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Abstract Principal component analysis (PCA) is a well-
established tool for identifying the main sources of variation
in multivariate data. However, as a linear method it cannot
describe complex nonlinear structures. To overcome this lim-
itation, a novel nonlinear generalization of PCA is developed
in this paper. The method obtains the nonlinear principal
components from ridges of the underlying density of the data.
The density is estimated by using Gaussian kernels. Projec-
tion onto a ridge of such a density estimate is formulated as a
solution to a differential equation, and a predictor-corrector
method is developed for this purpose. The method is fur-
ther extended to time series data by applying it to the phase
space representation of the time series. This extension can
be viewed as a nonlinear generalization of singular spectrum
analysis (SSA). Ability of the nonlinear PCA to capture com-
plex nonlinear shapes and its SSA-based extension to iden-
tify periodic patterns from time series are demonstrated on
climate data.
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1 Introduction

In practical applications, one is often dealing with high-dim-
ensional data that is confined to some low-dimensional sub-
space. Since its introduction by Pearson (1901), principal
component analysis (PCA, e.g. Jolliffe 1986) has become a
ubiquitous tool for identifying such subspaces. The method
uses an orthogonal transformation to separate the directions
of maximal variance. PCA and its variants have appeared
in various contexts such as empirical orthogonal functions
(EOF) in climate analysis (e.g. Weare et al. 1976), proper
orthogonal decomposition (POD) in fluid mechanics (e.g.
Berkooz et al. 1993) and the Karhunen-Loève transform
(KLT) in the theory of stochastic processes (e.g. Loève 1955).

However, as a linear method, PCA is insufficient for
describing complex nonlinear data. Several nonlinear exten-
sions have been developed to overcome this limitation. The
most prominent of these are the neural network-based nonlin-
ear PCA (NLPCA, e.g. Hsieh 2004; Kramer 1991; Monahan
2001; Scholz et al. 2005, 2008) and kernel PCA (KPCA, e.g.
Schölkopf et al. 1997). These methods, however, have short-
comings. NLPCA requires a large number of user-supplied
parameters that need to be carefully tuned for the applica-
tion at hand. Furthermore, the transformation of the input
data into the high-dimensional kernel space in KPCA incurs
a significant computational cost. A careful choice of kernel
function is also needed when using KPCA.

Some variants of PCA, where the principal components
are obtained by restricting the analysis to local neighbour-
hoods of the data points, have been developed (e.g. Kamb-
hatla and Leen 1997; Einbeck et al. 2005, 2008). However,
this approach leads to the problem of determining a global
coordinate system.Awell-known approach to this problem is
local tangent space alignment (LTSA, Zhang and Zha 2004)
that determines a coordinate system by solving an eigen-
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value problem constructed from the local principal compo-
nent coordinates. However, this method and other neighbo-
urhood-based methods are in general sensitive to noise and
the choice of the neighbourhoods.

The contribution of this paper is the development of ker-
nel density principal component analysis (KDPCA). The
proposed method builds on the idea of using ridges of the
underlying density of the data to estimate nonlinear struc-
tures (Ozertem and Erdogmus 2011). This idea has later been
refined by Pulkkinen et al. (2014) and Pulkkinen (2015). In
the proposed approach, the ridges are interpreted as nonlin-
ear counterparts of principal component hyperplanes. The
density is estimated by using Gaussian kernels.

In the linear PCA, principal component scores (i.e. coor-
dinates) of a given sample point are obtained as projections
along principal component axes. Generalizing the concept of
a principal component axis, the projections in KDPCA are
done along curvilinear trajectories onto ridges of a Gaussian
kernel density estimate. Based on the theory of ridges, it is
shown that such projections can be done in a well-defined
coordinate system. A projection trajectory is formulated as a
solution to a differential equation, and a predictor-corrector
algorithm is developed for tracing its solution curve.

A strategy for choosing the kernel bandwidth is critical
for the practical applicability of KDPCA. Use of an auto-
matic bandwidth selector for this purpose is demonstrated.
It is also shown that the nonlinear principal components are
well-defined for any sufficiently large bandwidth. In addition,
they converge to the linear ones when the kernel bandwidth
approaches infinity, thus making the linear PCA as a special
case of KDPCA.

Finally, KDPCA is extended to time series analysis. In
analogy with the well-known singular spectrum analysis
(SSA, e.g. Golyandina et al. 2001; Vautard et al. 1992),
it is applied to the phase space representation of the time
series. This approach addresses the main shortcoming of
the linear SSA. That is, being based on the linear PCA, it
cannot separate different components of a time series when
its trajectory in the phase space forms a closed loop. This
is the case for quasiperiodic (i.e. approximately periodic)
time series that form an important special class appearing in
many applications. Examples include climate analysis (e.g.
Hsieh and Hamilton 2003; Hsieh 2004) and medical appli-
cations such as electrocardiography and electroencephalog-
raphy (e.g. Rangayyan 2002).

The remaining of this paper is organized as follows. In
Sect. 2 we recall the linear PCA. Section 3 is devoted to
development of KDPCA, and in Sect. 4 it is extended to time
series data. Test results on a synthetic dataset, simulated cli-
mate dataset and an atmospheric time series are given in Sect.
5. The computational complexity of KDPCA is also analyzed
and a comparison with related methods is given. Finally,

Sect. 6 concludes this paper. The more involved proofs are
deferred to Appendix.

2 The linear PCA

As the proposedmethod is a generalization of the linear PCA
(e.g. Jolliffe 1986), we briefly recall the theoretical back-
ground of this method in this section.

The linear PCA attempts to capture the variability of a
given data

Y = [ y1 y2 · · · yn]T ∈ R
n×d

by transforming the data into a lower-dimensional coordinate
system via an orthogonal transformation. In this coordinate
system, the axes point along directions of maximal variance.

For the formulation of PCA, we denote the mean-centered
samples by

ỹi = yi − μ̂, where μ̂ = 1

n

n∑

i=1

yi . (1)

Assume that the mean-centered samples ỹi are transformed
into an m-dimensional space via the mapping

θ i (A) = AT ỹi ,

where A is a d × m matrix with 0 < m < d and with ortho-
normal columns. Conversely, for the given coordinates θ i in
the m-dimensional space, the corresponding reconstruction
(i.e. projection onto the hyperplane spanned by the m first
principal components) of yi in the input space is obtained as

ŷi (A) = μ̂ + Aθ i . (2)

With the above definitions, it can be shown that finding the
matrix A thatminimizes the reconstruction error is equivalent
to maximizing the variance in the transformed coordinate
system (Jolliffe 1986). That is,

min
A∈O(d,m)

n∑

i=1

‖ ŷi (A) − μ̂ − ỹi‖2 = max
A∈O(d,m)

n∑

i=1

‖θ i (A)‖2,

where O(d, m) denotes the set of d × m matrices having
orthonormal columns. Furthermore, any i-th principal com-
ponent corresponds to the direction of the i-th largest vari-
ance, and these directions form an orthogonal set.

The solution to the above optimization problems is the
matrix Vm = [v1 v2 · · · vm], where the column vectors
vi are the (normalized) eigenvectors of the d × d sample
covariance matrix

�̂Y = 1

n − 1

n∑

i=1

( yi − μ̂)( yi − μ̂)T (3)
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corresponding to the m largest eigenvalues. Thus, projection
of the mean-centered sample set Ỹ onto the m-dimensional
subspace corresponding to the directions of largest variance
is given by

Θ = Ỹ Vm . (4)

In statistical literature, the coordinates Θ ∈ R
n×m obtained

in thisway are called principal component scores (e.g. Jolliffe
1986).

3 Nonlinear kernel density PCA

In this sectionwedevelop the kernel density principal compo-
nent analysis (KDPCA). The method is based on estimation
of the underlying density of the data with Gaussian kernels.
It is shown that the nonlinear principal component scores of
given sample points can be obtained one by one by succes-
sively projecting them onto ridges of the underlying density.
The projection curves are defined as a solution to a differen-
tial equation, and a predictor-corrector method is developed
for this purpose.

3.1 Statistical model and ridge definition

In order to formally define the underlying density of the
data points, we assume that they are sampled from an m-
dimensional manifold M embedded in R

d . The sampling is
done with normally distributed additive noise having vari-
ance σ 2. Denoting the points on M by the random variable
Z, the model is written as

X = Z + ε, ε ∼ Nd(0, σ 2 I).

The marginal density for the observed variable X is

p(x) =
∫

M

p(x, z)d z =
∫

M

p(x|z)w(z)d z, (5)

where

p(x|z) = 1

(
√
2πσ)d

exp

(
−‖x − z‖2

2σ 2

)

and w denotes the density of Z supported on M . The idea
is to estimate the manifold M from m-dimensional ridges of
the marginal density p. A detailed theoretical analysis of this
approach is given in Genovese et al. (2014).

We adapt the definition of a ridge set from Pulkkinen et al.
(2014). An r -dimensional ridge point of a probability density

Fig. 1 Ridge curve of the density of a point set that is distributed around
a curve

is a local maximum in a subspace spanned by a subset of
the eigenvectors of its Hessian matrix. These eigenvectors
correspond to the d − r algebraically smallest eigenvalues.
The one-dimensional ridge set (i.e. ridge curve) of the density
of a point set sampled from the above model is illustrated in
Fig. 1.

Definition 3.1 A point x ∈ R
d belongs to the r-dimensional

ridge set Rr
p, where 0 ≤ r < d, of a twice differentiable

probability density p : Rd → R if

∇ p(x)T vi (x) = 0, i > r, (6a)

λr+1(x) < 0, (6b)

λ1(x) > λ2(x) > · · · > λr+1(x), if r > 0, (6c)

where λ1(x) ≥ λ2(x) ≥ · · · ≥ λd(x) and {vi (x)}d
i=1

denote the eigenvalues and the corresponding eigenvectors
of ∇2 p(x), respectively.

