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Abstract Generalized additive models (GAMs) play an
important role in modeling and understanding complex rela-
tionships inmodern applied statistics. They allow for flexible,
data-driven estimation of covariate effects. Yet researchers
often have a priori knowledge of certain effects, which might
be monotonic or periodic (cyclic) or should fulfill bound-
ary conditions. We propose a unified framework to incorpo-
rate these constraints for both univariate and bivariate effect
estimates and for varying coefficients. As the framework is
based on component-wise boosting methods, variables can
be selected intrinsically, and effects can be estimated for a
wide range of different distributional assumptions. Bootstrap
confidence intervals for the effect estimates are derived to
assess the models. We present three case studies from envi-
ronmental sciences to illustrate the proposed seamless mod-
eling framework. All discussed constrained effect estimates
are implemented in the comprehensive R package mboost
for model-based boosting.
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1 Introduction

When statistical models are used, certain assumptions are
made, either for convenience or to incorporate the resear-
chers’ assumptions on the shape of effects, e.g., because of
prior knowledge. A common, yet very strong assumption
in regression models is the linearity assumption. The effect
estimate is constrained to follow a straight line. Despite the
widespread use of linear models, it oftenmay bemore appro-
priate to relax the linearity assumption.

Let us consider a set of observations (yi , x�
i ), i =

1, . . . , n, where yi is the response variable and xi =
(x (1)

i , . . . , x (L)
i )� consists of L possible predictors of differ-

ent nature, such as categorical or continuous covariates. To
model the dependency of the response on the predictor vari-
ables, we consider models with structured additive predictor
η(x) of the form

η(x) = β0 +
L∑

l=1

fl(x), (1)

where the functions fl(·) depend on one or more predic-
tors contained in x. Examples include linear effects, cate-
gorical effects, and smooth effects. More complex models
with functions that depend on multiple variables such as ran-
domeffects, varying coefficients, and bivariate effects, can be
expressed in this framework as well (for details, see Fahrmeir
et al. 2004).

Structured additive predictors can be used in different
types of regression models. For example, replacing the linear
predictor of a generalized linearmodelwith (1) yields a struc-
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tured additive regression (STAR) model, where E(y|x) =
h(η(x)) with (known) response function h. However, struc-
tured additive predictors can be used much more generally,
in any class of regression models (as we will demonstrate in
one of our applications in a conditional transformationmodel
that allows to describe general distributional features and not
only the mean in terms of covariates).

A convenient way to fit models with structured additive
predictors is given by component-wise functional gradient
descent boosting (Bühlmann andYu 2003), whichminimizes
an empirical risk function with the aim to optimize predic-
tion accuracy. In case of STAR, the risk will usually corre-
spond to the negative log-likelihood but more general types
of risks can be defined for example for quantile regression
models (Fenske et al. 2011), or in the context of conditional
transformation models (Hothorn et al. 2014b). The boost-
ing algorithm is especially attractive due to its intrinsic vari-
able selection properties (Kneib et al. 2009; Hofner et al.
2011a) and the ease of combining a wide range of model-
ing alternatives in a single model specification. Furthermore,
a single estimation framework can be used for a very wide
range of distributional assumptions or even in distribution
free approaches. Thus, boosting models are not restricted to
exponential family distributions.

Modelswith structured additive predictors offer great flex-
ibility but typically result in smooth yet otherwise uncon-
strained effect estimates f̂l . To overcome this, we propose
a framework to fit models with constrained structured addi-
tive predictors based on boosting methods. We derive cyclic
effects in the boosting context and improved fitting methods
for monotonic P-splines. Bootstrap-confidence intervals are
proposed to assess the fitted models.

1.1 Application of constrained models

In the first case study presented, we model the effect of air
pollution on daily mortality in São Paulo (Sect. 7.1). Addi-
tionally, we control for environmental conditions (tempera-
ture, humidity) and model both the seasonal pattern and the
long-term trend. Furthermore, we consider the effect of the
pollutant of interest, SO2. Inmodeling the seasonal pattern of
mortality related to air pollution, the effect should be contin-
uous over time, and huge jumps for effects only one day apart
would be unrealistic. Thus, the first and last days of the year
should be continuously joined. Hence, we use smooth func-
tions with a cyclic constraint (Sect. 3.2). This has two effects.
First, it allows us to fit a plausible model as we avoid jumps
at the boundaries. Second, the estimation at the boundaries
is stabilized as we exploit the cyclic nature of the data.

From a biological point of view, it seems reasonable to
expect an increase in mortality with increasing concentration
of the pollutant SO2. Linear effects are monotonic but do not
offer enough flexibility in this case. Smooth effects, on the

other hand, offer more flexibility, but monotonicity might
be violated. To bridge this gap, smooth monotonic effects
can be used (Sect. 3.3). Additionally to the proposed boost-
ing framework, we will use the framework for constrained
structured additive models of Pya and Wood (2014) (which
is similar to ours but is restricted to exponential family dis-
tributions) for comparison in the first case study.

In a second case study, we aim at modeling the activity
of roe deer in Bavaria, Germany, given environmental condi-
tions, such as temperature, precipitation, and depth of snow;
animal-specific variables, such as age and sex; and a temporal
component. The latter reflects the animals’ day/night rhythm
as well as seasonal patterns. We model the temporal effect as
a smooth bivariate effect as the days change throughout the
year, i.e., the solar altitude changes in the course of a day and
with the seasons. Cyclic constraints for both variables (time
of the day and calendar day) should be used. Hence, we have
a bivariate periodic effect f (thours, tdays) (Sect. 4.2). As male
and female animals differ strongly in their temporal activity
profiles, we additionally use sex as a binary effect modifier
f (thours, tdays)I(sex = male), i.e., we have a varying coefficient
surface with a cyclicity constraint for the smooth bivariate
effect. Additionally, the effects of environmental variables
are allowed to smoothly vary over time but are otherwise
unconstrained.

In a third case study, we go beyond a model for the mean
activity by modeling the conditional distribution of a surro-
gate of roe deer activity: the number of deer–vehicle colli-
sions per day. In the framework of conditional transformation
models (Hothorn et al. 2014b), we fit daily distributions of
the number of such collisions and penalize differences in
these distributions between subsequent days. A monotonic
constraint is needed to fit the conditional distribution, while
a cyclic constraint should be used for the seasonal effect of
deer–vehicle collisions. These two conditions yield a tensor
product of two univariate constrained effects.

