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Abstract Hidden Markov models (HMMs) are intensively
used in various fields to model and classify data observed
along a line (e.g. time). The fit of such models strongly relies
on the choice of emission distributions that are most often
chosen among some parametric family. In this paper, we
prove that finite state space non parametric HMMs are iden-
tifiable as soon as the transition matrix of the latent Markov
chain has full rank and the emission probability distributions
are linearly independent. This general result allows the use of
semi- or non-parametric emission distributions. Based on this
result we present a series of classification problems that can
be tackled out of the strict parametric framework. We derive
the corresponding inference algorithms. We also illustrate
their use on few biological examples, showing that they may
improve the classification performances.

Keywords Identifiability · Hidden Markov Models ·
Non-parametric

1 Introduction

Mixtures are widely used in applications to model data com-
ing from different populations. Let X be the latent ran-
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dom variable whose value is the label of the population the
observation comes from, and let Y be the observed random
variable. With finitely many populations, X takes values in
{1, . . . , k} for some fixed integer k, and conditionally on
X = j , Y has distribution μ j . Here, μ1, . . . , μk are proba-
bility distributions on the observation space Y and are called
emission distributions. Assume that we are given n observa-
tions Y1, . . . ,Yn with the same distribution as Y , that is with
distribution

k∑

j=1

π jμ j (1)

where π j = P(X = j), j = 1, . . . , k. In mixture models the
latent variables X1, . . . , Xn are i.i.d., and so are the observed
variables Y1, . . . , Yn . When the observed data are organized
along a line (e.g. along time), independence is often a crude
approximation of their joint behavior and hidden Markov
models (shortened as HMMs in the paper) are often pre-
ferred to independent mixtures for clustering purposes. In
HMMs, the latent variables form a Markov chain. As the
latent variables are not independent, the observed variables
are not either.

In both models, the dependency structure of the observed
variables is given by that of the latent variables. Efficient
algorithms allow to compute the likelihood and to build
practical inference methods for both mixture and HMMs,
see e.g. Cappé et al. (2005) for a recent state of the art in
HMMs.

To be able to infer about the population structures, one
usually states parametric models, saying that the emission
distributions belong to some set parametrized by finitely
many parameters (for instance Poisson or Gaussian distri-
butions). But parametric modeling of emission distributions
may lead to poor results, in particular for clustering purposes.
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However, one may not recover the individual emission distri-
butions from a convex combination of them without further
information (see e.g. Bordes et al. 2006a, b or Butucea and
Vandekerkhove 2014). Hence, independent non parametric
mixture models are not identifiable in general.

Recent interest in non parametric HMMs appeared in
applications, see for instance Couvreur and Couvreur (2000)
for voice activity detection, Lambert et al. (2003) for cli-
mate state identification, Lefèvre (2003) for automatic speech
recognition, Shang and Chan (2009) for facial expression
recognition, or Volant et al. (2013) for the classification of
methylation regions in genomics. These papers propose algo-
rithms to get non parametric estimators and perform classi-
fication, but none of them gives theoretical results to support
the methods. We emphasize that HMMs with finite space for
the emission distributions are fully parametric as the emis-
sion distribution are multinomial. Nevertheless, this setting
has also recently received some attention and identifiability
results have been proved (see e.g. Hsu et al. 2012 or An et
al. 2013). Interestingly, it can be noted that these results rely
on the assumption that the transition matrix has full rank. We
make the same assumption in our main result. See also Tune
et al. (2013).

It has been proved recently by Gassiat and Rousseau
(2014) that, for translations mixtures, that is when the emis-
sion distributions are all translated from an unknown one,
identifiability holds without any assumption on the translated
distribution provided that the latent variables are indeed not
independent. In this paper, we prove that this result may be
generalized to any non parametric HMMs with finite state
space. The underlying idea is again that non independence
of the observed variables helps if one wants to identify the
population structure of the data and to cluster the observa-
tions. See also Dumont and Le Corff (2012). The proof of
our result mainly relies on the fact that the joint distribution
of three consecutive variables may be written as a mixture
of distributions of independent variables, where the distribu-
tions are linearly independent signed measures. Identifiabil-
ity of non parametric mixtures of two multivariate distribu-
tions of vectors of independent random variables has been
investigated in a seminal paper by Hall and Zhou (2003)
and further extended by Allman et al. (2009). Though non
independence of the hidden sequence is obviously necessary
to obtain identifiability results in the nonparametric finite
mixture context, it is not completely understood what is pre-
cisely needed. Here and in Gassiat and Rousseau (2014) it is
assumed that the matrix of the distribution of two consecu-
tive hidden variables has full rank, but the proofs are quite
different.

