2003) and available within the R
package bayesm (Rossi 2012). This dataset contains the
weekly sales for seven of the top 10 U.S. brands in the
canned tuna product category for I = 338 weeks between
September 1989 and May 1997, together with a measure
of the display activity and the log price of each brand. In
particular, two brands are examined: Star Kist 6 oz. (brand
A) and Bumble Bee Solid 6.12 oz. (brand B). Figure 1
shows the standardized residuals obtained from model (1);
it is evident that they have a non-Gaussian behavior. In
particular, both marginal distributions are skewed. Further-
more, a subset of observations is characterised by strongly
negative residuals for the equation describing Bumble Bee
sales.

The problem of dealingwith non-Gaussian errors in seem-
ingly unrelated regressionmodels has already been tackled in
the statistical literature. For example, properties of the feasi-
ble generalized least squares estimators under non-Gaussian
errors are investigated in Srivastava and Maekawa (1995)
and Kurata (1999). Solutions obtained using elliptical distri-
butions are described in Ng (2002). The use of multivariate
Student t errors is suggested in Kowalski et al. (1999) and
Zellner and Ando (2010b).

The aim of this paper is to propose the use of Gaussian
mixtures for modelling the error term distribution in a seem-
ingly unrelated linear regression model. Finite mixtures
represent a convenient and flexible framework for dealing
with distributions of unknown shapes, as they can account
for skewness, kurtosis and multimodality. They are widely

employed in many areas of multivariate analysis, especially
for model-based cluster analysis, discriminant analysis and
multivariate density estimation (see, e.g., McLachlan and
Peel 2000). Recently, finite mixtures of Gaussian and Stu-
dent t distributions have been employed also in multiple and
multivariate linear regression analysis (see, e.g., Bartolucci
and Scaccia 2005; Soffritti and Galimberti 2011; Galim-
berti and Soffritti 2014) to handle non-normal error terms.
In this context, the use of finite mixture has the advantage
of capturing the effect of omitted nominal regressors from
the model and obtaining robust estimates of the regression
coefficients when the distribution of the error terms is non-
normal.

The paper is organized as follows. Section 2 illus-
trates the theory behind the new methodology. Namely, the
novel models are presented in Sect. 2.1. Theorem 1 pro-
vides conditions for the model identifiability (Sect. 2.2).
The score vector and the Hessian matrix for the model
parameter are reported in Sect. 2.3 (Theorems 2 and 3).
Details about the maximum likelihood (ML) estimation
through an Expectation–Maximisation (EM) algorithm are
given in Sect. 2.4. Section 2.5 addresses model selec-
tion issues. Results obtained from the analysis of real
datasets using the proposed approach are presented in
Sect. 3, together with the results derived from models
with multivariate Gaussian or Student t error terms. In
particular, Sect. 3.1 describes the results for the above-
mentioned canned tuna dataset. In Sect. 4 some conclud-
ing remarks are provided. Proofs of Theorems 2 and 3
and other technical results are in Appendix. Finally, fur-
ther experimental results obtained from real and simu-
lated datasets are provided in the online Supplementary
material.
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2 Seemingly unrelated regression models with a
Gaussian mixture for the error terms

2.1 The general model

The novel model can be introduced as follows. Let Yi =
(Yi1, . . . ,Yid , . . . ,YiD)′ be the vector of the D dependent
variables for the i th observation, i = 1, . . . , I . Furthermore,
let xid be the vector composed of the fixed values of the Pd
regressors for the i th observation in the equation for the dth
dependent variable, d = 1, . . . , D. A seemingly unrelated
regression model can be defined through the following sys-
tem of equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Yi1 = β01 + x′
i1β1 + εi1

...

Yid = β0d + x′
idβd + εid

...

YiD = β0D + x′
i DβD + εi D

i = 1, . . . , I, (2)

where β0d , βd , and εid are the intercept, the regression coef-
ficient vector and the error term for the i th observation in the
equation for the dth dependent variable, respectively. Equa-
tion (2) can be written in compact form using the following
matrix notation:

Yi = β0 + X′
iβ + εi , i = 1, . . . , I, (3)

where β0 = (β01, . . . , β0d , . . . , β0D)′, β = (
β ′
1, . . . ,β

′
d ,

. . . ,β ′
D

)′, εi = (εi1, . . . , εid , . . . , εi D)′, and Xi is the fol-
lowing P × D partitioned matrix:

⎡
⎢⎢⎢⎣

xi1 0P1 · · · 0P1
0P2 xi2 · · · 0P2
...

...
...

0PD 0PD · · · xi D

⎤
⎥⎥⎥⎦ , (4)

with 0Pd denoting the Pd -dimensional null vector and P =∑D
d=1 Pd .

Remark 1 This definition of seemingly unrelated regression
model differs from the one originally introduced by Zellner
(1962); however, these two definitions are equivalent (see,
for example, Park 1993). The choice of the model definition
given in Eq. (3) is motivated by its analytical convenience in
deriving some technical results described in this paper.

The proposed model is based on the assumption that the I
error terms are independent and identically distributed, and
that

εi ∼
K∑

k=1

πk ND(νk,Σk), i = 1, . . . , I, (5)

where πk’s are positive weights that sum to 1, the νk’s
are D-dimensional mean vectors that satisfy the constraint∑K

k=1 πkνk = 0D , theΣk’s are D×D positive definite sym-
metric matrices and ND(νk,Σk) denotes the D-dimensional
Gaussian distribution with parameters νk and Σk .

Given Eqs. (3) and (5), the conditional probability den-
sity function (p.d.f.) of the D-dimensional random vectorYi

given Xi is

K∑
k=1

πkφD(yi ;λk + X′
iβ,Σk), yi ∈ R

D, i = 1, . . . , I,

(6)

where φD(yi ;μ,Σ) is the p.d.f. of the D-dimensional
Gaussian distribution ND(μ,Σ) evaluated at yi , and λk =
β0 + νk . Differently from the νk’s, the λk’s are not subject
to any constraint. For this reason, in this paper the atten-
tion is focused on the vector of the model parameters given
by θ = (

π ′,β ′, θ ′
1, . . . , θ

′
K

)′, where π = (π1, . . . , πK−1)
′,

θk = (
λ′
k, v (Σk)

′)′ for k = 1, . . . , K , with v(Σk) denot-
ing the 1

2D(D + 1)-dimensional vector formed by stacking
the columns of the lower triangular portion of Σk (see, e.g.,
Schott 2005).

