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Abstract Educational studies are often focused on growth
in student performance and background variables that can
explain developmental differences across examinees. To
study educational progress, a flexible latent variable model
is required to model individual differences in growth given
longitudinal item response data, while accounting for time-
heterogenous dependencies between measurements of stu-
dent performance. Therefore, an item response theorymodel,
to measure time-specific latent traits, is extended to model
growth using the latent variable technology. Following
Muthén (Learn IndividDiffer 10:73–101, 1998) andAzevedo
et al. (Comput Stat Data Anal 56:4399–4412, 2012b), among
others, the mean structure of the model represents devel-
opmental change in student achievement. Restricted covari-
ance pattern models are proposed to model the variance–
covariance structure of the student achievements. The main
advantage of the extension is its ability to describe and
explain the type of time-heterogenous dependency between
student achievements.An efficientMCMCalgorithm is given
that can handle identification rules and restricted paramet-
ric covariance structures. A reparameterization technique is
used, where unrestricted model parameters are sampled and
transformed to obtain MCMC samples under the implied
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restrictions. The study is motivated by a large-scale lon-
gitudinal research program of the Brazilian Federal gov-
ernment to improve the teaching quality and general struc-
ture of schools for primary education. It is shown that the
growth in math achievement can be accurately measured
when accounting for complex dependencies over grades
using time-heterogenous covariances structures.

Keywords Longitudinal item response theory ·Covariance
patterns · Bayesian inference · MCMC

1 Introduction

Longitudinal item response data occur when students are
assessed at several time points (Singer and Andrade 2000).
This kind of data consist of response patterns of different
examinees responding to different tests at different measure-
ment occasions (e.g. grades). This leads to a complex depen-
dence structure that arises from the fact that measurements
from the same student are typically correlated (Tavares and
Andrade 2006).

Various longitudinal item response theory (LIRT) models
have been proposed to handle the correlation between mea-
surementsmade over time. The popularmixed-effects regres-
sion modeling approach is often considered, where random
effects are used to model the between-student and within-
student dependencies. Conoway (1990) proposed a Rasch
LIRT model to analyze panel data and proposed a marginal
maximum likelihood method (Bock and Aitkin 1981) for
parameter estimation. Liu and Hedeker (2006) developed a
comparable three-level model to analyze LIRT data for ordi-
nal response data. Eid (1996) defined a LIRTmodel for poly-
tomous response data. Douglas (1999) analyzed longitudinal
response data from a quality of life instrument using a joint
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model, which consisted of proportional odds model and the
graded item response model.

In these mixed effects models, the assumption of con-
ditional independence is achieved by the random effects.
That is, the assumption is made that the time-variant mea-
surements are conditionally independent given the student’s
latent trait. The random effects imply a compound symme-
try covariance structure, which assumes equal variances and
covariances over time. In practice, the within-student latent
trait dependencies are often not completely modeled and the
errors are still correlated over time. Furthermore, in regres-
sion using repeatedmeasurements it is common for the errors
to show a time series structure (e.g., an autoregressive depen-
dence) (Fitzmaurice et al. 2008; Hedeker andGibbons 2006).
If the dependence structure of the errors is not correctly spec-
ified, the parameter estimates and their standard errors will
be biased.

Therefore, following the work of Jennrich and Schluchter
(1986), Muthén (1998) and Tavares and Andrade (2006),
restricted covariance pattern models are considered to model
the time series structure of the errors. That is, the errors
are allowed to correlate over time, and different variance-
covariance structures are proposed to capture time-specific
between-student variability and time-heterogenous longitu-
dinal dependencies between latent traits. An important aspect
is that the covariance matrices considered allow for time-
heterogenous variances and covariances. The covariance pat-
tern modeling framework is integrated in the LIRT model-
ing approach. At the student level, the time-specific latent
traits are assumed to be multivariate normally distributed,
and the within-student correlation structure is modeled using
a covariance pattern model. This makes it possible to model
the specific type of time-invariant and time-variant depen-
dencies.

This modeling framework builds on the work of Tavares
andAndrade (2006),whoproposed a logistic three-parameter
IRT model with a multivariate normal population distrib-
ution for the latent traits. They used a covariance matrix to
model the within-examinee dependency, where the variances
are allowed to vary over time but the covariance structure
is assumed to be time-homoscedastic. The modeling frame-
work also relates to the generalized linear latent trait model
for longitudinal data of Dunson (2003), where the latent vari-
able covariance structure is modeled via a linear transition
model using observed predictors and an autoregressive com-
ponent.

A full Gibbs sampling (FGS) algorithm is developed,
which avoids the use of MCMC methods that require adap-
tive implementations, like the Metropolis–Hastings algo-
rithm, to regulate the convergence of the algorithm. Fur-
thermore, Sahu (2002) and Azevedo et al. (2012a) have
shown that an FGS algorithm tends to perform better, in
terms of parameter recovery, than a Metropolis–Hastings-

within-Gibbs sampling algorithm when dealing with IRT
models. The proposed MCMC algorithm recovers all para-
meters properly and accommodates awide rangeof variance–
covariance structures. Using a parameter transformation
method, MCMC samples are obtained of restricted parame-
ters by transforming MCMC samples of unrestricted para-
meters. The proposed modeling framework is extended with
various Bayesian model-fit assessment tools. Among other
things, a Bayesian p-value is defined based on a suitable dis-
crepancy measure for a global model-fit assessment and it is
shown how Bayesian latent residuals can be used to evaluate
the normality assumptions (Albert and Chib 1995).

This paper is outlined as follows. After introducing the
Bayesian LIRT model, the FGS method is given, which can
handle different variance–covariance structures. Then, the
accuracy of the MCMC estimation method as well as the
prior sensitivity are assessed. Subsequently, a real data study
is presented, where the data set comes from a large-scale
longitudinal study of children from the fourth to the eight
grade of different Brazilian public schools. One of the objects
of the study is to analyze the student achievements across
different grade levels. The model assessment tools are used
to evaluate the fit of the model. In the last section, the results
and some model extensions are discussed.

2 The model

A longitudinal test design is considered, where tests are
administered to different examinees at different points in
time. For each measurement occasion at time point t, t =
1, ..., T, nt examinees complete a test consisting of It items.
The design can be typed as an incomplete block design such
that common items are defined across tests and the total num-
ber of items equals I ≤ ∑T

t=1 It . For a complete design,
nt = n, for all t . Dropouts and inclusion of students during
the study are allowed.

