
Stat Comput (2015) 25:95–110
DOI 10.1007/s11222-014-9526-5

On the use of Markov chain Monte Carlo methods for
the sampling of mixture models: a statistical perspective

Randal Douc · Florian Maire · Jimmy Olsson

Received: 14 March 2014 / Accepted: 21 October 2014 / Published online: 19 December 2014
© Springer Science+Business Media New York 2014

Abstract In this paper we study asymptotic properties of
different data-augmentation-type Markov chain Monte Carlo
algorithms sampling from mixture models comprising dis-
crete as well as continuous random variables. Of particular
interest to us is the situation where sampling from the con-
ditional distribution of the continuous component given the
discrete component is infeasible. In this context, we advance
Carlin & Chib’s pseudo-prior method as an alternative way
of infering mixture models and discuss and compare differ-
ent algorithms based on this scheme. We propose a novel
algorithm, the Frozen Carlin & Chib sampler, which is com-
putationally less demanding than any Metropolised Carlin &
Chib-type algorithm. The significant gain of computational
efficiency is however obtained at the cost of some asymptotic
variance. The performance of the algorithm vis-à-vis alterna-
tive schemes is, using some recent results obtained in Maire
et al. (Ann Stat 42: 1483–1510, 2014) for inhomogeneous
Markov chains evolving alternatingly according to two dif-
ferent π∗-reversible Markov transition kernels, investigated
theoretically as well as numerically.

Keywords Asymptotic variance · Carlin & Chib’s
pseudo-prior method · Inhomogeneous Markov chains ·
Metropolisation ·Mixture models · Peskun ordering

R. Douc (B) · F. Maire
CNRS UMR 5157 SAMOVAR, Institut Télécom/Télécom
SudParis, Evry, France
e-mail: randal.douc@it-sudparis.eu;
randal.douc@telecom-sudparis.eu

F. Maire
e-mail: florian.maire@telecom-sudparis.eu

J. Olsson
KTH Royal Institute of Technology, Stockholm, Sweden
e-mail: jimmyol@kth.se

1 Introduction

To sample from mixture probability distributions π∗ of a
discrete and a continuous random variable, denoted by M
and Z , respectively, is a fundamental problem in statistics.
In this paper we study the use of different data-augmentation-
type Markov chain Monte Carlo (MCMC) algorithms for this
purpose. Of particular interest to us is the situation where
sampling from the conditional distribution of Z given M is
infeasible.

In many applications the most natural approach to sam-
pling from π∗ goes via the Gibbs sampler, which samples
alternatingly from the conditional distributions M | Z and
Z | M . Since the component M is discrete, the former sam-
pling step is most often feasible (at least when π∗ is known up
to a normalising constant). On the contrary, drawing Z | M
is in general infeasible; in that case this sampling step is typi-
cally metropolised by replacing, with a Metropolis-Hastings
probability, the value of Z obtained at the previous iteration
by a candidate drawn from some proposal kernel. This yields
a so-called Metropolis-within-Gibbs—or hybrid—sampler.

However, when the modes of the mixture distribution are
well-separated, implying a strong correlation between M and
Z , the Gibbs sampler has in general very limited capacity to
move flexibly between the different modes, and exhibits for
this reason most often very poor mixing (see Hurn et al.
(2003) for some discussion). Since this problem is due to
model dependence, it effects the standard Gibbs as well as
the hybrid sampler. In order to cope with this well-known
problem, we consider Carlin & Chib’s pseudo-prior method
(Carlin and Chib 1995) as an alternative way to infer mix-
ture models. The method extends the target model with a
set of auxiliary variables that are used to help moving the
discrete component. When the distribution of the auxiliary
variables (determined by a set of pseudo-priors) is chosen

123

96 Stat Comput (2015) 25:95–110

optimally (an idealised situation however), the method pro-
duces indeed i.i.d. samples from the marginal distribution of
M under π∗. Given M , the Z component is sampled from
Z | M in accordance with the Gibbs sampler, with possible
metropolisation in the case where exact sampling is infeasi-
ble. The latter scheme will be referred as the Metropolised
Carlin & Chib-type (MCC) sampler.

Surprisingly, it turns out that passing directly and deter-
ministically the value of the M th auxiliary variable, obtained
through sampling from the pseudo-priors at the beginning of
the loop, to the Z component yields a Markov chain that
is still π∗-reversible (see Lemma 8). Moreover, using some
recent results obtained in Maire et al. (2014) on the com-
parison of asymptotic variance for inhomogeneous Markov
chains, we are able to prove (see Theorem 7) that this novel
MCMC algorithm, referred to as the Frozen Carlin & Chib-
type (FCC) sampler, generates a Markov chain whose sam-
ple path averages have always higher asymptotic variance
than those of the MCC sampler for a large class of objec-
tive functions. This is well in line with our expectations, as
the MCC sampler “refreshes” more often the Z component.
On the other hand, since this component is already modified
through sampling from the pseudo-priors, which, when well-
designed, should be close to the true conditional distribution
Z | M , we may expect that the additional mixing provided by
the MCC sampler is only marginal. This is also confirmed by
our simulations, which indicate only a small advantage of the
MCC sampler to the FCC sampler in terms of autocorrela-
tion. As the FCC algorithm omits completely the Metropolis-
Hastings operation of the MCC sampler, it is considerably
more computationally efficient. Thus, we consider the FCC
sampler as a strong alternative to the MCC sampler in terms
of efficiency (inverse standard error per unit CPU).

The paper is structured as follows: in Sect. 2 we intro-
duce some notation and describe precisely the mixture model
framework under consideration. Section 3 describes the Car-
lin & Chib-type MCMC samplers studied in the paper. In
Sect. 4 we prove that the involved algorithms are indeed
π∗-reversible and provide a theoretical comparison of the
MCC and FCC samplers. Finally, in the implementation part,
Sect. 5, we illustrate and compare numerically the algo-
rithms on two examples: a toy mixture of Gaussian distri-
butions and a model where the mixture variables are only
partially observed. The latter is applied to two different set-
tings including the estimation of a warping parameter for
handwritten digits analysis.

2 Preliminaries

2.1 Notation

We assume throughout the paper that all variables are defined
on a common probability space (Ω,F , P). We will use upper

case for random variables and lower case for realisations of
the same, and write “X � x” when x is realisation of X .
We write “X ∼ μ” to indicate that the random variable X
is distributed according to the probability measure μ. For
any μ-integrable function h we let μ(h) := ∫

h(x)μ(dx)

be the expectation of h(X) under μ. Similarly, for Markov
transition kernels M , we write M f (x) := ∫

f (x ′)M(x, dx ′)
whenever this integral is well-defined. For any two prob-
ability measures μ and μ′ defined on some measurable
spaces (X,X) and (X′,X ′), respectively, we denote by
μ(dx)μ′(dx ′) the product measure μ � μ′(dx × dx ′) on
(X × X′,X � X ′). For (m, n) ∈ Z

2 such that m ≤ n, we
denote by �m, n� := {m, m + 1, . . . , n} ⊂ Z. Moreover, we
denote by N

∗ := N \ {0} the set of positive integers.
Finally, given some probability measure π on (X,X) we

recall, first, that a Markov transition kernel M is called π -
reversible if π(dx)M(x, dx ′) = π(x ′)M(x ′, dx) and, sec-
ond, that π -reversibility of M implies straightforwardly that
this kernel allows π as a stationary distribution.

2.2 Mixture models

Throughout this paper, our main objective is to sample a
probability distribution π∗ on some product space Y :=
�1, n�×Z, where n is at least 2 and (Z,Z) is some (typically
uncountable) measurable space, associated with the σ -field
Y := 2�1,n�

� Z . Thus, a π∗-distributed random variable
Y = (M, Z) comprises a �1, n�-valued (discrete) random
variable M and a Z-valued (typically continuous) random
variable Z .

In the following we assume that π∗(dm × dz) is domi-
nated by a product measure |dm|ν(dz), where |dm| denotes
the counting measure on �1, n� and ν is some nonnegative
measure on (Z,Z), and denote by π∗(m, z) the correspond-
ing density function on �1, n� × Z. We may then define the
marginal probability functions

π∗(m) :=
∫

π∗(m, z)ν(dz)

π∗(z) :=
n∑

m=1

π∗(m, z)

(w.r.t. |dm| and ν, respectively) on �1, n� and Z, respectively,
as well as the conditional probability functions

π∗(m | z) := π∗(m, z)

π∗(z)
,

π∗(z | m) := π∗(m, z)

π∗(m)
(1)

(w.r.t. |dm| and ν, respectively) on �1, n� and Z, respectively.