Suppose that the i th observation was drawn from the kth
component of the mixture. Then, the equation for such an
observation would be

Yi = λk + X′
iβ + ε̃ik, (7)

where ε̃ik ∼ ND(0D,Σk). Thus, the model defined by
Eq. (6) can be seen as a mixture of K seemingly unre-
lated linear regression models with Gaussian error terms.
This property of the proposed model makes it possible to
establish a link with finite mixtures of regression models
(see, e.g., Frühwirth-Schnatter 2006). This kind of mix-
tures constitutes a flexible tool for the identification of K
unknown sub-populations of observations (clusters), each
of which is characterised by a specific relationship between
the dependent variables and the regressors. In these models
it is generally assumed that each component of the mix-
ture is associated with a cluster. It is worth noting that,
according to model (6), the K clusters of observations differ
in the intercepts for the D dependent variables and in the
covariance matrices for the error terms, while the regression
coefficients are equal across clusters. Thus, the K unknown
sub-populations can also be interpreted as the categories of
an unobserved (and, thus, omitted) nominal regressor that
affects both the conditional expected values and covariances
of the dependent variables.

In the special case where K = 1, model (6) results
in the classical seemingly unrelated regression model with
Gaussian errors. If xid = xi ∀d (the vectors of the regressors
for the D equations coincide), the following equality holds:

123



1028 Stat Comput (2016) 26:1025–1038

Xi = ID ⊗ xi ,

where ID is the identity matrix of order D and ⊗ denotes the
Kronecker product operator (see, e.g., Schott 2005). Thus,
Eq. (7) can be rewritten as

Yi = λk + (ID ⊗ xi )′ β + ε̃ik = λk + B′xi + ε̃ik, (8)

where B = [
β1 · · · βd · · · βD

]
. Equation (8) corresponds

to the model described in Soffritti and Galimberti (2011).
Furthermore, the model proposed by Bartolucci and Scaccia
(2005) can be obtained when D = 1. Finally, if Pd = 0
∀d, model (6) results in the mixture model with K Gaussian
components (see, e.g., McLachlan and Peel 2000).

2.2 Model identifiability

As any finitemixturemodel, alsomodel (6) is invariant under
permutations of the labels of the K components (see, e.g.,
McLachlan and Peel 2000). For the proposed model, whose
parameter is θ = (

π ′,β ′, θ ′
1, . . . , θ

′
K

)′, the following theo-
rem holds:

Theorem 1 Model (6) is identifiable, provided that, for d =
1, . . . , D, vectors {xid , i = 1, . . . , I } do not lie on a common
(Pd − 1)-dimensional hyperplane.

Proof The identifiability condition described in Theorem 1
is a generalization of the usual condition for the identifia-
bility of a multiple linear regression model. It is required
in order to guarantee identifiability of the parameters β and
λ1, . . . ,λK that characterise the conditional expectations for
the D dependent variables.

Furthermore, consider the joint conditional p.d.f. of a ran-
dom sample y1, . . . , yI from the model (6), given the fixed
values of the regressors contained in X1, . . . ,XI :

f (y1, . . . , yI ;X1, . . . ,XI , θ)

=
I∏

i=1

[
K∑

k=1

πkφD
(
yi ;λk + X′

iβ,Σk
)]

. (9)

Formula (9) can be re-written as follows:

f (y1, . . . , yI ;X1, . . . ,XI , θ)

=
J∑

j=1

π jφD·I
(
y;λ j + Xβ,Σ j

)
, (10)

where J = K I , y = (
y′
1, . . . , y

′
I

)′, X = [X1 . . .XI ]′,

π j = ∏I
i=1 π

k( j)
i
, λ j =

(
λ′
k( j)
1

, . . . ,λ′
k( j)
I

)′
, Σ j =

diag(Σ
k( j)
1

, . . . ,Σ
k( j)
I

) is a block diagonal matrix, and

k( j) =
(
k( j)
1 , . . . , k( j)

I

)′
is the j th element of the set AK ,I =

{(k1, . . . , kI )′ : ki ∈ {1, . . . , K }, i = 1, . . . , I } containing
the J arrangements of the first K positive integers amongst
I with repetitions. The proof can be completed by showing
that mixtures (10) are identifiable. The proof of this latter
result can be found in Soffritti and Galimberti (2011).

2.3 Score vector and Hessian matrix

Given a random sample y1, . . . , yI from the model (6), the
log-likelihood is

l(θ) =
I∑

i=1

ln

(
K∑

k=1

πkφD(yi ;λk + X′
iβ,Σk)

)
. (11)

The log-likelihood (11) can be used to derive the ML esti-
mator of θ . Furthermore, Redner and Walker (1984) showed
that, under suitable conditions, an estimate of the asymptotic
variance of the ML estimator of the parameters in a finite
mixture model can be obtained using the Hessian matrix. In
order to obtain the score vector and the Hessian matrix the
following notation is introduced. Let

fki = πk

(2π)D/2 det (Σk)
1/2 exp

[
−1

2

(
yi − λk − X′

iβ
)′

×Σ−1
k

(
yi − λk − X′

iβ
)] ;

αki = fki(∑K
l=1 fli

) ; ak = 1
πk
ek for k = 1, . . . , K − 1 and

aK = − 1
πK

1(K−1), where ek is the kth column of I(K−1)

and 1(K−1) denotes the (K − 1)-dimensional vector having
each component equal to 1; bki = Σ−1

k

(
yi − λk − X′

iβ
)
;

Bki = Σ−1
k − bkib′

ki ;

cki =
[

bki
− 1

2G
′vec (Bki )

]
,

whereG denotes the duplicationmatrix and vec(Bki ) denotes
the vector formed by stacking the columns of the matrix Bki

one underneath the other (see, e.g., Schott 2005).

Theorem 2 The score vector for the parameters of model (6)
is composed of the sub-vectors ∂

∂π ′ l (θ), ∂
∂β ′ l (θ), ∂

∂θ ′
1
l (θ) ,

. . . , ∂
∂θ ′

K
l (θ), where

∂

∂π
l (θ) =

I∑
i=1

āi ,

∂

∂β
l (θ) =

I∑
i=1

Xi b̄i ,
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∂

∂θk
l (θ) =

I∑
i=1

αkicki , k = 1, . . . , K ,

with āi = ∑K
k=1 αkiak and b̄i = ∑K

k=1 αkibki .