The following notation will be introduced. Let θ j t rep-
resent the latent trait of examinee j ( j = 1, . . . , n,) at
time-point or measurement occasion t (t = 1, . . . , T ),
θ j. = (θ j1, . . . , θ jT )t the vector of the latent traits of the
examinee j, and θ .. = (θ1., . . . , θn.)

t the vector of all latent
traits. Let Yi jt represent the response of examinee j to item
i (i = 1, . . . , I ) in time-point t, Y . j t = (Y1 j t , . . . ,YIt j t )

t

the response vector of examinee j in time-point t, Y ..t =
(Y t

.1t , . . . ,Y
t
.nt t )

t the response vector of all examinees in
time-point t, Y ... = (Y t

..1, . . . ,Y
t
..T )t the entire response

set. Let ζ i denote the vector of parameters of item i, ζ =
(ζ t

1, . . . , ζ
t
I )

t the whole set of item parameters, and ηθ the
vector with population parameters (related to the latent traits
distribution).

A LIRT model is proposed that consists of two stages. At
the first stage, a time-specific two-parameter IRT model is

123



Stat Comput (2016) 26:443–460 445

considered for the measurement of the time-specific latent
traits given observed dichotomous response data. The item-
specific response probabilities are assumed to be indepen-
dently distributed given the item and time-specific latent trait
parameters. At the second stage, the subject-specific latent
traits are assumed to be multivariate normally distributed
with a time-heterogenous covariance structure, that is:

Yi jt | (θ j t , ζ i ) ∼ Bernoulli(Pi jt )

Pi jt = P(Yi jt = 1 | θ j t , ζ i ) = Φ(aiθ j t − bi ) (1)

θ j.|ηθ ∼ NT (μθ ,Ψ θ ), (2)

where ηθ consists on μθ and Ψ θ and Φ(.) stands for the
cumulative normal distribution function. In this parametriza-
tion, the difficulty parameter bi = aib∗

i is a transformation
of the original difficulty parameter denoted by b∗

i .
The within-subject dependencies among the time-specific

latent traits are modeled using a T -dimensional normal dis-
tribution, denoted as NT (μθ ,Ψ θ ), with mean vector μθ and
unstructured covariance matrix Ψ θ , where

μθ =

⎡

⎢
⎢
⎢
⎣

μθ1

μθ2
...

μθT

⎤

⎥
⎥
⎥
⎦

and Ψ θ =

⎡

⎢
⎢
⎢
⎣

ψθ1 ψθ12 . . . ψθ1T

ψθ12 ψθ2 . . . ψθ2T
...

...
. . .

...

ψθ1T ψθ2T . . . ψθT

⎤

⎥
⎥
⎥
⎦

, (3)

respectively. A total of T (T+1)
2 parameters need to be esti-

mated for the unstructured covariance model.

2.1 Restricted covariance pattern structures

In the LIRT model, the mean component of the multivariate
population distribution for the latent traits can be extended
to allow latent growth curves and include explanatory infor-
mation. Besides modeling the mean structure, it is also
possible to model the correlation structure between latent
traits. Therefore, different covariance patterns are consid-
ered, which are restricted versions of the unrestricted covari-
ance matrix (Eq. 3). Each restricted covariance pattern can
address specific dependencies between the latent traits.

Several arguments can be given to explicitly model the
covariance structure of the errors. First, the unstructured
covariance model for the latent variables measured at dif-
ferent occasions will allow one parameter for every unique
covariance term. There are no assumptions made about the
nature of the residual correlation between the latent traits
over time. However, for unbalanced data designs, small sam-
ple sizes with respect to the number of subjects and items,
and many measurement occasions, the unstructured covari-
ance model may lead to unstable covariance parameter esti-
mates with large posterior variances (Hedeker and Gibbons
2006; Jennrich and Schluchter 1986). In practical test situ-
ations, the test length differs over occasions and students,

and the measurement error associated with the traits dif-
fer over students and measurement occasions (e.g., NELS,
the national education longitudinal study; student monitor-
ing systems for pupils in the Netherlands). As noted by
Muthén (1998), the available longitudinal test data are of
complex multivariate form, often involving different test
forms, attrition, and students sampled hierarchically within
schools.

Second, a fitted covariance pattern can provide insight in
the residual correlation between latent measurements over
time. When a covariance pattern is identified, information
about the underlying growth process will be revealed. That
is, on top of the change in latent traits modeled in the mean
structure, the fitted covariance pattern can further explain
the growth in latent traits. For example, when covariances of
latent traits change over time, a fitted covariance pattern can
be used to identify and describe the type of change.

Third, by correctly modeling the subject-specific corre-
lated residuals across measurement occasions, more accu-
rate statistical inferences can be made from the mean struc-
ture. Here, time-heteroscedastic covariance structures are
considered to model complex patterns of residuals over
time, where population variances of latent measurements
can differ over time-points. A restricted covariance pattern
model can lead to a decrease in model fit compared to the
unstructured covariance pattern model, when the data do
not fully support the restriction. When the restricted covari-
ance model is supported by the data, it can lead to an
improved fit compared to the unstructured model. Further-
more, due to the decrease in the number of model para-
meters, model selection criteria might prefer the restricted
covariance model over the unstructured covariance model.
Muthén (1998) and Jennrich and Schluchter (1986), among
others, already noted that the efficiency of the mean struc-
ture parameters can be improved by modeling the covari-
ance structure parsimoniously. For sample sizes and unbal-
anced data, the parameter estimates are most likely to be
improved.

Muthén (1998) explained in more detail that the growth
model consists of two components, a mean and a covari-
ance structure component. Both components need to bemod-
eled properly to describe the growth, and data interpretations
depend on the specification of each component. Hedeker and
Gibbons (2006) and Fitzmaurice et al. (2008) have shown
that the analysis of longitudinal multivariate response data
requires more complex covariance structures to capture the
often complex dependency structures. Here, different covari-
ancepatternmodelswill be considered. For all cases, the sam-
pling design is allowed to be unbalanced, where subjects can
vary in the number of measurement occasions and response
observations per measurement. The measurement times can
vary over subjects and are not restricted to be equally spaced
over subjects.
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2.1.1 First-order heteroscedastic autoregressive model:
ARH

This structure assumes that the correlations between sub-
ject’s latent traits decrease, when distances between instants
of evaluation increase. However the magnitude of the corre-
lations depend only on the distance between the time-points,
not on their values. In addition, the variances are not assumed
to follow any specific pattern. The form of the covariance
matrix is given by,

Ψ θ =

⎡

⎢
⎢
⎢
⎢
⎣

ψθ1

√
ψθ1

√
ψθ2ρθ . . .

√
ψθ1

√
ψθT ρT−1

θ√
ψθ1

√
ψθ2ρθ ψθ2 . . .

√
ψθ2

√
ψθT ρT−2

θ

.