1.2 Overview of the paper

Model estimation based on boosting is briefly introduced in
Sect. 2. Monotonic effects, cyclic P-splines, and P-splines
with boundary constraints are introduced in Sect. 3, where
we also introduce varying coefficients. An extension of
monotonicity and cyclicity constraints to bivariate P-splines
is given in Sect. 4. In Sect. 5 we sketch inferential procedures
and derive bootstrap confidence intervals for the constrained
boosting framework. Computational details can be found in
Sect. 6. We present the three case studies described above
in Sect. 7. An overview of past and present developments of
constrained regression models is given in Online Resource
1 (Section A). The definition of the Kronecker product and
element-wise matrix product is given in Online Resource 1
(SectionB).Details on theSãoPaulo air pollution data set and

123



Stat Comput (2016) 26:1–14 3

the model specification is given in Online Resource 1 (Sec-
tion C), while Online Resource 1 (Section D) gives details
on the Bavarian roe deer data and the specification used to
model the activity of roe deer. Online Resource 1 (Section
E) gives an empirical evaluation of the proposed methods. R
code to reproduce the fitted models from our case studies is
given as electronic supplement.

2 Model estimation based on boosting

To fit a model with structured additive predictor (1) by
component-wise boosting (Bühlmann and Yu 2003), one
starts with a constant model, e.g., η̂(x) ≡ 0, and computes
the negative gradient u = (u1, . . . , un)� of the loss func-
tion evaluated at each observation. An appropriate loss func-
tion is guided by the fitting problem. For Gaussian regres-
sion models, one may use the quadratic loss function, and
for generalized linear models, the negative log-likelihood. In
the Gaussian regression case, the negative gradient u equals
the standard residuals; in other cases, u can be regarded as
“working residuals”. In the next step, each model compo-
nent fl , l = 1, . . . , L , of the structured additive model (1)
is fitted separately to the negative gradient u by penalized
least-squares. Only the model component that best describes
the negative gradient is updated by adding a small proportion
of its fit (e.g., 10 %) to the current model fit. New residu-
als are computed, and the whole procedure is iterated until a
fixed number of iterations is reached. The final model η̂(x)
is defined as the sum of all models fitted in this process.
As only one modeling component is updated in each boost-
ing iteration, variables are selected by stopping the boosting
procedure after an appropriate number of iterations. This is
usually done using cross-validation techniques.

For each of the model components, a corresponding
regression model that is applied to fit the residuals has to
be specified, the so-called base-learner. Hence, the base-
learners resemble the model components fl and determine
which functional form each of the components can take. In
the following sections,we introduce base-learners for smooth
effect estimates and derive special base-learners for fitting
constrained effect estimates. These can then be directly used
within the generic model-based boosting framework with-
out the need to alter the general algorithm. For details on
functional gradient descent boosting and specification of
base-learners, see Bühlmann andHothorn (2007) andHofner
et al. (2014b).

3 Constrained regression

3.1 Estimating smooth effects

For the sake of simplicity in the remainder of this paper, we
will consider an arbitrary continuous predictor x and a sin-

gle base-learner fl only when we drop the function index
l. To model smooth effects of continuous variables, we uti-
lized penalized B-splines (i.e., P-splines). These were intro-
duced by Eilers and Marx (1996) for nonparametric regres-
sion and were later transferred to the boosting framework
by Schmid and Hothorn (2008). Considering observations
x = (x1, . . . , xn)� of a single variable x , a non-linear func-
tion f (x) can be approximated as

f (x) =
J∑

j=1

β j B j (x; δ) = B(x)�β,

where Bj (·; δ) is the j th B-spline basis function of degree
δ. The basis functions are defined on a grid of J − (δ − 1)
inner knots ξ1, . . . , ξJ−(δ−1) with additional boundary knots
(and usually a knot expansion in the boundary knots) and
are combined in the vector B(x) = (B1(x), . . . , BJ (x))�,
where for simplicity δ was dropped. For more details on
the construction of B-splines, we refer the reader to Eilers
and Marx (1996). The function estimates can be written in
matrix notation as f̂ (x) = Bβ̂, where the design matrix
B = (B(x1), . . . ,B(xn))� comprises the B-spline basis vec-
tors B(x) evaluated for each observation xi , i = 1, . . . , n.
The function estimate f̂ (x) might adapt the data too closely
and might become too erratic. To enforce smoothness of the
function estimate, an additional penalty is used that penalizes
large differences of the coefficients of adjacent knots. Hence,
for a continuous response u (here the negative gradient vec-
tor), we can estimate the function by minimizing a penalized
least-squares criterion

Q(β) = (u − Bβ)�(u − Bβ) + λJ (β; d), (2)

where λ is the smoothing parameter that governs the trade-
off between smoothness and closeness to the data. We use a
quadratic difference penalty of order d on the coefficients,
i.e., J (β; d) = ∑

j (Δ
dβ j )

2, with Δ1β j = Δβ j := β j −
β j−1. By applying theΔ operator recursivelywe getΔ2β j =
Δ(Δβ j ) = β j − 2β j−1 + β j−2, etc. In matrix notation the
penalty can be written as

J (β; d) = β�D�
(d)D(d)β. (3)

The difference matrices D(d) are constructed such that
they lead to the appropriate differences: first- and second-
order differences result from matrices of the form

D(1) =
⎛

⎜⎝
−1 1

. . .
. . .

−1 1

⎞

⎟⎠ (4)
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Fig. 1 Illustration of cyclic P-splines of degree three, with 11 inner
knots and boundary knots ξ0 and ξ12. The gray curves correspond to
B-splines. The black curves correspond to B-splines that are “wrapped”
at the boundary knots, leading to a cyclic representation of the function.

The dashedB-spline basis depends on observations in [ξ9, ξ12]∪[ξ0, ξ1]
and thus on observations from both ends of the range of the covariate.
The same holds for the other two black B-spline curves (solid and dot-
ted)

and

D(2) =
⎛

⎜⎝
1 −2 1

. . .
. . .

. . .

1 −2 1

⎞

⎟⎠ , (5)

where empty cells are equal to zero. Higher order differ-
ence penalties can be easily derived. Difference penalties of
order one penalize the deviation from a constant. Second-
order differences penalize the deviation from a straight line.
In general, differences of order d penalize deviations from
polynomials of order d −1. The unpenalized effects, i.e., the
constant (d = 1) or the straight line (d = 2) are called the
null space of the penalty. The null space remains unpenalized,
even in the limit of λ → ∞.