Theorem 3 The Hessian matrix H(θ) for the parameters of
model (6) is equal to

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂2

∂π∂π ′ l (θ) ∂2

∂π∂β ′ l (θ) ∂2

∂π∂θ ′
1
l (θ) · · · ∂2

∂π∂θ ′
K
l (θ)

∂2

∂β∂π ′ l (θ) ∂2

∂β∂β ′ l (θ) ∂2

∂β∂θ ′
1
l (θ) · · · ∂2

∂β∂θ ′
K
l (θ)

∂2

∂θ1∂π ′ l (θ) ∂2

∂θ1∂β ′ l (θ) ∂2

∂θ1∂θ ′
1
l (θ) · · · ∂2

∂θ1∂θ ′
K
l (θ)

· · · · · · · · · · · · · · ·
∂2

∂θK ∂π ′ l (θ) ∂2

∂θK ∂β ′ l (θ) ∂2

∂θK ∂θ ′
1
l (θ) · · · ∂2

∂θK ∂θ ′
K
l (θ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(12)

where

∂2

∂π∂π ′ l (θ) = −
I∑

i=1

āi ā′
i ,

∂2

∂π∂β ′ l (θ) =
I∑

i=1

[(
K∑

k=1

αkiakb′
ki

)
− āi b̄′

i

]
X′
i ,

∂2

∂π∂θ ′
k
l (θ) =

I∑
i=1

αki (ak − āi ) c′
ki , k = 1, . . . , K ,

∂2

∂β∂β ′ l (θ) = −
I∑

i=1

Xi
[
B̄i + b̄i b̄′

i

]
X′
i ,

∂2

∂β∂θ ′
k
l (θ) = −

I∑
i=1

αkiXi
[
Fki − (

bki − b̄i
)
c′
ki

]
,

k = 1, . . . , K ,

∂2

∂θk∂θ ′
k
l (θ) = −

I∑
i=1

αki
[
Cki − (1 − αki ) ckic′

ki

]
,

k = 1, . . . , K ,

∂2

∂θk∂θ ′
h
l (θ) = −

I∑
i=1

αkiαhickic′
hi , ∀k �= h,

with B̄i = ∑K
k=1 αki

(
Σ−1

k − bkib′
ki

)
, Fki =[

Σ−1
k

(
b′
ki ⊗ Σ−1

k

)
G
]
and

Cki =
⎡
⎣ Σ−1

k

(
b′
ki ⊗ Σ−1

k

)
G

G′
(
bki ⊗ Σ−1

k

)
1
2G

′
[(

Σ−1
k − 2Bki

)
⊗ Σ−1

k

]
G

⎤
⎦ .

Proofs of Theorems 2 and 3 are provided in Appendix 1 and
2, respectively.

Remark 2 After some suitable simplifications, Theorems 2
and 3 provide the score vector and theHessianmatrix also for
the models introduced in Bartolucci and Scaccia (2005) and
Soffritti and Galimberti (2011). Furthermore, they represent
a generalization of Theorem 1 in Boldea andMagnus (2009).

2.4 An EM algorithm for maximum likelihood
estimation

The score vector and theHessianmatrix described inSect. 2.3
can be used to compute the ML estimates of the model
parameter θ through a Newton-Raphson algorithm for the
maximisation of l(θ) in Eq. (11). However, the evaluation of
the Hessian matrix at each iteration can be computationally
expensive, especially with large samples. In order to avoid
this problem, in this Section an EM algorithm is developed
by resorting to the approach for incomplete-data problems
(Dempster et al. 1977; McLachlan and Krishnan 2008). This
approach is widely employed in finitemixturemodels, where
the source of unobservable information is the specific com-
ponent of the mixture model that generates each sample
observation. Specifically, this unobservable information for
the i th observation can be described by the K -dimensional
vector z′

i = (zi1, . . . , ziK ), where zik = 1 when yi is gen-
erated from the kth component, and zik = 0 otherwise, for
k = 1, . . . , K . Thus,

∑K
k=1 zik = 1, i = 1, . . . , I .

Consider the following hierarchical representation for
yi |Xi :

zi ∼ mult (1, π1, . . . , πK ),

yi |(Xi , zik = 1) ∼ ND
(
λk + X′

iβ,Σk
)
,

where mult (1, π1, . . . , πK ) denotes the K -dimensional
multinomial distribution with parameters π1, . . . , πK , and
assume that this representation independently holds for i =
1, . . . , I . Then, the complete-data log-likelihood lc(θ) of
model (6) can be expressed as

lc (θ) =
I∑

i=1

K∑
k=1

zik ln fki . (13)

The first order differential of lc(θ) is

dlc (θ) =
I∑

i=1

K∑
k=1

zikd ln fki

= (dπ)′
K∑

k=1

z·kak + (dβ)′
I∑

i=1

K∑
k=1

zikXibki

+
K∑

k=1

(dθk)
′

I∑
i=1

zikcki
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= (dπ)′
K∑

k=1

z·kak

+
I∑

i=1

K∑
k=1

zik
[
(dλk)

′ + (dβ)′ Xi
]
bki (14)

−1

2

K∑
k=1

d (vΣk)
′ G′vec

(
I∑

i=1

zikBki

)
(15)

where the second and third equalities are obtained using Eq.
(34) in Appendix 1, and z·k = ∑I

i=1 zik .
To determine the solution of each M step of the EM

algorithm, it is convenient to introduce the following nota-
tion. Let dlc2 and dlc3 denote the expressions in Eqs. (14)
and (15), respectively. Let γ = (

λ′
1, . . . ,λ

′
K ,β ′) ′ be the

(D · K + P)-dimensional vector comprising the intercepts
of all components and regression coefficients for all depen-
dent variables. Ok is a matrix of dimension (D · K ) × D
obtained by extracting the columns of the matrix I(D·K ) from
the (1 + (k − 1) · D)th to the (D + (k − 1) · D)th, for

k = 1, . . . , K . Furthermore, letXki =
[
Ok

Xi

]
; this is amatrix

of dimension (D · K + P) × D such that X′
kiγ = λk +X′

iβ

and X′
kidγ = dλk + X′

idβ. Using this latter notation, the
expressions of dlc2 and dlc3 in Eqs. (14) and (15) turn into

dlc2 =
I∑

i=1

K∑
k=1

zik (dγ )′ Xkibki

= (dγ )′
I∑

i=1

K∑
k=1

zikXkiΣ
−1
k

(
yi − X′

kiγ
)

= (dγ )′
I∑

i=1

K∑
k=1

zikXkiΣ
−1
k yi

− (dγ )′
(

I∑
i=1

K∑
k=1

zikXkiΣ
−1
k X′

ki

)
γ , (16)

dlc3 = −1

2

K∑
k=1

d (vΣk)
′ G′vec

(
I∑

i=1

zikΣ
−1
k −

I∑
i=1

zikbkib′
ki

)

= −1

2

K∑
k=1

d (vΣk)
′ G′vec

(
z·kΣ−1

k − Σ−1
k SkΣ

−1
k

)
, (17)

where Sk = ∑I
i=1 zik

(
yi − X′

kiγ
) (
yi − X′

kiγ
)′. Using Eq.

