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Abstract This paper proposes a new factor rotation for the
context of functional principal components analysis. This
rotation seeks to re-express a functional subspace in terms of
directions of decreasing smoothness as represented by a gen-
eralized smoothing metric. The rotation can be implemented
simply and we show on two examples that this rotation can
improve the interpretability of the leading components.

Keywords Factor rotation · Functional data ·
Interpretability · Principal components analysis

1 Introduction

This paper proposes a new factor rotation for functional
principal components analysis (fPCA). In functional data
analysis, the use of principal components has received con-
siderable attention; means of defining principal components
were studied in Rice and Silverman (1991) and Silverman
(1996) and for sparsely observed curves in Yao et al. (2005a),
Peng and Paul (2009) and Paul and Peng (2011). Follow-
ing carrying out fPCA, one of the most common means of
dealing with functional covariates has been by employing
principal components scores within multivariate methods.
Particular examples include linear models (Yao et al. 2005b;
Hall et al. 2006; Goldsmith et al. 2011), as responses (Chiou
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et al. 2004; Sentürk and Müller 2006) and additive models
(Müller and Yao 2008). In some of these cases, interpretation
is gained by combining coefficients from the multivariate
model with the principal component functions to create a
functional parameter—see the functional linear models in
Yao et al. (2005b)—but this is not always possible, as in the
additive models in Müller and Yao (2008), in which case the
model must be interpreted by treating the principal compo-
nent directions as having particular meanings.

Despite this interest in fPCA, little has been proposed by
the way of factor rotations that might make principal compo-
nents directions more interpretable. Ramsay and Silverman
(2005) examine an extension of the VARIMAX rotation
(Kaiser 1958) from multivariate factor analysis which has
the tendency to produce components that focus on particu-
lar ranges of the domain of the functions. Liu et al. (2012)
propose a rotation toward periodic components in a remote
sensing example with functions that cover multiple years
with a distinct annual signal. Other methods from the multi-
variate factor rotation literature could be considered, but we
have found no other suggested factor rotations that make use
of the structure of functional data. In this paper, we propose
a rotation toward maximally smooth principal components.
These are the directions inwhich there is greatest predictabil-
ity over time and which are also more interpretable.

The factor rotation that we propose is derived from the
definition of min/max autocorrelation factors (MAF) intro-
duced by Shapiro and Switzer (1989) and Switzer and Green
(1984) for the analysis of gridded multivariate data and par-
allel time series data, respectively. The principal underlying
MAF is to find linear combinations of the original data that
have maximum autocorrelation. This property of MAF is in
contrast to PCA which finds linear combinations that have
maximum variance. Of particular importance for our setting
is the fact that when applied to parallel time series a MAF
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analysis finds linear combinations of the data that are decreas-
ingly smooth functions of time or, in other words, that are
decreasingly predictable functions of time. In this vein, we
show that a functional analog of MAF can be obtained that
searches for the rotated components that have smallest inte-
grated first derivative. We then demonstrate how this can be
extended to any notion of smoothness as given by a linear dif-
ferential operator defined in Ramsay and Silverman (2005).
In our examples,wehavedevelopedourmethods basedon the
numerical machinery in the fda package in R (see Ramsay
et al. 2009) but they can be readily employed with alternative
functional data representations.

In recent literature, interest in the application and theo-
retical properties of MAF has been increasing (Cunningham
and Ghahramani 2014; Gallagher et al. 2014). Of particu-
lar relevance to the current work is the paper of Henderson
et al. (2009) that compares PCA and MAF in the context of
ToF-SIMS image interpretation. The authors conclude that
MAF is more effective than PCA for the analysis of high sig-
nal intensity data. The importance of MAF for forecasting
has been investigated by Woillez et al. (2009) in the context
of fish stocks. The utility of MAF for forecasting correlated
functional data is ongoing work.

The remainder of the paper is structured as follows: we
derive the notion of maximally smooth rotation as an ana-
log of maximally autocorrelated time series in Sect. 2 and
describe the extension of these to any linear differential oper-
ator. The numerical implementation of this procedure using
basis expansion methods is given in Sect. 3 and we demon-
strate the effect of these methods in Sect. 4. We finish with
some concluding remarks and further directions.

2 Maximal autocorrelation factor rotations
(MAFR)

Our methods are developed on top of the Maximum Auto-
correlation Functions proposed in Switzer and Green (1984)
for multivariate time series. Suppose that we have a multi-
variate time series x1, . . . , xT in which at each time point the
observed xt is a vector. The maximally autocorrelated time
series is the linear transformation b such that cor(xtb, xt+1b)

is maximized. In order to apply this to functional data analy-
sis, we re-interpret the criterion as

b̂ = argmin
b

∑T−1
t=1

(
b′xt+1 − b′xt

)2

b′ (∑′
t=1 xtx

′
t
)
b

.