Remark 1 We stress at this stage that our focus is set on
the problem of how to sample efficiently from a given mix-

123

Stat Comput (2015) 25:95–110 97

ture model; in particular, Bayesian model selection problems,
where the dimensionality of the parameter vector is typically
not fixed (see, e.g., Green (1995), Petralias and Dellaportas
(2013)), fall outside the scope of this paper.

3 Markov chain Monte Carlo methods for mixture
models

Using the conditional distributions (1), a natural way of sam-
pling π∗ consists in implementing a standard Gibbs sampler
simulating a Markov chain {Y (1)

k ; k ∈ N} with transitions
described by the following algorithm—the Markov chain
superscript refers to the algorithm index.

Algorithm 1 Gibbs sampler

Require: Y (1)
k = (m, z),

(i) draw M ′ ∼ π∗(dm | z) and call the outcome m′ (abbr. � m′),
(ii) draw Z ′ ∼ π∗(dz | m′) � z′,

(iii) set Y (1)
k+1 ← (m′, z′).

Remark 2 Since M is a discrete random variable it is most
often possible to sample M ∼ π∗(dm | z). In contrast,
sampling Z ∼ π∗(dz | m) is not always possible. In that
case, one may replace Step (ii) by a Metropolis-Hastings step,
yielding a Metropolis-within-Gibbs algorithm (see [Robert
and Casella (2004), section 10.3.3] for details).

Using the output of Algorithm 1, any expectation π∗(f),
where f is some π∗-integrable objective function on Y, can
be estimated by the sample path average

π̂ (1)
n (f) := 1

n

n−1∑

k=0

f (Y (1)
k).

A well-known problem with this approach is that even though
Algorithm 1 generates a Markov chain {Y (1)

k ; k ∈ N} with

stationary distribution π∗, the discrete component {M (1)
k ; k ∈

N} tends in practice to get stuck in a few states. Indeed, when
the variable Z is sampled from its conditional distribution
given M = m, the probability of jumping to another index
m′ 	= m is proportional to π∗(m′, z), which may be very low
when the index component M is informative concerning the
localisation of Z . This will lead to poor mixing and, conse-
quently, high variance of any estimator π̂

(1)
n (f). To be spe-

cific, let h be some function on �1, n� and assume that we run
the Gibbs sampler in Algorithm 1 to estimate

∫
h(m)π∗(dm).

Then {M (1)
k ; k ∈ N} is itself a Markov chain with transition

kernel G(m, dm′) := ∫
π∗(dz | m)π∗(dm′ | z) and starting

with M (1)
0 ∼ π∗(dm), we have, as π∗ is invariant under G,

Cov(h(M (1)
0), h(M (1)

1))

= E

(
h(M (1)

0)Gh(M (1)
0)

)
− E

2
(

h(M (1)
0)

)
,

where, by Jensen’s inequality,

E

(
h(M (1)

0)Gh(M (1)
0)

)
=

∫
π∗(dz)

(∫
π∗(dm | z)h(m)

)2

≥ E
2(h(M (1)

0)).

Consequently,

Cov
(

h(M (1)
0), h(M (1)

1)
)
≥ 0.

Combining this with the fact that G is π∗(dm)-reversible,
we obtain

Cov
(

h(M (1)
0), h(M (1)

2k+1)
)
=Cov(Gkh(M (1)

0), G(Gkh)(M (1)
0)) ≥ 0.

Moreover, using again that G is π∗(dm)-reversible,

Cov
(

h(M (1)
0), h(M (1)

2k)
)
= Cov

(
Gkh(M (1)

0), Gkh(M (1)
0)

)
≥ 0.

Finally, letting f (m, z) ≡ h(m), we obtain

Var
(√

nπ̂ (1)
n (f)

)
≥ Var

(
h(M (1)

0)
)

,

showing that the Gibbs sampler approximates the index less
accurately than i.i.d. sampling from π∗(dm).

The pseudo-prior method of B. P. Carlin and S. Chib (Car-
lin and Chib 1995) was introduced in the context of model
selection and can successfully be adapted to mixture mod-
els. By introducing some auxiliary variables, this method
increases the number of moves of the index component. The
algorithm may be regarded as a Gibbs sampler-based data-
augmentation algorithm targeting the distribution π defined
on the extended state space �1, n�× Zn by

π(dm × du) := π∗(dm × dum)
⊗

j 	=m

ρ j (du j), (2)

where u = (u1, . . . , un) ∈ Zn and the probability measures
{ρ j ; j ∈ �1, n�} are referred to as pseudo-priors (the termi-
nology comes from Carlin and Chib (1995)). We assume that
also the pseudo-priors are dominated jointly by the nonneg-
ative measure ν and use the same symbols ρ j for denoting
the corresponding densities. As a consequence, the measure
π defined in (2) admits the density

π(m, u) := π∗(m, um)
∏

j 	=m

ρ j (u j) ((m, u) ∈ �1, n�× Zn)

with respect to |dm|�ν�n(du). In the following, the density
π is assumed to be positive, i.e., π(m, u) > 0 for all (m, u) ∈
�1, n�× Zn .

123

98 Stat Comput (2015) 25:95–110

Remark 3 The pseudo-priors constitute a design parameter
of the method that has to be tuned by the user provided that
(i) the pseudo-priors are analytically tractable and (ii) can be
sampled from. Even though the Markov chain is in general
ergodic for any choice of the pseudo-priors, the design of the
same impacts significantly the performance of the algorithm
in practice. Methods for designing the pseudo-priors are often
problem specific; still, some possible guidelines are provided
in Sect. 5.

Denote by {Y (2)
k ; k ∈ N} the Markov chain generated by

this algorithm, which we will in the following refer to as the
Carlin & Chib-type (CC-type) sampler and whose transitions
comprise the n+1 sub-steps described in Algorithm 2 below.

Algorithm 2 CC-type sampler

Require: Y (2)
k = (m, um),

(i) for all j 	= m, draw U j ∼ ρ j � u j ,
(ii) draw M ′ ∼ π(dm | u) � m′,

(iii) draw U ′m′ ∼ π∗(dz | m′) � u′m′ ,
(iv) set Y (2)

k+1 ← (m′, u′m′).

Intuitively, Algorithm 2 allows jumps between different
indices to occur more frequently than in the Gibbs sampler;
indeed, in Step (ii) the probability of moving to the index m′
is

π(m′ | u) ∝ π∗(m′, um′)/ρm′(um′), (3)

where the right hand side is close to π∗(m′) if the pseudo-
priors are chosen such that ρ�(z) is close to π∗(z | �) for
all (�, z) ∈ �1, n� × Z. The optimal case where ρ�(z) ≡
π∗(z | �) implies, via (3), that

π(m′ | u) ∝ π∗(m′).

Thus, in this case, Step (ii) draws actually M ′ according to the
exact marginal π∗(dm) of the class index random variable
regardless the value of u, which implies that the algorithm
simulates i.i.d. samples according to π∗. This actually gives
a more efficient approximation than that produced by the
Gibbs sampler, whose variance w.r.t. the index component is,
as we remarked previously, always larger than that obtained
through i.i.d. sampling from π∗(dm). However, this ideal
situation requires the quantity π∗(z | �) to be tractable, which
is typically not the case.

As in Remark 2, one may replace Step (iii) in Algorithm 2
by a Metropolis-Hastings step if sampling from π∗(dz | m′)
is infeasible. This is most often the case when π∗(dm×dz) is
the a posteriori distribution of (M, Z) conditionally on one
or several observations (see Sect. 5.2 for an example). In that
case π∗ is known only up to a normalizing constant, which
prevents sampling from the conditional density π∗(dz | m′).

The resulting algorithm will in the following be referred to as
the Metropolised CC-type (MCC) sampler and is presented
in Algorithm 3, where {R�; � ∈ �1, n�} is a set of proposal
kernels on Z × Z . Assume for simplicity that all these ker-
nels are jointly dominated by the reference measure ν and
denote by {r�; � ∈ �1, n�} the corresponding transition den-
sities with respect to this measure. Throughout the paper,
we will assume that r�(u, z) > 0 for all � ∈ �1, n� and all
(u, z) ∈ Z2. Introducing also the Metropolis-Hastings accep-
tance probability

α�(u, z) := π∗(�, z)r�(z, u)

π∗(�, u)r�(u, z)
∧ 1 ((�, u, z) ∈ �1, n�×Z2),

(4)

the MCC algorithm is described as follows.