(17) and some properties of the vec operator (see, in particu-
lar, Schott 2005, Theorem 8.11) it is also possible to write

dlc3 = 1

2

K∑
k=1

d (vΣk)
′ G′vec

[
Σ−1

k (Sk − z·kΣk) Σ−1
k

]

= 1

2

K∑
k=1

d (vΣk)
′ G′ (Σ−1

k ⊗ Σ−1
k

)
Gv (Sk − z·kΣk) .

(18)

Thus, the following alternative expression for dlc (θ) holds:

dlc (θ) = (dπ)′
K∑

k=1

z·kak + (dγ )′
I∑

i=1

K∑
k=1

zikXkiΣ
−1
k yi

− (dγ )′
(

I∑
i=1

K∑
k=1

zikXkiΣ
−1
k X′

ki

)
γ

+1

2

K∑
k=1

d (vΣk)
′ G′ (Σ−1

k ⊗ Σ−1
k

)
Gv (Sk − z·kΣk) .

(19)

Thefirst derivatives of lc (θ)with respect to the parameters
π , γ and vΣk (k = 1, . . . , K ) are:

∂

∂π
lc (θ) =

K∑
k=1

z·kak,

∂

∂γ
lc (θ) =

I∑
i=1

K∑
k=1

zikXkiΣ
−1
k yi

−
(

I∑
i=1

K∑
k=1

zikXkiΣ
−1
k X′

ki

)
γ ,

∂

∂ (vΣk)
lc (θ) = 1

2
G′ (Σ−1

k ⊗ Σ−1
k

)
Gv (Sk − z·kΣk) ,

k = 1, . . . , K .

In order to maximise lc (θ) these derivatives are set equal
to zero. By solving the resulting system of equations the
following expressions are obtained:

π∗
k = z·k/I, k = 1, . . . , K , (20)

and, provided that the matrix
∑I

i=1
∑K

k=1 zikXkiΣ
−1
k X′

ki is
non-singular,

γ ∗ =
(

I∑
i=1

K∑
k=1

zikXkiΣ
−1
k X′

ki

)−1 I∑
i=1

K∑
k=1

zikXkiΣ
−1
k yi ,

(21)

Σ∗
k = z−1

·k Sk, k = 1, . . . , K . (22)

Using some initial value for θ , say θ (0), the E-step on the
(r + 1)th iteration of the EM algorithm is effected by simply
replacing zik by Eθ (r) (zik |yi , xi ) = Pθ (r) (zik = 1|yi , xi ) =
p(r)
ik , which is the posterior probability that yi is generated

from the kth component of the mixture. Namely:

p(r)
ik =

π
(r)
k φD

(
yi ;λ

(r)
k + X′

iβ
(r),Σ

(r)
k

)
∑K

h=1 π
(r)
h φD

(
yi ;λ

(r)
h + X′

iβ
(r),Σ

(r)
h

) . (23)
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On the M-step at the (r + 1)th iteration of the EM algo-
rithm, the updated estimates of the model parameters π

(r+1)
k ,

γ (r+1) and Σ
(r+1)
k are computed using Eqs. (20), (21) and

(22), respectively, where zik is replaced by p(r)
ik . As Eq. (21)

depends on the Σk’s and Eq. (22) depends on γ , the updated
estimates of such parameters at the (r + 1)th iteration are
obtained through an iterative process in which the estimate
of γ is updated, given an estimate of theΣk’s, and vice versa,
until convergence.

Once the convergence is reached, in addition to the para-
meter estimates the EM algorithm also provides estimates
of the posterior probabilities using Eq. (23). These esti-
mated posterior probabilities can be used to partition the
I observations into K clusters, by assigning each obser-
vation to the component showing the highest posterior
probability.

A crucial point of any application of an EM algorithm is
the choice of θ (0). In general, convergence with the EM algo-
rithm is slow, and this problem can be worsened by a poor
choice of θ (0) (see, e.g., McLachlan and Peel 2000). Fur-
thermore, since in a mixture model the likelihood function
usually has multiple maxima, different starting values for the
model parameters can lead to different estimates. A way to
deal with the latter problem is to consider multiple random
initializations and then to select the parameter estimate lead-
ing to the largest likelihood value. For the model described in
this paper, starting values for the EM algorithm can be cho-
sen by adapting the strategies described in Galimberti and
Soffritti (2014). β(0) can be obtained by fitting the standard
seemingly unrelated regression model; the sample residuals
of this model can be used to derive starting values for the
remaining parameters. For example, the estimates from the
fitting of a Gaussian mixture model with K components to
the sample residuals can be employed. Alternatively, a ran-
dom initialisation can be obtained by randomly partitioning
the sample residuals into K groups and by computing the
corresponding relative group sizes, group mean vectors and
group covariance matrices. Further details and a practical
comparison of these two different approaches to initialis-
ing π , θ1, . . . , θK are provided in the online Supplementary
material (see Sect. A).

2.5 Model selection

In the EM algorithm described in Sect. 2.4 the value of K is
considered to be fixed and known. However, in most situa-
tions such value is not known and has to be estimated from
the data. Several approaches dealing with this problem have
been investigated in the framework of finite mixture mod-
els; most of them are model selection techniques which seek
to find a parsimonious model that adequately describes the
observed data (see, e.g., McLachlan and Peel 2000, chapter

6). An example is given by the Bayesian Information Crite-
rion (Schwarz 1978):

BICM = 2max [lM ] − nparM log(I ),

where max [lM ] is the maximum of the log-likelihood of a
model M for the given sample of I observations, and nparM
is the number of unconstrained parameters to be estimated
for that model. This criterion allows to trade-off the fit and
parsimony of a given model: the greater the BIC , the better
the model. In the following Sections, this criterion is used
not only to establish the most appropriate value of K to be
used in model (6) but also to compare models characterised
by different error term distributions.

3 Experimental results

The usefulness and effectiveness of the methods described in
Sect. 2 are illustrated through some examples based on real
and simulated datasets. Themain results obtained on two real
datasets are summarised in the following Sections. Further
results are reported in the online Supplementary material. In
particular, a numerical evaluation of properties of the ML
estimates is carried out on both simulated and real datasets,
with a special emphasis on the regression coefficients (see
Sects. B and C).