The following result shows a connection between ridge
sets and linear principal components when the underlying
density of the data is normal. This result follows trivially
from the following lemma (Ozertem and Erdogmus 2011)
and the fact that the logarithm of a normal density with mean
μ and covariance � is a quadratic function whose gradient
and Hessian are

∇ log p(x) = −�−1(x − μ) and ∇2 log p = −�−1,

respectively.

Lemma 3.1 If p : R
d → R is twice differentiable, then

Rr
log p = Rr

p for all r = 0, 1, 2, . . . , d − 1.

Proposition 3.1 Let p : R
d → R be a d-variate normal

density with mean μ and positive definite covariance matrix
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�. Denote the eigenvalues of � by λ1 ≥ λ2 ≥ · · · ≥ λd

and the corresponding eigenvectors by {vi }d
i=1. Then for any

0 ≤ r < d such that λ1 > λ2 > · · · > λr+1 we have

Rr
p =

{ {μ}, r = 0,
{μ} + span(v1, v2, . . . , vr ), r = 1, 2, . . . , d − 1.

For a linear model with Z = μ + WΦ,

X= Z + ε, Φ ∼ Nm(0, I), ε ∼ Nd(0, σ 2 I)

and a matrix W ∈ R
d×m having orthogonal columns, the

marginal density (5) is normal.Namely, the observed variable
X is distributed according to

X ∼ Nd(μ,WWT + σ 2 I)

(Tipping and Bishop 1999). From the above we observe that
them-dimensional ridge set of the density of X−μ coincides
with the subspace spanned by the columns of W .

Proposition 3.1 and the above observation suggest an
approach for computing the principal component scores θ , as
defined in Sect. 2, of a given point having an underlying den-
sity p. The idea is to project the point ontoRm

log p in the sub-

space spanned by the eigenvectors {vi }d
i=m+1 of∇2 log p and

then obtain projection coordinates along the firstm eigenvec-
tors. The remaining d−m components, that are interpreted as
noise, are discarded. The point inR0

log p, that is themaximum
of log p, is chosen as the origin of the coordinate system. This
idea will be generalized to the nonlinear case in the next
section.

However, when the manifold M is nonlinear, the estimate
for M obtained from ridges of the marginal density (5) is
biased. In Pulkkinen (2015), this is analyzed with a represen-
tative example In this example, the manifold M is the unit
circle parametrized as f (Φ) = (cos(Φ), sin(Φ)) and Φ is
uniformly distributed on the interval [0, 2π ]. With normally
distributed noise, the bias is small, as illustrated in Fig. 2 with
σ = 0.2. It occurs towards the center of curvature and is pro-
portional to the ratio between σ and the curvature radius. In
addition, for any compact and closed manifold M , the ridge
estimate converges to M when σ tends to zero (Genovese
et al. 2014).

3.2 Obtaining principal component scores from ridge sets

Based on Proposition 3.1, we now develop the theoret-
ical basis for computing the first m nonlinear principal
component scores of a given point y. The idea is to
obtain the scores one by one by successively projecting
the point onto lower-dimensional ridge sets of its under-
lying density (5). The projections are done along eigen-
vector curves that are defined by a differential equation.

Fig. 2 Ridge curve of a circular distribution (dashed line) and the true
generating curve (solid line)

The arc lengths of the curves are interpreted as the princi-
pal component scores. As a special case of this approach,
we obtain an orthogonal projection onto a linear PCA
hyperplane.

For now, we assume that a given point y ∈ R
d has already

been projected onto an m-dimensional ridge set of its under-
lying density p with m ≤ d. For r = 1, 2, . . . , m, we define
a projection curve γ r : R → R

d onto the r − 1-dimensional
ridge set as a solution to the initial value problem

d

dt

[
Pr (γ r (t))∇ log p(γ r (t))

] = 0, t ≥ 0,

γ r (0) = x0, x0 ∈ Rr
log p \ Rr−1

log p, (7)

where Pr (·) = I − vr (·)vr (·)T and {vi (·)}d
i=1 denote

the eigenvectors corresponding to the eigenvalues λ1(·) ≥
λ2(·) ≥ · · · ≥ λd(·) of ∇2 log p.

We begin with a special case that motivates the above
definition and shows its connection to the linear PCA pro-
jection. Namely, for any d-dimensional normal density p, a
ridge point x0 ∈ Rr

log p, where 1 ≤ r ≤ m, can be projected

onto the lower-dimensional ridge setRr−1
log p by following the

solution curve of (7) that is a straight line parallel to the
eigenvector vr . This property follows trivially from the defi-
nitions of the normal density and the ridge set because log p
is in this case a quadratic function.

Proposition 3.2 Let p be a d-variate normal density with
symmetric and positive definite covariance matrix � and let
1 ≤ r ≤ d. If the eigenvalues of � satisfy the condition
λ1 > λ2 > · · · > λr+1, then for any solution curve γ r of the
initial value problem (7) we have
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Fig. 3 Obtaining principal component scores of a point y by successive
projections along ridge sets of log p

γ ′
r (t)/‖γ ′

r (t)‖ = ±vr

for all t ≥ 0. Furthermore, if the sign of γ ′
r is chosen such

that

γ ′
r (t)

T ∇ log p(γ r (t)) > 0 for all t ≥ 0, (8)

then log p has a unique maximum point x∗ ∈ Rr−1
log p along

the curve γ r .

However, when the density p defined by Eq. (5) is not
normal, we need the following assumption. It is needed to
guarantee that the ridge sets of p induce a well-defined coor-
dinate system. This assumption is reasonable when the data
follows some unimodal distribution with clearly distinguish-
able major and minor axes as in Figs. 1 and 3. A higher-
dimensional example will be given in Sect. 5.

Assumption 3.1 Define the set

U y = {x ∈ R
d | log p(x) ≥ log p( y)}.

Let λ1(·) ≥ λ2(·) ≥ · · · ≥ λd(·) denote the eigenvalues of
∇2 log p. Assume that for all x ∈ U y we have

0 > λ1(x) > λ2(x) > · · · > λm+1(x) (9)

and that U y is compact and connected.

The density p defined by Eq. (5) is a C∞-function. Thus,
compactness and connectedness of the set U y together with
condition (9) guarantees unimodality of log p in the set U y.
Damon (1998) andMiller (1998) give a rigorous treatment of
ridge sets of C∞-functions in a differential geometric frame-
work. When Assumption 3.1 is satisfied, their results guar-
antee that the r -dimensional ridge set of log p induces a con-

nectedmanifold inU y for any 1 ≤ r ≤ m. In addition, condi-
tion (9) implies differentiability of the Hessian eigenvectors
(e.g. Magnus 1985), which is essential for the definition of
the initial value problem (7).

Remark 3.1 When p is multimodal, a separate coordinate
system can be obtained for each disjoint component of a
superlevel set Lc = {x ∈ R

d | log p(x) ≥ c} in which
condition (9) is satisfied.

When the density p is not normal, obtaining an expres-
sion for the tangent vector γ ′

r (t) is nontrivial. However, by
utilizing the formula for the derivatives of eigenvectors (e.g.
Magnus 1985), Eq. (7) for a general density p can after some
calculation be rewritten as

Ar (γ r (t))γ
′
r (t) = 0, (10)

where

Ar (x) =Pr (x)∇2 log p(x) − Fr (x),

Fr (x) =vr (x)T ∇ log p(x)∇vr (x)T (11)

+ vr (x)∇ log p(x)T ∇vr (x) (12)

and

∇vr (x) =
[
λr (x)I − ∇2 log p(x)

]+ ∇3 log p(x)vr (x),

and the operator “+” denotes the Moore-Penrose pseudoin-
verse (e.g. Golub and Loan 1996).

For a general density p, projection onto the ridge setRr−1
log p

by maximizing log p along the curve γ r requires additional
justification. To this end, we first note that under Assumption
3.1 choosing the sign of γ ′

r (t) according to (8) is sufficient to
guarantee that γ r with r = m, m − 1, . . . , 1 yield projection
curves in a well-defined coordinate system. This is illustrated
in Fig. 3. Second, we show that when γ r approaches a ridge
point x∗ ∈ Rr−1

log p, the tangent vector γ ′
r becomes parallel to

the eigenvector vr .

Proposition 3.3 Let 1 ≤ r ≤ d and let γ ′
r denote the nor-

malized tangent vector of a solution curve of (7). If Assump-
tion 3.1 and condition (8) are satisfied and

lim
t→t∗

vr (γ r (t))
T ∇ log p(γ r (t)) = 0 (13)

for some t∗ > 0, then

lim
t→t∗

|γ ′
r (t)

T vr (γ r (t))| = 1. (14)

Proof Define the set

U = {x ∈ R
d | λ1(x) < 0 and (15)
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λ1(x) > λ2(x) > · · · > λr+1(x)}. (16)

The range of the matrix in the second term of Fr (x) defined
by Eq. (12), that is

G(x) = vr (x)∇ log p(x)T ∇vr (x),

is clearly spanned by the vector vr (x) for all x ∈ U . Further-
more, vr (x) is uniquely determined by condition (16). We
also note that the range of the first term of the matrix Ar (x)

defined by Eq. (11), that is

B(x) = Pr (x)∇2 log p(x),

is the set {w ∈ R
d | wT vr (x) = 0} for all x ∈ U . This

follows from the definition of the matrix Pr (x), the eigen-
decomposition of ∇2 log p(x) and condition (15) that guar-
antees nonsingularity of ∇2 log p(x).

On the other hand, by the limit (13) the first term of the
matrix Fr (γ r (t)) defined by Eq. (12), that is

vr (γ (t))T ∇ log p(γ r (t))∇vr (γ r (t))
T

converges to zero as t approaches t∗. In view of the above
observation that the ranges of the matrices B(x) and G(x)

are orthogonal for all x ∈ U , Eqs. (10)–(12) and Assumption
3.1 together with condition (8) thus imply that

lim
t→t∗

B(γ r (t))γ
′
r (t) = 0 and lim

t→t∗
G(γ r (t))γ

′
r (t) = 0.