The penalized least-squares criterion (2) is optimized in
each boosting step irrespective of the underlying distribution
assumption. The distribution assumption, or more generally,
a specific loss function, is only used to derive the appropriate
negative gradient of the loss function.To fit the negative gra-
dient vector u, we fix the smoothing parameter λ separately
for each base-learner such that the corresponding degrees of
freedom of the base-learner are relatively small (typically
not more than four–six degrees of freedom). The boosting
algorithm iteratively updates one base-learner per boosting
iteration. As the same base-learner can enter the model mul-
tiple times, the final effect, which is the sum of all effect
estimates for this base-learner, can adapt to arbitrarily higher
order smoothness. For details see Bühlmann and Yu (2003)
and Hofner et al. (2011a).

3.2 Estimating cyclic smooth effects

P-splines with a cyclic constraint (Eilers and Marx 2010)
can be used to model periodic, seasonal data. The cyclic

B-spline basis functions are constructed without knot expan-
sion (Fig. 1). The B-splines are “wrapped” at the boundary
knots. The boundary knots ξ0 and ξJ (equal to ξ12 in Fig. 1)
play a central role in this setting as they specify the points
where the function estimate should be smoothly joined. If
x is, for example, the time during the day, then ξ0 is 0:00,
whereas ξJ is 24:00. Defining the B-spline basis in this fash-
ion leads to a cyclic B-spline basis with the (n × (J + 1))
designmatrixBcyclic. The corresponding coefficients are col-
lected in the ((J + 1) × 1) vector β = (β0, . . . , βJ ).

Specifying a cyclic basis guarantees that the resulting
function estimate is continuous in the boundary knots. How-
ever, no smoothness constraint is imposed so far. This
can be achieved by a cyclic difference penalty, for exam-
ple, Jcyclic(β) = ∑J

j=0(β j − β j−1)
2 (with d = 1) or

Jcyclic(β) = ∑J
j=0(β j − 2β j−1 + β j−2)

2 (with d = 2),
where the index j is “wrapped”, i.e., j := J +1+ j if j < 0.
Thus, the differences between β0 and βJ or even βJ−1 are
taken into account for the penalty. Hence, the boundaries of
the support are stabilized, and smoothness in and around the
boundary knots is enforced. This can also be seen in Fig. 2.
The non-cyclic estimate (Fig. 2a) is less stable at the bound-
aries. As a consequence, the ends do not meet. The cyclic
estimate (Fig. 2b), in contrast, is stabilized at the boundaries,
and the ends are smoothly joined.

In matrix notation the penalty can be written as

Jcyclic(β; d) = β�D̃�
(d)D̃(d)β, (6)

with difference matrices

D̃(1) =

⎛

⎜⎜⎜⎝

1 −1
−1 1

. . .
. . .

−1 1

⎞

⎟⎟⎟⎠ (7)
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Fig. 2 a Non-cyclic and b cyclic P-splines. The red curve is the esti-
mated P-spline function. The blue, dashed curve is the same function
shifted one period to the right. The data were simulated from a cyclic
function with period 2π : f (x) = cos(x)+0.25 sin(4x) (black line) and
realizations with additional normally distributed errors (σ = 0.1; gray
dots). The cyclic estimate is closer to the true function and more stable
in the boundary regions, and the ends meet (see b at x = 2π ). (Color
figure online)

and

D̃(2) =

⎛

⎜⎜⎜⎜⎜⎝

1 1 −2
−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1

⎞

⎟⎟⎟⎟⎟⎠
, (8)

where empty cells are equal to zero. Coefficients can then
be estimated using the penalized least-squares criterion (2),
where the design matrix and the penalty matrix are replaced
with the corresponding cyclic counterparts, i.e.,Q(β) = (u−
Bcyclic β)�(u−Bcyclic β)+λJcyclic(β; d). Again, we fix the

smoothing parameter λ and control the smoothness of the
final fit by the number of boosting iterations.

As mentioned in Sect. 3.1, P-splines have a null space,
i.e., an unpenalized effect, which depends on the order of the
differences in the penalty. However, cyclic P-splines have a
null space that includes only a constant, irrespective of the
order of the difference penalty. Globally seen, i.e., for the
complete function estimate, the order of the penalty plays no
role (even in the limit λ → ∞). Locally, however, the order
of the difference penalty has an effect. For example, with
d = 2, the estimated function is penalized for deviations
from linearity and hence, locally approaches a straight line
(with increasing λ).

Anempirical evaluationof cyclic P-splines shows the clear
superiority of cyclic splines compared to unconstrained esti-
mates, both with respect to the MSE and the conformance
with the cyclicity assumption (Online Resource 1; Section
E.1).

3.3 Estimating monotonic effects

To achieve a smooth, yet monotonic function estimate, Eilers
(2005) introduced P-splines with an additional asymmetric
difference penalty. The penalized least-squares criterion (2)
becomes

Q(β) = (u − Bβ)�(u − Bβ) + λ1J (β; d)

+ λ2Jasym(β; c), (9)

with the quadratic difference penalty J (β; d) as in standard
P-splines (Eq. 3) and an additional asymmetric difference
penalty of order c

Jasym(β; c) =
J∑

j=c+1

v j (Δ
cβ j )

2 = β�D�
(c)VD(c)β, (10)

where the difference matrixD(c) is constructed as in Eqs. (4)
and (5). This asymmetric difference penalty ensures that the
differences (of order c) of adjacent coefficients are positive or
negative. The choice of c implies the type of the additional
constraint: monotonicity for c = 1 or convexity/concavity
for c = 2. In the remainder of this article, we restrict our
attention to monotonicity constraints; however, one can also
consider concave constraints. The asymmetric penalty looks
very much like the P-spline penalty (3) with the important
distinction of weights v j , which are specified as

v j =
{
0 if Δcβ j > 0

1 if Δcβ j ≤ 0.
(11)

The weights are collected in the diagonal matrix V =
diag(v). With c = 1, this enforces monotonically increas-
ing functions. Changing the direction of the inequalities in
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the distinction of cases leads to monotonically decreasing
functions. Note that positive/negative differences of adjacent
coefficients are sufficient but not necessary formonotonically
increasing/decreasing effects. As the weights (11) depend on
the coefficients β, a solution to (9) can only be found by
iteratively minimizing Q(β) with respect to β, where the
weights v are updated in each iteration. The estimation con-
verges if no further changes in the weight matrix V occur.
The penalty parameter λ2, which is associated with the addi-
tional constraint (10), should be chosen quite large (e.g.,
106; Eilers 2005) and resembles the researcher’s a priori
assumption of monotonicity. Larger values are associated
with a stronger impact of the monotonic constraint on the
estimation. The penalty parameter λ1 associated with the
smoothness constraint is usually fixed so that the overall
degrees of freedom of the smooth monotonic effect resem-
ble a pre-specified value. Again, by updating the base-learner
multiple times, the effect can adapt greater flexibility while
keeping the monotonicity assumption. A detailed discus-
sion of monotonic P-splines in the context of boosting mod-
els is given in Hofner et al. (2011b). In their presented
framework, the authors also derive an asymmetric differ-
ence penalty for monotonicity-constrained, ordered categor-
ical effects.