All analyses are performed in the R environment (R Core
Team 2013). A specific function is used, that implements
the ML estimation through the EM algorithm described in
Sect. 2.4 and the calculation of the Hessian matrix defined in
Theorem 3. For each examined dataset, parameters of model
(6) are estimatedwith a value of K from1 to Kmax (the values
of Kmax used in the experiments are described in the follow-
ing Sections). For the results illustrated in this Section, the
starting values of the model parameters are obtained through
a strategy that fits Gaussian mixture models to the sample
residuals of the classical seemingly unrelated linear regres-
sionmodel. The package mclust (Fraley and Raftery 2002;
Fraley et al. 2012) is used without imposing any restriction
on the component-covariance matrices. The EM algorithm
is stopped when the number of iterations reaches 500 or
|l(r+1)∞ − l(r)| < 10−8, where l(r) is the log-likelihood value
from iteration r , and l(r+1)∞ is the asymptotic estimate of the
log-likelihood at iteration r + 1 (McNicholas and Murphy
2008). The stopping rules for each M step are either when
the mean Euclidean distance between two consecutive esti-
mated vectors of the model parameters is lower than 10−8

or when the number of iterations reaches the maximum of
500. Estimates of the standard errors of the ML estimators of
the regression coefficients are computed as the square root of
the diagonal elements of H(θ̂)−1 that refer to β. Asymptotic
confidence intervals for the regression coefficients are also
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Table 1 Maximised log-likelihood and BIC value for themodels fitted
to the tuna dataset

Models lM (θ̂) nparM BICM

K = 1 −652.573 9 −1357.55

K = 2 −290.753 15 −668.85

K = 3 −251.536 21 −625.36

K = 4 −245.083 27 −647.39

Student t −333.064 10 −724.36

obtained by assuming an asymptotic normal distribution for
the ML estimators.

Model (2) under the assumption of multivariate Student t
error terms is also fitted. In order to perform this latter task,
a modified version of the EM algorithm described in Lange
et al. (1989) is developed and implemented in a specific R
function. This function selects starting values forβ0 andβ by
fitting univariate Student t linear regression models for each
dependent variable. Starting values of all the other model
parameters are obtained by fitting a multivariate Student t
distribution to the residuals derived from the D univariate
regression models. The EM stopping rules described above
are exploited also in this second function.

3.1 Canned tuna dataset

In this example, in which D = 2, P1 = P2 = 2, the parame-
ters of the system of Eq. (1) for the canned tuna brands Star
Kist 6 oz. and Bumble Bee Solid 6.12 oz. (see Sect. 1) are
estimated. The value of Kmax used in this experiment is 4.
Table 1 provides some model fitting results.

According to the BIC , themodelwith K = 3 components
provides the best description of the joint linear dependence
of the log unit sales on the display activity and the log price
for the two examined brands. The estimates of the prior prob-
abilities of this model are 0.744, 0.195 and 0.061. Tables 2
and 3 report the estimates of the remaining parameters.

By comparing the three components it emerges that the
second component shows the highest value of the intercepts
for both dependent variables (Table 2); this component is
also highly homogeneous with respect to the log unit sales of
Bumble Bee Solid 6.12 oz. A slightly lower estimated inter-
cept and a very high estimated variance for the log unit sales
of Bumble Bee Solid 6.12 oz. are the main specific features
of the third component together with a negative estimated
correlation between the log unit sales of the two brands.

As far as the effects of the regressors on the dependent
variables are concerned (Table 3), they can be considered all
significant (none of the 95% asymptotic confidence intervals
contains 0). The impact of the display activity on the log unit
sales for Star Kist 6 oz. seems to be slightly higher than for

Table 2 Estimates of
parameters λk and Σk obtained
from the best model fitted to the
canned tuna dataset

Y1 Y2

λ̂
′
1 8.584 9.937

λ̂
′
2 9.162 9.977

λ̂
′
3 9.094 7.301

Σ̂1 0.082 0.017

0.265 0.050

Σ̂2 0.730 0.021

0.144 0.029

Σ̂3 0.264 −0.528

−0.623 2.724

Estimated correlation
coefficients between dependent
variables (in italics) are reported
in the lower triangular parts of
the three covariance matrices

Table 3 Estimates of the regression coefficients (RC) calculated from
the best model fitted to the canned tuna dataset and their estimated SE

Dependent variable Regressors

Y1 X1 X2

RC 0.242 −3.176

SE 0.067 0.213

CI (0.111, 0.373) (−3.593, −2.759)

Y2 X3 X4

RC 0.123 −3.876

SE 0.041 0.373

CI (0.043, 0.203) (−4.607, −3.145)

The asymptotic CIs are computed at the 95 % level of confidence

Bumble Bee Solid 6.12 oz. The opposite result holds true for
the effect of the log price.

The 338 weeks can be partitioned into three clusters
by assigning each week to the component of the mixture
that register the highest posterior probability. Most of the
weeks (278) are assigned to the first cluster (CL1), while
only 19 weeks are classified in the third cluster (CL3).
Figure 2 shows the scatterplot of the log unit sales for
the two brands in all weeks after removing the estimated
effects of the two regressors. Weeks are labelled according
to the cluster they are assigned. An interesting feature of
the obtained classification emerging from this plot is that
the third cluster is composed of weeks in which Bumble
Bee Solid 6.12 oz. tuna sales register a relatively low mean
level. Furthermore, it is also relevant to highlight that 17 out
of the 19 weeks in the third cluster are consecutive from
week 58 to week 74. According to additional information
about the canned tuna dataset available at the University
of Chicago website (http://research.chicagobooth.edu/kilts/
marketing-databases/dominicks/), these weeks correspond
to the period from mid-October 1990 to mid-February 1991.
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Fig. 2 Canned tuna dataset: scatterplot of the weekly log unit sales for
the twobrands after removing the estimated effects of the two regressors.
Weeks are labelled according to their cluster membership

It is worth noting that in that same period the U.S. non-
governmental organization Earth Island Institute promoted
a worldwide boycott campaign encouraging consumers not
to buyBumbleBee tuna becauseBumbleBeewas found to be
buying yellow-fin tuna caught by dolphin-unsafe techniques
(Baird and Quastel 2011).

3.2 AIS dataset

This Section describes some results obtained from the analy-
sis of the Australian Institute of Sport (AIS) dataset (Cook
and Weisberg 1994). Namely, the interest is focused on
studying the joint linear dependence of D = 4 biometrical
variables (Y1: body mass index (BMI), Y2: sum of skin folds
(SSF), Y3: percentage of body fat (PBF), Y4: lean body mass
(LBM)) on three variables providing information about blood
composition (red cell count (RCC), white cell count (WCC),
plasma ferritine concentration (PFC)). The same problem
was investigated by Soffritti and Galimberti (2011) using
multivariate linear regression models.