The claim follows from the first of the above limits because
the range of the symmetric matrix B(x) is orthogonal to its
null space. �

Proposition 3.3 implies the following properties that moti-
vate seeking for a lower-dimensional ridge point bymaximiz-
ing log p along the curve γ r .

Proposition 3.4 If γ r is a solution to (7) for some 1 ≤ r ≤
d and Assumption 3.1 and condition (8) are satisfied, then
either γ r (t) ∈ Rr

log p\Rr−1
log p for all t ≥ 0 or limt→t∗ γ r (t) ∈

Rr−1
log p for some t∗ > 0. In the latter case, log p attains its

local maximum along γ r at the limit point γ r (t
∗).

Proof By Eq. (7), the choice of x0 and the definition of the
matrix Pr (·), for all i �= r and t ≥ 0 we have

vi (γ r (t))
T ∇ log p(γ r (t)) = ci

for some constants ci �= 0. By Assumption 3.1, condition (8)
and Definition 3.1 this implies that either γ r (t) ∈ Rr

log p \
Rr−1

log p for all t ≥ 0 or limt→t∗ γ r (t) ∈ Rr−1
log p for some

t∗ > 0. In the latter case we have

vr (γ r (t
∗))T ∇ log p(γ r (t

∗)) = 0.

Thus, the limit (14) implies that

lim
t→t∗

d

dt
log p(γ r (t)) = lim

t→t∗
∇ log p(γ r (t))

T γ ′
r (t) = 0.

Furthermore, by condition (6b) the point γ r (t
∗) is a local

maximum of log p along γ r . �
Finally, the arc length of a curve γ r gives the (curvilinear)

distance of its starting point to the ridge set Rr−1
log p. Assume

that we have projected the given point y onto the ridge set
Rm

log p. Starting from such a point, computing the arc lengths
successively for r = m, m − 1, . . . , 1 then yields the first m
principal component scores of y. When Assumption 3.1 is
satisfied, imposing the conditions (cf. Proposition 3.2)

γ ′
r (t)

T ∇ log p(γ r (t)) > 0 and ‖γ ′
r (t)‖ = 1 (17)

for all r = m, m − 1, . . . , 1 and t ≥ 0 guarantees that the
curves γ r lie in the set U y.

Denote the projection of the point y onto the setRm
log p as

ỹ and the starting points of the curves γ r as xr
0. The m first

principal component scores of y are then obtained recursively
as

θr = s∗
r

t∗r∫

0

‖γ ′
r (t)‖dt, r = m, m − 1, . . . , 1, (18)

where

xr
0 =

{
ỹ, r = m,

γ r+1(t
∗
r+1), 1 ≤ r < m.

Here we assume that for each r there exists t∗r ≥ 0 such that
γ r (t

∗
r ) ∈ Rr−1

log p. The multiplier s∗
r = lim

t→t∗r − sr (t), where

sr (t) =
{

1, if γ ′
r (t)

T vr (γ r (t)) > 0,
−1, otherwise,

(19)

is introduced to ensure that the principal component score θr

has the correct sign.

3.3 Density estimation with Gaussian kernels

In practice, the target density p is unknown and it needs to
be estimated from the observations that we shall denote as
Y = { yi }n

i=1. To this end,weuseGaussian kernels, and in this
section we recall the necessary theoretical results. We also
show that the bandwidth can be interpreted as a free scale
parameter and that choosing a sufficiently large bandwidth
yields a unimodal kernel density with connected ridge sets.
This is a key result since the target density might not in all
cases satisfy the these assumptions. Finally, we show that
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the linear PCA can be obtained as a special case of the above
approach.

Definition 3.2 The Gaussian kernel density estimate p̂H

obtained by drawing a set of samples Y = { yi }n
i=1 ⊂ R

d

from a probability density p : Rd → R is

p̂H (x) = 1

n

n∑

i=1

KH (x − yi ), (20)

where the kernel KH : Rd →]0,∞[ is theGaussian function

KH (x) = 1√
(2π)d |H| exp

(
−1

2
xT H−1x

)
(21)

with symmetric and positive definite bandwidth matrix H .

The problem of finding an optimal bandwith matrix H is
well-studied in the literature. Under mild assumptions on the
target density p, asymptotic convergence of several band-
width selectors for the target density and its derivatives can
be proven (e.g. Chacón et al. 2011). That is, for a given order
k, the k-th derivative of the estimator p̂H converges to the
k-th derivative of p in probability as the number of sam-
ples n tends to infinity. Extending these results, Genovese
et al. (2014) show that any ridge set of a kernel density esti-
mate p̂h2 I converges to the ridge set of p as n → ∞ for an
appropriately chosen sequence of bandwidths h. In addition,
several bandwidth selectors have been implemented in the ks
package for R (Duong 2007).

Using the function p̂H as a density estimate might not be
appropriate in all cases. The target density p might not be
unimodal or have connected ridge sets, as assumed in Sect.
3.2. To address this issue, the bandwidth H can be given an
alternative interpretation when parametrized as H = h2 I .
Namely, the following result shows that a ridge point lies
on a locally defined principal component hyperplane. This
hyperplane is determined by aweighted samplemean and the
eigenvectors of a weighted sample covariance matrix, where
the weights are Gaussian functions. For the following, we
introduce the notation p̂h = p̂h2 I .

Theorem 3.1 Let p̂h : R
d → R be a Gaussian kernel

density, let 0 < r < d and denote the eigenvectors of ∇2

log p̂h(·) corresponding to the r greatest eigenvalues by
{vi (·)}r

i=1. Define

μ̃(x) =
n∑

i=1

ci (x) yi , (22)

�̃(x) =
n∑

i=1

ci (x)[ yi − μ̃(x)][ yi − μ̃(x)]T , (23)

where

ci (x) =
exp

(
−‖x − yi‖2

2h2

)

n∑

j=1

exp

(
−‖x − y j‖2

2h2

) , i = 1, 2, . . . , n.

Assume that the eigenvalues of ∇2 log p̂h(x) satisfy the con-
dition λ1(x) > λ2(x) > · · · > λr+1(x). Then

∇ log p̂h(x)T vi (x) = 0 for all i > r

if and only if

x − μ̃(x) ∈ span(ṽ1(x), ṽ2(x), . . . , ṽr (x)),

where {ṽi (x)}r
i=1 denote the eigenvectors of �̃(x) corre-

sponding to the r greatest eigenvalues.

Proof First, we note the formulae

∇ log p̂h(x) = ∇ p̂h(x)

p̂h(x)

and

∇2 log p̂h(x) = ∇2 p̂h(x)

p̂h(x)
− ∇ p̂h(x)∇ p̂h(x)T

p̂h(x)2
.

By a straightforward calculation we then obtain that

h2∇ log ph(x) = −[x − μ̃(x)] (24)

and

h4∇2 log ph(x) + h2 I = �̃(x). (25)

By Eq. (25), the matrices ∇2 log p̂h and �̃(x) have the same
eigenvectors. Hence, by Eq. (24) the condition that

[x − μ̃(x)]T ṽi (x) = 0 for all i > r

is equivalent to

∇ log p̂h(x)T vi (x) = 0 for all i > r,

from which the claim follows by the orthogonality of the
eigenvectors ṽi (x). �

Ridges of the Gaussian kernel density p̂h can be used
in an exploratory fashion by adjusting the bandwidth h. As
suggested by Theorem 3.1, this parameter determines the
scale of the structures sought from the data. However, dif-
ferently to the normal density in Proposition 3.2, the density
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p̂h is not generally unimodal or have connected ridge sets as
requred by Assumption 3.1. For instance, it becomes multi-
modal when h is too small.

Fortunately, Assumption 3.1 for p̂h and the superlevel set

UY =
n⋃

i=1

U yi
=

n⋃

i=1

{x ∈ R
d | log p̂h(x) ≥ log p̂h( yi )}

can be satisfied by choosing a sufficiently large h. This
is guaranteed by the following theorem that is proven in
Appendix. Although p̂h does not necessarily reflect the
underlying density with such bandwidth choices, its ridges
can still capture nonlinear structure that cannot be described
by the linear PCA.

Assumption 3.2 The r + 1 greatest eigenvalues of the sam-
ple covariance matrix �̂Y defined by equation (3) satisfy the
conditions λ1 > λ2 > · · · > λr+1 > 0.

Theorem 3.2 Under Assumption 3.2 for r = m and given
Y = { yi }N

i=1, for a Gaussian kernel density p̂h there exists
h0 > 0 such that Assumption 3.1 is satisfied for UY and p̂h

for all h ≥ h0.

An important special case arises when h approaches infin-
ity. At this limit, any r -dimensional ridge set of the Gaussian
kernel density approaches the r -dimensional PCA hyper-
plane, which can be readily observed from Eqs. (22)–(25). A
rigorous proof of this property is deferred to Appendix. As a
result, the linear principal components are a special case of
those obtained from kernel density ridges.

Theorem 3.3 For Y = { yi }N
i=1 ⊂ R

d , let p̂h : Rd → R be
a Gaussian kernel density, let 0 ≤ r < d and let Assumption
3.2 be satisfied. Define the set

Sr∞ =
{

μ̂ +
r∑

i=1

αivi | α ∈ R
r

}
,

where μ̂ denotes the sample mean (1) and {vi }r
i=1 denote

the eigenvectors of the sample covariance matrix �̂Y corre-
sponding to the eigenvalues {λi }r

i=1. Then for any compact
set U ⊂ R

d such that U ∩ Sr∞ �= ∅ and ε > 0 there exists
h0 > 0 such that

dist(Rr
p̂h

∩ U, Sr∞) < ε,

dist(Sr∞ ∩ U,Rr
p̂h

) < ε

}
for all h ≥ h0,

where

dist(S1, S2) = sup
x∈S1

inf
y∈S2

‖x − y‖.