An important consequence of the identifiability result is
that consistent estimators of the distribution of the latent vari-
ables and of the emission distributions may be built, leading
to non parametric classification procedures.

In Sect. 2 we prove that non parametric HMMs may be
fully identified provided that the transition matrix of the hid-
den Markov chain has full rank, and that the emission distri-
butions are linearly independent (see Theorem 1). We then
present and discuss various likelihood-based estimation pro-
cedures, and explain briefly how the obtained estimators can
be proved to be consistent thanks to the identifiability of
HMMs. In Sect. 3 we show how this result applies to models
used in applications. Finally, in Sect. 4 we present a simu-
lation study mimicking RNA-Seq data and an application to
transcriptomic tiling array data.

2 The identifiability result and consequences

2.1 Main theorem

Let (Xi )i≥1 be a stationary Markov chain on {1, . . . , k}.
Let (Yi )i≥1 be a (possibly multidimensional) real valued
HMM, that is, a sequence of random variables taking val-
ues in R

d such that, conditionally to (Xi )i≥1, the Yi ’s are
independent, and their distribution depends only on the cur-
rent Xi . If Q is the transition matrix of the Markov chain,
if π = (π1, . . . , πk) is a stationary distribution of Q and if
M = (μ1, . . . , μk) are k probability distributions on R

d , we
denote by PQ,M,π the distribution of (Yi )i≥1 , where (Xi )i≥1

has transition Q, X1 has distribution π and μi is the distri-
bution of Y1 conditionally to X1 = i , i = 1, . . . , k. We call
μ1, . . . , μk the emission distributions. Notice that in case the
Markov chain is irreducible, there exists a unique stationary
distribution π such that for all i = 1, . . . , k, πi > 0, while
in the case where the Markov chain is not irreducible, there
might exist several stationary distributions so that the distri-
bution of X1 has to be specified. In such a case, we assume
that for all i = 1, . . . , k, πi > 0. if it was not the case, one
could reduce the number of hidden states.
For any integer n ≥ 1, denote by P

(n)
Q,M the distribution of the

random vector Y1:n := (Y1, . . . ,Yn) under PQ,M . We have:

P
(n)
Q,M =

k∑

i1,...,in=1

πi1 Qi1,i2 · · · Qin−1,inμi1 ⊗ · · · ⊗ μin ,

and if the emission distributions μ1, . . . , μk have densities
f1, . . . , fk with respect to some dominating measure ν on Y ,
then P

(n)
Q,M has a density pn,Q,M with respect to ν⊗n given by

pn,Q,M (y1:n)

=
k∑

i1,...,in=1

πi1 Qi1,i2 · · · Qin−1,in fi1 (y1) · · · fin (yn).

Theorem 1 Assume k is known, that the probability mea-
sures μ1, . . . , μk on R

d are linearly independent, and that
Q has full rank. Then the parameters Q and M are identifi-
able from the distribution of 3 consecutive observations Y1,
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Y2, Y3, up to label swapping of the hidden states, that is: if Q̃
is a k × k transition matrix, if π̃ = (π̃1, . . . , π̃k) is a station-
ary distribution of Q̃ such that for all i = 1, . . . , k, π̃i > 0
and if M̃ = (μ̃1, . . . , μ̃k) are k probability distributions on
R
d that verify P(3)

Q̃,M̃
= P

(3)
Q,M, then there exists a permuta-

tion σ of the set {1, . . . , k} such that, for all i, j = 1, . . . , k,
Q̃i, j = Qσ(i),σ ( j) and μ̃i = μσ(i).

In this statement, measures are supposed linearly indepen-
dent as elements of the vector space of signed measures. It can
be noted that the full rank condition on the transition matrix
is classical and already appears in parametric settings such
as that of Petrie (1969). In the particular case where k = 2,
this assumption is equivalent to the non-independence of the
variables Y . The linear independence condition on emis-
sion distributions is different than that formally stated, in the
mixture context, by Yakowitz and Spragins (1968) where the
whole set of possible emission distributions has to be linearly
independent.

Let us now prove Theorem 1. Let Q̃ be a k × k transition
matrix, π̃ = (π̃1, . . . , π̃k) be a stationary distribution of Q̃
such that for all i = 1, . . . , k, π̃i > 0 and M̃ = (μ̃1, . . . , μ̃k)

be k probability distributions on R
d , such that P(3)

Q̃,M̃,π̃
=

P
(3)
Q,M,π .