.

.
.
.
.

. . .
.
.
.

√
ψθ1

√
ψθT ρT−1

θ

√
ψθ2

√
ψθT ρT−2

θ . . . ψθT

⎤

⎥
⎥
⎥
⎥
⎦

,

(4)

where ψθt ∈ (0,∞), for t = 1, . . . , T , and ρθ ∈ (−1, 1).
Note that the number of parameters for the ARH(1) is T +1,
which is much lower than the number of parameters for the
unstructured covariance matrix. For more details, see Singer
and Andrade (2000), Tavares and Andrade (2006), Andrade
and Tavares (2005) and Fitzmaurice et al. (2008).

2.1.2 Heteroscedastic uniform model: HU

This is a special case of the ARH, which also assumes
time-heterogenous variances over measurement occasions
but time-homogenous correlations over time. So, the HU
model assumes equal correlations between all pairs of time-
specific latent trait measurements, independently of the dis-
tance between them. The heteroscedastic uniform covariance
matrix is given by,

Ψ θ =

⎡

⎢
⎢
⎢
⎣

ψθ1

√
ψθ1

√
ψθ2ρθ . . .

√
ψθ1

√
ψθT ρθ√

ψθ1

√
ψθ2ρθ ψθ2 . . .

√
ψθ2

√
ψθT ρθ

.

.

.
.
.
.

. . .
.
.
.√

ψθ1

√
ψθT ρθ

√
ψθ2

√
ψθT ρθ . . . ψθT

⎤

⎥
⎥
⎥
⎦

,

(5)

again, ψθt ∈ (0,∞), for t = 1, . . . , T , and ρθ ∈ (−1, 1).
This covariance structure reduces the number of covariance
parameters to one, while allowing T variance parameters,
which resembles the total number of parameters used for the
ARH. See Singer and Andrade (2000), Tavares and Andrade
(2006), Andrade and Tavares (2005) and Fitzmaurice et al.
(2008) for more details.

2.1.3 Heteroscedastic Toeplitz model: HT

As a special case of covariance pattern HU, the heteroscedas-
tic Toeplitz model assumes a zero covariance between sub-
ject’s latent traits of two nonconsecutive instants. This might

be suitable when correlations decay quickly due to rela-
tively large time-spaces between non-consecutive measure-
ment occasions. This covariance pattern is represented by,

Ψ θ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ψθ1

√
ψθ1

√
ψθ2ρθ 0 . . . 0√

ψθ1

√
ψθ2ρθ ψθ2

√
ψθ2

√
ψθ3ρθ . . . 0

0
√

ψθ2

√
ψθ3ρθ ψθ3 . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 . . . ψθT

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(6)

In this case, ψθt ∈ (0,∞) for t = 1, . . . , T , but ρθ ∈
(−k, k), where k depends on the value of T . For instance,
k ≈ 1/

√
2, for T = 3 and k = 1/2 for large T . For more

details see Singer and Andrade (2000), Andrade and Tavares
(2005), and Tavares and Andrade (2006).

2.1.4 Heteroscedastic covariance model: HC

The heteroscedastic covariance (HC) model is a restricted
version of the heteroscedastic uniform model, where in the
HC model, a common covariance is assumed across time
points. As in the other covariancemodels, time-heterogenous
variances are assumed. The HC model also corresponds to
an unstructured covariance matrix with equal covariances.
Note that the time-heterogeneous variances define time-
heterogenous correlations,while assuming a commoncovari-
ance term across time. Subsequently, relatively high time-
specific latent trait variances will specify a low correlation
between them. The HC covariance structure is represented
by,

Ψ θ =

⎡

⎢
⎢
⎢
⎣

ψθ1 ρθ . . . ρθ

ρθ ψθ2 . . . ρθ

...
...

. . .
...

ρθ ρθ . . . ψθT

⎤

⎥
⎥
⎥
⎦

, (7)

where, ψθt ∈ (0,∞) for t = 1, . . . , T , and |ρθ | <

mini, j
√

ψθi ψθ j . Fore more details, see Andrade and Tavares
(2005) and Tavares and Andrade (2006).

2.1.5 First-order autoregressive moving-average model:
ARMAH

As the first-order autoregressive ARH structure, correlations
between subject’s latent traits decrease as long as the dis-
tances between the instants of evaluation increase. However,
the decrease is further parameterized due to the additional
covariance parameter γθ . This covariance matrix, denoted
as ARMAH, generalizes the ARH model, since it supports a
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more flexible modeling of the time-specific correlations. The
ARMAH covariance matrix is represented by,

Ψ θ =

⎡

⎢
⎢
⎢
⎢
⎣

ψθ1

√
ψθ1ψθ2γθ . . .

√
ψθ1ψθT γθρ

T−2
θ√

ψθ1ψθ2γθ ψθ2 . . .
√

ψθ2ψθT γθρ
T−3
θ

.

.

.
.
.
.

. . .
.
.
.

√
ψθ1ψθT γθρ

T−2
θ

√
ψθ2ψθT γθρ

T−3
θ . . . ψθT

⎤

⎥
⎥
⎥
⎥
⎦

.

(8)

In this case, ψθt ∈ (0,∞) for t = 1, . . . , T , and
(γθ , ρθ ) ∈ (−1, 1)2. For more details, see Singer and
Andrade (2000) and Rochon (1992).

2.1.6 Ante-dependence model: AD

The last covariance structure model that will be considered is
specifically useful when time points are not equally spaced
and/or there is an additional source of variability present.
This (first-order) AD model is a general covariance model
that allows for changes in the correlation structure over time
and unequally spaced measurement occasions.

The AD model generalizes the ARH using time-specific
covariance parameters. It also generalizes the ARMAH
model, since the covariance structure of the ARMAH is
defined with ρθ1 = γθ and ρθ2 , . . . , ρθT = ρθ . The AD
model supports a more dynamic modeling of the covariance
pattern compared to ARH and ARMAH. The AD covariance
model is represented by,

Ψ θ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ψθ1

√
ψθ1ψθ2ρθ1

. . .
√

ψθ1ψθT

T−1∏

t=1

ρθt

√
ψθ1ψθ2ρθ1 ψθ2 . . .

√
ψθ2ψθT

T−1∏

t=2

ρθt

.

.

.
.
.
.

. . .
.
.
.

√
ψθ1ψθT

T−1∏

t=1

ρθt

√
ψθ2ψθT

T−1∏

t=2

ρθt . . . ψθT

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(9)

where,ψθt ∈ (0,∞) and ρθt ∈ (−1, 1), for t = 1, 2, ..., T −
1. In conclusion, the AD model permits variances and cor-
relations to change over time, and uses 2T − 1 parameters.
For more details, see Singer and Andrade (2000) and Nunez-
Anton and Zimmerman (2000).