3.4 Algorithm for estimating principal component scores

Based on the theory developed in Sects. 3.2 and 3.3, we now
develop the algorithm for computing the nonlinear principal
component score estimates

Θ̂ = [θ̂1 θ̂2 · · · θ̂n]T ∈ R
n×m

of a given sample set

Y = [ y1 y2 · · · yn]T ∈ R
n×d

for a given 0 < m ≤ d. This amounts to first projecting
the samples yi onto the ridge set Rm

log p̂H
of the kernel den-

sity log p̂H and then successively projecting them onto the
lower-dimensional ridge sets Rr

log p̂H
until r = 0. The lat-

ter projections are done by tracing the curves denoted by γ̂ r
by using a predictor-corrector method As a by-product, the
principal component scores are obtained from a numerical
approximation of the integral (18).

A pseudocode of the algorithm is listed as Algorithm 1.
It involves the initial projection onto the ridge set Rm

log p̂H
(lines 2 and 3), and after that m × n loops. Each iteration for
r = m, m − 1, . . . , 1 projects each of the n sample points
onto the ridge set Rr−1

log p̂H
. The intermediate projections are

stored in the variables {x∗
i }n

i=1. For the initial ridge projection
and the corrector steps, the algorithm utilizes the trust region
Newton method developed by Pulkkinen et al. (2014) (the
GTRN algorithm). This method is briefly described at the
end of this subsection.

In the following, we describe the steps for carrying out
one ridge projection (i.e. one iteration of the loop over the
index i) for a given r . The starting point x0 for γ̂ r is cho-
sen as x∗

i representing the projection of the sample point yi
onto the set Rr

log p̂H
. Assuming that there exists a monoto-

neously increasing sequence {tk} such that γ̂ r (tk∗) ∈ Rr−1
log p̂H

for some k∗, we introduce the notation xk = γ̂ r (tk) for the
iterates along the curve γ̂ r . With this notation, an approxi-
mation to the integral (18) is given by

θ̂r =
t∗r∫

0

‖γ̂ ′
r (t)‖dt ≈

k∗∑

k=1

‖γ̂ r (tk) − γ̂ r (tk−1)‖

=
k∗∑

k=1

‖xk − xk−1‖.

The algorithm uses a predictor–corrector method to gen-
erate the iterates xk . At the predictor step (line 23), the algo-
rithm proceeds along a tangent vector uk = γ̂

′
r (tk) solved

from Eq. (10). That is,

x̃k = xk + τ skuk,
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Algorithm 1: Nonlinear principal component scores

input : sample points Y = [ y1 y2 · · · yn]T ∈ R
n×d

Gaussian kernel density p̂H : Rd → R

ridge dimension 0 < m ≤ d
step size τ > 0

output: principal component scores
Θ̂ = [θ̂1 θ̂2 · · · θ̂n]T ∈ R

n×m

1 Θ̂ ← 0
2 for i = 1, 2, . . . , n do
3 x∗

i ← GTRN(log p̂H , m, yi , τ, 10
−5)

4 for r = m, m − 1, . . . , 1 do
5 for i = 1, 2, . . . , n do
6 x0 ← x∗

i
7 for k = 0, 1, . . . do
8 Obtain the tangent uk from (10), ‖uk‖ = 1.
9 if uT

k ∇ log p̂H (xk) > 0 then
10 sk ← 1
11 else
12 sk ← −1

13 if k > 0 then
14 if sk−1uT

k−1uksk < 0 then
15 x̄ ← (xk−1 + xk)/2
16 x∗

i ← GTRN(log p̂H , r − 1, x̄, 0.5τ, 10−5)

17 θ̂i,r ← θ̂i,r + ‖x∗
i − xk−1‖

18 if (x∗
i − xk−1)

T vr (x∗
i ) < 0 then

19 θ̂i,r ← −θ̂i,r

20 Return to line 5.
21 else
22 θ̂i,r ← θ̂i,r + ‖xk − xk−1‖
23 x̃k ← xk + τ skuk

24 xk+1 ← GTRN(log p̂H , r, x̃k , 0.5τ, 10−5)

where τ > 0 is some user-supplied step size, ‖uk‖ = 1 and
the multiplier

sk =
{

1, if uT
k ∇ log p̂H (xk) > 0

−1, otherwise

(lines 9–12) is introduced to impose conditions (17). To
project the predictor estimate x̃k back to the ridge setRr

log p̂H
,

the algorithm takes a corrector step (line 24).
A stopping criterion is imposed to terminate the tracing

of the curve γ̂ r when a maximum of log p̂H along γ̂ r is
encountered (line 14). For k > 0, the condition

sk−1uT
k−1uksk < 0

tests whether the gradient changes sign along the curve.
When this condition is met, the algorithm projects the mid-
point of the current and previous iterate onto a nearby ridge
point x∗

i ∈ Rr−1
log p̂H

(line 16). At lines 18–19, the algorithm
computes the sign s∗

r for the integral (18) by approximately
testing condition (19). The inner iteration (i.e. iteration of
the loop over the index k) is then terminated, and the point

x∗
i is retained as a starting point for projection onto a lower-

dimensional ridge set.
Tests for unimodality or connectedness of ridge sets are

not included in Algorithm 1 for simplicity. Unimodality
can be tested by finding all modes of the density p̂H by
using the GTRN algorithm, as described in Pulkkinen (2015).
Disconnectedness can be tested if a curve γ̂ r crosses a
point x where λr+1(x) = 0 or λi (x) = λ j (x) for some
i, j = 1, 2, . . . , r +1 such that i �= j , where λi (·) denote the
eigenvalues of ∇2 log p̂H (Miller 1998). When multimodal-
ity or a disconnected ridge set is detected, the algorithm can
be restarted with larger h or smaller initial ridge dimension
m.

An alternative approach to amend the above situation is to
relax the requirement of having a single coordinate system.
This can in particular occur when p̂H is used as a density
estimate and the target density p does not satisfy the above
assumptions. In such case, the points can be given as many
coordinate systems as there are clusters in the data identified
by the modes of p̂H (see e.g. Pulkkinen 2015 for the case
m = 1). However, this does not address the more difficult
case when the density is unimodal but not all of its first m
ridge sets are connected.

The GTRN algorithm (Pulkkinen et al. 2014) utilized in
Algorithm 1 implements a Newton-type method for project-
ing a d-dimensional point onto an r -dimensional ridge set of
a probability density. The method successively maximizes
a quadratic model of the objective function. The maximiza-
tion is constrained within a trust region to guarantee conver-
gence. To obtain a ridge projection, it is done in the subspace
spanned by the Hessian eigenvectors corresponding to the
d − r smallest eigenvalues. That is, at each iteration l the
next iterate zl+1 = zl + sl is obtained by solving the sub-
problem

max
s

Ql(s) s.t.

{ ‖s‖ ≤ 
l ,

s∈span(vr+1(zl), vr+2(zl), . . . , vd(zl)),

where Ql denotes the quadratic model at the current iterate
zl , {vi (zl)}d

i=r+1 denote the eigenvectors and 
l ≤ 
max

denotes the current trust region radius that is updated after
each iteration. For each call of GTRN, Algorithm 1 uses the
experimentally chosen 
max = 0.5τ (τ for the initial pro-
jection) and stopping criterion threshold εpr = 10−5.

Remark 3.2 The GTRN algorithm can be viewed as an
approximate solution method to an initial value problem of
the form (7), where Pr (·) = ∑r

i=1 vi (·)vi (·)T . As Algo-
rithm 1, GTRN yields an orthogonal projection when applied
to the logarithmof a normal density. Differently toAlgorithm
1, projection of a d-dimensional point onto an r -dimensional
ridge set with this algorithm only requires continuity of the
first r Hessian eigenvectors. That is, when the r + 1 greatest
eigenvalues are distinct in the set UY .
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Remark 3.3 Consistent orientation of the eigenvectors
vr (x∗

i ) at the projected points is necessary for the princi-
pal component scores θ̂i,r to have correct signs. However, in
practice the signs of the eigenvectors dependon the numerical
algorithm for computing them. Therefore, the implementa-
tion of Algorithm 1 uses an Euclidean minimum spanning
tree (e.g. Jaromczyk and Toussaint 1992) to align the eigen-
vectors after each iteration of the outer loop.

4 Nonlinear extension of SSA to time series data

In this section, the KDPCA method developed in Sect. 3
is extended to time series data. The method, that we call
KDSSA, is based on the singular spectrum analysis (SSA)
that is an extension of the linear PCA. In SSA, a time series
is embedded in amultidimensional phase space. This is done
by constructing a trajectory matrix from time-lagged copies
of the time series. Formally, the trajectory matrix of a time
series x = (x1, x2, . . . , xn) is defined as

Yx,L =

⎡

⎢⎢⎢⎢⎢⎣

x1 x2 x3 · · · xL

x2 x3 x4 · · · xL+1

x3 x4 x5 · · · xL+2
...

...
...

. . .
...

xn−L+1 xn−L+2 xn−L+3 · · · xn

⎤

⎥⎥⎥⎥⎥⎦
, (26)

where L is some user-supplied time window length.
Applying the linear PCA to the above matrix, one can

obtain the principal components and the reconstructed time
series by using the formulae given by Vautard et al. (1992).
Generalizing their approach, weminimize the reconstruction
error

E(x) =
n−L+1∑

i=1

L∑

j=1

(
ỹi, j − xi+ j−1

)2 (27)

using the firstm nonlinear principal components, where m ≤
L . Here the vectors ỹi denote the projections of the row
vectors yi of Yx,L onto the m-dimensional ridge set of their
Gaussian kernel density.