One can also use asymmetric difference penalties on dif-
ferences of order 0, i.e., on the coefficients themselves, to
achieve smooth positive or negative effect estimates. This
idea can also be used to fit smooth effect estimates with
an arbitrarily fixed co-domain by specifying either upper or
lower bounds or both bounds at the same time.

3.3.1 Improved fitting method for monotonic effects

An alternative to iteratively minimizing the penalized least-
squares criterion (9) to obtain smooth monotonic estimates,
is given by quadratic programming methods (Goldfarb and
Idnani 1982, 1983). To fit the monotonic base-learner to the
negative gradient vector u using quadratic programming, we
minimize the penalized least-squares criterion (2) with the
additional constraint

D(c)β ≥ 0,

with difference matrix D(c) as defined above and null vec-
tor 0 (of appropriate dimension). To change the direction of
the constraint, e.g., to obtain monotonically decreasing func-
tions, one can use the negative difference matrix −D(c). The
results obtained by quadratic programming are (virtually)
identical to the results obtained by iteratively solving (9)
(Online Resource 1; Table 9), but the computation time can
be greatly reduced. An empirical evaluation of monotonic
splines (fitted using quadratic programming methods) shows
the superiority of monotonic splines compared to uncon-

strained estimates: The MSE is comparable to the MSE of
unconstrained effects and a clear superiority is given with
respect to the conformance with the monotonicity assump-
tion (Online Resource 1; Section E.1).

3.4 Estimating effects with boundary constraints

In some cases, e.g., for extrapolation, it might be of interest
to impose boundary constraints, such as constant or linear
boundaries, to higher order splines. These constraints can be
enforced by using a strong penalty on, e.g., the three outer
spline coefficients on each side of the range of the data or on
one side only. Constant boundaries are obtained by a strong
penalty on the first-order differences, while a strong second-
order difference penalty results in linear boundaries. Techni-
cally, this can be obtained by an additional penalty

Jboundary(β; e) =
J∑

j=c+1

v j (Δ
eβ j )

2

= β�D�
(e)V

(3)D(e)β, (12)

where D(e) is a difference matrix of order e (cf. Eqs. (4)

and (5)). The weight v
(3)
j is one if the corresponding coef-

ficient is subject to a boundary constraint. Thus, here the
first and the last three elements of v(3) are equal to one, and
the remaining weights are equal to zero. The weight matrix
V(3) = diag(v(3)). Boundary constraints can be successfully
imposed on P-splines as well as on monotonic P-splines by
adding the penalty (12) to the respective penalized least-
squares criterion. A quite large penalty parameter λ3 associ-
ated with the boundary constraint is chosen (e.g., 106). For
an application of modeling the gas flow in gas transmission
networks usingmonotonic effects with boundary constraints,
see Sobotka et al. (2014).

3.5 Varying coefficients

Varying-coefficient models allow one tomodel flexible inter-
actions in which the regression coefficients of a predictor
vary smoothly with one ormore other variables, the so-called
effect modifiers (Hastie and Tibshirani 1993). The varying
coefficient term can be written as f (x, z) = x ·β(z), where z
is the effect modifier and β(·) a smooth function of z. Techni-
cally, varying coefficients can bemodeled by fitting the inter-
action of x and a basis expansion of z. Thus, we can use all
discussed spline types, such as simple P-splines, monotonic
splines, or cyclic splines, tomodel β(z). Furthermore, bivari-
ate P-splines as discussed in the following section can be
facilitated as well.
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4 Constrained effects for bivariate P-splines

4.1 Bivariate P-spline base-learners

Bivariate, or tensor product, P-splines are an extension of
univariate P-splines that allow modeling of smooth effects
of two variables. These can be used to model smooth inter-
action surfaces, most prominently spatial effects. A bivari-
ate B-spline of degree δ for two variables x1 and x2 can be
constructed as the product of two univariate B-spline bases
Bjk(x1, x2; δ) = B(1)

j (x1; δ) · B(2)
k (x2; δ). The bivariate B-

spline basis is formed by all possible products Bjk , j =
1, . . . , J , k = 1, . . . , K . Theoretically, different numbers of
knots for x1 (J ) and x2 (K ) are possible, as well as B-spline
basis functions with different degrees δ1 and δ2 for x1 and x2,
respectively. A bivariate function f (x1, x2) can be approx-
imated as f (x1, x2) = ∑J

j=1
∑K

k=1 β jk B jk(x1, x2) =
B(x1, x2)�β,where the vector ofB-spline bases for variables

(x1, x2) equals B(x1, x2) =
(
B11(x1, x2), . . . , B1K (x1, x2),

B21(x1, x2), . . . , BJK (x1, x2)
)�

, and the coefficient vector

β = (β11, . . . , β1K , β21, . . . , βJ K )�. (13)

The (n × J K ) design matrix then combines the vectors
B(xi ) for observations xi = (xi1, xi2), i = 1, . . . , n, such

that the i th row contains B(xi ), i.e., B =
(
B(x1), . . . ,B(xi ),

. . . ,B(xn)
)�

. The design matrix B can be conveniently

obtained by first evaluating the univariate B-spline bases

B(1) =
(
B(1)
j (xi1)

)

i=1,...,n
j=1,...,J

and B(2) =
(
B(2)
j (xi1)

)

i=1,...,n
j=1,...,k

of the variables x1 and x2 and subsequently constructing the
design matrix as

B = (B(1) ⊗ e�
K ) 
 (e�

J ⊗ B(2)), (14)

where eK = (1, . . . , 1)� is a vector of length K and eJ =
(1, . . . , 1)� a vector of length J . The symbol ⊗ denotes the
Kronecker product and 
 denotes the element-wise product.
Definitions of both products are given in Online Resource 1
(Section B).