Algorithm 3 MCC sampler

Require: Y (3)
k = (m, um),

(i) for all j 	= m, draw U j ∼ ρ j � u j ,
(ii) draw M ′ ∼ π(dm | u) � m′,

(iii.1) draw Z ′ ∼ Rm′ (um′ , dz) � z′,

(iii.2) set U ′m′ ←
{

z w. pr. αm′ (um′ , z′),
um′ otherwise,

� u′m′ ,

(iv) set Y (3)
k+1 ← (m′, u′m′).

Note that Step (iii) generates, given um′ , U ′m′ ∼ Km′(um′ ,
du′), where

K�(u, du′) := R�(u, du′)α�(u, u′)

+δu(du′)
(

1−
∫

R�(u, du′′)α�(u, u′′)
)

((u, �) ∈ Z× �1, n�). (5)

It can be easily checked (using (4)) that Km′ is indeed a
Metropolis-Hastings kernel with respect to π(dz | m′); it is
thus π(dz | m′)-reversible. Moreover, in the particular case
where R�(u, du′) = π∗(du′ | �) for all � ∈ �1, n�, the MCC
algorithm and Algorithm 2 coincide.

Remarkably, it turns out that Step (iii) in Algorithm 3
may be omitted, which may, in some cases, imply a sig-
nificant gain of computational complexity. The MCC algo-
rithm sampler then simplifies to what we will refer to as the
Frozen CC-type (FCC) sampler, which is described formally
in Algorithm 4.

Figure 1 compares the transitions of Algorithms 2, 3, and
4, and shows clearly that the algorithms differ only in the
way the continuous component is updated. More specifically,
from the diagram it is clear that the three algorithms under
consideration can be regarded as inhomogeneous Markov
chains evolving alternatingly according to two different ker-
nels comprising Steps (i)–(ii) and Steps (iii)–(iv), respec-
tively. The first kernel updates (m, z) according to a π∗-
reversible transition. The second kernel may, as for the

123

Stat Comput (2015) 25:95–110 99

Y
(i)
k =

(
M

(i)
k = m

Z
(i)
k = z

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m

U1 ∼ ρ1

...
Um = z

...
Un ∼ ρn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

step (i)

M ′ ∼ π(· |u)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m′

u1

...
um

...
un

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

step (ii)

U ′
m′ ∼ π∗(· |m′) Y

(2)
k+1 =

(
M

(2)
k+1 = m′

Z
(2)
k+1 = u′

m′

)

Z ′ ∼ Rm′(um′ , ·)
Y

(3)
k+1 =

⎛
⎜⎝ M

(3)
k+1 = m′

Z
(3)
k+1 =

{
z′ w.p. αm′(um′ , z′)
um′ otherwise

⎞
⎟⎠

Y
(4)
k+1 =

(
M

(4)
k+1 = m′

Z
(4)
k+1 = um′

)

steps (iii) & (iv)

Fig. 1 Comparison of the CC-type samplers

Algorithm 4 FCC sampler

Require: Y (4)
k = (m, um),

(i) for all j 	= m, draw U j ∼ ρ j � u j ,
(ii) draw M ′ ∼ π(dm | u) � m′,

(iii) u′m′ ← um′ ,

(iv) set Y (4)
k+1 ← (m′, u′m′).

CC and MCC algorithms, correspond to some specific π∗-
reversible kernel or can, as in the FCC algorithm, be simply
the identity kernel (which is, being reversible with respect to
any distribution, straightforwardly π∗-reversible). Depend-
ing on the context, this shortcut makes FCC considerably
less computationally demanding. Nevertheless, as stated in
Theorem 7 below, FCC is always less efficient in terms of
asymptotic variance than the corresponding MCC sampler.
Intuitively, this stems from the fact that once the index M ′
is drawn, the associated continuous component is selected
deterministically without being “refreshed” (on the contrary
to Step (iii) in Algorithm 3). In addition, as our numerical
simulations indicate that the gain of the asymptotic variance
obtained by refreshing, as in the MCC sampler, this compo-
nent instead of freezing the same as in the FCC sampler seems
to be limited (see Sect. 5 for details), we definitely regard the
FCC algorithm as a strong challenger of the MCC sampler.

4 Theoretical results

4.1 Comparison of asymptotic variance of inhomogeneous
Markov chains

In this section we recall briefly the main result of [Maire et al.
(2014), Theorem 4], which is propelling the coming analysis.

The following—now classical—orderings of Markov kernels
turn out to be highly useful.

Definition 1 Let P0 and P1 be Markov transition kernels on
some state space (X,X) with common invariant distribution
π . We say that P1 dominates P0

– on the off-diagonal, denoted P1 � P0, if for all A ∈ X
and π -a.s. all x ∈ X,

P1(x, A \ {x}) ≥ P0(x, A \ {x}).
– in the covariance ordering, denoted P1 � P0, if for all

f ∈ L2(π),

∫
f (x)P1 f (x)π(dx) ≤

∫
f (x)P0 f (x)π(dx).

The covariance ordering, which was introduced implicitly
in [Tierney (1998), p. 5] and formalised in Mira (2001), is
an extension of the off-diagonal ordering, since, according
to [Tierney (1998), Lemma 3], P1 � P0 implies P1 � P0.
Moreover, it turns out that for reversible kernels, P1 � P0

implies that the asymptotic variance of sample path averages
of chains generated by P1 is smaller than or equal to that
of chains generated by P0 (see the proof of [Tierney (1998),
Theorem 4]).

In algorithms of Gibbs-type, the ordering in Definition 1
is usually not applicable, since the fact that all candidates
are accepted with probability one prevents the chain from
remaining in the same state. The ordering is however still
meaningful when a component is discrete.

In the following, let Pi and Qi , i ∈ �0, 1�, be Markov
transition kernels on (X,X) and let {X (0)

k ; k ∈ N} and

{X (1)
k ; k ∈ N} be inhomogeneous Markov chains evolving

as follows:

123

100 Stat Comput (2015) 25:95–110

X (i)
0

Pi−→ X (i)
1

Qi−→ X (i)
2

Pi−→ X (i)
3

Qi−→ · · · (6)

This means that for all k ∈ N and i ∈ {0, 1},

– P

(
X (i)

2k+1 ∈ dx | F (i)
2k

)
= Pi (X (i)

2k , dx),

– P

(
X (i)

2k+2 ∈ dx | F (i)
2k+1

)
= Qi (X (i)

2k+1, dx),

where F (i)
n := σ(X (i)

0 , . . . , X (i)
n), n ∈ N. Now, impose the

following assumption.

(A1) (i) Pi and Qi , i ∈ �0, 1�, are π -reversible,
(ii) P1 � P0 and Q1 � Q0.

As mentioned above, P1 � P0 implies P1 � P0; thus, in
practice, a sufficient condition for (A1) (ii) is that P1 � P0

and Q1 � Q0. Under these assumptions, Maire et al. (2014)
established the following result.

Theorem 4 [Maire et al. (2014)] Assume that Pi and Qi ,
i ∈ �0, 1�, satisfy (A1) and let {X (i)

k ; k ∈ N}, i ∈ �0, 1�, be
Markov chains evolving as in (6) with initial distribution π .
Then for all f ∈ L2(π) such that for i ∈ �0, 1�,

∞∑

k=1

(∣
∣
∣Cov(f (X (i)

0), f (X (i)
k))

∣
∣
∣

+
∣
∣
∣Cov(f (X (i)

1), f (X (i)
k+1))

∣
∣
∣
)

<∞ (7)

it holds that

v1(f) ≤ v0(f), (8)

where

vi (f) := lim
n→∞

1

n
Var

(
n−1∑

k=0

f (X (i)
k)

)

(i ∈ �0, 1�). (9)

Remark 5 As shown in [Maire et al. (2014), Proposition 9],
under the assumption that the product kernels Pi Qi , i ∈
�0, 1�, are both V -geometrically ergodic (according to Defi-
nition 7 in the same paper), the absolute summability assump-
tion (7) holds true for all objective functions f such that f
and Pi f , i ∈ �0, 1�, have all bounded

√
V -norm; see again

Maire et al. (2014) for details.