In a functional data analysis context, we consider xt to derive
from the evaluation of a vector of functions x(t) at times
t = i(�t) for i = 1, . . . , T . By dividing by �t , we can
re-represent this criterion as

b̂ = argmin
b

∫
b′ẋ(t)ẋ(t)′bdt

b′ ∫ x(t)x(t)′dtb
,

where ẋ(t) is the vector of time-derivatives of x(t).
Here, we recognize the numerator as having the form of a

classical first derivative smoothing penalty on the univariate
function z(t) = b′x(t). In this spirit, we can more generally
define a criterion by any linear differential smoothing opera-
tor L as in Ramsay and Silverman (2005). This allows us to
define the MAFR criterion as

MAFRL(b) =
∫
b′Lx(t)Lx(t)′bdt
b′ ∫ x(t)x(t)′dtb

,

where the operator L is a linear combination of derivatives:

Lx(t) = dk

dtk
xt +

k=1∑

j=0

a j (t)
d j

dt j
x(t).

The most common choices for L correspond to the first and
second derivatives: Lx(t) = ẋ(t) or Lx(t) = ẍ(t) but more
complex penalties can also be useful and we examine the
harmonic acceleration penalty

Lx(t) = d3

dt3
x(t) − ω

2π

d

dt
x(t)

which defines smoothness in terms of sine and cosine func-
tions with period ω as well as constant shifts (see Ramsay
and Silverman 2005).

We have written our criterion in terms of a collection of
functions x(t) above, but this method is treated as a factor
rotation to be applied following fPCA with a fixed num-
ber of components selected. Thus, below we will replace
x with φ(t) = (φ1(t), . . . , φK (t)) to conform to more com-
mon notation. If the dimension of x(t) is allowed to grow, we
will always be able to reduce MAFR by adding further com-
ponents, yielding rotations in which Lb′x → 0. This same
phenomenon occurs for classical factor rotations in multi-
variate analysis when the number of variables increases or
in MAFs with an increasing number of time series. Liu et al.
(2012) found that applying VARIMAX rotations to a large
number of principal components resulted in essentially unin-
terpretable results. Similar comments may be made about
the maximal autocorrelation functions in Switzer and Green
(1984). Along similar lines, we expect that the trailing com-
ponents after rotation will be the least interpretable and there
is a trade-off between increasing the smoothness of the lead-
ing components and allowing some variation to be absorbed
into the remaining, less-interpretable versions. These com-
ments also apply to other factor rotations, although in the
examples below, we find that the leading components are
smoothed,while the remaining ones are relatively unaffected.
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3 Numerical implementation

In this section, we describe the numerical implementation of
the factor rotation. This can be accomplished easily using
the basis expansion methods in the fda package in R (Ram-
say et al. 2013, 2009), but it relies only on our ability to
obtain inner products of the derivatives of principal compo-
nent functions.

We assume that a set of principal components φ(t) have
been obtained from data. Since these are orthonormal by
definition, we have

∫
φ(t)′φ(t)dt is given by the identity,

and thus the MAFR rotation corresponds to

b̂ = argmin
b

b′
[∫

Lφ(t)′Lφ(t)dt

]

b, subject to b′b = 1.

By standard arguments, the solution to this problem is the
smallest eigenvector of the matrix

P =
[∫

Lφ(t)′Lφ(t)dt

]

. (1)

We may define successive rotations b2, . . . ,bk by minimiz-
ing MAFR(b) subject to b′

ib j = Ii= j . These are given by
the succeeding columns of U in the Eigen-decomposition

P = UDU ′.

We can thus define a rotation to new components

ψ(t) = U ′φ(t).

If, as is standard, the diagonal matrix D is ordered from
largest to smallest eigenvalues, the final components of ψ

should be the smoothest. We observe that since both U and
the φ are orthonormal, so are the ψ .

If we have an original set of curves represented in terms
of principal component scores

xi (t) =
K∑

k=1

si jφ j (t) = s′iφ(t),

then the score vector si can be re-represented in the basis
defined by ψ(t) in terms of t i = Usi . If the variances of
the original retained principal components are given in the
diagonal matrix �, the MAFR components have scores with
associated covariance U ′�U .

We can summarize these calculations in the following
pseudocode

1. Initialize by a collection x1(t), . . . , xn(t).
2. Obtain a functional principal components decomposi-

tion of these data (see e.g. Ramsay and Silverman 2005;

Yao et al. 2005b), retaining φ(t) = φ1(t), . . . , φK (t)
as the first K leading components along with the scores
s1, . . . , sn .

3. Calculate the k × k matrix P in (1) and obtain its eigen-
decomposition P = UDU ′.

4. Represent the MAFR components as ψ(t) = U ′φ(t)
along with the MAFR scores ti = Usi .

4 Examples

4.1 A simulated experiment

We begin by experimenting with the effect of this rotation
on simulated data in which rotation should help to capture
a “true” set of leading principal component directions. For
this simulation, we represented 100 curves via a Fourier basis
expansion with bases

f0(t) = 1, f2i (t) = sin(2π i t), f2i+1(t) = cos(2π i t)

and simulated the coefficients of the first 25 such basis func-
tions as independent normals with exponentially decreasing
variance:

xi (t) =
24∑

j=0

ci j f j (t), ci j ∼ N (0, exp(− j/4)).