As for univariate P-splines, a suitable penalty matrix is
required to enforce smoothness. The bivariate penalty matrix
canbe constructed fromseparate, univariate difference penal-
ties for x1 and x2, respectively. Consider the (J × J ) penalty
matrix K(1) = (D(1))�D(1) for x1, and the (K × K ) penalty
matrix K(2) = (D(2))�D(2) for x2. The penalties are con-
structed using differencematricesD(1) andD(2) of (the same)
order d. However, different orders of differences d1 and d2
could be used if this is required by the data at hand. The
combined difference penalty can then be written as the sum

of Kronecker products

Jtensor(β; d) = β�(K(1) ⊗ IK + IJ ⊗ K(2))β, (15)

with identity matrices IJ and IK of dimension J and K ,
respectively.

With the negative gradient vector u as response, mod-
els can then be estimated by optimizing the penalized least-
squares criterion in analogy to univariate P-splines:

Q(β) = (u − Bβ)�(u − Bβ) + λJtensor(β; d), (16)

with design matrix (14), penalty (15) and fixed smoothing
parameter λ. For more details on tensor product splines, we
refer the reader to Wood (2006b). Kneib et al. (2009) give
an introduction to tensor product P-splines in the context of
boosting.

4.2 Estimating bivariate cyclic smooth effects

Based on bivariate P-splines, cyclic constraints in both direc-
tions of x1 and x2 can be straightforwardly implemented.One
builds the univariate, cyclic designmatricesB(1)

cyclic andB
(2)
cyclic

for x1 and x2, respectively. The bivariate design matrix then
is Bcyclic = (B(1)

cyclic ⊗ e�
K ) 
 (e�

J ⊗ B(2)
cyclic), as in Eq. (14).

With the univariate, cyclic difference matrices D̃(1) for x1
and D̃(2) for x2 (cf. Eqs. (7) and (8)), we obtain cyclic penalty
matricesK(1) = (D̃(1))�D̃(1) andK(2) = (D̃(2))�D̃(2). Thus,
in analogy to the usual bivariate P-spline penalty (Eq. 15), the
bivariate cyclic penalty can be written as Jcyclic, tensor(β) =
β�(K(1)⊗IK +IJ ⊗K(2))β. Estimation is then a straightfor-
ward application of the penalized least-squares criterion as
in (Eq. 16)with cyclic design and penaltymatrices. An exam-
ple of bivariate, cyclic splines is given in Sect. 7.2, where a
cyclic surface is used to estimate the combined effect of time
(during the day) and calendar day on roe deer activity.

4.3 Estimating bivariate monotonic effects

As shown in Hofner (2011), it is not sufficient to add
monotonicity constraints to the marginal effects because the
resulting interaction surface might still be non-monotonic.
Thus, instead of the marginal functions, the complete
surface needs to be constrained in order to achieve a
monotonic surface. Therefore, we utilized bivariate P-
splines and added monotonic constraints for the row- and
column-wise differences of the matrix of coefficients B =(
β jk

)

j=1,...,J ; k=1,...,K
. As proposed by Bollaerts et al.

(2006), one can use two independent asymmetric penalties
to allow different directions of monotonicity, i.e., increasing
in one variable, e.g., x1, and decreasing in the other vari-
able, e.g., x2, or one can use different prior assumptions of
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monotonicity reflected in different penalty parameters λ. Let
B denote the (n × J K ) design matrix (14) comprising the
bivariate B-spline bases of xi , and let β denote the corre-
sponding (J K × 1) coefficient vector (13). Monotonicity is
enforced by the asymmetric difference penalties

Jasym,1(β; c) =
J∑

j=c+1

K∑

k=1

v
(1)
jk (Δc

1β jk)
2

= β�(D(1) ⊗ IK )�V(1)(D(1) ⊗ IK )β,

Jasym,2(β; c) =
J∑

j=1

K∑

k=c+1

v
(2)
jk (Δc

2β jk)
2

= β�(IJ ⊗ D(2))�V(2)(IJ ⊗ D(2))β,

where Δc
1 are the column-wise and Δc

2 the row-wise dif-
ferences of order c, i.e., Δ1

1β jk = β jk − β( j−1)k and
Δ1

2β jk = β jk − β j (k−1), etc. Thus, Jasym,1 is associated
with constraints in the direction of x1, while Jasym,2 acts in
the direction of x2. The corresponding difference matrices
are denoted by D(1) and D(2). The weights v

(l)
jk , l = 1, 2

are specified in analogy to (11), i.e., with c = 1, we obtain
monotonically increasing estimates with weights v

(l)
jk = 1 if

Δc
l β jk ≤ 0, and v

(l)
jk = 0 otherwise. Changing the inequality

sign leads to monotonically decreasing function estimates.
Differences of order c = 2 lead to convex or concave con-
straints. For the matrix notation, the weights are collected in
the diagonal matrices V(l) = diag(v(l)). The constraint esti-
mation problem for monotonic surface estimates in matrix
notation becomes

Q(β) = (u − Bβ)�(u − Bβ) + λ1Jtensor(β; d)

+ λ21Jasym,1(β; c) + λ22Jasym,2(β; c), (17)

where Jtensor(β; d) is the standard bivariate P-spline penalty
of order d with corresponding fixed penalty parameter λ1.
The penalty parameters λ21 and λ22 are associated with con-
straints in the direction of x1 and x2, respectively. To enforce
monotonicity in both directions, one should choose relatively
large values for both penalty parameters (e.g., 106). Setting
either of the two penalty parameters to zero results in an
unconstrained estimate in this direction, with a constraint in
the other direction. For example, by setting λ21 = 0 and
λ22 = 106, one gets a surface that is monotone in x2 for each
value of x1 but is not necessarily monotone in x1.

4.3.1 Model fitting for monotonic base-learners

Model estimation can be achieved by using either the itera-
tive algorithm to solve Eq. (17) or quadratic programming
methods as in the univariate case described in Sect. 3.3.
In the latter case, we minimize the penalized least-squares
criterion (16) subject to the constraints (D(1) ⊗ IK )β ≥ 0

and (IJ ⊗ D(2)) ≥ 0, i.e., we constrain the row-wise or
column-wise differences to be non-negative. As above, mul-
tiplying the differencematrices by−1 leads tomonotonically
decreasing estimates. Using the two constraints is equivalent
to requiring

(
D(1) ⊗ IK
IJ ⊗ D(2)

)
β ≥ 0.