The distribution of (Y1,Y2,Y3) under PQ,M may be writ-
ten as

P
(3)
Q,M =

k∑

i=1

⎛

⎝
k∑

j=1

π j Q j,iμ j

⎞

⎠ ⊗ μi ⊗
⎛

⎝
k∑

j=1

Qi, jμ j

⎞

⎠ .

Here, the fact that P(3)
Q,M factorizes as a sum of k tensorial

products of three positive measures will be essential. Notice
that this comes from the fact that (Xi )i≥1 is a Markov chain
and that conditionally on X2, X1 and X3 are independent
variables. It may be seen from the rewriting

P
(3)
Q,M =

k∑

i=1

πi

⎛

⎝
k∑

j=1

π j Q j,i

πi
μ j

⎞

⎠ ⊗ μi ⊗
⎛

⎝
k∑

j=1

Qi, jμ j

⎞

⎠ ,

where we have used that πi > 0 for all i = 1, . . . , k. Simi-
larly,

P
(3)

Q̃,M̃
=

k∑

i=1

π̃i

⎛

⎝
k∑

j=1

π̃ j Q̃ j,i

π̃i
μ̃ j

⎞

⎠ ⊗ μ̃i ⊗
⎛

⎝
k∑

j=1

Q̃i, j μ̃ j

⎞

⎠ .

Since Q has full rank and the probability measures μ1,. . ., μk

are linearly independent, the probability measures
( ∑k

j=1π j

Q j,iμ j/πi

)
, i = 1, . . . , k are linearly independent, and the

probability measures
(∑k

j=1 Qi, jμ j

)
, i = 1, . . . , k are also

linearly independent. Thus, applying Theorem 9 of Allman
et al. (2009) we get that there exists a permutation σ of the

set {1, . . . , k} such that, for all i = 1, . . . , k:

μ̃i = μσ(i),

k∑

j=1

Q̃i, j μ̃ j =
k∑

j=1

Qσ(i), jμ j .

This gives easily, for all i = 1, . . . , k,

k∑

j=1

Q̃i, jμσ( j) =
k∑

j=1

Qσ(i),σ ( j)μσ( j).

Using now the linear independence of μ1, . . . , μk we get that
for all i, j = 1, . . . , k,

Q̃ j,i = Qσ( j),σ (i),

and the theorem is proved.
An alternative proof of Theorem 1 could be given using the

parametric identification result in Hsu et al. (2012) combined
with an adequate discretization argument.

2.2 Non parametric estimation

We may now propose several estimation procedures. Let
us set the ideas for likelihood based procedures, for which
the popular EM algorithm may be used to compute the
estimators, as we recall in Sect. 3.1. Assume that the set
of possible emission distributions is dominated by a mea-
sure ν on Y . Let θ = (Q, f1, . . . , fk), f j being the
density of μ j with respect to the dominating measure.
Then (Y1, . . . ,Yn) has a density pn,θ with respect to ν⊗n .
Denote �n (θ) = log pn,θ (Y1, . . . ,Yn) the log-likelihood,
and �̃n (θ) = ∑n−2

i=1 log p3,θ (Yi ,Yi+1,Yi+2) the pseudo
log-likelihood. Likelihood (or pseudo-likelihood) based non
parametric estimation usually involves a penalty, which
might be chosen as a regularization term (as studied in van
de Geer 2000 mainly for independent observations) or as a
model selection term (see Massart 2007). More precisely:

– Let I ( f ) be some functional on the density f . For
instance, if Y is the set of non negative integers, one
may take I ( f ) = ∑

j≥0 jα f ( j) for some α > 0; if
Y is the set of real numbers, one may take I ( f ) =∫ +∞
−∞ [ f (α)(u)]2du, where f (α) is the α-th derivative of
f . Then the estimator may be chosen as a maximizer of

�n (θ) − λn[I ( f1) + · · · + I ( fk)], (2)

or of �̃n (θ) − λn[I ( f1) + · · · + I ( fk)] for some well
chosen positive sequence (λn)n≥1. In Sect. 3.2 we provide
an application of this estimator which we further illustrate
in Sect. 4.1.