4.2 The MCC sampler versus the FCC sampler

In the light of the remarks following Algorithm 4 it is rea-
sonable to assume that the CC-type sampler (Algorithm 2)
and the MCC sampler provides more accurate estimates than
the FCC sampler. However, since {Y (3)

k ; k ∈ N} is not π∗-
reversible, [Tierney (1998), Theorem 4] does not allow these
two algorithms to be compared. Nevertheless, using Theo-
rem 4 we may provide a theoretical justification advocating

the MCC and CC-type samplers ahead of the FCC sampler
in terms of asymptotic variance. To do this we decompose
the transition kernels of {Y (3)

k ; k ∈ N} and {Y (4)
k ; k ∈ N}

into products of two π∗-reversible kernels. More specific, let
{X (3)

k ; k ∈ N} and {X (4)
k ; k ∈ N} be the inhomogeneous

Markov chains defined on Y = �1, n� × Z through, for
i ∈ �3, 4�,

X (i)
2k =

(
M (i)

k

Z (i)
k

)
Pi−→ X (i)

2k+1 =
(

M̌ (i)
k+1

Ž (i)
k+1

)

Qi−→ X (i)
2k+2 =

(
M (i)

k+1

Z (i)
k+1

)
Pi−→ · · · (10)

Here we have introduced the kernels

– P3((m, z), dm̌ × dž)

:=
∫
· · ·

∫
⎛

⎝
∏

j 	=m

ρ j (du j)

⎞

⎠δz(dum)π(dm̌ |u)δum̌ (dž),

– P4 := P3,
– Q3((m̌, ž), dm × dz) := δm̌(dm)Km̌(ž, dz) (where Km̌ is

defined in (5)),
– Q4((m̌, ž), dm × dz) := δm̌(dm)δž(dz).

Setting Y (i)
k := (M (i)

k , Z (i)
k), k ∈ N, i ∈ �1, 2�, it can be

checked easily that {Y (3)
k ; k ∈ N} and {Y (4)

k ; k ∈ N} have
indeed exactly the same distribution as the output of Algo-
rithm 3 and Algorithm 4, respectively. Using the decompo-
sition (10), we may obtain the following results.

(A2) It holds that

sup
(m,u)∈Y

ω(m, u) <∞,

where ω(m, u) := π∗(m, u)/ρm(u).

Theorem 6 The Markov chains {Y (3)
k ; k ∈ N}and {Y (4)

k ; k ∈
N} generated by Algorithms 3 and 4, respectively, have π∗
as invariant distribution. Moreover, under (A2) , the chains
are uniformly ergodic.

Proof The first part of the theorem is established by not-
ing that Q4 defined above is reversible with respect to any
distribution, and in particular it is π∗-reversible. Moreover,
according to Lemma 8 (below), P3 = P4 and Q3 are also
π∗-reversible. This completes the proof of the first part.

To prove the second part, note that for each i ∈ �3, 4�, the
transition kernel of {Y (i)

k ; k ∈ N} is Pi Qi . Moreover, since
P4 Q4 = P4 = P3, it is enough to establish that P3 and P3 Q3

are uniformly ergodic. By definition, for all (m, um) ∈ Y,
P3((m, um), d�× dv)

=
∑

k∈�1,n�

∫
· · ·

∫
⎛

⎝
∏

i 	=m

ρi (dui)

⎞

⎠ π(k | u)δk(d�)δuk (dv),

(11)

123

Stat Comput (2015) 25:95–110 101

and plugging the expression

π(k | u) = ω(k, uk)∑n
j=1 ω(j, u j)

,

where ω is defined in (A2) , into (11) yields

P3((m, um), d�× dv)

=
∑

k 	=m

κ(m, um, k, v)νk(d�× dv)

+ κ̌(m, um)δ(m,u)(d�× dv), (12)

where we have defined

νk(d�× dv) := δk(d�)ν(dv),

κ(m, um, k, uk) := ρk(uk)

∫ ∏

i 	=m,i 	=k

ρi (dui)
ω(k, uk)∑
j ω(j, u j)

,

κ̌(m, um) :=
∫ ∏

i 	=m

ρi (dui)
ω(m, um)

∑
j ω(j, u j)

.

Note that (A2) implies

κ(k, v) := inf
(m,u)∈Y

κ(m, u, k, v) > 0; (13)

thus, for all (u, A) ∈ Z× Y , we obtain

P2
3 ((1, u), A)

≥
∫∫

P3((1, u), dk × dw)1{2}(k)

× P3((2, w), d�× dv)1{1}(�)1A(�, v)

≥
∫

κ(2, w)ν(dw)

∫

A
κ(1, v)ν1(d�× dv). (14)

Now, fix m 	= 1; then, reusing (13) yields

P2
3 ((m, u), A)

≥
∫∫

P3((m, u), dk × dw)1{1}(k)

× P3((2, w), d�× dv)1{1}(�)1A(�, v)

≥
∫

A
κ(1, v)κ̌(1, v)ν1(d�× dv).

Consequently, for all (m, u) ∈ Y and all A ∈ Y ,

P2
3 ((m, u), A) ≥ εη̄1(A),

where η̄1 := η1/η1(Y), ε := η1(Y), and

η1(d�× dv) :=
(∫

κ(2, w)ρ2(dw) ∧ κ̌(1, v)

)

κ(1, v)ν1(d�× dv).

This establishes that P3 = P4 Q4 is uniformly ergodic.

We now turn to the product P3 Q3. By definition of Q3,
we have Q3((m, u), d� × dv) = δm(d�)Km(u, dv). Thus,
we obtain, using (5),

Q3((m, u), d�× dv) ≥ �(u, v)νm(d�× dv), (15)

where by assumption,

�(u, v) := inf
m∈�1,n�

rm(u, v)αm(u, v) > 0,

Using (15) twice, we obtain for all (m, u) ∈ Y and all A ∈ Y ,

(P3 Q3)
2((m, u), A) ≥

∫∫
P3((m, u), dk × dw)�(w,w′)ν(dw′)

×P3((k, w′), d�× dw′′)�(w′′, v)ν(dv)1A(�, v), (16)

which implies, along the lines of (14),

(P3 Q3)
2((1, u), A) ≥ ε1

∫

A
g1(v)ν1(d�× dv),

where

ε1 :=
∫

κ(2, w)ν2(dw)�(w,w′)ν(dw′),

g1(v) :=
∫

κ(1, w′′)�(w′′, v)ν(dw′′).

Similarly, for all m 	= 1,

(P3 Q3)
2((m, u), A) ≥

∫

A
g2(v)ν1(d�× dv),

where

g2(v) :=
∫∫

κ(1, w)ν(dw)�(w,w′)ν(dw′)

× κ̌(1, w′)�(w′, v).

Thus, along previous lines, for all (m, u) ∈ Y and all A ∈ Y ,

(P3 Q3)
2((1, u), A) ≥ εη̄2(A),

where η̄2 := η2/η2(Y), ε := η2(Y), and

η2(d�× dv) := (ε1g1(v)) ∧ g2(v)ν1(d�× dv),

implying that P3 Q3 is uniformly ergodic. The proof is com-
pleted. ��
Theorem 7 Let {X (i)

k ; k ∈ N}, i ∈ �3, 4�, be the Markov

chains (10) starting with X (i)
0 ∼ π∗ for i ∈ �3, 4�. Then,

under (A2) , for all real-valued functions h on �1, n�, it holds
that

lim
n→∞

1

n
Var

(
n∑

k=1

h(M (3)
k)

)

≤ lim
n→∞

1

n
Var

(
n∑

k=1

h(M (4)
k)

)

.