Seemingly unrelated linear regression models from Eq.
(6) are estimated for K = 1, 2, 3. Since the choice of the
regressors to be used for each biometrical variable may
be questionable, for each value of K and each dependent
variable an exhaustive search for the relevant regressors is
performed. Thus, for each value of K , 23·D = 4096 dif-
ferent regression models are fitted to the dataset. The same
exhaustive search is carried out using seemingly unrelated
regression models with multivariate Student t error terms.
Thus, a total number of 16384 different models are exam-
ined. The total number P of regressors included in a model
is between 0 and 12. The EM algorithm has failed due to the
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Fig. 3 AIS dataset: best BIC values by total number of regressors and
number of components

singularity of some matrices for two models when K = 2
and 40 models when K = 3.

In this situation, the BIC defined in Sect. 2.5 can be used
not only to choose the best distribution for the error terms
(multivariate Gaussian, Student t or Gaussian mixture in this
study), but also the best subset of regressors for each equa-
tion in the system (2). Figure 3 shows the BIC values of the
fittedmodels with the best trade-off (i.e., the maximum value
of the BIC) among all the models having the same error dis-
tribution (Gaussian mixture with K = 1, 2, 3 and Student
t) and the same number of regressors (P = 0, . . . , 12). By
comparingmodels having the same value of P it emerges that
the best performance is obtained usingGaussianmodels with
three components when the total number of regressors is low
(P = 0, 1, 2); otherwise, Gaussian models with two compo-
nents should be preferred. Thus, the introduction of a finite
mixture for the distribution of the error terms allows to obtain
a relevant improvement with respect to seemingly unrelated
regression models with both Gaussian and Student t errors,
for all P . Note that Student t models achieve a slightly better
performance than classical models with Gaussian errors.

If models are compared by controlling the error distrib-
ution, P = 7 regressors should be used when K = 1, 2
and with Student t errors. Namely, for these three cases, the
selected regressors for the equations of the dependent vari-
ables BMI, PBF and LBM are RCC and PFC; only RCC
is selected as a relevant regressor for the equation of SSF.
Hence, the numbers of regressors in the D = 4 equations
associated with these three cases are P1 = P3 = P4 = 2 and
P2 = 1. When K = 3, the best trade-off is obtained using
a model without regressors (P1 = P2 = P3 = P4 = 0).
Some results concerning these four latter models are illus-
trated in Table 4. Overall, according to the BIC the best
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Table 4 Maximised log-likelihood and BIC value for the best models
fitted to the AIS dataset

Models P lM (θ̂) nparM BICM

K = 1 7 −2427.993 21 −4967.46

K = 2 7 −2349.083 36 −4889.26

K = 3 0 −2332.382 44 −4898.33

Student t 7 −2420.517 22 −4957.82

Table 5 Estimates of parameters λk and Σk obtained from the best
model fitted to the AIS dataset

BMI SSF PBF LBM

λ̂
′
1 10.04 86.57 23.19 −7.02

λ̂
′
2 12.99 136.43 32.52 −4.88

Σ̂1 3.96 5.14 −0.09 18.99

0.198 169.94 31.21 2.63

−0.017 0.899 7.10 −8.73

0.810 0.017 −0.278 138.82

Σ̂2 6.85 17.43 0.89 14.59

0.244 744.38 107.03 −54.50

0.080 0.928 17.88 −15.05

0.681 −0.244 −0.435 67.07

Estimated correlation coefficients between dependent variables (in ital-
ics) are reported in the lower triangular parts of Σ̂1 and Σ̂2

model is the one with K = 2. In this model, the estimates of
the parameters π1 and π2 are 0.619 and 0.381. Tables 5 and 6
report the estimates of the remaining parameters. Compared
to the second component, the first component is characterised
by lower values of the intercepts for all dependent vari-
ables and lower variances for BMI, SSF and PBF. Further
differences between components concern some correlations
(see the lower triangular parts of Σ̂1 and Σ̂2 in Table 5).
The asymptotic confidence intervals for the regression coef-
ficients are reported in Table 6, along with the estimated
standard errors of the corresponding ML estimators. None
of such confidence intervals contains the 0 value.

The best model can be used to assign each athlete to the
component of the mixture that register the highest poste-
rior probability, thus producing a partition of the sample
into two clusters. Most of the athletes assigned to the sec-
ond cluster are female (79.2 %), while 68.8 % of the athletes
classified in the first cluster are male (Table 7). This classifi-
cation of the athletes is statistically associated with athletes’
gender (χ2 = 43.96, p value = 3.36 · 10−11). Thus, the
omitted regressor captured by the selected model is strongly
connected with athletes’ gender. However, the partition dis-
covered by the model has a misclassification rate equal to
0.27. Using multivariate regression models (by including
RCC, WCC and PFC in each equation), Soffritti and Gal-
imberti (2011) obtained a partition with a slightly lower

Table 6 Estimates of the regression coefficients (RC) calculated from
the best model fitted to the AIS dataset and their estimated SEs

Dependent variable Regressors

RCC PFC

BMI

RC 2.286 0.01310

SE 0.339 0.00300

CI (1.621, 2.950) (0.007, 0.019)

SSF

RC −7.746 –

SE 2.783 –

CI (−13.200, −2.292) –

PBF

RC −2.724 −0.00500

SE 0.565 0.00186

CI (−3.832, −1.616) (−0.009, −0.001)

LBM

RC 14.211 0.05232

SE 1.649 0.01511

CI (10.979, 17.442) (0.023, 0.082)

The asymptotic CIs are computed at the 95 % level of confidence

Table 7 AIS dataset: joint
classification of the athletes
according to gender and cluster
membership estimated by the
best model

Cluster Gender

Female Male

1 39 86 125

2 61 16 77

100 102 202

misclassification rate (0.25). Note that this latter result was
obtained by estimating a model with a larger number of para-
meters but a lower BIC value (−4905.44).

4 Concluding remarks

In this paper, multivariate Gaussian mixtures are used to
model the error terms in seemingly unrelated linear regres-
sions. This allows to exploit the flexibility of mixtures for
dealing with non-Gaussian errors. In particular, the result-
ing models are able to handle asymmetric and heavy-tailed
errors and to detect and capture the effect of relevant nominal
regressors omitted from the model. Furthermore, by setting
the number of components equal to one or by constraining
all the equations to have the same regressors, some solutions
already described in the statistical literature can be obtained
as special cases.