A straightforward calculation shows that by equating the
gradient ∇E(x) to zero, we obtain the formulae

x∗
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

L

L∑

j=1

ỹi− j+1, j , L≤i≤n−L+1

1

i

i∑

j=1

ỹi− j+1, j , 1≤i≤L−1

1

n − i + 1

L∑

j=i−n+L

ỹi− j+1, j , n−L+2≤i≤n

(28)

for the elements of the reconstructed time series such that
E(x∗) minimizes the reconstruction error (27).

In this paper the nonlinear SSA is applied to quasiperiodic
time series (i.e. noisy time series having some underlying
periodic pattern). The motivation is as follows. Assuming
that a time series follows the model

X (t) = f (t) + ε(t)

for some periodic function f and ε representing the noise, it
is reasonable to model the trajectory samples (i.e. the rows
of the matrix Yx,L ) as a point set that is randomly distributed
around a closed curve (cf. Fig. 10 in Sect. 5).

When the aim is to obtain a noise-free time series from
a reconstructed phase space trajectory, only an approximate
projection onto the ridge curve (i.e. one-dimensional ridge
set) of the trajectory density suffices. The GTRN algorithm
developed by Pulkkinen et al. (2014) is appropriate for this
purpose. On the other hand, a parametrization of the recon-
structed trajectory can be obtained by the algorithm devel-
oped by Pulkkinen (2015). Differently to Algorithm 1, this
algorithm yields a continuous parametrization even when the
trajectory density is multimodal, provided that the set of its
ridge curves forms a single closed loop. Both of the afore-
mentioned approaches are demonstrated in the next section.

5 Practical applications

This section is devoted to practical applications of KPDCA.
The method is applied to a synthetic dataset and climate
model output that exhibit highly nonlinear behaviour. In addi-
tion, its SSA-based extension is applied to an atmospheric
time series. Finally, computational complexity analysis and
comparison with related methods is given.

5.1 Test setup

Algorithm 1 as well as the algorithms developed by Pulkki-
nen et al. (2014) and Pulkkinen (2015) used in the tests were
implemented in Fortran 95. Algorithm 1was run with m = d
and τ = 0.05h. For the nonlinear SSA, the above algorithms
were run with their default parameters, except for GTRN the
parameters 
max and εpr were chosen as 0.25h and 10−4,
respectively.

5.2 Synthetic dataset

In the first experiments we consider a synthetic dataset gen-
erated from the model described in Sect. 3.1. Here the three-
dimensional data points represented by the random variable
X are sampled from a two-dimensional surface with additive
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(b)

(a)

Fig. 4 The synthetic dataset. a Input coordinates. b Surface coordi-
nates

normally distributed noise. The model is given by

X = f (Φ) + ε, Φ ∼ N2(0,�), � =
(
0.2 0
0 0.07

)2

with

f (φ)=
(

(0.35 + φ2) cos(φ1), (0.35 + φ2) sin(φ1),
0.8

4π
φ1

)

and ε ∼ N2(0, 0.012 I). The point set containing 5000 sam-
ples and its coordinates along the surface parametrized by f
(scaled by arc length) are plotted in Fig. 4.

The one-dimensional KDPCA reconstruction of the above
dataset and the principal component scores are plotted in

(b)

(a)

Fig. 5 KDPCA applied to the simulated dataset. a 1-d reconstruction,
the mode of the kernel density and the surface parametrized by f .
b Scores

Fig. 5. The bandwidth matrix H was chosen by using the
Hns plug-in selector described in Chacón et al. (2011) and
implemented in Duong (2007). In this case, the automatic
bandwidth selector gives the desired result. Furthermore, the
principal component scores give an accurate representation
of the manifold coordinates shown in Fig. 4 (the orienta-
tion of the coordinate system is adjusted to match that of
Fig. 4).

For comparison, the principal component scores obtained
with the hierarchical inverse NLPCA described in Scholz et
al. (2005, 2008) are shown in Fig. 6. This method is a variant
of a neural network-based PCA. Nowadays, such methods
have become popular particularly in climate analysis (e.g.
Kramer 1991; Monahan 2001; Hsieh 2004). These methods
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(b)

(a)

Fig. 6 NLPCA applied to the simulated dataset. a Fitted surface.
b Scores

fit a surface to the given data by using a series of nonlinear
mappings. The weights determining the shape of the surface
are obtained by optimization of a least-squares goodness of
fit criterion. Typically, the cost function has a number of local
solutions, and thus multiple trial runs are needed to obtain
the optimal weights.

Figure 6 shows the best result from five experiments with
randomly chosen initial weights. Weight decay coefficient
(i.e. regularization parameter) 0.1 was used in order to avoid
overfitting. From Fig. 6 we observe that the scores obtained
with NLPCA roughly reflect the structure of the dataset.
However, there is significant distortion in the scores and the
mapping Ψ : R2 → R

3 from the principal component space
to the input space. The latter can be seen from Fig. 6 showing
a uniform grid in R2 mapped to R3 via Ψ .

5.3 Application to simulated climate model data

In the second experiment, KDPCA was applied to a simu-
lated sea surface temperature dataset. This dataset is provided
by the National Oceanic and Atmospheric Administration
(NOAA). The data was obtained from the Coupled Model
Intercomparison Project phase 3 (CMIP3) simulations of the
GFDL-CM2.1 climate model (Delworth et al. 2006). All pre-
processing steps were done as in Ross (2008) and Ross et al.
(2008), where this dataset has been analyzed in detail. The
preprocessed dataset consisting of 6, 000 samples represents
temperature anomalies (i.e. data from which seasonality has
been removed by subtracting the monthly mean values).

Tomake estimation of the nonlinear principal components
computationally feasible, the high-dimensional data (d =
10073, one dimension for each ocean grid point) was first
projected onto the first ten principal components obtained
by PCA. As these principal components explain 87.3 % of
variance, a significant amount of information was not lost by
carrying out this preprocessing step.

For the GFDL-CM2.1 dataset, the bandwidth choosers
implemented in Duong (2007) failed to yield a unimodal
density with connected ridge sets. Therefore the kernel band-
width was chosen as H = h2 I with h = 40. This choice is
approximately

√
λ1, where λ1 denotes the greatest eigen-

value of the matrix H obtained by the Hns bandwidth selec-
tor.

The dataset and its first principal component obtained
from kernel density ridge are plotted in Fig. 7. This figure
shows cross-sections of the data and the principal component
curve along the first linear principal component axes. Projec-
tion of the GFDL-CM2.1 data onto the surface spanned by
the first two principal components obtained by Algorithm 1
is shown in Fig. 8. The corresponding principal component
scores are plotted in Fig. 9.

Compared to the linear principal component projection
shown in Fig. 7, it is clear that the nonlinear principal compo-
nents represent the ”unfolded” dataset and they are better able
to capture the variance in the data. Comparison of explained
variances of the first eight linear and nonlinear principal com-
ponents listed in Table 1 also supports this claim. The vari-
ance explained by KDPCA is more concentrated towards
the first principal component than the variance explained by
PCA.1

A typical application of principal component analysis (and
its nonlinear extensions) is to explain the variance in the given
data by some small set of variables. This has been done in
Ross (2008) and Ross et al. (2008) for the GFDL-CM2.1
data, and the two main sources of variation were identified.
The first principal component correlates with the so-called

1 The explained variances for the nonlinear principal components were
obtained from the covariance matrix of the corresponding scores.
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Fig. 8 Projection of the GFDL-CM2.1 dataset onto the surface
spanned by its first two nonlinear principal components

Fig. 9 Two first nonlinear principal component scores obtained from
the GFDL-CM2.1 dataset

Table 1 Explained variances of the eight first linear and nonlinear prin-
cipal components, GFDL-CM2.1 dataset

1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%)

PCA 60.0 10.6 6.1 2.5 2.1 1.7 1.3 1.1

KDPCA 66.2 10.4 3.9 2.1 1.4 1.1 0.9 0.8

NINO3 index that is related to the El Niño Southern Oscil-
lation (ENSO) phenomenon. The second one correlates with
the Pacific warmwater volume. The analysis done here could
be carried out further, but we do not attempt repeat the earlier
experiments by Ross (2008) and Ross et al. (2008), as using
KDPCAwould yield similar results than the earlier nonlinear
PCAextensions.Ofmore interest are the differences between
KDPCA and the previously proposed methods. A discussion

of potential advantages of using KDPCA is given in Sect.
5.6.

5.4 Application to atmospheric time series

The quasi-biennial oscillation (QBO) is one of the most
well-studied atmospheric phenomena. The QBO is a qua-
siperiodic oscillation of the equatorial zonal wind between
easterlies and westerlies in the tropical stratosphere with a
mean period of 28–29months.Motivated by an earlier neural
network-based nonlinear SSA approach of Hsieh and Hamil-
ton (2003), the nonlinear SSA (KDSSA) described in Sect. 4
was applied to a QBO time series. The time series is pro-
vided by the institute of meteorology at the University of
Berlin. It consists of monthly mean zonal winds between
1953–2013 constructed from balloon observations at seven
different pressure levels corresponding to the altitude range
20–30 km. Here we use a simplified test setup and analyze
only the observations from the 30 Hpa level, resulting to a
univariate time series.

The trajectory matrix (26) was obtained from the QBO
time series with L = 18 months. The linear PCA was first
applied in the18-dimensional phase space so that thefirst four
principal components were retained. These principal compo-
nents explain 95.2 % of the variance, and thus a significant
amount of information was not lost by doing this step. The
resulting samples were then projected onto the kernel density
ridges by using the GTRN algorithm (Pulkkinen et al. 2014).
The bandwidth was chosen as H = h2 I with h = 260 by
the heuristic rule used in Sect. 5.3. The reconstructed time
series was obtained by transforming the projected samples
from the four-dimensional space back to the 18-dimensional
phase space and using the formulae (28).