– If we consider for θ a sequence of models (Θm)m∈M
where Θm is the set of possible values for θ for constraint
m, one may choose the estimator ofm as a maximizer over
M of �n

(
θ̂m

) − pen(n,m) (or of �̃n
(
θ̂m

) − pen(n,m)),
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where pen(n,m) is some penalty term. Here, θ̂m is the
maximum likelihood estimator (or the maximum pseudo-
likelihood estimator) in model Θm for each m ∈ M. In
Sect. 3.3 we consider for models Θm the set of the emis-
sion densities which can be modeled as mixture distrib-
utions with m components.

– We may also consider usual non parametric estimators
for emission densities. For instance, in Sect. 3.4 we con-
sider kernel based estimators computed via maximum
likelihood, which we illustrate in Sect. 4.2.

Identifiability is the building stone to prove the con-
sistency of estimation procedures. For pseudo-likelihood
based non-parametric estimators, it is likely provable that
the Hellinger distance between p3,θ
 and p3,θ̂ converges in
probability to 0, where θ
 denotes the true value of the para-
meter and θ̂ its penalized pseudo-likelihood estimate. One
could use similar tricks as in Dumont and Le Corff (2012)
when a regularization term is used as penalty, or Gassiat and
Rousseau (2014) when a model selection penalty is used.
The main points are to get deviation inequalities for addi-
tive functions of the observed variables, and to control the
complexity of the space where the density of the observa-
tions is supposed to live (by the regularization penalty or
the model selection penalty). This usually allows to obtain
that the plugged-estimated density stays in a compact set.
Coupled with the identifiability result, consistency of such θ̂

would follow.
For full-likelihood based non parametric estimators, consis-
tency might be difficult to prove. Indeed, it requires a deep
understanding of the asymptotic behavior of the full likeli-
hood not only as a point function but as a process on the
infinite dimensional space parameters.

Bayesian estimation procedures can also be proposed, for
which, as is usual in such Bayesian situations, the choice of
the prior is of great importance. Based on our identifiabil-
ity result, Vernet (2013) has obtained posterior consistency
results for Bayesian estimation in this context. One could
also propose histogram-based estimation procedures using
Hsu et al. (2012). Here the question would be to choose ade-
quately the partition of the observation space as a function
of the sample size.

3 Application to some specific models

In this section we present and discuss a series of HMMs that
can be proved to be identifiable thanks to the results above.

3.1 Reminder on the inference of hidden Markov models

A huge variety of techniques have been proposed for the
inference of HMMs (see e.g. Cappé et al. 2005). The most

widely used is probably the EM algorithm proposed by
Dempster et al. (1977), which can be adapted to several illus-
trations given below. We recall that this algorithm alternates
an expectation (E) step with a maximization (M) step until
convergence. At iteration h + 1, the (M) step retrieves esti-
mates Qh+1 and Mh+1 via the maximization of the condi-
tional expectation

Fh(Q, M) = EQh ,Mh

[
log pn,(Q,M)(Y1:n, X1:n)|Y1:n

]

= EQh ,Mh

[
log pn,(Q,M)(X1:n)|Y1:n

]

+EQh ,Mh

[
log pn,(Q,M)(Y1:n|X1:n)|Y1:n

]
(3)

w.r.t. Q and M . This expectation involves the current esti-
mates of the conditional probabilities: τ hi j := PQh ,Mh (Xi =
j |Y1:n) and PQh ,Mh (Xi = j, Xi+1 = j ′|Y1:n). These condi-
tional probabilities are updated at the next (E) step, using the
forward-backward recursion, which takes the current para-
meter estimates Qh and Mh as inputs. In the sequel, we focus
on the estimation of M , the rest of the calculations being stan-
dard.

3.2 Non-parametric discrete distributions

We consider a HMM with discrete observations (Yi )i≥1 with
fully non parametric emission distributions μ j (denoting
f j (y) = P(Yi = y|Xi = j)). Theorem 1 ensures that, pro-
vided that the distributions μ j are all linearly independent
and that the transition matrix has full rank, the correspond-
ing HMM is identifiable.

Inference The maximum likelihood inference of this model
can be achieved via EM, the M step resulting in

f hj (y) = Shj (y)/N
h
j

where Shj (y) = ∑
i τ

h
i j I(Yi = y) and Nh

j = ∑
i τ

h
i j .

Regularization The EM algorithm can be adapted to the
maximization of a penalized likelihood such as (2). Indeed
the regularization only affects the (M) step (see Li et al. 2005).
Taking I ( f ) = ∑

y m(y) f (y) (e.g. m(y) = yα), the esti-
mate of f j satisfies

f hj (y) = Shj (y)
/(

λnm(y) + chj

)

where the constant chj ensures that
∑

y f hj (y) = 1. Note that

this estimate is not explicit but, as
∑

y f hj (y) is a monotonous

decreasing function of chj , this constant can be efficiently
determined using any standard algorithm, such as dichotomy.