The approach described in this paper can be extended by
considering other parametric families for the mixture com-
ponents. For example, similarly to Galimberti and Soffritti
(2014), mixtures of multivariate Student t distributions could
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be used to define a more general class of models, which con-
tains model (6) as a limiting case.

Parsimonious seemingly unrelated linear regression mod-
els can be obtained by introducing some constraints on the
component covariance matrices Σk’s, based on the spectral
decomposition (see, e.g., Banfield and Raftery 1993; Celeux
and Govaert 1995; McLachlan et al. 2003; McNicholas and
Murphy 2008). Such models could provide a good fit for
some datasets by using a lower number of parameters; they
could be useful especially in the presence of a large number
of dependent variables.

In Sect. 3 the BIC is used to select the relevant regressors
in each equation as well as the number of mixture com-
ponents. The use of this criterion can be motivated on the
basis of both theoretical and practical results (see, e.g., Cut-
ler andWindham1994;Keribin 2000;Ray andLindsay 2008;
Maugis et al. 2009a, b). Clearly, other model selection crite-
ria could be used, such as the ICL (Biernacki et al. 2000),
which additionally takes into account the uncertainty of the
classification of the sample units to the mixture components.

Some computational issues could arise when using the
models proposed in this paper. For example, when the num-
ber of candidate regressors is large, an exhaustive search for
the relevant regressors for each equation could be unfeasible.
A possible solution could be obtained by resorting to stochas-
tic search techniques, such as genetic algorithms (see, e.g.,
Chatterjee et al. 1996). As far as the EM algorithm is con-
cerned, different initialisation strategies may be considered
and evaluated (see, e.g., Biernacki et al. 2003; Melnykov
and Melnykov 2012). Although these issues are not the main
focus of this paper, they could deserve further investigation.

Appendix 1: Proof of Theorem 2

The proof is based on the computation of the first order dif-
ferential of l (θ). The model log-likelihood in Eq. (11) can

be expressed as l (θ) = ∑I
i=1 ln

(∑K
k=1 fki

)
. Thus, the first

differential of l (θ) is

dl (θ) =
I∑

i=1

d ln

(
K∑

k=1

fki

)
=

I∑
i=1

(
K∑

k=1

αkid ln fki

)
. (24)

Up to an additive constant, ln fki is equal to

ln πk − 1

2
ln det (Σk)

−1

2
tr
[
Σ−1

k

(
yi − λk − X′

iβ
) (
yi − λk − X′

iβ
)′]

,

and

d ln fki = d ln πk + dki1 + dki2 + dki3, (25)

where

dki1 = −1

2
d (ln det (Σk)) , (26)

dki2 = −1

2
tr
[
d
(
Σ−1

k

) (
yi − λk − X′

iβ
) (
yi − λk − X′

iβ
)′]

,

(27)

dki3 = −1

2
tr
[
Σ−1

k d
((
yi − λk − X′

iβ
) (
yi − λk − X′

iβ
)′)]

.

(28)

The four terms in Eq. (25) can be re-expressed as follows:

d ln πk = (dπ)′ ak, (29)

dki1 = −1

2
tr
[
(dΣk)Σ−1

k

]
, (30)

dki2 = 1

2
tr
[
(dΣk) bkib′

ki

]
, (31)

dki3 = (dλk)
′ bki + (dβ)′ Xibki , (32)

where Eqs. (30)–(32) are obtained by exploiting some results
from matrix derivatives (Magnus and Neudecker 1988, pp.
182–183; Schott 2005, pp. 292,293,361). Since the sum of
dki1 and dki2 results in

dki1 + dki2 = −1

2
d (vΣk)

′ G′vec (Bki ) , (33)

(see Schott 2005, pp. 293,313,356,374) inserting Eqs. (29),
(32) and (33) in Eq. (25) leads to

d ln fki = (dπ)′ ak + (dβ)′ Xibki + (dλk)
′ bki

−1

2
d (vΣk)

′ G′vec (Bki )

= (dπ)′ ak + (dβ)′ Xibki + (dθk)
′ cki . (34)

Using Eqs. (24) and (34), dl (θ) can be expressed as

dl (θ) = (dπ)′
I∑

i=1

K∑
k=1

αkiak + (dβ)′
I∑

i=1

Xi

K∑
k=1

αkibki

+
K∑

k=1

(dθk)
′

I∑
i=1

αkicki , (35)

thus proving the theorem.

Appendix 2: Proof of Theorem 3

The proof is based on the computation of the second order
differential of l (θ):

d2l (θ) =
I∑

i=1

d2 ln

(
K∑

k=1

fki

)
, (36)
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where

d2 ln

(
K∑

k=1

fki

)
=

K∑
k=1

αkid
2 ln fki +

K∑
k=1

αki (d ln fki )
2

−
(

K∑
k=1

αkid ln fki

)2

(37)

(see Boldea and Magnus 2009, Appendix).
Since (d ln fki )2 = (d ln fki ) (d ln fki )′, using Eq. (34) it

results that

(d ln fki )
2 = (dπ)′ aka′

kdπ + (dπ)′ akb′
kiX

′
idβ

+ (dπ)′ akc′
kidθk

+ (dβ)′ Xibkia′
kdπ + (dβ)′ Xibkib′

kiX
′
idβ

+ (dβ)′ Xibkic′
kidθk

+ (dθk)
′ ckia′

kdπ + (dθk)
′ ckib′

kiX
′
idβ

+ (dθk)
′ ckic′

kidθk . (38)

Similarly,

(
K∑

k=1

αkid ln fki

)2

=
(

K∑
k=1

αkid ln fki

)(
K∑

k=1

αkid ln fki

)′

= (dπ)′ āi ā′
idπ + (dπ)′ āi b̄′

iX
′
idβ

+ (dπ)′ āi
K∑

k=1

αkic′
kidθk

+ (dβ)′ Xi b̄i ā′
idπ + (dβ)′ Xi b̄i b̄′

iX
′
idβ

+ (dβ)′ Xi b̄i
K∑

k=1

αkic′
kidθk

+
[

K∑
k=1

(dθk)
′ αkicki

]
ā′
idπ

+
[

K∑
k=1

(dθk)
′ αkicki

]
b̄′
iX

′
idβ

+
K∑

k=1

K∑
h=1

(dθk)
′ αkiαhickic′

hidθ l . (39)

Furthermore,

d2 ln fki = − (dπ)′ aka′
kdπ − (dβ)′ XiΣ

−1
k X′

idβ

− (dθk)
′ F′

kiX
′
idβ

− (dβ)′ XiFkidθk − (dθk)
′ Ckidθk (40)