The trajectory samples and their kernel density ridge pro-
jections in the reduced four-dimensional phase space are plot-
ted in Fig. 10. This figure shows a cross-section along the
first three linear principal components. Due to the underlying
periodic structure present in the time series, its reconstructed
phase space trajectory forms a closed loop that passes through
the middle of the point cloud. The QBO time series and the
reconstructed time series obtained by using the reconstructed
phase space trajectory are plotted in Fig. 11. For comparison,
the reconstructed time series obtained by using the first linear
SSA component and the first and second linear components
combined are also plotted in this figure.

The conclusion from Figs. 10 and 11 is that the nonlinear
SSA is able to capture the underlying periodic structure in
the QBO time series. It is clear that the closed loop found
by the nonlinear approach, as shown in Fig. 10, cannot be
described by any combination of linear principal compo-
nents. Consequently, it can be seen from Fig. 11 that the
linear SSA reconstruction by using only the first principal
component is inadequate to describe the structure of the time
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Fig. 10 Phase space trajectory of the QBO time series and the recon-
structed trajectory curve obtained by kernel density ridge projection

Fig. 11 The QBO time series at the 30 Hpa level and the reconstructed
time series obtained by using the firstKDSSAcomponent, the first linear
SSAcomponent and the twofirst linear SSAcomponents combined.The
original time series is plotted in gray in the lower figures

series. On the other hand, by adding more principal compo-
nents in the analysis, the linear SSA only captures noise and
not the underlying periodic pattern.

In Sect. 5.4, the principal component scores (i.e. the coor-
dinates along the nonlinear principal components) were of
main interest. Also, in the nonlinear SSA tracking the coordi-
nates of a time series along its reconstructed trajectory curve
in the phase space may provide useful information. Namely,
when the time series is close to periodic, anomalously short
or long cycles can be identified by carrying out such analy-
sis. For the QBO time series, this has been done in Hsieh and
Hamilton (2003) by using the neural network-basedNLPCA.

Obtaining the coordinates of a time series along its recon-
structed phase space trajectory is also possible by using

Fig. 12 Thefirst nonlinear principal component coordinate of theQBO
time series (t) and the deviation from the fitted regression line (t-
anomaly)

the ridge-based approach. In order to demonstrate this, an
approximate parametrization of the trajectory was obtained
by using the algorithm developed by Pulkkinen (2015). The
projection coordinateswere obtained for each sample byfind-
ing the nearest point along line segments connecting the tra-
jectory points and computing its distance along the approxi-
mate curve to a point fixed as the origin.

Due to its very regular period, the QBO time series pro-
gresses along its reconstructed phase space trajectory at a
nearly constant rate. This can be seen from Fig. 12 showing
the trajectory coordinate t scaled to the interval [−π, π ] as
a function of time. In addition, following Hsieh and Hamil-
ton (2003), anomalies (i.e. deviations from the constant rate)
were calculated. This was done by fitting a regression line
to the t-time series obtained by concatenating the individual
cycles and then subtracting the regression line from the con-
catenated time series. The normalized t-anomaly time series
obtained in this way is also plotted in Fig. 12.

Comparison of the t-anomaly time series to the t-time
series and Fig. 11 shows its relation to fluctuations from the
mean period length. Namely, up- and downward trends in the
t-anomalies correspond to abnormally short and long cycles,
respectively. This can be seen, for instance, by comparing
the long periods during 1962–1969, 1984–1993 and 2000–
2002 and the short periods during 1955–1962, 1969–1975
and 2004–2009 to the t-anomaly time series.

5.5 Complexity Analysis

This subsection is devoted to discussion of computational
complexity of Algorithm 1 and comparison of KDPCA
with existing nonlinear dimensionality reduction methods.
After the initial projection step by using the GTRN algo-
rithm (Pulkkinen et al. 2014) having computational cost
O(n2d2 + nd3), the computational cost of Algorithm 1 is
O(n2d3m + d3nm + n2dm), which is explained in the fol-
lowing paragraphs.

The main source of computational cost is the evaluation
of the Gaussian kernel density and its derivatives. For each of
the m projection steps, this needs to be done for all n sample
points a number of times that depends on the chosen step size
τ . For the third derivative that dominates the computational
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cost, the cost of a single evaluation is O(nd3). This makes
the total complexity of evaluations O(n2d3m). When d is
small, this cost can be reduced by order of n by using the fast
Gauss transform or related techniques (Greengard and Strain
1991; Yang et al. 2003).

Computation of the tangent vector in Algorithm 1 and
obtaining the trust region step in the corrector involve eigen-
decomposition of a d ×d matrix (Pulkkinen et al. 2014). The
cost of this operation isO(d3), and this is doneO(nm) times
in the algorithm, making the total cost of eigendecomposi-
tions O(d3nm). Finally, the cost of traversing the Euclidean
minimum spanning tree by using a basic implementation is
O(n2d). This is done m times in the algorithm, after each
projection of all the sample points, and thus the total cost of
traversal of such trees is O(n2dm).

Computational efficiency of Algorithm 1 can be improved
by replacing the projection curve tangent by a Hessian eigen-
vector (cf. Propositions 3.2 and 3.3). In practice, this leads
to slightly worse approximations for the higher-dimensional
principal component scores (the first principal component is
not affected). This approximation reduces the evaluation cost
by order of d since third derivatives are not needed.

When only the first nonlinear principal component (i.e.
principal curve) is sought, a significant speedup can be achie-
ved by using a specialized algorithm developed by Pulkki-
nen (2015). Using this algorithm requires choosing the kernel
bandwidth so that the ridge curve set of the density consists
of one connected curve. Under this assumption, it suffices
to use one starting point, and the total computational cost of
tracing the ridge curve is O(nd3). The principal component
scores can be obtained from projections onto the line seg-
ments forming the approximate curve as in Sect. 5.4 at a cost
of O(ndk), where k is the number of line segments.

5.6 Comparison to other methods

Theneural network-basedmethods are among themost popu-
lar nonlinear PCAmethods applied in climate analysis. How-
ever, they have several shortcomings. Some of them are dis-
cussed below with comparison to KDPCA.

– NLPCA involves minimization of a cost function that
generally has several local minima. This problem is typ-
ically addressed by using multiple starting points, which
may incur a high computational cost. KDPCA is not
affected by this issue because it does not attempt to min-
imize a single cost function. Instead, it performs local
maximizations from each sample point. The projection
curves are uniquely defined when the ridge sets are con-
nected.

– The principal components obtained by KDPCA have a
statistical interpretation. This is not the case for NLPCA
that is based on an artificially constructed neural network.

In fact, the NLPCA principal curves and surfaces are not
guaranteed to follow regions of high concentration of the
data points. Examples of this are given by Christiansen
(2005). Due to this issue, drawing statistical inferences
from the NLPCA output should be done with extreme
caution.

– NLPCA uses artificial penalty terms to avoid overfitting.
Despite this, the density of the data along the first non-
linear principal component can exhibit spurious multi-
modality (Christiansen 2005). This can occur even when
the underlying density of the data is close to normal. On
the other hand, KDPCA performs no worse than the lin-
ear PCAwhen the kernel bandwidth is chosen sufficiently
large.

– When using NLPCA, the type of a curve (open or closed)
to be fitted to the data needs to be specified a priori in
the neural network structure. KDPCA can determine this
automatically when the principal curve is traced by using
the algorithm developed by Pulkkinen (2015).

– The curves fitted by NLPCA are not parametrized by
arc length. This may introduce a significant bias to
reconstructions and principal component scores. When
drawing statistical inferences from a curve fitted by
NLPCA, arc length reparametrization should be done to
remove the bias (Newbigging et al. 2003). However, this
approach has not been generalized to higher dimensions.
On the other hand, KDPCA produces an arc length para-
metrization for principal component curves and surfaces
of any dimension due to its construction.

KDPCA has also certain advantages compared to other
commonly used nonlinear dimensionality reduction meth-
ods. This is because it seems to perform well in the presence
of noise and it operates directly in the input space.

– Graph-based methods such as Isomap (Tenenbaum et al.
2000), Hessian eigenmaps (Donoho and Grimes 2003)
and maximum variance unfolding (Weinberger and Saul
2006) are based on the assumption that the data lies
directly on a low-dimensional manifold. Thus, they are
sensitive to noise, and blindly applying such methods to
noisy data may lead to undesired results.

– The aforementioned methods and kernel-based methods
such asKPCAdo not produce a reconstruction of the data
in the original input space. This would be a very desired
feature, for instance, in climate analysis where plots of
reconstructed grid data or time series provide information
about the main sources of variation.

The main difficulty in KDPCA is the choice of kernel
bandwith H . When the data follows the model described in
Sect. 3.1, the number of samples is sufficiently large and the
data dimension is small, an automatic bandwidth selector can
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be used. This was successfully done in Sect. 5.2. Unfortu-
nately, the above requirements might be unrealistic for prac-
tical applications, as observed in Sects. 5.3 and 5.4. As a
result, the kernel density may become multimodal or have
disconnected ridge sets. In such cases, the bandwidth para-
metrization H = h2 I can be used and a sufficiently large h
can be chosen by visual inspection of principal components
in two or three dimensions (cf. Figs. 7, 8 and 10). As shown
in Sects. 5.3 and 5.4, a plug-in bandwidth estimate can be
utilized for obtaining a first guess.

6 Conclusions and discussion

Principal component analysis (PCA) is a well-established
tool for exploratory data analysis. However, as a linear
method it cannot describe complex nonlinear structure in
the given data. To address this deficiency, a novel nonlinear
generalization of the linear PCAwas developed in this paper.