RNA-Seqdata In the past few years, next generation sequenc-
ing (NGS) technologies have become the state-of-the-art tool
for a series of applications in molecular biology such as tran-
scriptome analysis, giving raise to RNA-Seq. Briefly speak-
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ing, NGS provide reads that can be aligned along a reference
genome, so that a count is associated with each nucleotide.
The resulting RNA-Seq count is supposed to reveal the level
of transcription of the corresponding nucleotide. HMMs have
been proposed (Du et al. 2006; Zhai et al. 2010) to determine
transcribed regions based on RNA-Seq. The choice of the
emission distribution is one of the main issue of such mod-
eling. Poisson distributions display a poor fit to the observed
data and the negative binomial has emerged as the consen-
sus distribution. However, only empirical arguments exist
to motivate the use of the negative binomial for RNA-Seq
data. Furthermore, the inference of negative binomial mod-
els raises several problems, especially for the over-dispersion
parameter. The simulation study we perform in Sect. 4 shows
that fully non parametric emission distributions can be used
and improve the classification performances.

3.3 Mixtures as emission distributions

Latent variable models with parametric emission distribu-
tions often poorly fit the observed data due to the choice
of the emission distribution. In the recent years, big efforts
have been made to consider more flexible parametric emis-
sion distributions (see e.g. Lin et al. 2007). Mixture distribu-
tion have recently been proposed to improve flexibility (see
Baudry et al. 2010). The model is the following: consider a
set of m parametric distributions φ� (� = 1, . . . ,m) and a
k × m (m ≥ k) matrix of proportions ψ = [ψi�] such that,
for all j = 1, . . . , k,

∑
� ψ j� = 1. The emission distribution

μ j is defined as

μ j =
∑

�

ψ j�φ�. (4)

A simple mixture model (i.e. when the hidden variable Xi

are iid) with such emission distribution is not identifiable
(see Baudry et al. 2010). However, its HMM counterpart
is identifiable, under the conditions stated in the following
proposition.

Proposition 2 If the distributions φ� are linearly indepen-
dent and if the matrix ψ has rank k, then the HMM with
emission distributionμ j defined in (4) is identifiable as soon
as Q also has full rank.

The proof is the following. As the distributions φ� are
linearly independent, it suffices that the rows of ψ are lin-
early independent to ensure that so are the distributions μ j .
Identifiability then results from Theorem 1.

Inference The maximum likelihood inference of such a
model has been studied in Volant et al. (2013), although
identifiability issues are not theoretically addressed therein.
The EM algorithm can be adapted to this model, considering

a second hidden sequence of variables Z1, . . . , Zn that are
independent conditional on the (Xi ) each with multinomial
distribution:

(Zi |Xi = j) ∼ M(1;ψ j )

where ψ j stands for the j th row of ψ . Note that the sequence
Z1, . . . , Zn is itself a hidden Markov chain, and the con-
ditional probability ξi� := P(Zi = �|(Y j ) j≥1) can be com-
puted via the forward-backward recursion during the (E) step
(see Volant et al. 2013).

Mixture of exponential family distributions In such model-
ing, the distributions φ� are often chosen within the expo-
nential family, that is

φ�(y) = exp[θ ′
�t (y) − a(y) − b(θ�)]

where t (y) stands for the vector of sufficient statistics, θ� for
the vector of canonical parameters anda andb for the normal-
izing functions. Standard properties of maximum likelihood
estimates in the exponential family yield that the estimates
of θh� resulting from the M step must satisfy

b′(θh� ) = T h
� /Nh

�

where T h
� = ∑

i ξ
h
i�t (Yi ) and Nh

j = ∑
i ξ

h
i�. Explicit esti-

mates result from this identity for a series of distribution
such as multivariate Gaussian, Poisson, or Binomial. Indeed,
Gaussian, Poisson and Binomial B(N , p) for N ≥ 2m − 1
distributions are linearly independent, as recalled in Titter-
ington et al. (1985).

Convex emission distribution Discrete convex distributions
are proved in Durot et al. (2013) to be mixtures of triangular
discrete distributions. It may be proved, in the same way as in
Theorem 8 of Durot et al. (2013) that those triangular discrete
distributions are in fact linearly independent so that one may
use Proposition 2.