5 Confidence intervals and confidence bands

In general it is difficult to obtain theoretical confidence
bands for penalized regression models in a frequentist set-
ting. In the boosting context, we select the best fitting base-
learner in each iteration and additionally shrink the parame-
ter estimates. To reflect both, the shrinkage and the selection
process, it is necessary to use bootstrap methods in order
to obtain confidence intervals. Based on the bootstrap one
can draw random samples from the empirical distribution of
the data, which can be used to compute empirical confidence
intervals based on point-wise quantiles of the estimated func-
tions (Hofner et al. 2013; Schmid et al. 2013). The optimal
stopping iteration should be obtained within each of these
bootstrap samples, i.e., a nested bootstrap is advised. We
propose to use 1,000 outer bootstrap samples for the confi-
dence intervals. We will give examples in the case studies
below.

To obtain simultaneous P % confidence bands, one can
use the point-wise confidence intervals and rescale these until
P % of all curves lie within these bands (Krivobokova et al.
2010). An alternative to confidence intervals and confidence
bands is stability selection (Meinshausen and Bühlmann
2010; Shah and Samworth 2013; Hofner et al. 2014a), which
adds an error control (of the per-family error rate) to the
built-in selection process of boosting.

6 Computational details

The R system for statistical computing (R Core Team 2014)
was used to implement the analyses. The package mboost
(Hothorn et al. 2010, 2014a;Hofner et al. 2014b) implements
the newly developed framework for constrained regression
models based on boosting. Unconstrained additive models
were fitted using the function gam() from package mgcv
(Wood 2006a, 2010), and function scam() from pack-
age scam (Pya 2014; Pya and Wood 2014) was used to fit
constrained regression models based on a Newton-Raphson
method.

In mboost, one can use the function gamboost() to
fit structured additive models. Models are specified using
a formula, where one can define the base-learners on the
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Fig. 3 Estimated effects of the model ‘mboost’ together with 80 % (dark gray) and 95 % (light gray) point-wise bootstrap confidence intervals:
a cyclic seasonal effect, b unconstrained long-term trend, and c monotonic effect of SO2. (Color figure online)

right hand side: bols() implements ordinary least-squares
base-learners (i.e., linear effects), bbs() implements P-
spline base-learners, and brandom() implements random
effects. Constrained effects are implemented in bmono()
(monotonic effects, convex/concave effects and boundary
constraints) and bbs(..., cyclic = TRUE) (cyclic
P-spline base-learners). Confidence intervals for boosted
models can be obtained for fittedmodels usingconfint().
For details on the usage see the R code, which is given as
electronic supplement.

7 Case studies

In order to demonstrate the wide range of applicability of
the derived framework, we show three case studies with dif-
ferent challenges, in the following sections. These include
(a) the combination of monotonic and cyclic effect estimates
in the context of Poisson models, (b) the estimation of a
bivariate cyclic effect and cyclic varying coefficients in a
Gaussian model, and (c) the application of a tensor product
of a monotonic and a cyclic effect to a fit conditional distrib-
ution model which models the complete distribution at once.

7.1 São Paulo air pollution

In this study, we examined the effect of air pollution in São
Paulo on mortality. Saldiva et al. (1995) investigated the
impact of air pollution on mortality caused by respiratory
problems of elderly people (over 65 years of age). We con-
centrated on the effect of SO2 on mortality of elderly people.
We considered a Poissonmodel for the number of respiratory
deaths of the form

log(μ) = x�β + f1(day of the year) + f2(time) + f3(SO2),

where the expected number of death due to respiratory
causes μ is related to a linear model with respect to covari-

ates x, such as temperature, humidity, days of week, and
non-respiratory deaths. Additionally, we wanted to adjust
for temporal changes; the study was conducted over four
successive years from January 1994 to December 1997. This
allows us to decompose the temporal effect into a smooth
cyclicity-constrained effect for the day of the year ( f1, sea-
sonal effect) and a smooth long-term trend for the variation
over the years ( f2). Finally, we added a smooth effect f3 of
the pollutant’s concentration. Smooth estimates of the effect
of SO2 on respiratory deaths behaved erratically. This seems
unreasonable as an increase in the air pollutant should not
result in a decreased risk of death. Hence, a monotonically
increasing effect should lead to a more stable model that can
be interpreted. Details of the data set can be found in Online
Resource 1 (Section C), where we also describe the model
specification in detail.

In addition to our boosting approach (‘mboost’), we
used the scam package (Pya 2014; Pya and Wood 2014)
to fit a shape constrained model (‘scam’) with essentially
the same model specifications as for the boosting model
‘mboost’. We also fitted an unconstrained additive model
using mgcv (Wood 2006a, 2010) (‘mgcv’). In this model
we did not use the decomposition of the seasonal effect but
fitted a single smooth effect over time (that combines the
seasonal pattern and the long term trend) and we did not
use a monotonicity constraint. Otherwise, the model speci-
fications are essentially the same as for the boosting model
‘mboost’. R code to fit all discussed models is given as
electronic supplement.

7.1.1 Results

As we used a cyclic constraint for the seasonal effect, the
ends of the function estimate meet, i.e., day 365 and day 1
are smoothly joined (see Fig. 3a). The effect showed a clear
peak in the cool and dry winter months (May–August in the
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Fig. 4 Comparison of a the
effect estimates for time
(combination of long-term trend
with the seasonal pattern) and b
the effect estimates for SO2. All
effects are centered around zero.
(Color figure online)
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southern hemisphere) and a decreased risk of mortality in
the warm summer months. This is in line with the results of
other studies (e.g., Saldiva et al. 1995). In the trend over the
years (Fig. 3b), mortality decreased from 1994 to 1996 and
increased thereafter. However, one should keep in mind that
this trend needs to be combined with the periodical effect to
form the complete temporal pattern.

The estimated smooth effect for the pollutant SO2 result-
ing from the model ‘mboost’ (Fig. 3c) indicated that an
increase of the pollutant’s concentration does not result in
a (substantially) higher mortality up to a concentration of
40μg/m3. From this point onward, a steep increase in the
expected mortality was observed, which flattened again for
concentrations above60μg/m3.Hence, a dose-response rela-
tionship was observed, where higher pollutant concentra-
tions result in a higher expected mortality. At the same time,
the model indicated that increasing pollutant concentrations
are almost harmless until a threshold is exceeded, and that
the harm of SO2 is not further increased after reaching an
upper threshold. In an investigation of the effect of PM10

Saldiva et al. (1995) found no “safe” threshold in their
study of elderly people in São Paulo. They also investi-
gated the effect of SO2 but did not report on details, such as
possible threshold values, in this case. The more recent
study on the effect of air pollution in São Paulo on children
(Conceição et al. 2001) used only linear effects for pollutant
concentrations. Hence, no threshold values can be estimated.