Under this framework, 10 principal components are required
to capture 99 % of the variation in these data.

We employed a rotation based on minimizing the har-
monic acceleration of the leading components and have
plotted the original curves along with the first four and final
two components in Fig. 1. We also plotted the VARIMAX
components. Here we see there is a distinct smoothing of the
leading components. Interestingly, the final MAFR compo-
nent ismore purely sinusoidal—with a higher frequency than
the harmonic acceleration penalty—than its fPCA counter-
part. Note that the MAFR components have been ordered by
smoothness and this need not be in order of decreasing vari-
ance, although they largely track the original components.
By contrast, the VARIMAX rotation spreads out variance
among all components. One consequence of this is that the
inclusion of more components can significantly change the
VARIMAX rotation, while we would not necessarily expect
this from MAFR.

These simulated data are intended as an illustrative exam-
ple rather than as a quantitative investigation of the statistical
properties of our method and we do not pursue a simulation
here. MAFR by definition reduces the roughness of the lead-
ing principal components and can also be expected to reduce
their variance. In this particular framework, it is also easy to
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Fig. 1 Results of factor rotation based on simulated data with sinu-
soidal functional principal components.Top row: data (left) andvariance
components for fPCA (solid circles), MAFR (stars), and VARIMAX
(crosses) components. Second row: leading four fPCA (left), MAFR

(center), and VARIMAX (right) components. Bottom row: ninth (left)
and tenth (right) fPCA (solid); MAFR (dashed) and VARIMAX (dot-
ted) components

show that rotating 25 principal components exactly recovers
the original fourier basis up to changes of sign and the order
of sine and cosine pairs.

4.2 Electricity demand data

The electricity demand data are obtained from the R pack-
age fds (Shang and Hyndman 2013). The data comprise
the half-hourly demand for electricity in Adelaide, Australia
over the period 6/7/1997 to 31/3/2007. Electricity demand in
Adelaide is highest in summer and winter. Interestingly the
variability in electricity demand is largest when temperature
is high. For further information on the Electricity Demand
data, the reader is referred to Magnano and Boland (2007)
and Magnano et al. (2008). In the our analysis, we restrict
attention to the Monday demand for electricity and consider

electricity demand as a function of time of the day. Figure 2
contains plots of the smoothed electricity demandversus time
of the day for each of the 508 Mondays over the period of
observation.

For this analysis, we employed a second derivative rota-
tion to the first five principal component directions—these
accounted for 99%of variation in the data. The second deriv-
ative was chosen as a classical smoothness criterion—we
seek leading components with low curvature. The remaining
plots in Fig. 2 show the fPCA andMAFR components where
a smoothing effect is evident, particularly in the second com-
ponent while the later components largely retain their shape.

For these data, the leading MAFR component represents
a nearly constant shift in demand level over the day while the
second component measures how quickly demand drops off
in the afternoon. Component 3 provides a means to broaden
or decrease the width of peak demand. Components 2 and 3
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Fig. 2 Smoothed electricity demand data (top) along with the fPCA
(solid circles), MAFR (stars), and VARIMAX (crosses) variance com-
ponents and fPCA (black), MAFR (dashed), and VARIMAX (dotted)

functions. In this analysis, the number of fPCA components required to
explain 99 % of the variation were retained
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particularly feature better interpretability in the MAFR com-
ponents compared to the fPCA and VARIMAX components.
Component 4 measures early morning demand in all rota-
tions, while component 5 emphasizes the specific change in
demand between 6 am and 7 am in all rotations.

5 Discussion

This paper examines the development of factor rotations
aimed specifically at providing more interpretable bases for
the use of functional principal components. Our approach
here has been to find rotations that increase the smoothness
of the leading principal components and we find that we are
able to provide smoother leading principal components with-
out have a large effect on the more rough components.

The proposed methods are distinct from methods which
incorporate smoothing directly into a functional principal
components analysis; see, for example Silverman (1996).
Here we fix a subspace on which we will project our data
and seek a more interpretable representation of it, rather than
rotating the subspace so that the original representation is
smoother.

Our methods are also distinct from more classical factor
rotation methods in that we target the smoothness of the fac-
tors in sequence rather than jointly. A joint rotation criterion
could be obtained by considering a weighted sum of smooth-
ing factors:

(b1, . . . ,bk)

= argmin
k∑

j=1

w j

∫ [
Lb′

jφ(t)
]2

dt, such that b′
ib j = Ii= j

which is solved by the eigenvectors ofW 1/2PW 1/2 ifW is a
diagonalmatrixwith thew j on the diagonal and forwhich the
MAFR rotation is a limiting case. However, this then poses
the problem of how to select the w j and we argue that even
after deciding on a dimension, greatest attention is still paid
to the leading components and these should be our focus in
factor rotation. Our methods also a variation on those of Liu
et al. (2012) in defining correlation with an orthogonal basis
with respect to a smoothing norm.

While we have some advanced methods designed at
improving the smoothness of principal component functions,
we believe that there remains potential for the further devel-
opment of factor rotations aimed at yielding interpretable
bases specifically for functional data.
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