The proposed KDPCA method is based on the idea of
using ridges of the underlying density of the data to esti-
mate nonlinear structures. It was shown that the principal
component coordinates of a given point set can be obtained
one by one by successively projecting the points onto lower-
dimensional ridge sets of the density. Such a projection was
defined as a solution to a differential equation. A predictor-
corrector method using a Newton-based corrector was devel-
oped for this purpose.

Gaussian kernels were used for estimation of the den-
sity from the data. This choice has several advantages. First,
this choice allows automatic estimation of an appropriate
bandwidth from the data. This was demonstrated by numeri-
cal experiments, although the currently available bandwidth
estimation methods have only limited applicability. Second,
a fundamental result was derived showing that by choosing
the bandwidth as H = h2 I and letting h approach infinity,
KDPCA reduces to the linear PCA when desired.Third, the
theory of ridge sets ensures that any ridge set of a Gaussian
kernel density has a well-defined coordinate system when h
is sufficiently large.

Based on the linear singular spectrum analysis (SSA),
KDPCA was extended to time series data. It was shown
that when a time series is (quasi)periodic, the first nonlin-
ear principal component of its phase space representation
can be used to reconstruct the underlying periodic pattern
from noise. Though the periodicity assumption is restrictive,
such time series are relevant for many practical applications.
Examples include climate analysis and medical applications
such as electrocardiography and electroencephalography.

The proposed KDPCA method and its SSA-based variant
were applied to a highly nonlinear dataset obtained from a
climatemodel and to an atmospheric time series. Themethod
is superior to the linear PCA in capturing the complex non-

linear structure of the data. It also has several advantages
compared to the existing nonlinear dimensionality reduction
methods. In particular, KDPCA requires only one parame-
ter, that is, the kernel bandwidth H . When parametrized as
H = h2 I , the bandwidth has an intuitive interpretation as a
scale parameter.

While KDPCA showed convincing results on the test
datasets, its applicability to real-world data remains to be
fully confirmed. When the data is noisy and sparse, which
is typical for observational data, the additional information
obtained by KDPCA might not justify its high computa-
tional cost. However, using the techniques discussed in Sect.
5.5 could significantly improve the scalability of KDPCA to
large datasets. Computational difficulties due to high dimen-
sionality of the data can also be circumvented. In many sit-
uations, the variance is confined to some low-dimensional
subspace that can be identified by using a simpler method as
a preprocessing step (as in Sects. 5.3 and 5.4).
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Appendix

In this appendix we give proofs of Theorems 3.2 and 3.3.
In the following, we assume that the given set of sample
points Y = { yi }N

i=1 ⊂ R
d is fixed. The proofs are carried out

by making the following simplifying assumption that can be
made without loss of generality.

Assumption 7.1 The points yi satisfy the condition
∑n

i=1
yi = 0.

First, we recall the density estimate defined by equations
(20) and (21) with the bandwidth parametrization H = h2 I .
That is,

p̂h(x) = 1

(2π)
d
2 hdn

n∑

i=1

exp

(
−‖x − yi‖2

2h2

)
. (29)

The following limits hold for the logarithmof theGaussian
kernel density estimate and its derivatives as h approaches
infinity. Uniform convergence in a given compact set U
can be verified by showing that the functions are uniformly
bounded (i.e. bounded with respect to all x ∈ U and all
h ≥ h0 for some h0 > 0) and that they have a uniform Lip-
schitz constant in U for all h ≥ h0. Under these conditions,
this follows from the Arzelà-Ascoli theorem (e.g. Renardy
and Rogers 2004). The proof of the following lemma is omit-
ted due to space constraints.
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Lemma 7.1 Let p̂h : Rd → R be a Gaussian kernel density
estimate and assume 7.1. Then

lim
h→∞ h2 log [(2π)

d
2 hd p̂h(x)] = − 1

2n

n∑

i=1

‖x − yi‖2, (30)

lim
h→∞ h2∇ log p̂h(x) = −1

n

n∑

i=1

(x − yi ) = −x, (31)

lim
h→∞

[
h4∇2 log p̂h(x) + h2 I

]
= 1

n

n∑

i=1

yi y
T
i (32)

for all x ∈ R
d . Furthermore, convergence to these limits is

uniform in any compact set.

The following two lemmata facilitate the proof of Theo-
rem 3.3.

Lemma 7.2 Let p̂h : R
d → R be a Gaussian kernel

density estimate and let Assumptions 3.2 and 7.1 be sat-
isfied. Denote the eigenvalues of ∇2 log p̂h by λ1(·; h) ≥
λ2(·; h) ≥ · · · ≥ λd(·; h) and the corresponding eigenvec-
tors by {wi (·; h)}d

i=1. Then for any compact set U ⊂ R
d

there exists h0 > 0 such that

λ1(x; h) < 0, (33)

λi (x; h) �= λ j (x; h) (34)

for all x ∈ U, h ≥ h0 and i, j = 1, 2, . . . , r + 1 such that
i �= j . Furthermore, if we define

W(x; h) = [w1(x; h) w2(x; h) · · · wr (x; h)]

and

V = [v1 v2 · · · vr ],

where {vi }r
i=1 denote the eigenvectors of the matrix �̂Y

defined by Eq. (3) corresponding to its r greatest eigenvalues,
then for all ε > 0 there exists h0 > 0 such that

‖W(x; h) − V‖ < ε for all x ∈ U and h ≥ h0. (35)

Proof Let λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃d denote the eigenvalues
of the matrix �̂Y and let {hk} be some sequence such that
limk→∞ hk = ∞. By uniform convergence to the limit (32)
under Assumption 7.1 and continuity of eigenvalues of a
matrix as a function of its elements (e.g. Ortega 1990 Theo-
rem 3.1.2), for all ε > 0 there exists k0 such that

|h4
kλi (x; hk) + h2

k − n − 1

n
λ̃i | < ε (36)

for all i = 1, 2, . . . , r +1, x ∈ U and k ≥ k0. Consequently,
condition (33) holds for all x ∈ U for any sufficiently large

h by Assumption 3.2. It also follows from Assumption 3.2,
condition (36) and the reverse triangle inequality that for
all ε > 0 and i, j = 1, 2, . . . , r + 1 such that i �= j and
|λ̃i − λ̃ j | > ε there exists k1 such that

h4
k |λi (x; hk) − λ j (x; hk)|

≥
∣∣∣|h4

kλi (x; hk) − h2
k | − |h4

kλ j (x; hk) − h2
k |
∣∣∣ >

n − 1

n
ε

for all x ∈ U and k ≥ k1. This implies condition (34).
Similarly, condition (35) follows from uniform convergence
to the limit (32) under Assumption 7.1, condition (34) and
continuity of eigenvectors as a function of matrix elements
when the eigenvalues are distinct (e.g. Ortega 1990 Theorem
3.1.3). �
Lemma 7.3 Assume 3.2 and 7.1 and define the function

W̃(x; h) = I − W(x; h)W(x; h)T ,

where the function W is defined as in Lemma 7.2, and the set
Sr∞ as in Theorem 3.3. Then the limit

lim
h→∞ h2‖W̃(x; h)∇ log p̂h(x)‖ (37)

exists for all x ∈ R
d . Furthermore, x ∈ Sr∞ if and only if the

limit (37) is zero.

Proof By the limits (31) and (35) the limit (37) exists for all
x ∈ R

d . Furthermore, for any x ∈ R
d , the condition that the

limit (37) is zero is equivalent to the condition that

vT
i x = 0 for all i = r + 1, r + 2, . . . , d,

where the vectors vi are defined as in Lemma 7.2. By the
orthogonality of the vectors vi , the definition of the set Sr∞
and Assumption 7.1, this condition is equivalent to the con-
dition that x ∈ Sr∞. �

For the proof of Theorem 3.3, we define the set

Sr
h = {x ∈ R

d | ‖W̃(x; h)∇ log p̂h(x)‖ = 0}, (38)

where the function W̃ is defined as in Lemma 7.3. Under
Assumption 7.1, we prove both claims of Theorem 3.3 by
the following two lemmata.

Lemma 7.1 Let U ⊂ R
d be a compact set such that U ∩

Sr∞ �= ∅ for some 0 ≤ r < d. If Assumptions 3.2 and 7.1 are
satisfied, then for all ε > 0 there exists h0 > 0 such that

sup
x∈Sr

h∩U
inf
y∈Sr∞

‖x − y‖ < ε for all h ≥ h0. (39)
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Proof The proof is by contradiction. Let 0 ≤ r < d and let
U ⊂ R

d be a compact set such that U ∩ Sr∞ �= ∅. Assume
that there exists ε1 > 0 such that for all h0 > 0 there exists
h ≥ h0 such that condition (39) is not satisfied. This implies
that for all h0 > 0 there exists h ≥ h0 such that

inf
y∈Sr∞

‖x − y‖ ≥ ε1 for some x ∈ Sr
h ∩ U. (40)

Let {xk} denote a sequence of such points x with the corre-
sponding sequence hk . Since the set Sr

h ∩ U is compact by
the compactness of U and the continuity of W̃(·, h) in U for
any sufficiently large h, the sequence {xk} has a convergent
subsequence {zk} whose limit point we shall denote as z∗.
Clearly z∗ /∈ Sr∞ by condition (40). Thus, by Lemma 7.3 we
deduce that for some c > 0,

lim
k→∞ ‖F(z∗; hk)‖=c, F(x; h)=h2W̃(x; h)∇ log p̂h(x).

In view of the definition (38), the above limit implies that
there exists ε2 > 0 and k0 such that for all k ≥ k0,

‖F(z∗; hk) − F( y; hk)‖ ≥ ε2 for all y ∈ Sr
hk

∩ U. (41)

On the other hand, if we define the function F∗(x) =
−(I − VV T )x, the triangle inequality yields

‖F(z∗; hk) − F( y; hk)‖
≤ ‖F(z∗; hk) − F∗(z∗)‖ + ‖F( y; hk) − F∗(z∗)‖
≤ ‖F(z∗; hk) − F∗(z∗)‖ + ‖F( y; hk) − F∗( y)‖

+ ‖F∗( y) − F∗(z∗)‖.