The linear effects of the model ‘mboost’ (results not
presented here; see R code in the electronic supplement)
showed (small) negative effects of humidity and of mini-
mum temperature (with a lag of 2 days), which indicates that
higher humidity and higherminimum temperature reduce the
expected number of deaths. Regarding the days of the week,
mortality was higher on Monday than on Sunday and was
even lower on all other days. This result might be due to dif-
ferent behavior and thus personal exposure to the pollutant
on weekends or, more likely, due to a lag in recording on
weekends.

The resulting time trend of ‘mgcv’ is very similar com-
pared to that of the model ‘mboost’ (Fig. 4a), despite the
fact that ‘mgcv’ was fitted without a cyclic constraint and
thus allowing for a changing shape from year to year. How-
ever, the estimation of the complete time pattern without
decomposition into the trend effect and the periodical, sea-
sonal effect was less stable. Themodel ‘scam’ decomposes
the seasonal pattern in the same manner as ‘mboost’ and
uses a cyclic constraint for the day of the year and a smooth
long term trend. Yet, the resulting effect estimate seems quite
unstable at the boundary of the years where it shows some
extra peaks. Modeling the trend and the periodic effect sepa-
ratelymay have the disadvantage that some of the small-scale
changes (e.g., around day 730) are missed. However, without
this decomposition,models donot allowadirect inspectionof
the seasonal effect throughout the year. Hence, decomposing
influence of time into seasonal effects and smooth long-term
effects seems highly preferable as it offers a stable, yet flex-
ible method to model the data and allows an easier and more
profound interpretation.

Both monotonic approaches (‘mboost’ and ‘scam’)
showed a similar pattern in the effect of SO2 (Fig. 4b), but
‘scam’ does not flatten out for high values of the SO2 con-
centration. Estimates from non-monotonic model (‘mgcv’)
were very wiggly for small values up to a concentration of
40μg/m3 and drop to zero for large values, which seems
unreasonable.

Finally, all considered models had almost the same linear
effects for the covariates (results not shown here; see R code
in the electronic supplement). Hence, we can conclude that
the linear effects in this model are very stable and are hardly
influenced by the fitting method, i.e., boosting, penalized
iteratively weighted least-squares (P-IWLS; see e.g.,Wood
2008), or Newton-Raphson (Pya and Wood 2014), nor by
constraints, i.e.,monotonic or cyclic constraints, that are used
to model the data.

Concerning the predictive accuracy, we compared the
(negative) predictive log-likelihood of the two constrained
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models ‘mboost’ and ‘scam’ on 100 bootstrap samples.
Bothmodels performed almost identical with an average pre-
dictive risk of 1,352.7 (sd: 34.00) for ‘mboost’ and of
1,353.0 (sd: 33.74) for ‘scam’. Thus, in this low dimen-
sional example boosting can well compete with standard
approaches for constrained regression. In situations where
variable selection is of major importance or when we want
to fit models without assuming an exponential family, boost-
ing shows its special strengths.

7.2 Activity of Roe Deer (Capreolus capreolus)

In the Bavarian Forest National Park (Germany), the applied
wildlife management strategy is regularly examined. Part of
the strategy involves trying to understand the activity pro-
files of the various species, including lynx, wild boar, and
roe deer. The case study here focuses on the activity of
European roe deer (Capreolus capreolus). According to
Stache et al. (2013), animal activity is influenced by exoge-
nous factors, such as the azimuth of the sun (i.e., day/night
rhythm and seasons), temperature, precipitation, and depth
of snow. Another important role is played by endogenous
factors, such as the species (e.g., reflected in their diet; roe
deer are browsers), age, and sex. Additionally, as roe deer
tend to be solitary animals, a high level of individual specific
variation in activity is to be expected. The activity data was
recorded using telemetry collars with an acceleration sensor
unit. The activity is represented by a number ranging from 0
to 510, where higher values represent higher activity.

Activity profiles for the day and for the year were pro-
vided. As earlier analysis showed, the activity of males and
females differs greatly. Hence, sex should be considered as
an effect modifier in the analysis by defining sex-specific
activity profiles. We considered a Gaussian model with the
additive predictor

E(activity|·) = x�β + temp · f1(tdays)

+ depth of snow · f2(tdays)

+ precipitation · f3(tdays)

+ f4(thours, tdays)

+ I(sex = male) f5(thours, tdays) + broe,

where x contains the categorical covariates sex, type of col-
lar, year of observation, and age. Temperature, depth of snow,
and precipitation entered the model rescaled to |x | ≤ 1 by
dividing the variables by the respective absolute maximum
values. The effects of temperature ( f1), depth of snow ( f2),
and precipitation ( f3) depend on the calendar day (tdays). An
interaction surface ( f4) for time of the day (thours) and calen-
dar day (t) was specified to flexibly model the daily activity
profiles throughout the year. An additional effect formale roe
deer was specified with f5. Finally, a random intercept broe
for each roe deer was included. Details on the data set can
be found in Online Resource 1 (Section D), where we also
describe the model specification in detail. R code is given as
electronic supplement.

7.2.1 Results

In the resulting model, six of ten base-learners were selected.
The largest contribution to the model fit was given by the
smooth interaction surfaces f4 and f5, which represent the
time-dependent activity profiles for male and female roe deer
(Fig. 5). The individual activity of the roe deer broe sub-
stantially contributed to the total predicted variation, with
a range of approximately 20 units (not depicted here). The
time-varying effects of temperature and depth of snow and
the effect of the type of collar had a lower impact on the
recorded activity of roe deer.