123

102 Stat Comput (2015) 25:95–110

Proof By Theorem 6, the processes {X (1)
k ; k ∈ N} and

{X (2)
k ; k ∈ N} are both inhomogeneous Markov chains that

evolve alternatingly according to the π∗-reversible kernels Pi

and Qi , i ∈ �1, 2�, respectively. Moreover, P3 = P4 � P4,
and since Q4 has no off-diagonal component, Q3 � Q4.
Now, define Markov chains {X (i)

k ; k ∈ N}, i ∈ �3, 4�, as

in (10) with X (i)
0 ∼ π , and set f (m, z) ≡ h(m). By con-

struction, M̌ (i)
k = M (i)

k for all (i, k) ∈ �3, 4�×N
∗, implying

that

∞∑

k=1

(
|Cov(f (X (i)

0), f (X (i)
k))| + |Cov(f (X (i)

1), f (X (i)
k+1))|

)

= π f 2 − π2 f + 4
∞∑

k=1

|Cov(h(M(i)
0), h(M(i)

k))| <∞

(i ∈ �3, 4�), (17)

where finiteness follows since {M (i)
k ; k ∈ N} are the index

components of the Markov chain {Y (i)
k ; k ∈ N}, which is

uniformly ergodic by Theorem 6, and since the function h
is bounded (being defined on a finite set). Moreover, for all
n ∈ N

∗,

Var

(
n∑

k=1

h(M (i)
k)

)

= Var

(
n∑

k=1

h(M̌ (i)
k)

)

= 1

4
Var

(
2n∑

k=1

f (X (i)
k)

)

(i ∈ �3, 4�),

implying, by (17), that

lim
n→∞

1

n
Var

(
n∑

k=1

h(M (i)
k)

)

= 1

2
lim

n→∞
1

n
Var

(
n∑

k=1

f (X (i)
k)

)

(i ∈ �3, 4�).

Finally, by (17) we may apply Theorem 4 to the chains
{X (i)

k ; k ∈ N}, i ∈ �0, 1�, which establishes immediately
the statement of the theorem. ��

Lemma 8 The Markov kernels P3 and Q3 are both π∗-
reversible.

Proof Write, using the identity

ν(dz)δz(dum)δum̌ (dž)
∏

j 	=m

ν(du j)

= δum (dz)δum̌ (dž)
n∏

j=1

ν(du j),

for any nonnegative measurable function f on (Y,Y),

∫∫
f (y, y̌)π∗(dy)P3(y, d y̌)

=
∫
· · ·

∫
f (y, y̌)π∗(m, z)|dm|ν(dz)δz(dum)

×
⎛

⎝
∏

j 	=m

ρ j (du j)

⎞

⎠
π∗(m̌, um̌)

∏
j 	=m̌ ρ j (u j)

∑n
k=1 π∗(k, uk)

∏
� 	=k ρ�(u�)

× |dm̌|δum̌ (dž)

=
∫
· · ·

∫
f (y, y̌)π∗(m, z)π∗(m̌, um̌)

×
∏

j 	=m ρ j (u j)
∏

j 	=m̌ ρ j (u j)
∑n

k=1 π∗(k, uk)
∏

� 	=k ρ�(u�)

×
⎛

⎝
n∏

j=1

ν(du j)

⎞

⎠ |dm||dm̌|δum (dz)δum̌ (dž).

Thus, integrating first over z and ž and defining

A(m, m̌, u)

:= π∗(m, um)π∗(m̌, um̌)

∏
j 	=m ρ j (u j)×

∏
j 	=m̌ ρ j (u j)

∑n
k=1 π∗(k, uk)

∏
� 	=k ρ�(u�)

yields

∫∫
f (y, y̌)π∗(dy)P2(y, d y̌)

=
∫
· · ·

∫
f ((m, um), (m̌, um̌))A(m, m̌, u)

×
n∏

j=1

ν(du j)|dm||dm̌|.

Now, the symmetry A(m, m̌, u) = A(m̌, m, u) implies the
identity
∫∫

f (y, y̌)π∗(dy)P3(y, d y̌) =
∫∫

f (y, y̌)π∗(d y̌)P3(y̌, dy),

(18)

and as f was chosen arbitrarily, (18) implies that

π∗(dy)P3(y, d y̌) = π∗(d y̌)P3(y̌, dy),

which establishes the π∗-reversibility of P3.
We show that Q3 is π∗-reversible. Again, let f be some

nonnegative measurable function on (Y,Y). Then, using that
Km is reversible with respect to π∗(dz | m) for all m ∈
�1, n�, we obtain, denoting y̌ := (m̌, ž) and y := (m, z),

∫
· · ·

∫
f (y̌, y)π∗(d y̌)Km̌(ž, dz)δm̌(dm)

=
∫
· · ·

∫
f (y̌, y)π∗(dm̌)π∗(dž | m̌)Km̌(ž, dz)δm̌(dm)

123

Stat Comput (2015) 25:95–110 103

=
∫
· · ·

∫
f (y̌, y)π∗(dm̌)π∗(dz | m̌)Km̌(z, dž)δm̌(dm)

=
∫
· · ·

∫
f (y̌, y)π∗(dm)π∗(dz | m)Km(z, dž)δm(dm̌).

This implies
∫∫

f (y̌, y)π∗(dy)Q3(y, d y̌)

=
∫∫

f (y̌, y)π∗(d y̌)Q3(y̌, dy),

which completes the proof. ��

5 Numerical illustrations

In this section we compare numerically the performances
of the different algorithms described in the previous sec-
tion. The comparisons will be based on three different mod-
els: first, a simple toy model consisting of a mixture of two
Gaussian strata; second, a model where only partial observa-
tions of the mixture variables are available; third, a real-world
high-dimensional missing data inference problem where the
posterior distribution of a class index and a deformation field
is estimated given a set of template patterns and a specific
observation. All implementations are in Matlab, running
on a MacBook Air with a 1.8 GHz Inter Core i7 processor
(for the first two examples) and a Dell Precision T1500 with
a 3.3 GHz Inter Core i5 processor (for the third example).

5.1 Mixture of Gaussian strata

Let Y = �1, 2�× R (i.e., Z = R in this case) and consider a
pair of random variables (M, Z) distributed according to the
Gaussian mixture model

π∗(m, z) = 1

2
φ(z;μm, σ 2) ((m, z) ∈ Y), (19)

where σ > 0, (μ1, μ2) = (−1, 1), and φ(z;μ, σ 2) denotes
the Gaussian probability density function with mean μ and
variance σ 2. Even though it is straightforward to generate
i.i.d. samples from this simple toy model, we use it for illus-
trating and comparing the performances of the algorithms
proposed in the previous; in particular, since π∗(z | m) is
simply a Gaussian distribution in this case, it is possible to
execute Step (iii) in Algorithm 2 (which is, as mentioned, far
from always the case; see the next example). For small val-
ues of σ , such as the value σ = √.2 used in this simulation,
the two modes are well-separated, implying a strong corre-
lation between the discrete and continuous components. As
a consequence we may expect the naive Gibbs sampler to
exhibit a very sub-optimal performance in this case. In order
to improve mixing we introduced Gaussian pseudo-priors

ρ�(u) := φ(u; μ̃�, σ̃
2
�) ((�, u) ∈ �1, 2�× R)

on R, where (μ̃1, μ̃2, σ̃
2
1 , σ̃ 2

2) = (−.5, .5, .205, .205), and
executed, using these pseudo-priors, Algorithms 2, 3, and 4.
Note that the slight over-dispersion of the pseudo-priors pro-
vides a model that satisfies (A2), which allows Theorem 7
to be used for comparing theoretically the algorithms. More-
over, the naive Gibbs sampler was implemented for compar-
ison. Algorithm 3 used the proposal

R�(u, dz) = ρ�(dz) ((�, u) ∈ �1, 2�× R),

yielding an algorithm that can be viewed as a hybrid between
Algorithms 2 and 4 in the sense that it “refreshes” randomly
the continuous component Um′ obtained after Step (ii) by
replacing, with the Metropolis-Hastings probability αm′ , the
same by a draw from ρ′m . Cf. Algorithms 2 and 4, where Um′
is refreshed systematically according to ρ′m and kept frozen,
respectively. For each of these algorithms we generated an
MCMC trajectory comprising 301,000 iterations (where the
first 1,000 iterations were regarded as burn-in and discarded)
and estimated the corresponding autocorrelation functions.
The outcome, which is displayed in Fig. 2 below, indicates
increasing autocorrelation for the CC, MCC, FCC, and Gibbs
algorithms, respectively, confirming completely the theoreti-
cal results obtained in the previous section. Interestingly, the
FCC algorithm has, despite being close to twice as efficient in
terms of CPU with our implementation, only slightly higher
autocorrelation than the MCC algorithm for both the com-
ponents; indeed, for the mixture index component the plots
of the corresponding estimated autocorrelation functions are
more or less indistinguishable. As expected, the Gibbs sam-
pler suffers from very large autocorrelation as it tends to get
stuck in the different modes, while the CC algorithm has the
highest performance at a computational complexity that is
comparable to that of the FCC algorithm in this case (due to
Matlab’s very efficient Gaussian random number genera-
tor). Qualitatively, similar outcomes are obtained if the para-
metrisations of the target distribution or the pseudo-priors
are changed.