2.2 A restricted unstructured covariance structure

The latent variable framework will require a reference time-
point to identify the latent scale. To accomplish that, the latent
mean and variance of the first time-point will be fixed to
zero and one, respectively. This way, the latent trait estimates
across time will be estimated on one common scale, since
an incomplete test design is used such that common items
are administered at different measurement occasions (time-

points). The common items, also known as anchors, make it
possible to measure the latent traits on one common scale.

However, the estimation of the covariance parameters is
complicated due to the identifying constraints. Note that even
for the unstructured covariancematrix, a restriction is implied
on a variance parameter, which leads to an restricted unstruc-
tured covariance matrix. Furthermore, the restrictions on the
parameters of the latent trait distribution also complicate the
specification of priors. In this case, assuming an inverse-
Wishart distribution for the unstructured covariance matrix
is not possible, when the variance parameter of the first time-
point is restricted to one.

In the present latent variable framework, a novel prior
modeling approach will be followed to account for the
restricted covariance structure. Following McCulloh et al.
(2000), a parametrizationof the latent trait’s covariance struc-
ture is considered. Therefore, the following partition of the
latent traits structure is defined,

θ j. = (θ j1, θ j2, . . . , θ jT )t = (θ j1, θ j (1))
t ,

μθ = (μθ1 , μθ2 , . . . , μθT )t = (μθ1 ,μθ(1))
t ,

where, θ j (1) = (θ j2, . . . , θ jT )tandμθ(1) = (μθ2 , . . . , μθT )t .
In this notation, the index (1) indicates that the first compo-
nent is excluded. It follows that the covariance structure, see
definition in Eq. (3), is partitioned as,

Ψ θ =
[

ψθ1 ψ t
θ(1)

ψθ(1) Ψ θ(1)

]

, (10)

where ψθ(1) = (ψθ12 , . . . , ψθ1T )t and

Ψ θ(1) =
⎡

⎢
⎣

ψθ2 . . . ψθ2T
...

. . .
...

ψθ2T . . . ψθT

⎤

⎥
⎦ . (11)

From properties of the multivariate normal distribution,
see Rencher (2002), it follows that

θ j (1)|θ j1 ∼ N(T−1)
(
μ∗,Ψ ∗) , (12)

where

μ∗ = μθ(1) + ψ−1
θ1

ψθ(1)
(
θ j1 − μθ1

)
,

and

Ψ ∗ = Ψ θ(1) − ψ−1
θ1

ψθ(1)ψ
t
θ(1). (13)

As a result, when conditioning on the restricted first-time
point parameter, θ j1, the remaining θ j (1) are conditionally
multivariate normally distributed given θ j1, with an unre-
stricted covariance matrix. The matrix Ψ ∗ is an unstructured
covariance matrix without any identifiability restrictions, see
Singer and Andrade (2000). As a result, the common mod-
eling (e.g., using an Inverse-Wishart prior) and estimation
approaches can be applied for Bayesian inference, see Gel-
man et al. (2004).
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For estimation purposes (using the restriction ψθ1 = 1), it
is convenient to eliminate the restricted parameter ψθ1 from
the vector of covariances,ψθ(1) (see the covariance structures
in Equations from (4) to (9)) between the first component,
θ j1, and the remaining components θ j (1). This new vector is
denoted as ψ∗ and is equal to

ψ∗ = ψθ(1)/
√

ψθ1 . (14)

Subsequently, the conditional distribution of the unre-
stricted latent variables is expressed as

θ j (1) | θ j1 = μθ(1) + ψ∗
√

ψθ1

(
θ j1 − μθ1

)+ ξ j . (15)

where ξ j ∼ N (0,Ψ ∗). The variance and correlation para-
meters,

ψ∗ and Ψ ∗, (16)

define an one-to-one relation with the free parameters of the
original covariance matrix Ψ θ , since the parameter ψθ1 is
restricted to 1. As a result, the estimates of the population
variances and covariances can be obtained from the estimates
of Eq. (16). The latent variable distribution of the first mea-
surement occasion will be restricted to identify the model.
This is done by re-scaling the vector of latent variable values
of the first measurement occasion to a pre-specified scale in
eachMCMC iteration. The latent variable population distrib-
utionof subsequentmeasurement occasions are conditionally
specified according to Eq. (15), given the restricted popula-
tion distribution parameters of the first measurement occa-
sion. Subsequently, the covariance parameters of the latent
multivariate model are not restricted for identification pur-
poses, which will facilitate a straightforward specification of
the prior distributions.

3 Bayesian inference and Gibbs sampling methods

The marginal posterior distributions comprise the main tool
to perform Bayesian inference. Unfortunately, it is not pos-
sible to obtain closed-form expressions of the marginal pos-
terior distributions. An MCMC algorithm will be used to
obtain samples from the marginal posteriors, see Gamerman
and Lopes (2006). More specifically, we will develop a FGS
algorithm to estimate all parameters simultaneously.

MCMC methods for longitudinal and multivariate probit
models have been developed by, among others, Albert and
Chib (1993), Chib and Greenberg (1998), Chib and Carlin
(1999), Imai and Dyk (2005), and McCulloh et al. (2000).
A particular problem in Bayesian modeling of longitudi-
nal multivariate response data is the prior specification for
covariance matrices. An Inverse-Wishart prior distribution
is plausible when covariance parameters are not function-
ally dependent, see Tiao and Zellner (1964). When this is

not the case, the prior specification of covariance parameters
becomes much more complicated. Here, identification rules
impose restrictions on the covariance parameters of the latent
trait distribution. Therefore, the covariance structure is mod-
eled by conditioning on the restricted parameters, which are
related to the first measurement occasion. FollowingMcCul-
loh et al. (2000), this approach supports a proper implementa-
tion of the identifying restrictions and aFGS implementation.

Conjugate prior distributions are considered, see Gel-
man et al. (2004) and Gelman (2006). According to the
approach presented in Sect. 2, the parameters of interest are
(μt

θ , ψθ1 ,ψ
∗t )t and Ψ ∗. Conjugate priors are specified as,

μθ ∼ NT (μ0,Ψ 0) , (17)

ψθ1 ∼ IG(ν0, κ0) , (18)

ψ∗ ∼ NT−1(μψ ,Ψ ψ ) , (19)

Ψ ∗ ∼ IWT−1(νΨ ,Ψ Ψ ) , (20)

where IG(ν0, κ0) stands for the inverse-gamma distribu-
tion with shape parameter ν0 and scale parameter κ0, and
IWT−1(νΨ ,Ψ Ψ ) for the inverse-Wishart distribution with
degrees of freedom νΨ and dispersion matrix Ψ Ψ .