(see Appendix 3). From Eqs. (37), (38), (39) and (42) and by
grouping together the common factors it follows that

d2 ln

(
K∑

k=1

fki

)
= − (dπ)′ āi ā′

idπ

+ (dπ)′
[(

K∑
k=1

αkiakb′
ki

)
− āi b̄′

i

]
X′
idβ

+ (dπ)′
[

K∑
k=1

αki (ak − āi ) c′
kidθk

]

+ (dβ)′ Xi
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K∑

k=1

αkibkia′
k

)
− b̄i ā′

i

]
dπ

− (dβ)′ Xi
[
B̄i + b̄i b̄′

i

]
X′
idβ

− (dβ)′ Xi

{
K∑

k=1

αki
[
Fki − (

bki − b̄i
)
c′
ki

]
dθk

}

+
[

K∑
k=1

(dθk)
′ αkicki

(
a′
k − ā′

i

)]
dπ

−
{

K∑
k=1

(dθk)
′ αki

[
F′
ki − cki

(
b′
ki − b̄′

i

)]}
X′
idβ

−
K∑

k=1

(dθk)
′ αki

[
Cki − ckic′

ki

]
dθk

−
K∑

k=1

K∑
h=1

[
(dθk)

′ αkiαhickic′
hidθh

]
. (41)

Inserting Eq. (41) in Eq. (36) completes the proof.

Appendix 3: Second order differential of ln fki

Using Eq. (25) the second order differential of ln fki can be
expressed as

d2 ln fki = d2 ln πk + d (dki1) + d (dki2) + d (dki3) . (42)

From Eq. (29) it follows that

d2 ln πk = − (dπ)′ aka′
kdπ . (43)

The second term in Eq. (42) is equal to

d (dki1) = −1

2
tr
[
dΣk

(
dΣ−1

k

)]

= 1

2
tr
[
(dΣk) Σ−1

k (dΣk) Σ−1
k

]
. (44)

The third term that composes d2 ln fki results to be

d (dki2) = 1

2
tr
[
d
(
Σ−1

k

)
(dΣk)Σ−1

k

(
yi − λk − X′

iβ
)

× (
yi − λk − X′

iβ
)′]

+1

2
tr
[
Σ−1

k (dΣk) d
(
Σ−1

k

) (
yi − λk − X′

iβ
)
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× (
yi − λk − X′

iβ
)′]

+1

2
tr
[
Σ−1

k (dΣk) Σ−1
k d

((
yi − λk − X′

iβ
)

× (
yi − λk − X′

iβ
)′)]

.

By exploiting some properties of the trace of a square matrix
(see, e.g., Schott 2005), d (dki2) can also be expressed as

d (dki2) = tr
[
(dΣk) d

(
Σ−1

k

) (
yi − λk − X′

iβ
)

× (
yi − λk − X′

iβ
)′

Σ−1
k

]

+1

2
tr
[
Σ−1

k (dΣk)Σ−1
k d

((
yi − λk − X′

iβ
)

× (
yi − λk − X′

iβ
)′)]

,

and using two theorems about the vec and trace operators
(Schott 2005, Theorems 8.9 and 8.12) it follows that

d (dki2) = tr
[
(dΣk) d

(
Σ−1

k

) (
yi − λk − X′

iβ
)

× (
yi − λk − X′

iβ
)′

Σ−1
k

]

− (dλk)
′ (b′

ki ⊗ Σ−1
k

)
d (vecΣk)

− (dβ)′ Xi

(
b′
ki ⊗ Σ−1

k

)
d (vecΣk) . (45)

From Eqs. (44) and (45) it follows that

d (dki1) + d (dki2) = 1

2
tr
[
(dΣk) Σ−1

k (dΣk) Σ−1
k

]

− tr
[
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]
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′ (b′
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k

)
d (vecΣk)

− (dβ)′ Xi

(
b′
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k

)
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= 1

2
tr
{
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k
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′ (b′

ki ⊗ Σ−1
k

)
d (vecΣk)

− (dβ)′ Xi

(
b′
ki ⊗ Σ−1

k

)
d (vecΣk)

= −1

2
vec

(
(dΣk)
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×
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]
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′ (b′
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k

)
d (vecΣk)

− (dβ)′ Xi

(
b′
ki ⊗ Σ−1

k

)
d (vecΣk)

= −1

2
d (vΣk)

′ G′ [(Σ−1
k − 2Bki

)
⊗ Σ−1

k

]
×Gd (vΣk)

− (dλk)
′ (b′

ki ⊗ Σ−1
k

)
Gd (vΣk)

− (dβ)′ Xi

(
b′
ki ⊗ Σ−1

k

)
Gd (vΣk) ,

(46)

where the third and fourth equalities are obtained using some
properties of the vec operator (see, Schott 2005, p. 294).

From Eq. (32) it is possible to write

d (dki3) = (dλk)
′ dbki + (dβ)′ Xidbki

= − (dλk)
′ Σ−1

k d (Σk) bki

− (dλk)
′ Σ−1

k dλk − (dλk)
′ Σ−1

k X′
idβ

− (dβ)′ XiΣ
−1
k d (Σk)bki − (dβ)′ XiΣ

−1
k dλk

− (dβ)� XiΣ
−1
k X′

idβ

= −d (vΣk)
′ G′ (bki ⊗ Σ−1

k

)
dλk − (dλk)

′ Σ−1
k dλk

− (dλk)
′ Σ−1

k X′
idβ − d (vΣk)

′ G′ (bki ⊗ Σ−1
k

)
X′
idβ

− (dβ)′ XiΣ
−1
k dλk − (dβ)′ XiΣ

−1
k X′

idβ, (47)

where the third equality results from the same theorems about
the vec and trace operators employed above and the second
equality is obtained using the following expression for dbki :

dbki = d
(
Σ−1

k

) (
yi − λk − X′

iβ
) + Σ−1

k d
(
yi − λk − X′

iβ
)

= −Σ−1
k d (Σk)bki − Σ−1

k dλk − Σ−1
k X′

idβ.

Inserting Eqs. (43), (46) and (47) in Eq. (42) and using the
definitions of θk , Fki and Cki introduced in Sect. 2.3 results
in the following expression for d2 ln fki :

d2 ln fki = − (dπ)′ aka′
kdπ − (dβ)′ XiΣ

−1
k X′

idβ

− (dθk)
′ F′

kiX
′
idβ − (dβ)′ XiFkidθk

− (dθk)
′ Ckidθk .
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