5.2 Partially observed mixture variables

In this example we consider a model with two layers, where
a pair Y = (M, Z) of random variables, forming a mixture
model π̃ on Y = �1, n�×Z of the form described in Sect. 2.2,
is only partially observed through some random variable X
taking values in some other state space (X,X). More specif-
ically, we assume that the distribution of X conditionally on
Y is given by some Markov transition density g on Y × X,
i.e.,

X | (M, Z) ∼ g((M, Z), x)λ(dx),

123

104 Stat Comput (2015) 25:95–110

0 5 10 15 20 25
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Estimated autocorrelation for the index component

A
ut

oc
or

re
la

tio
n

Time lag

(a)

0 5 10 15 20 25
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Estimated autocorrelation for the continuous component

A
ut

oc
or

re
la

tio
n

Time lag

(b)

Fig. 2 Plot of estimated autocorrelation for the standard Gibbs sampler (solid line), Algorithm 2 (dashed line), Algorithm 3 (dotted line),
and Algorithm 4 (dash-dotted line) when applied to the model (19). The estimates are based on 300,000 MCMC iterations, a M-component,
b Z -component

Table 1 Specifications of the
two setups studied in Sect. 5.2 setup Gaussian mixture model Deformable template model

Y �1, 2� �1, 4�

Z R R
72

X R R
16 × R

16

Observation model X = Z2 + ςε, ε ∼ N (0, 1) X = f (M, Z)+ ςε, ε ∼ N (0, I|X|)
Observed data x .4 A random handwritten digit “5”

Parameters σ = √.2, ς = √.1 σ 2 = 2I|Z|, ς = √2

Pseudo-prior design Prior distribution {π̃(· | m)}2m=1 Markov chain-based method

where λ is some reference measure on (X,X). When oper-
ating on a model of this form one is typically interested in
computing the conditional distribution of the latent variable
Y given some distinguished value X = x ∈ X of the observed
variable. This posterior distribution has the density

π∗(m, z | x) = g((m, z), x)π̃(m, z)
∫∫

g((m, z), x)π̃(m, z)|dm|ν(dz)

((m, z, x) ∈ Y × X)

w.r.t. the product measure |dm|ν(dz). Since the observation
x is fixed, we simply omit this quantity from the notation
and write π∗(m, z | x) = π∗(m, z). Note that π∗ is again a
mixture model on Y, and our objective is to sample from this
distribution.

In order to evaluate, in this framework, the performances
of the MCMC samplers discussed in the previous section we
consider two different setups, namely

1. a Gaussian mixture model related to the toy example in
Sect. 5.1.

2. a real-world image analysis problem consisting in sam-
pling jointly a high-dimensional warping parameter and
a cluster index, parameterising typically a mixture of
deformable template models (Allassonnière et al. 2007).

The two setups are summarised in Table 1.

5.2.1 Gaussian mixture model

Let, as in the previous example, Y = �1, 2�×R, and consider
the Gaussian mixture model

π̃(m, z) = αmφ
(

z;μmσ 2
)

((m, z) ∈ �1, 2�× R), (20)

where α1 = 1/4, α2 = 3/4, μ1 = −1, μ2 = 1, and
σ = √.2. (Note that letting α1 = α2 = 1/2 yields the
mixture model (19) of the previous example.) In addition,
we let (M, Z) be partially observed through

X = Z2 + ςε, (21)

123

Stat Comput (2015) 25:95–110 105

where ς = √.1 and ε is a standard Gaussian noise vari-
able which is independent of Z . Consequently, the measure-
ment density (with respect to Lebesgue measure) is given
by g((m, z), x) = φ(x; z2, ς2), x ∈ R, in this case. For the
fixed observation value x = .4 we sampled from the posterior
distribution

π∗(m, z) ∝ αmφ(z;μm, σ 2)φ(x; z2, ς2)

((m, z) ∈ �1, 2�× R)

and estimated the posterior index probability α∗2 =
π∗(m)|m=2 and the posterior mean μ∗ := ∫

zπ∗(dz) using
Algorithms 3 and 4. Note that we are unable to sample
directly the conditional distribution π∗(z | m) in this case
due to the nonlinearity of the observation equation (21);
thus, Algorithm 2 is excluded from our comparison. In addi-
tion, we implemented the Gibbs sampler in Algorithm 1
with Step (ii) replaced by a Metropolis-Hastings operation,
yielding a Metropolis-within-Gibbs (MwG) sampler. This
Metropolis-Hastings operation as well as in the correspond-
ing operation in Step (iii) of the MCC sampler (Algorithm 3)
used the conditional prior distribution as proposal, e.g.,

R�(u, dz) = π̃(dz | �) ((�, u) ∈ �1, 2�× R).

This distribution was also used for designing the pseudo-
priors in the MCC and FCC algorithms, e.g.,

ρ�(dz) = π̃(dz | �) ((�, u) ∈ �1, 2�× R),

and consequently the MCC sampler can, as in the previ-
ous example, be viewed as a “random refreshment”-version
(using the terminology of Maire et al. (2014)) of the FCC
sampler. We note that ω(m, u) ∝ αmφ(x; u2, ς2) is uni-
formly bounded in (m, u) ∈ �1, 2� × R, providing a model
satisfying (A2); we may hence compare theoretically the
algorithms using Theorem 7.

After prefatory burn-ins comprising 1,000 iterations, tra-
jectories of length 300,000 were generated using each algo-
rithm. The resulting autocorrelation function estimates are
displayed in Fig. 3, which shows that the FCC and MCC
algorithms are clearly superior, in terms of autocorrelation,
to the MwG sampler. Even though the MCC sampler has,
as expected from Theorem 7, a small advantage to the FCC
sampler in terms of autocorrelation, both samplers exhibit
very similar mixing properties. This is particularly appeal-
ing in the light of the CPU times reported in Table 2, which
shows that the FCC sampler is almost twice as fast as the
MCC sampler for our implementation. Tables 2 and 3 report
also the posterior mean and probability estimates obtained
using the output of the different algorithms, and appar-
ently the slow mixing of the MwG sampler rubs off on
the precision of the corresponding estimate. The true val-
ues α∗2 = .750 (which is very close to the correspond-
ing prior probability α2 for the given observation x = .4)

Table 2 Estimates of the posterior index probability α∗2 delivered by
the MwG, MCC, and FCC algorithms for the partially observed mixture
model (21) together with the corresponding asymptotic standard errors,
CPU times, and efficiencies (inverse standard error per unit CPU time)

Algorithm Estimate SE Time (s) Efficiency

MwG .746 .0466 191 .112

MCC .747 .0120 194 .429

FCC .750 .0116 112 .774

The true posterior probability (for x = .4) is α∗2 = .750

Table 3 Estimates of the posterior mean μ∗ delivered by the MwG,
MCC, and FCC algorithms for the partially observed mixture model
(21) together with the corresponding asymptotic standard errors, CPU
times, and efficiencies (inverse standard error per unit CPU time)

Algorithm Estimate SE Time (s) Efficiency

MwG .311 .0618 191 .0847

MCC .311 .0157 194 .329

FCC .315 .0185 112 .485

The true posterior mean (for x = .4) is μ∗ = .315

and μ∗ = .315 were obtained using numerical integration.
The asymptotic variance estimates of the different samplers
were obtained using the method of overlapping batch means
(see Meketon and Schmeiser (1984)), where each batch con-
tained 4,481 (= �300,0002/3�) values (this batch size is
consistent with the recommendations of [Flegal and Jones
(2010), Section 4]), and as a measure of precision per com-
putational effort we defined efficiency as inverse asymp-
totic standard error over computational time. As clear from
Tables 2 and 3, MCC and FCC have, as expected, a clear
advantage over MwG in terms of efficiency for both estima-
tors. Moreover, FCC is about 1.8 and 1.5 times more effi-
cient than MCC for the discrete and continuous components,
respectively.

Figure 4 displays the estimate of the marginal poste-
rior density π∗(z) obtained by applying a Gaussian kernel
smoothing function to the output of the FCC algorithm. The
exact posterior, obtained using numerical integration, is plot-
ted for comparison.