The prior for the item parameters is specified as

p
(
ζ i = (ai , bi ) | μζ ,Ψ ζ

) ∝ exp

(

−0.5
(
ζ i − μζ

)t
Ψ −1

ζ

× (ζ i − μζ

)
)

11(ai>0), (21)

where μζ and Ψ ζ are the hyperparameters, and 11 the usual
indicator function. The hyperparameters are fixed and often
set in such a way that they represent reasonable values for
the prior parameters.

In order to facilitate an FGS approach, and to account for
missing response data, an augmented data scheme will be
introduced, see Albert (1992) and Albert and Chib (1993).
An augmented scheme is introduced to sample normally dis-
tributed latent response data Z ... = (Z111, ..., ZIT nT )t , given
the discrete observed response data; that is,

Zi jt |(θ j t , ζ i ,Yi jt ) ∼ N (aiθ j t − bi , 1), (22)

where Yi jt is the indicator of Zi jt being greater than zero.
To handle incomplete block designs, and indicator vari-

able I is defined that defines the set of administered items for
each occasion and subject. This indicator variable is defined
as follows,

Ii j t =
{
1, item i administered for examinee j at time point t
0, missing by design.

(23)

The not-selective missing responses due to uncontrolled
events as dropouts, inclusion of examinees, non-response,
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or errors in recoding data are marked by another indicator,
which is defined as,

Vi jt =
{
1, observed response of examinee j at time pointt on item i
0, otherwise,

(24)

It is assumed that the missing data are missing at ran-
dom (MAR), such that the distribution of patterns of miss-
ing data does not depend on the unobserved data. When the
MAR assumption does not hold and the missing data are
non-ignorable, a missing data model can be defined to model
explicitly the pattern of missingness. In case of MAR, the
observed data can be used to make valid inferences about the
model parameters.

To ease the notation, let indicator matrix I represent both
cases of missing data. Then, under the above assumptions,
the distribution of augmented data Z... (conditioned on all
other quantities) is given by

p(z... | y..., ζ , θ .., ηθ , I) ∝
T∏

t=1

n∏

j=1

∏

i |Ii j t=1

×
{
exp

{
−0.5

(
zi j t − aiθ j t + bi

)2
}
11(zi j t ,yi j t )

}
, (25)

where 11(zi j t ,yi j t ) represents the restriction that zi j t is greater
(lesser) than zero when yi j t equals one (zero), according to
Eq. (22).

Given the augmented data likelihood in Eq. (25) and the
prior distributions in Eqs. (2), (17), (18), (19), (20) and (21),
the joint posterior distribution is given by:

p(θ .., ζ ,μθ , ψθ1 ,ψ
∗,Ψ ∗|z..., y...)

∝ p(z...|θ .., ζ , y...)p(θ ..|ηθ )

×p(ζ |μζ ,Ψ ζ )p(ηθ ). (26)

where

p(θ ..|ηθ ) =
n∏

j=1

p(θ j.|ηθ ), (27)

and

p(ηθ ) = p(μθ )p(ψθ1)p(ψ
∗)p(Ψ ∗) .

This posterior distribution (26) has an intractable formbut,
as shown in the Appendix, the full conditionals are known
and easy to sample from. Let (.) denote the set of all necessary
parameters. The FGS algorithm is defined as follows:

1. Start the algorithm by choosing suitable initial values.
Repeat steps 2–10.

2. Simulate Zi jt from Zi jt | (.), i = 1, . . . , It , j =
1, . . . , n, t = 1, . . . , T .

3. Simulate θ j. from θ j. | (.), j = 1, ..., n.
4. Simulate ζ i from ζ i | (.), i =1,...,I.
5. Simulate μθ from μθ | (.).
6. Simulate ψθ1 from ψθ1 | (.).

7. Simulate ψ∗ from ψ∗ | (.).
8. Simulate Ψ ∗ from Ψ ∗ | (.).
9. Compute the unstructured covariance matrix using the

sampled covariance components fromSteps 6–8 andEqs.
(10), (13) and (14).

10. Through a parameter transformation method using
sampled unstructured covariance parameters, compute
restricted covariance components of interest. The sam-
pled restricted covariance structure Ψ θ is used when
repeating steps 2–8.

To handle the restriction μθ1 = 0, the expression in Eq.
(12) is used to simulate μθ(1). To simulate (μθ1 , ψθ1)

t , the
following decomposition is used in (27),

p(θ j.|ηθ ) = p(θ j (1)|ηθ , θ j1)p(θ j1|ηθ1
).

where ηθ1
= (μθ1 , ψθ1)

t . To identify the model, the scale
of the latent variable of measurement occasion one is trans-
formed to mean zero and variance one. It is also possible to
restrict the parameters (μθ1 , ψθ1)

t to specific values.
In Step 9, MCMC samples of Ψ ∗ are drawn from an

inverse-Wishart distribution, and each sampled covariance
matrix is restricted to be positive definite. Now, the follow-
ing relationship can be defined,

det (Ψ θ ) = det (ψθ1)det
(
Ψ θ(1) − ψ−1

θ1
ψθ(1)ψ

t

θ(1)

)

= ψθ1det (Ψ
∗),

using Eqs. (10) and (13) and a property of the determinant of
block matrices. As a result, the det (Ψ θ ) is greater than zero
since both the determinant of Ψ ∗ and ψθ1 are greater than
zero. This implies positive definite samples of Ψ θ .

InMCMCStep 10, parameters of a posited covariance pat-
tern structure are computed given an MCMC sample of the
unrestricted unstructured covariance parameters. Each sim-
ulated covariance matrix will be positive definite, since it is
based on a positive definite unstructured covariance matrix.
In the Appendix, the reparameterization for each covariance
structure is specified, which facilitates the sampling of the
parameters of the restricted covariance matrices. That is, in
each MCMC iteration, parameters of a specific covariance
pattern are computed using sampled unstructured covariance
parameters. This procedure is based on the notion that each
restricted covariance pattern is nested in the most general
unstructured pattern, and that in the MCMC procedure para-
meter transformations can be used to achieve draws from the
transformed parameter distribution.