Zero-inflated distributions Zero-inflated distributions are
mixtures of a Dirac delta distribution δ0 and a distribution
φ j , which is typically chosen from but not limited to the
exponential family, so that the emission distribution μ j can
be defined as

μ j = q jδ0 + (1 − q j )φ j .

This model can be expressed as a particular case from that
of Eq. (4) for which m = k + 1 and φk+1 = δ0. The matrix
ψ is then sparse, with last column q = (q1, . . . , qk) and
main diagonal 1 − q. This ensures that provided at most one
q j is equal to one, ψ has full rank. It thus suffices that the
{φ j , 1 ≤ j ≤ k + 1} are linearly independent to allow the
use of Proposition 2, and give support to a vast literature (see
DeSantis and Bandyopadhyay 2011; Olteanu and Ridgway
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2012 for examples of usage of zero-inflated Poisson HMMs
to model over-dispersed count datasets).

Non parametric density modeling via mixtures Mixtures, in
particular Gaussian mixtures, may be used for a model selec-
tion approach for the non parametric estimation of probabil-
ity densities, see Maugis and Michel (2011). See also Gassiat
and Rousseau (2014) in the HMM context.

3.4 Kernel density estimation

Two major classes of nonparametric density estimators for
continuous variables are proposed in the literature in an
attempt at capturing the specific shapes of the data where
parametric approaches fail: kernel estimates, of which the
histogram approach presented in Sect. 3.2 is a special case,
and wavelet-based techniques. We refer to Donoho et al.
(1996) for a complete description of wavelet-estimates prop-
erties, or Couvreur and Couvreur (2000) for an example of
their use in non-parametric HMMs.

We will focus on kernel-based estimates for the emission
densities and for a given bandwidth w, we will write f j (y)
of the form

f j (y) = 1

w

∑

u

ρu j R

(
y − yu

w

)

where R is some symmetric kernel function satisfying
∫
R =

1 and where the ρu j are weights such that, for all j ,
∑

u ρu j =
1. A similar estimate was proposed by Hall and Zhou (2003).
We denote ρ = (ρu j ) the set of all weights. In this setting,
for a given w, the estimation of ( f1, . . . , fk) amounts to the
estimation of ρ.

Maximum likelihood An EM algorithm can be used to get
maximum likelihood estimates of Q and ρ. We define

Gh(ρ) = EQh ,Mh

[
log pn,(Q,M)(Y1:n|X1:n)|Y1:n

]
,

which corresponds to the last term of (3) and is the only term
to depend on ρ. As for the estimation of ρ, the (M) step aims
at maximizing this function that can be rewritten as

Gh(ρ) =
∑

i, j

τ hi j log

(
1

w

∑

u

ρu j Riu

)

=
∑

i,u, j

τ hi jγiu j log
(
ρu j Riu

) −
∑

i,u, j

τ hi jγiu j log γiu j

−n log(w) (5)

where Riu = R((Yi−Yu)/w) andγiu j = ρu j Riu/
∑

v ρv j Riv ,
and the summations on i , u and v range from 1 to n while that
on j ranges from 1 to k. We remind that the τ hi j are the cur-
rent estimate of the conditional probability: PQh ,Mh (Xi =
j |Y1:n).

Proposition 3 The following recursion provides a sequence
of increasing values of Gh(ρ):

γ �
iu j = ρ�

u j Riu/
∑

v

ρ�
v j Riv,

ρ�+1
u j =

∑

i

τ hi jγ
�
iu j

/
∑

i,v

τ hi jγ
�
iv j ,

that is Gh(ρ�+1) ≥ Gh(ρ�).

To prove the proposition, we first remark that ρ�+1 =
(ρ�+1

u j ) satisfies

ρ�+1 = arg max
ρ

∑

i,u, j

τ hi jγ
�
iu j log

(
ρu j Riu

)
,

s.t. ∀ j :
∑

u

ρu j = 1.

It follows that

0 ≤
∑

i,u, j

τ hi jγ
�
iu j log

(
ρ�+1
u j Riu

)
−

∑

i,u, j

τ hi jγ
�
iu j log

(
ρ�
u j Riu

)

=
∑

i,u, j

τ hi jγ
�
iu j log

ρ�+1
u j Riu

ρ�
u j Riu

≤
∑

i, j

τ hi j log

(
∑

u

γ �
iu j

ρ�+1
u j Riu

ρ�
u j Riu

)

=
∑

i, j

τ hi j log

∑
u ρ�+1

u j Riu
∑

v ρ�
v j Riv

= Gh(ρ�+1) − Gh(ρ�)

(where the second upper bounding results from Jensen’s
inequality) which proves the proposition.