The activity profiles (Fig. 5) showed that roe deer were
most active in and around the twilight phases in the morn-
ings and evenings. This holds for the whole year and for
both males and females. In general, the activity profiles of
female and male roe deer were very similar, but male activ-
ity was much higher and had more variability. The activity of
roe deer was strongly influenced by the season: During sum-
mer, the activity was much higher throughout the entire day.
The phase of least activity was around noon. This behavior
was enhanced in autumn. In spring, activity was more evenly

Fig. 5 Influence of time on roe
deer activity. Combined effect
of calendar day and time of day
a for female roe deer (= f4) and
b for male roe deer (= f4 + f5),
together with twilight phases
(gray). White areas depict the
mean activity level throughout
the year; blue shading represents
decreased activity, and red
shading represents increased
activity. (Color figure online)
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Fig. 6 Time-varying effects (i.e., β(tdays)) of a temperature and b
depth of snow together with 80 % (dark gray) and 95 % (light gray)
point-wise bootstrap confidence intervals. Note that both variables are
rescaled, i.e., β(tdays) is the maximal effect. On a given day, the effects
of temperature and depth of snow are linear. The higher the amplitude
for a given day, the stronger the effect will be

distributed throughout the daytime, and lowest activity
occurred during the hours after midnight.

The effects of climatic variables are depicted in Fig. 6. A
higher temperature led to lower activity (negative effect of
temperature), except fromMay to July, when higher temper-
atures led to higher activity (positive effect of temperature).
The depth of snow had a negative effect on roe deer activity
throughout the year, i.e., deeper snow led to lower activity.
The effect of snow depth was stronger in the summer months
(when there is hardly any snow), and less strong in January
and February even though the snow depth was the greatest.
Precipitation had no effect on roe deer activity according to
our model.

7.3 Deer–vehicle collisions in Bavaria

Important areas of application for both monotone and
cyclic base-learners are conditional transformation models
(Hothorn et al. 2014b). Here, we describe the distribution of
the number of deer–vehicle collisions (DVC) that took place
throughout Bavaria, Germany, for each day k = 1, . . . , 365
of the year 2006 (see Hothorn et al. 2012 for a more detailed
description of the data), i.e.,

P(number of DVCs ≤ y|day = k) = 
(h(y|k)),

where 
 is the distribution function of the standard nor-
mal distribution. The conditional transformation function h
is parametrized as

h(y|k) = (Bday(k) ⊗ BDVC(y))β,

where Bday is a cyclic B-spline transformation for the day of
the year (where Dec 31 and Jan 1 should match) and BDVC is
aB-spline transformation for the number of deer–vehicle col-
lisions. The Kronecker product Bday(k)⊗BDVC(y) defines a
bivariate tensor product spline, which is fitted under smooth-
ness constraints in both dimensions. Since the transformation
function h(y|k) must be monotone in y for all days k (other-
wise
(h(y|k)) is not a distribution function), amonotonicity
constraint is needed for the second term, i.e., one requires
monotonicity with respect to the number of deer–vehicle
collisions but not with respect to time. The model was fit-
ted by minimizing a scoring rule for probabilistic forecasts
(e.g., Brier score or log score). Here, we applied the boosting
approach described in (Hothorn et al. 2014b). R code to fit
the model is given as electronic supplement.
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Fig. 7 Number of deer–vehicle collisions (DVCs) in Bavaria, Ger-
many, for each day of the year 2006. Superimposed lines depict the
conditional quantiles (5, 10, 25, 50, 75, 90 and 95 %) of this distribu-
tion for each day of the year
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7.3.1 Results

We display the corresponding quantile functions over the
course of the year 2006 in Fig. 7. Three peaks (territorial
movement at beginning of May, rut at end of July/ beginning
of August, and early in October) were identified. While the
first two peaks are expected, the significance of the third peak
in October remains to be discussed with ecologists. Over
the year, not only the mean but also higher moments of the
distribution of the number of deer–vehicle collisions varied
over time.

8 Concluding remarks

In this article, we extended the flexible modeling framework
based on boosting to allow inclusion of monotonic or cyclic
constraints for certain variables.

Themonotonicity constraint on continuous variables leads
to monotonic, yet smooth effects. Monotonic effects can
be furthermore applied to bivariate P-splines. In this case,
one can specify different monotonicity constraints for each
variable separately. However, it is ensured that the resulting
interaction surface is monotonic (as specified). Monotonic-
ity constraints might be especially useful in, but are not nec-
essarily restricted to, data sets with relatively few observa-
tions or noisy data. The introduction of monotonicity con-
straints can help to estimatemore appropriatemodels that can
be interpreted. In the context of conditional transformation
models monotonicity constraints are an essential ingredient
as we try to estimate distribution functions, which are per
definition monotonic. Many other approaches to monotonic
modeling result in non-smooth function estimates (e.g., Dette
et al. 2006; Leeuw et al. 2009; Fang andMeinshausen 2012).
In the context of many applications, however, we feel that
smooth effect estimates are more plausible and hence prefer-
able.

Cyclic estimates can be easily used tomodel, for example,
seasonal effects. The resulting estimate is a smooth effect
estimate,where the boundaries are smoothlymatched.Cyclic
effects can be applied straightforwardly to model surfaces
where the boundaries in each direction shouldmatch if cyclic
tensor product P-splines are used. The idea of cyclic effects
could also be extended to ordinal covariates with a temporal,
periodic effect—such as days of the week.

Finally, both restrictions—monotonic and cyclic const-
raints—can be mixed in one model: Some of the covariates
are monotonicity restricted, others have cyclic constraints
and the rest is modeled, for example, as smooth effects with-
out further restrictions or as linear effects.

Both monotonic P-splines and cyclic P-splines inte-
grate seamlessly in the functional gradient descent boost-
ing approach as implemented in mboost (Hofner et al.

2014b; Hothorn et al. 2014a). This allows a single frame-
work for fitting possible complex models. Additionally, the
idea of asymmetric penalties for adjacent coefficients can
be transferred from P-splines to ordinal factors (Hofner et
al. 2011b), which can be integrated in the boosting frame-
work as well. (Constrained) boosting approaches can be
used in any situation where standard estimation techniques
are used. They are especially useful, when variable and
model selection are of major interest, and they can be used
even if the number of variables is much larger than the
number of observations (p � n). The proposed frame-
work can be used to fit generalized additive models if one
uses the negative log-likelihood as loss function. Other loss
functions to fit constrained quantile or expectile regression
models (Fenske et al. 2011; Sobotka and Kneib 2012) or
robust models with constraints based on the Huber loss
can be used straight forward. The framework can be also
transferred to conditional transformation models (Hothorn
et al. 2014b) or generalized additive models for location,
scale and shape (GAMLSS; Rigby and Stasinopoulos 2005),
where boosting methods where recently developed (Mayr et
al. 2012; Hofner et al. 2014c).
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