4 Selection of covariance structure

Accurate inferences are obtained when selecting the most
appropriate covariance pattern. Selecting a too simple covari-
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ance pattern can lead to underestimated standard errors and
biased parameter estimates, see Singer and Andrade (2000)
and Singer and Andrade (1994). Selecting a too complex
covariance pattern can lead to a decrease in power and effi-
ciency. The general method to select an appropriate covari-
ance structure is based on some Bayesian optimality crite-
rion. The different covariance structures are viewed as com-
peting covariance models and the one that optimizes the
Bayesian model criterion is selected. Attention is focused
on three criteria for model selection, which are widely used
in the literature; the deviance information criterion (DIC),
posterior expectation of the Aikaike’s information criterion
(AIC) and the posterior expectation of the Bayesian informa-
tion criterion (BIC), see Spiegelhalter et al. (2002). For each
criterion, the covariance pattern is selected with the smallest
criterion value. All competing covariance structures are time
heterogenous, which generalizes the work of Andrade and
Tavares (2005) and Tavares and Andrade (2006).

The general form of the different information criteria is
the deviance (i.e. minus two times the log-likelihood) plus a
penalty term for model complexity, which includes the num-
ber of model parameters. Let ϑ denote the set of relevant
parameters, that is, the latent traits, the item and the popu-
lation parameters, then the following deviance is considered
to define the model selection criteria,

D1(ϑ) = −2
[
log p( y | θ, ζ ) + log p(θ | μθ ,Ψ θ )

]

= −2

⎛

⎝
T∑

t=1

n∑

j=1

∑

i |Ii j t=1

log P(Yi jt = yi j t |θ j t , ζ i )

+
n∑

j=1

log p(θ j | μθ ,Ψ θ )

⎞

⎠

= −2(LL + LLLT ),

where p(θ j | μθ ,Ψ θ ) represents the density of the mul-
tivariate normal distribution, LL = ∑T

t=1
∑n

j=1
∑

i |Ii j t=1

log P(Yi jt = yi j t |θ j t , ζ i ) and LLLT = ∑n
j=1 log p(θ j |

μθ ,Ψ θ ).
The deviance depends highly on the estimated latent traits.

The covariance structure will influence the latent trait esti-
mates, although they are mostly influenced by the data. The
terms LL and LLLT both emphasize the fit of the latent
traits, andwill diminish the importance of the fit of the covari-
ance structure. Therefore, the deviance term D2(ϑ) = LL is
also considered to evaluate the fit of the covariance structure
by evaluating the fit of the latent traits in the likelihood term.

Let Di (ϑ) denote the posterior mean deviance and Di (ϑ̂)

the deviance at the posterior mean. Then, the DIC is defined
as,

DICi = 2Di (ϑ) − Di (ϑ̂), i = 1, 2,

where the penalty function for model complexity is deter-
mined by an estimate of the effective number of model para-
meters, which allows nonzero covariance amongmodel para-
meters.

For the AIC and the BIC, the penalty function for model
complexity is determined by the effective number of parame-
ters in the model, which is difficult or impossible to ascertain
when randomeffects are involved. FollowingSpiegelhalter et
al. (2002) and Congdon (2003), the posterior mean deviance
is used as a penalized fit measure, which includes a measure
of complexity. Then, the following specification is made for
the AIC and the BIC,

AICi = Di (ϑ) + 2(2(I − 1) + (T + nΨ θ )),

and

BICi = Di (ϑ) + (2(I − 1) + (T + nΨ θ )) ln(n
∗),

i = 1, 2, respectively, where nΨ θ is the total number of
covariance parameters, T is the number of time points and
n∗ = ∑n

j=1
∑T

t=1
∑

i=1I Vi j t .
The AIC and BIC results are not guaranteed to lead to

the same model, see Spiegelhalter et al. (2002) and Ando
(2007). The BIC has a much higher penalty term for model
complexity than the AIC. Therefore, a relatively more con-
cise description of the covariance structure can be expected
from the BIC. When different results of the two criteria are
obtained, the model selected by the BIC is preferred over the
one selected by the AIC, see Spiegelhalter et al. (2002) and
Ando (2007).

The deviance can be approximated using the MCMC out-
put, and using G MCMC iterations the posterior mean of the
deviance is estimated by

Di (ϑ) = 1

G

G∑

g=1

Di (ϑ
g),

and the deviance at the posterior mean by,

Di (ϑ̂) = Di

⎛

⎝ 1

G

G∑

g=1

ϑg

⎞

⎠ ,

with index g representing the g-th value of the valid MCMC
sample (considering the burn-in and the thin value).

Here, the selection of the most optimal covariance struc-
ture is carried out using Bayesian measures of model com-
plexity as in Spiegelhalter et al. (2002). It also possible to
use pseudo-Bayes factors as in Kass and Raftery (1995), or
reversible Jump MCMC algorithms, see Green (1995) and
Azevedo (2008), which would require a different computa-
tional implementation.
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4.1 Model assessment: posterior predictive checks

Besides using model selection criteria for selecting the
covariance structure, the fit of the general LIRT model
can be evaluated using Bayesian posterior predictive tests
and Bayesian residual analysis techniques (Albert and Chib
1995). The literature about posterior predictive checks for
Bayesian item responsemodels shows several diagnostics for
evaluating themodel fit.Ageneral discussion canbe found in,
among others, Stern and Sinharay (2005), Sinharay (2006),
Sinharay et al. (2006), and Fox (2004, 2005, 2010).

The common posterior predictive tests can be generalized
to make them applicable for the LIRT model. Each poste-
rior predictive test is based on a discrepancy measure, where
this discrepancy measure is defined in such a way that a spe-
cific assumption or general fit of the model can be evaluated.
The main idea is to generalize the well known discrepancy
measures to a longitudinal structure.

In general, let yobs be the matrix of observed responses,
and yrep the matrix of replicated responses generated from
its posterior predictive distribution. The posterior predictive
distribution of the response data of time-point t is represented
by

p
(
yrept | yobst

)
=
∫

p
(
yrept | θ t

)
p
(
θ t | yobst

)
dθ t ,

where θ t denotes the set of model parameters correspond-
ing time-point t . Generally, given a discrepancy measure
D
(
yt , θ t

)
, the replicated data are used to evaluate whether

the discrepancy value given the observed data is typical
under the model. A p-value can be defined that quantifies
the extremeness of the observed discrepancy value in time-
point t ,

p0
(
y(obs)
t

)
= P

(
D
(
y(rep)
t , θ t

)
≥D

(
y(obs)
t , θ t

)
| y(obs)

t

)
,

where the probability is taken over the joint posterior of
( y(rep)

t , θ t ). In some cases, the discrepancy measure can be
generalized from the time-point level to the population level.
In that case, the discrepancy measure can be used to evaluate
model fit at the time-point and population level.