Iterating this recursion therefore improves the objective
function Fh(Q, M) (even if convergence is not reached),
which results in a Generalized EM algorithm (GEM: Demp-
ster et al. 1977).

Another common approach is to replace the terms ρu j
by the posterior probability that the j th individual belongs
to class �. This approximation is encountered in the non-
parametric HMM literature both in kernel-based approaches
(see for instance Jin and Mokhtarian 2006) and in wavelet-
based approaches (see Couvreur and Couvreur 2000). How-
ever, even if this approximation is very intuitive (and much
faster computationally), there is no theoretical guarantee that
the EM-like algorithm increases the likelihood. In Benaglia et
al. (2009) the authors show through simulation studies that it
outperforms other approximation algorithm but fail to obtain
descent properties. Levine et al. (2011) proposes a very simi-
lar algorithm, based on the Majorization-Minimization prin-
ciple, which converges to a local maximum of a smoothed
likelihood.

123



Stat Comput (2016) 26:61–71 67

4 Simulation and application

4.1 Simulation study

To study the improvement provided by the use of a non-
parametric emission distributions, we designed a simulation
study based on a typical application in genomics.

RNA-Seq data Next generation sequencing (NGS) technolo-
gies allow to study gene expression all along the genome.
NGS data consist of numbers of reads associated with each
nucleotide. These read counts are function of the level of tran-
scription of the considered nucleotide, so NGS allow to detect
transcribed regions and to evaluate the level of transcription
of each region. The state-of-the-art statistical methods are
based on the negative binomial distribution.

Design Based on the annotation of the yeast genome, we
defined regions with four level of expression, from intronic
(almost no signal) to highly expressed. We then used RNA-
Seq data to define empirical count distributions for each of
the four levels (so that k = 4), which shall correspond to the
hidden states. The data were simulated as follows: 14 regions
were defined within a sequence of length n = 4950, defining
a (known) sequence Xi :n taking values in 1 : 4 which is fixed
in the simulation study. The count at each position was sam-
pled in the empirical distribution of the corresponding state.
S = 100 synthetic datasets were sampled according to this
scheme and we denote ysi the observation from simulation s
(s = 1, . . . , S) at position i (i = 1, . . . , n).

Model For each simulation, three HMM models were fitted
with the observed read-counts at each location Yi taking val-
ues inY = N the set of non-negative integers, and the hidden
states Xi representing the expression level of the position.
The emission distributions considered were respectively:

(a) negative binomial with a state-specific probability para-
meter,

(b) free non-parametric and
(c) regularized non-parametric as defined in Sect. 3.2, taking

I ( f ) =
∑

y

y2 f (y).

Evaluation criteria For each model, we then inferred the
hidden state Xs

i according to both the maximum a posteri-
ori (MAP) rule and the Viterbi most probable path. For each
combination of simulation, HMM (a, b or c) and classifica-
tion rule (MAP or Viterbi), we then computed the rand index
between the inferred states (X̂i ) and the true one. We recall
that the rand index is the proportion of concordant pairs of
positions among the n(n − 1)/2, where the pair (i, i ′) is said

Fig. 1 Rand index for the two estimates for k = 4: parametric nega-
tive binomial (NB: black) and non-parametric (NP: red). (Color figure
online)

concordant if either Xi = Xi ′ and X̂i = X̂i ′ , or xi 
= Xi ′ and
X̂i 
= X̂i ′ .

Results MAP and Viterbi classifications achieved very sim-
ilar performances so we only report the results for Viterbi.
Figure 1 displays the rand index for both the parametric (neg-
ative binomial) and non-parametric (with no regularization)
estimates of the emission distribution for k = 4. We observe
that, although the mean performances are similar with the
two distributions, the parametric negative-binomial some-
times provides poor predictions. The results are very similar
for other values of k (not shown).

We then studied the influence on regularization on the per-
formances. We considered a set of values for λ, ranging from
0.25 to 16. Figure 2 shows that regularization can improve
the results in a sensible manner. λ = 1 seems to work best in
practice. We do not provide a systematic rule to choose the
regularization parameter. Indeed, standard techniques such
as cross-validation could be be considered, but would imply
an important computational burden.