Combining this with the inequality

‖F∗( y) − F∗(z∗)‖ ≤ ‖I − VV T ‖‖ y − z∗‖ = ‖ y − z∗‖

and noting the convergence of F(·; hk) to the function F∗
(that is uniform in U ) as k → ∞ (by Lemmata 7.1 and 7.2),
we deduce from (41) that for all ε2 > ε3 > 0 there exists k1
such that

‖z∗ − y‖ + ε3 ≥ ‖F(z∗; hk) − F( y; hk)‖ ≥ ε2 (42)

for all y ∈ Sr
hk

∩ U and k ≥ k1.
Condition (42) implies that for all 0 < ε3 < ε2 there

exists k1 such that

inf
y∈Sr

hk
∩U

‖z∗ − y‖ ≥ ε2 − ε3 for all k ≥ k1. (43)

On the other hand, for all ε > 0wehave zk ∈ B(z∗; ε) for any
sufficiently large k due to the assumption that zk converges
to z∗. If we choose 0 < ε < ε2, then the sequence {xk},

whose subsequence is {zk}, has an element xk /∈ Sr
hk

∩ U
for some k by condition (43). This leads to a contradiction
with the construction of the sequence {xk}, which states that
xk ∈ Sr

hk
∩ U for all k. �

Lemma 7.5 Let p̂h be a Gaussian kernel density estimate,
let 0 ≤ r < d, let Assumptions 3.2 and 7.1 be satisfied and
define the set Sr∞ as in Theorem 3.3. Then for any compact
set U ⊂ R

d such that U ∩ Sr∞ �= ∅ and ε > 0 there exists
h0 > 0 such that

sup
x∈Sr∞∩U

inf
y∈Rr

log p̂h

‖x − y‖ < ε for all h ≥ h0. (44)

Proof Let 0 ≤ r < d and let {vi }d
i=r+1 denote a set of

orthonormal eigenvectors of the matrix �̂Y corresponding
to the d − r smallest eigenvalues. The vectors {vi }d

i=r+1 are
uniquely determined up to the choice of basis because the
eigenvectors {vi }r

i=1 spanning their orthogonal complement
are uniquely determined by Assumption 3.2. Define the sets

Dx,ε =
{
x +

d∑

i=r+1

αi−rvi |
r∑

i=1

α2
i ≤ ε2

}

and

Dε =
⋃

x∈Sr∞∩U

Dx,ε

for some orthonormal eigenvectors {vi }d
i=r+1 spanning the

orthogonal complement of span(v1, v2, . . . , vr ).
Let {ui (·; h)}d

i=1 denote a set of orthonormal vectors that
are orthogonal to the eigenvectors {wi (·; h)}r

i=1 of∇2 log p̂h

corresponding to the r greatest eigenvalues. Define the func-
tions

F(x; h) = h2U(x; h)T ∇ log p̂h(x)

and

F̃x0( y; h) = h2U(V̄ y + x0; h)T ∇ log p̂h(V̄ y + x0),

where

U(x; h) = [u1(x; h) u2(x; h) · · · ud−r (x; h)]

and V̄ = [vr+1 vr+2 · · · vd ] assuming that the orienta-
tion is chosen so that det(V̄ ) = 1. To fix the orientation of
the vectors ui (x; h), we impose the constraint

U(x; h) = arg min
U ′∈Qx,h

‖U ′ − V̄‖F . (45)
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Here ‖ · ‖F denotes the Frobenius norm,

Qx,h = {U ′ ∈ O(d, d − r) | U ′T W(x; h) = 0,

det(U ′) = 1)},
O(d, d − r) denotes a d × (d − r) matrix having orthonor-
mal columns and the matrixW(x; h) is defined as in Lemma
7.2. It can be shown that the function U(·; h) is well-defined
for any h > 0.2 Spanning the orthogonal complement of the
columns ofW(·; h), the columns ofU(·; h) are also continu-
ous in a given compact set whenW(·; h) is continuous. That
is, when condition (34) is satisfied in such a set by Lemma
7.2.

The above definitions and condition (35) in the compact
set Dε imply that for all ε1, ε2 > 0 there exists h0 > 0 such
that

‖U(x; h) − V̄‖ < ε2 for all x ∈ Dε1 and h ≥ h0.

Consequently, uniform convergence to the limit (31) as h →
∞ by Lemma 7.3 together with the property that

V̄
T
(V̄ y + x0) = y for all y ∈ R

d−r and x0 ∈ Sr∞

following fromAssumption 7.1 implies that for all ε1, ε2 > 0
there exists h0 > 0 such that

‖F̃x0( y; h) − (− y)‖ < ε2

for all x0 ∈ Sr∞ ∩ U, y ∈ D̃ε1 and h ≥ h0,

where D̃ε = { y ∈ R
d−r | ‖ y‖ ≤ ε}.

By the above condition, for any 0 < ε2 < ε1 there exists
h0 > 0 such that for all h ≥ h0 and x0 ∈ Sr∞ ∩ U we
have −F̃x0( y; h)T y > 0 for all y ∈ ∂ D̃ε1 , where ∂ denotes
the boundary of a set. On the other hand, − y is the inward-
pointing normal vector of the disk D̃ε1 at any y ∈ ∂ D̃ε1 .
Together with the continuity of F̃x0(·; h) in D̃ε1 when h is
sufficiently large, the well-known results from topology (e.g.
Whittlesey 1963) then imply that F̃x0(·; h) has at least one
zero point y∗ in the interior of D̃ε1 for all x0 ∈ Sr∞ ∩ U and
h ≥ h0.Clearly, for any such y∗ and x0 the point x∗ = V̄ y∗+
x0 lies in the set Dx0,ε and F(x∗; h) = F̃x0( y

∗; h) = 0.
From the above we conclude that for all ε > 0 there exists

h0 > 0 such that for all x0 ∈ Sr∞ ∩ U condition (6a) holds
for log p̂h at least at one point in Dx0,ε for all h ≥ h0. On
the other hand, for all ε > 0 conditions (6b) and (6c) are
satisfied in the compact set Dε for all sufficiently large h by
conditions (33) and (34). Hence, we have proven that for all
ε > 0 condition (44) holds for all sufficiently large h. �

2 Problem (45) can be equivalently formulated as an orthogonal Pro-
crustes problem. With the matrices defined above, this problem has a
unique solution (e.g. Higham 2008).

Proof (Theorem 3.3)Follows directly fromLemmata 7.4 and
7.5 by the property thatRr

p̂h
= Rr

log p̂h
⊆ Sr

h for all 0 ≤ r <

d and h > 0 by Lemma 3.1 and Definition 3.1. �
Next, we prove Theorem 3.2 under Assumption 7.1 by

using the following lemma.

Lemma 7.6 Let p̂h be a Gaussian kernel density estimate,
assume 7.1 and define the set

Uh =
n⋃

i=1

{x ∈ R
d | log p̂h(x) ≥ log p̂h( yi )}.

Then for some r > maxi=1,2,...,n ‖ yi‖ there exists h0 > 0
such that Uh ⊆ B(0; r) for all h ≥ h0.

Proof The proof is by contradiction. Assume that for all r >

r0 = maxi=1,2,...,n ‖ yi‖ and h0 > 0 there exists h ≥ h0

such that x ∈ Uh \ B(0; r). Let {xk}, {rk} and {hk} denote
sequences satisfying these properties such that {rk} and {hk}
are monotoneusly increasing. This implies that

‖xk‖ > rk > r0 = max
i=1,2,...,n

‖ yi‖ for all k ≥ k0 (46)

and also that for all k ≥ k0,

log p̂hk (xk) ≥ log p̂hk ( y j ) for some j ∈ {1, 2, . . . , n}.
(47)

By Assumption 7.1 and condition (46) we have that ‖xk −
yi‖ ≥ ‖xk‖ − r0 for all k ≥ k0 and i = 1, 2, . . . , n. Conse-
quently,

h2
k log

[
1

n

n∑

i=1

exp

(
−‖xk − yi‖2

2h2
k

)]

≤h2
k log

[
exp

(
− (‖xk‖ − r0)2

2h2
k

)]
= − (‖xk‖ − r0)2

2

for all k ≥ k0. By equation (29), this implies that

h2
k[log p̂hk (xk) + log [(2π)

d
2 hd

k ]] ≤ − (‖xk‖ − r0)2

2
(48)

for all k ≥ k0. On the other hand, by the limit (30), Assump-
tion 7.1 and the choice of r0 we have

lim
k→∞ h2

k[log p̂hk ( y j ) + log [(2π)
d
2 hd

k ]]

= − 1

2n

n∑

i=1

‖ y j − yi‖2

= − 1

2n

(
n∑

i=1

‖ y j‖2 − 2
n∑

i=1

yT
j yi +

n∑

i=1

‖ yi‖2
)

≥ −r20

(49)

123



Stat Comput (2016) 26:471–492 491

for all j = 1, 2, . . . , n. Plugging the limits (48) and (49)
into inequality (47) then leads to a contradiction for any suf-
ficiently large k since limk→∞ ‖xk‖ = ∞ by condition (46)
and the assumption that the sequence {rk} is monotoneusly
increasing. �
Proof (Theorem 3.2) By Lemma 7.6 there exists

r > max
i=1,2,...,n

‖ yi‖

such thatUh ⊆ B(0; r) for all sufficiently large h. Thus, con-
dition (9) for all x ∈ Uh and such h follows fromAssumption
3.2, compactness of the set B(0; r) and Lemma 7.2. Finally,
compactness and connectedness of the set Uh for all suffi-
ciently large h follows from the strict concavity of log p̂h in
B(0; r) ⊇ Uh by condition (33). �
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