Here, p-values based on a chi-square distance, predictive
distributions of latent scores, and Bayesian latent residuals
are considered (Fox 2004, 2010; Azevedo et al. 2011). The
chi-square posterior predictive check is defined to evaluate
the predictive score distribution with the observed score dis-
tribution. The discrepancy measure for evaluating the score
distribution is defined as,

D (yt ) =
∑

l

(
nl,t − E(nl,t )

)2

V (nl,t )
,

where nl,t is the number of subjects with a score l atmeasure-
ment occasion t , and E(.) and V (.) stand for the expectation

and the variance, respectively. The posterior predictive check
based on the score distribution is evaluated using MCMC
output.

The predictive score distribution is easily calculated using
the MCMC output. In each iteration, a sample of the score
distribution is obtained. This is accomplished by generating
response data for the sampled parameters. Subsequently, the
number of subjects can be calculated for each possible score
at each time-point. For each possible score, the median and
95 % credible interval is calculated to evaluate the score dis-
tribution.

A general approach for model adequacy assessment using
Bayesian (latent) residuals is described by Albert and Chib
(1995). Here, Bayesian residuals are analyzed for the latent
traits at each time-point. The following quantity is consid-
ered,

θ̂ j − μ̂θt√
ψ̂θt

,

for t = 1, 2, ..., T , using posterior mean estimates. Sub-
sequently, the normality assumption is evaluated using box
and/or Q-Q plots.

5 Simulation study

Convergence properties and parameter recovery were ana-
lyzed using simulated data. The following hyperparameter
settings were used in the simulation study:

μψ = 0T−1 ,Ψ ψ = τ IT−1 (28)

Ψ Ψ = (νΨ − T + 1)
(
I − Ψ ψ

)
, (29)

where νΨ = 5, τ = 1/8 and the hyperparameters for the
item parameters were specified as: μζ = (1, 0)� and Ψ ζ =
diag(0, 5, 3).

Responses of n = 1,000 examinees were simulated for
three measurement occasions. At each occasion, data were
simulated according to a test of 24 items. There were six
common items between test one and two, and six between
test two and three. The item parameter values vary in terms
of discrimination power and difficulty, properly . For each
examinee, a total of 60 items were administered.

Examinees’ latent traits were generated from a three-
variate normal distribution with μθ = (0, 1, 2)t . The within-
subject latent traits were correlated according to an ARH
covariance structure, where ψθ = (1, 0.9, 0.95)t and ρθ =
0.75. This implies latent growth in the mean structure, weak
heterogeneous latent trait variance across time, and a strong
within-subject correlation over time.
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5.1 Convergence and autocorrelation assessment

Following Gamerman and Lopes (2006), the convergence of
the MCMC algorithm was investigated by monitoring trace
plots generated by three different sets of starting values, and
by evaluating Geweke’s and Gelman and Rubin’s conver-
gence diagnostics.

Following DeMars (2003), the sampled latent traits were
transformed to the scale of the simulated latent traits accord-
ing to

θ∗∗
j. = Chol (Ψ θ )Chol (Sθ )

−1
(
θ∗
j. − θ

)
+ μθ ,

where θ∗
j. are the simulated latent traits, θ and Sθ are the

sample mean vector and covariance matrix, respectively, and
Chol stands for the Cholesky decomposition.

Figure 1 represents trace plots of latent trait popula-
tion parameters for occasions two and three. The popu-
lation parameters of time point one were fixed for iden-
tification. Figure 2 represents trace plots of parameters
of two randomly selected items. Sampled values were

stored every 30th iteration. The MCMC sample composed
by storing every 30th value showed negligible autocorrela-
tion. Posterior density plots (not shown) using the sampled
values showed that symmetric behavior of the posteriors,
which support the posterior mean as a Bayesian point esti-
mate.

In each plot, three different chains are plotted, which
correspond to three different initial values. From a visual
inspection it can be concluded that within 100 (thinned)
iterations each chain of simulated values reached the same
area of plausible parameter values. Each MCMC chain
mixed very well, which indicates that the entire area of the
parameter space was easily reached. The Geweke diagnos-
tic, based on a burn-in period of 16,000 iterations, indi-
cated convergence of the chains of all model parameters.
Furthermore, the Gelman–Rubin diagnostic were close to
one, for all parameters. Convergence was established eas-
ily without requiring informative initial parameter values
or long burn-in periods. Therefore, the burn-in was set
to be 16,000, and a total of 46,000 values were simu-
lated, and samples were collected at a spacing of 30 itera-
tions.
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Fig. 1 For different starting values, trace plots of the simulated values of the population parameters
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Fig. 2 For different starting values, trace plots of the simulated values for parameters of item 4 and 33

5.2 Parameter recovery

The linked test design contains 60 items such that 120 item
parameters need to be estimated and 3,000 person parame-
ters. The general population model for the person parameters
leads to an additional set of five parameters, since two pop-
ulation parameters were restricted. Ayala and Sava-Bolesta
(1999) suggest to consider around 1,200 subjects per item to
obtain accurate parameter estimates. Here, 1,000 responses
per item were simulated since the specification of a correct
prior structure of the LIRT becomes more important when
less data are available. Furthermore, the characteristics of the
real data study described further on, will resemble those of
the simulated data study.

Different statistics were used to compare the results: mean
of the estimates (M. Est.), correlation (Corr), mean of the
standard error (MSE), variance (VAR), the absolute bias
(ABias) and the rootmean squared error (RMSE).To evaluate
the accuracy of theMCMC estimates, a total of ten replicated
data sets were generated, which was based on Azevedo and
Andrade (2010) and Ayala and Sava-Bolesta (1999). For the
item and latent trait parameters, average statistics were com-
puted by averaging across data sets, and items and persons,
respectively.

Table 1 Replication study: results for the estimated latent trait and item
parameters

Parameter Statistic

Corr MSE ABias Var RMSE

Latent trait .993 .086 .114 .061 .278

Discrimination .982 .011 .028 .010 .097

Difficulty .999 .023 .042 .016 .122

Table 1 represents the results for the latent traits and item
parameters. The estimated values of the statistics indicate that
theMCMCalgorithm recovered all parameters properly. Fur-
thermore, the estimated posteriormeans of the discrimination
and difficulty parameters were also close to the true values.
Similar conclusions can be drawn about the estimates of the
latent trait population parameters, see Table 2. The estimated
posterior means are close to the true values, and the biases
are relatively small.