5.2.2 Sampling a high-dimensional warping parameter for
handwritten digits

We now consider the problem of warping a random obser-
vation of a 16 × 16 pixels handwritten digit “5” from the
MNIST dataset (LeCun and Cortes 2010) with a (known)
collection of prototype patterns, referred to as templates, of
the digit in question; see Fig. 5a. In this setting, M , taking
values in �1, 4�, is the template number and Z , taking values
in Z = R

72, is the warping parameter. As in the previous
example, the variables (M, Z) are only partially observed

123

106 Stat Comput (2015) 25:95–110

0 5 10 15 20 25
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Estimated autocorrelation for the index component

A
ut

oc
or

re
la

tio
n

Time lag

(a)

0 5 10 15 20 25
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Estimated autocorrelation for the continuous component

A
ut

oc
or

re
la

tio
n

Time lag

(b)

Fig. 3 Plot of estimated autocorrelation for the Metropolis-within-Gibbs sampler (solid line), Algorithm 3 (dotted line), and Algorithm 4 (dash-
dotted line) when applied to the model (21), a M-component, b Z -component

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5
FCC kernel estimate vs. true density

Fig. 4 Probability density estimate based on the sequence {Z (4)
k ; k ∈

�1,001, 105�} generated by Algorithm 4 (dashed line) for the partially
observed mixture model (21) together with the exact posterior density
(solid line)

through a single data point, namely the digit displayed in
Fig. 5b, and we impose the same prior distribution as in (20),
with αm = 1/4 and μm = 0|Z| for all m ∈ �1, 4�. We refer

to Table 1 for a detailed comparison between this model and
the model of the previous example.

The latent data (M, Z) are only partially observed through
the deformable template model

X = f (M, Z)+ ςε, (22)

where f : �1, 4�×R
72 → R

16×R
16 is a deterministic map-

ping distorting the M th template by the deformation para-
meterised by Z ; see, e.g., Allassonnière et al. (2007) and the
references therein for more details.

We aim at comparing the performances of the MwG,
MCC, and FCC algorithms for the task of sampling the pos-
terior distribution

π∗(m, z) ∝ αmφ(z;μm, σ 2)φ(x; f (m, z), ς2)

((m, z) ∈ �1, 4�× R
72).

Setting, as in Sect. 5.2.1, ρm(dz) = π̃(dz | m) for all
m ∈ �1, 4� turns out to be too naive in this case; indeed, the
high dimension of Z makes the prior highly non-informative,
and the latter therefore differs significantly from the pos-
terior π∗(dz | m) (to which the pseudo-priors should
be close in the optimal scenario). Thus, the framework
under consideration calls for more sophisticated design of
the pseudo-priors. Laplace’s approximation suggests that

Fig. 5 Templates
{ f (m, 0|Z|)}4m=1 (the vector 0|Z|
corresponds to no deformation)
and observed digit, a Templates,
b Observed handwritten digit

(a) (b)

123

Stat Comput (2015) 25:95–110 107

a Gaussian distribution with mean and covariance matrix
given by

{
z∗(m) := arg maxz∈Z log π∗(z | m),

ς2(m) := (−∇2 log π∗(z | m)|z=z∗(m))
−1,

respectively, would provide a better proxy for π∗(dz | m).
However, in the deformable template model context, the
function f in (22) is highly nonlinear and does not allow
the log-likelihood to be maximised on closed-form. Optimi-
sation in this space is very demanding from a computational
viewpoint, and replacing z∗(m) by a proxy is risky as the
Hessian matrix needed for determining ς2(m) is not neces-
sarily invertible at that point.

Another alternative consists in sampling 4 independent
Markov chains targeting π∗(dz | m), m ∈ �1, 4�, respec-
tively, and to let ρm(z) = φ(z; μ̂(m), γ̂ 2(m)), z ∈ Z, for
each m, where μ̂(m) and γ̂ 2(m) are the sampling mean
and covariance estimate, respectively. Although appearing
maybe not overly elegant at a first glance, this method turns
out to be very useful in most situations lacking an obvious,
natural choice of pseudo-priors. Moreover, since we only
need a rough approximation of the posterior distribution,
we can stop the simulation of these auxiliary chains after
a limited number of iterations. In this setting, we stopped
the Markov chains after collecting 500 samples from each
chain, and discarded, as burn-ins, the first 100 samples of
each chain in the estimation. Obviously, this step adds a
computational burden to the main sampling scheme; nev-
ertheless, we have in the following taken this additional time
into consideration when evaluating the outcome of the sim-
ulations. Moreover, we concede that this way of design-
ing the pseudo-priors may not be reasonable in situations
when the number n of mixture components is very large;
on the other hand, in such a case any CC-type approach is
inappropriate due to the prohibitive number of auxiliary vari-
ables. Finally, a transition of the MwG algorithm is per-
formed by a Metropolis-Hastings step with a Gaussian ran-
dom walk proposal (with variance ζ 2 = .1) for each com-
ponent of the parameter. This is also the common choice of
the Markov kernels Rm , m ∈ �1, 4�, used in the MCC algo-
rithm.

We compare the three algorithms through the estima-
tion of the posterior weights (Table 4; Fig. 6) and the
asymptotic variance of the class index (Table 5). More-
over, we compare the qualities of the image reconstruc-
tions provided by the different algorithms in two ways,
namely

1. Graphically by displaying, in Fig. 8, some realisations of
templates warped by the deformation parameter sampled
by the three algorithms.

Table 4 Estimates of the posterior weights delivered by the MwG,
MCC, MCC† (defined as MCC using the naive pseudo-priors), and
FCC algorithms for the partially observed mixture model (22)

Algorithm
∖

class m = 1 m = 2 m = 3 m = 4

MwG .01 .00 .98 .01

MCC .31 .12 .40 .16

MCC† .03 .05 .90 .02

FCC .32 .12 .39 .16

Table 5 Estimates of the class m = 1 posterior probability (given
the observation in Fig. 5b) delivered by the MwG, MCC, and FCC
algorithms together with the corresponding asymptotic standard error
estimates (estimated using the method of overlapping batch means),
CPU times, and efficiencies (for MwG, the efficiency had no meaning
since the estimate is biased)

Algorithm Estimate SE Time (s) Efficiency

MwG .01 .021 250 —

MCC .31 .109 4700 .002

FCC .32 .111 500 .018

2. Quantitatively by plotting, first, in Fig. 7, the mapping
R � t �→ St , where each statistic St is defined by

St :=
n∑

m=1

‖x − f (m, z̄(t)
m)‖2,

z̄(t)
� :=

∑

j∈N:τ(j)≤t

z j1m j=�

/ ∑

j∈N:τ(j)≤t

1m j=�,

with τ : N → R providing the CPU time needed for
completing a given number of Markov transitions and,
second, in Fig. 9, the estimated autocorrelation of one
deformation parameter.

These results confirm those obtained through the previous
simulations: quantitatively, the difference in mixing between
MCC and FCC is indeed minor and both these algorithms out-
perform significantly the MwG algorithm, which gets stuck
most of the time in the class 3 (see Table 4). In this context,
the huge gap in efficiency between FCC and MCC is par-
ticularly striking and stems from the high dimension of the
deformation parameter, which, consequently, is very costly
to sample using the Markov kernel—a burden avoided by
FCC, which uses only the Gaussian pseudo-prior samples
(Table 2). The FCC computational performance can also be
observed graphically in Figs. 7 and 6. We conclude that FCC
is a strong competitor in situations where the design of the
pseudo-priors is demanding.

Qualitatively, both FCC and MCC allow deformations that
are consistent with the observed data-point to be sampled,
whereas MwG do so for only one template. Figure 8 shows

123

108 Stat Comput (2015) 25:95–110

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

time (s)

cl
as

s
1

po
st

er
io

r
w

ei
gh

t e
st

.