To illustrate the interest of the non-parametric estimate, we
show in Fig. 3 the fits obtained with different estimates for a
typical simulation. For the regularized version we used λ = 1
as suggested by the preceding result. As expected, the unreg-
ularized non-parametric estimate (b) displays a better fit than
the parametric estimate (a), the regularized non-parametric
version (c) lying between the two.

4.2 Application to transcriptomic tiling-array

Tiling array Tiling arrays are a specific microarray technol-
ogy, where the probes are spread regularly along the genome
both in coding and non-coding regions. In transcriptomic
applications, tiling arrays capture the intensity of the tran-
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Fig. 2 Rand index as a function of the regularization parameter λ. λ = 0 (in red) corresponds to the non regularized estimate. (Color figure online)

Fig. 3 Fit of the estimated distributions with the three estimates: bars
represent the empirical distribution from the RNA-Seq data while lines
show the estimates from the negative binomial (NB: dashed red), non-
parametric (NP: solid green) and regularized non-parametric (λ = 1,

rNP: dotted blue). Top left: intronic regions (almost no expression), top
right: weakly expressed regions, bottom left: expressed regions, bot-
tom right: highly expressed regions. The x-axis has been truncated for
legibility. (Color figure online)
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Fig. 4 Top left panel: raw tiling array data from chromosome 4 + idealized groups. Other panels: contour plots of the kernel estimate of each
emission distribution for the 5-state non-parametric HMM. The idealized blue group is split into two HMM states (bottom center and bottom right).
(Color figure online)

scriptional activity at each probe location, thus allowing the
detection of transcribed regions. We consider here a com-
parative experiment were two organs (seed and leaf) of the
model plant A. thaliana are compared. The data under study
corresponds to expression measurements of probes located
on chromosome 4 in both seed and leaf, and takes its val-
ues in Y = {R+ × R+}. The top left panel of Fig. 4 is
an idealization of the expected reconstruction of the hidden
classes. Indeed, we expect to find probes being expressed in
none of the organs (blue region), probes being expressed in
both organs with equal level (black region) and probes being
more expressed in one organ than the other (red and green
regions). The four corresponding hidden classes were drawn
arbitrarily on the plot to illustrate these four behaviors.

Mixture as emission distributions The same data has already
been analyzed in Volant et al. (2013) and Bérard et al. (2011),
using two different kinds of mixture as emission distribu-
tions. The former proposed a very problem-oriented mixture
of elliptic Gaussian distribution, whereas the latter was a gen-
eralization of the approach of Baudry et al. (2010) to HMMs.
A consequence of Proposition 2 given above is that both of
these models are identifiable.

Non-parametricHMM Here, we fitted a k-state non-parame-
tric HMM to these data using the kernel method described in
Sect. 3.4. We used a spherical Gaussian kernel for which
we first estimated the bandwidth w via cross-validation
on the whole data set. The model with k = 5 provided
the expected structure, splitting the “null” group containing
probes expressed in none of the organs (in blue in the ideal-
ized plot) into two, resulting in the two bottom left figures in
Fig. 4. This figure provides the kernel density estimates of the
emission distributions under this model. The shape of these
distribution turn out to be far from what could be captured
by some standard parametric distribution (e.g. 2-dimensional
Gaussian). Note that in Volant et al. (2013) (see their Fig. 5)
k = 8 components were needed to recover the expected 4
groups using Gaussian mixture as emission distributions.

5 Conclusion

In this article, we have shown that non-parametric HMMs are
identifiable up to state-label switching provided that the tran-
sition matrix has full rank and that the emission distributions
are linearly independent. This gives support to numerous
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methods that had previously been proposed for the classifi-
cation of data using non-parametric HMMs. While they usu-
ally proved excellent empirical results, no guarantees on the
identifiability of the models had yet been given. We describe
multiple examples of procedures for which our result applies,
and illustrate the gain provided by the use of a non-parametric
emission distribution in two applications. In the first one, we
present a simulation study inspired from RNA-Seq experi-
ments. In this context, the addition of a regularization func-
tion improves the performances of the non-parametric HMM
classification.

In the second example, we present the use of kernel-based
estimation of emission densities in an application to tran-
scriptomic tiling array data. Again, non parametric estima-
tion improves the classification performances. This motivates
future work on the choices that are involved in non paramet-
ric procedures: selection of the regularizing sequence λn in
regularized maximum likelihood, proposition of a penalty
function for the choice of the number of states, choice of
mixture components modeling for the emission distribution,
choice of the kernel R in a kernel-based maximum likelihood
estimation, and choice of the bandwidth w.
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