Fig. 6 Evolution of the class m = 1 posterior weight estimate deliv-
ered by the MwG (solid line), the MCC (dotted line), and the FCC
(dash-dotted line) algorithms for the partially observed mixture model

(22). The dashed line represents the class 1 asymptotic posterior weight,
estimated after 100,000 iterations of MCC

0 100 200 300 400 500 600 700 800 900 1000
10

12

14

16

18

20

22

24

26

28

30

time (s)

S
t

Fig. 7 Evolution of the statistic St as a function of the CPU time t
for the MwG (solid line), the MCC (dotted line), the MCC† (dashed
line), and FCC (dash-dotted line) algorithms within the framework of

the partially observed mixture model (22). MCC† refers to a version of
the MCC algorithm using the naive pseudo-priors

(a)

Algorithm M5 M150 M500 M1,000 M5,000
MwG 3 3 3 3 3
MCC 4 2 1 3 4
FCC 1 3 2 1 4

(b)

Fig. 8 Illustration of the template number and deformation parame-
ter sampling for the MwG, MCC and FCC algorithms. On the left hand
side (a), the first, second, and third rows correspond to the MwG, MCC,
and FCC algorithms, respectively, while each column corresponds to a

Wraped templates f (Mk , Zk) observed at different Markov chain iter-
ations k ε {5, 150, 500, 1000, 5000}. The table on the right hand side
(b) provides the template numbers sampled by each chain at the corre-
sponding iterations

123

Stat Comput (2015) 25:95–110 109

0 5 10 15 20 25
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time lag

au
to

co
re

lla
tio

n
Estimated autocorrelation for one deformation component

Fig. 9 Plot of estimated autocorrelation for the MwG (solid line), MCC
(dotted line), and FCC(dash-dotted line) algorithms when applied to the
model (22)

that the digit displayed in Fig. 5b can be reconstructed from
any of the four templates Fig. 5a using the sampled deforma-
tions, a fact that is quantitatively confirmed using the statistic
St Fig. 7.

Finally, note that these results depend strongly on the qual-
ity of the pseudo-priors: when using the naive pseudo-priors
(defined as ρm(dz) = π̃(dz | m) for all m ∈ �1, 4�), the
MCC behaves very similarly to the MwG; see Table 4 and
Fig. 7. This shows that, in this example, the tradeoff between
doing more MCMC iterations vs delaying the MCMC sam-
pling scheme to specify decent pseudo-priors turns in favor
of the latter.

Remark 9 The theoretical results developed in Theorem 7
are restricted to test functions h depending on the M-
component only; however, the case of test functions depend-
ing on the Z -component (or even the pair (M, Z)), for which
a comparison of the asymptotic variance between MCC and
FCC is not available, is of course of interest as well. Never-
theless, the results displayed in Table 3, Fig. 3b, and Fig. 9
indicate, not surprisingly, that the mixing properties, with
respect to the Z component, of the different algorithms seem
to depend heavily on the ability (which is well-described by
our theoretical results) of the same to move flexibly between
different strata indices.

Remark 10 Following Carlin and Chib’s pseudo-priors spirit,
it would be possible to design, in a similar off-line scheme,
a finely tuned proposal kernel to improve the Metropolis-
within-Gibbs mixing performances. Such an approach is
actually related to the recent development in Particle MCMC
methods and in particular to the Particle independent
Metropolis-Hastings sampler (PIMH) (Andrieu et al. 2010),
in which a target-matching proposal is constructed from a

set of weighted particles. However, adapting a PIMH algo-
rithm to infer mixture distributions may also be difficult to
setup in practice (choice of instrumental kernel, number of
particles, risk of degeneracy, etc.). Moreover, a frozen equiv-
alent to such an algorithm, which typically exists in Car-
lin and Chib’s context thanks to the intermediate extended
state space, would not exist, hence preventing to balance out
the pre-processing step’s computational burden as with the
FCC.

6 Conclusion

We have compared some data-augmentation-type MCMC
algorithms sampling from mixture models comprising a dis-
crete as well as a continuous component. By casting Car-
lin & Chib’s pseudo-prior into our framework we obtained
a sampling scheme that is considerably more efficient than
the standard Gibbs sampler, which in general exhibits poor
state-space exploration due to strong correlation between the
discrete and continuous components (as a result of the highly
multimodal nature of the mixture model). In the case where
simulation of the continuous component Z conditionally on
M is infeasible, we used a metropolised version of the algo-
rithm, referred to as the MCC sampler, that handled this issue
by means of an additional Metropolis-Hastings step in the
spirit of the hybrid sampler. In this case our simulations indi-
cate, interestingly, that the loss of mixing caused by simply
passing, as in the FCC algorithm, the value of the M th auxil-
iary variable, generated by sampling from the pseudo-priors
at the beginning of the loop, directly to Z without any addi-
tional refreshment is limited. Thus, we consider the FCC
algorithm, which we proved to be π∗-reversible, as strong
contender to the MCC sampler in terms of efficiency (vari-
ance per unit CPU).

Our theoretical results comparing the MCC and FCC sam-
plers deal exclusively with mixing properties of the restric-
tion of the MCMC output to the discrete component, and
the extension of these results to the continuous component
is left as an open problem. However, we believe that the
discrete component is indeed the quantity of interest, as
our simulations indicate that the degree mixing of the dis-
crete component gives a limitation of the degree of mixing
of the bivariate chain due to the multimodal nature of the
mixture.

There are several possible improvements of the FCC
algorithm. For instance, following Petralias and Dellapor-
tas (2013), only a subset of the pseudo-priors (namely those
with indices belonging to some neighborhood of the current
M) could be sampled at each iteration, yielding a very effi-
cient algorithm from a computational point of view. Such
an approach could be also used for handling the case of an
infinitely large index space (i.e. n = ∞).

123

110 Stat Comput (2015) 25:95–110

Acknowledgments This work is supported by the Swedish Research
Council, Grant 2011-5577.

References

Allassonnière, S., Amit, Y., Trouvé, A.: Towards a coherent statistical
framework for dense deformable template estimation. J. R. Stat.
Soc. Ser. B 69(1), 3–29 (2007)

Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov chain Monte
Carlo methods. J. R. Stat. Soc. Ser. B 72(3), 269–342 (2010)

Carlin, B.P., Chib, S.: Bayesian model choice via Markov chain Monte
Carlo methods. J. R. Stat. Soc. Ser. B Methodol. 57, 473–484
(1995)

Flegal, J.M., Jones, G.L.: Batch means and spectral variance estimators
in Markov chain Monte Carlo. Ann. Stat. 38(2), 1034–1070 (2010).
doi:10.1214/09-AOS735

Green, P.J.: Reversible jump Markov chain Monte Carlo computation
and Bayesian model determination. Biometrika 82(4), 711–732
(1995)

Hurn, M., Justel, A., Robert, C.P.: Estimating mixtures of regres-
sions. J. Comput. Gr. Stat. 12(1), 55–79 (2003). doi:10.1198/
1061860031329. http://www.tandfonline.com/doi/abs/10.1198/
1061860031329

LeCun, Y., Cortes, C.: Mnist handwritten digit database. AT&T Labs
[Online].http://yann.lecun.com/exdb/mnist (2010)

Maire, F., Douc, R., Olsson, J.: Comparison of asymptotic variances of
inhomogeneous Markov chains with applications to Markov chain
Monte Carlo methods. Ann. Stat. 42, 1483–1510 (2014)

Meketon, M.S., Schmeiser, B.: Overlapping batch means: something
for nothing? In: WSC 84: Proceedings of the 16th Conference on
Winter Simulation, pp. 1722–1740. IEEE Press (1984)

Mira, A.: Ordering and improving the performance of Monte Carlo
Markov chains. Stat. Sci. 16, 340–350 (2001)

Petralias, A., Dellaportas, P.: An MCMC model search algorithm for
regression problems. J. Stat. Comput. Simul. 83(9), 1722–1740
(2013)

Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer,
New York (2004)

Tierney, L.: A note on Metropolis-Hastings kernels for general state
spaces. Ann. Appl. Probab. 8, 1–9 (1998)

123

http://dx.doi.org/10.1214/09-AOS735
http://dx.doi.org/10.1198/1061860031329
http://dx.doi.org/10.1198/1061860031329
http://www.tandfonline.com/doi/abs/10.1198/1061860031329
http://www.tandfonline.com/doi/abs/10.1198/1061860031329
http://yann.lecun.com/exdb/mnist

	On the use of Markov chain Monte Carlo methods for the sampling of mixture models: a statistical perspective
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Mixture models

	3 Markov chain Monte Carlo methods for mixture models
	4 Theoretical results
	4.1 Comparison of asymptotic variance of inhomogeneous Markov chains
	4.2 The MCC sampler versus the FCC sampler

	5 Numerical illustrations
	5.1 Mixture of Gaussian strata
	5.2 Partially observed mixture variables
	5.2.1 Gaussian mixture model
	5.2.2 Sampling a high-dimensional warping parameter for handwritten digits

	6 Conclusion
	Acknowledgments
	References