5.3 Covariance structure selection

The information criteria were used to compare the fit of
the different covariance models. The results are given in
Table 3, which includes the information criteria for model
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Table 2 Replication study: results for the estimated latent trait popu-
lation parameters

Parameter Statistics

M. est. MSE ABias Var RMSE

μθ2 .968 .003 .032 .002 .053

μθ3 1.968 .009 .032 .008 .094

ψθ2 .864 .006 .036 .005 .078

ψθ3 .948 .009 .002 .009 .092

ρθ .749 <.001 .001 <.001 .007

comparison, as presented in Sect. 4. The information crite-
ria results for the heteroscedastic toeplitz (HT) model were
much higher in comparison to the other covariance mod-
els, since the dependency structure was restricted to correla-
tions between two adjacent time measurements. Therefore,
to avoid distraction these results were not included in Table
3.

From Table 3 it follows that the DIC2 selects the true
covariance model (ARH), where the AIC2 and BIC2 select
the UH structure. However, note that the ARH model was
ranked second by these two criteria. It is not surprising that
the BIC2 selects theUH above theARH, since theDIC tends
to prefer simpler models. However, the AIC2, which tends
to select more complex models, also selected the UH model,
even though the difference from the related statistic for the
ARHmodel is quite small. This behavior could be caused by
sampling fluctuation.

As expected, the results of the AIC1, BIC1 and DIC1

were inflated by the values of the LLLT, by emphasizing the
fit of the latent trait estimates. The quantification of the fit of
each particular covariance structure is not well represented
by these criteria, since the latent trait estimates dominate the
deviance term. Although the results show some consistency
when considering the DIC2, a more thorough study is nec-
essary, which is beyond the scope of the present study.

6 The Brazilian school development study

The data set analyzed stems from a major study initiated
by the Brazilian Federal Government known as the School

Development Program. The aim of the program is to improve
the teaching quality and the general structure (classrooms,
libraries, laboratory informatics etc) in Brazilian public
schools. A total of 400 schools in different Brazilian states
joined the program. Achievements in mathematics and Por-
tuguese languageweremeasured over five years (from fourth
to eight grade of primary school) from students of schools
selected and not selected for the program.

The study was conducted from 1999 to 2003. At the start,
158 public schools were monitored, where 55 schools were
selected for the program. The sampled schools were located
over six Brazilian states with two states in each of three
Brazilian regions (North, Northeast, and Center West). The
schools had at least 200 students enrolled for the daytime edu-
cational programs, were located at urban zones, and offered
an educational program to the eighth grade. At baseline, a
total of 12,580 students were sampled. From 2000 to 2003,
the cohort consisted of students from the baseline sample
who were approved to the fifth grade and did not switch
schools. Students enrolled in the fifth grade but coming from
another school, and students not assessed in former grades
constituted a second cohort,whichwas followed the four sub-
sequent years. Other cohorts were defined in the same way.
The longitudinal test design allowed dropouts and inclusions
along the time points. Besides achievements, social-cultural
information was collected. The selected students were tested
each year.

In the present study, mathematic performances of 1,500
randomly selected students, who were assessed in the fourth,
fifth, and sixth grade, were considered. A total of 72 test
items was used, where 23, 26, and 31 items were used in the
test in grade four, grade five, and grade six, respectively. Five
anchor items were used in all three tests. Another common
set of five items was used in the test in grade four and five.
Furthermore, four common items were used in the tests in
grade five and six.

In an exploratory analysis, the multiple group model
(MGM), described in Azevedo et al. (2011), was used to
estimate the latent student achievements given the response
data. The MGM for cross-sectional data assumes that stu-
dents are nested in groups and latent traits are assumed to
be independent given the mean level of the group. Typical

Table 3 Selecting the optimal
covariance structure for the real
data set: estimated Bayesian
information criteria. Bold values
indicates models chosen by the
statistics

Model AIC1 BIC1 DIC1 LL LLLT AIC2 BIC2 DIC2

HU 61,696 62,844 64,610 −25,593 −3,547 54,102 55,250 56,518

ARH 61,000 62,148 63,920 −25,636 −3,154 54,113 55,261 56,453

ARMAH 61,076 62,234 63,996 −25,631 −3,195 54,114 55,271 56,461

HC 59,275 60,423 62,326 −26,442 −1,420 55,359 56,507 57,334

AD 60,834 61,991 63,759 −25,641 −3,061 54,122 55,279 56,457

Unst. 60,719 61,885 63,637 −25,652 −2,995 54,135 55,302 56,459
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Table 4 Estimated posterior variances, covariances, and correlations
among estimated latent traits are given in the diagonal, lower and upper
triangle, respectively

Grade four Grade five Grade six

Grade four 1.000 .723 .629

Grade five .659 1.152 .681

Grade six .540 .641 1.071

Table 5 Selecting the optimal covariance structure for the real data set:
estimated Bayesian information criteria. Bold values indicates models
chosen by the statistics

Model LL AIC2 BIC2 DIC2

HU −71, 980 147,477 148,941 150,398

ARH −72, 164 147,693 149,157 150,462

ARMAH −72, 179 147,727 149,201 150,496

HC −72, 840 148,707 150,171 151,139

AD −72, 184 147,723 149,196 150,477

Unst. −71, 984 147,470 148,954 150,368

for the longitudinal nature of the study, a positive correlation
among latent traits from the same examinee is to be expected,
but this aspect was ignored in this explanatory analysis. Pear-
son’s correlations, variances, and covarianceswere estimated
among the vectors of estimated latent traits corresponding to
grade four to six. The estimates are represented in Table 4.

The results show significant between-grade dependen-
cies. That is, the latent traits are not conditionally inde-
pendently distributed over grades given the grade-specific
means. The estimated variances increased after grade four,
which indicates the presence of time-heterogenous vari-
ances. Furthermore, given the estimates of covariances,
time-heteroscedastic covariances and time-decreasing cor-
relations are to be considered to account for within-subject
(between-grade) dependencies among latent traits. There-
fore, the LIRT model was estimated using each one of the
covariance structures to account for the specific dependen-
cies.

The response data were modeled according to the LIRT
model using different covariance structures. First, attention
was focused on selecting the optimal covariance structure.
Second, a more detailed model fit assessment was carried
out using the selected covariance structure. The three model
selection criteria were used to identify the most suitable
covariance structure. As in the simulation study, the het-
eroscedastic toeplitz model did not fit the data and produced
much higher information criteria estimates. For each other
covariance structure, Table 5 represents the estimated values
for the AICi , BICi , and DICi , i = 1, 2. The information
criteria are represented such that a smaller value corresponds
to a better model fit.

The AIC2 and DIC2 preferred the unstructured covari-
ance model, where the BIC2 preferred the more parsimo-
nious HU. However, the unstructured model was ranked sec-
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Fig. 3 Observed score distribution, predicted score distribution, and 95 % central credible intervals
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Fig. 4 For each grade, Quantile-Quantile plot of estimated latent trait residuals

ond by BIC2, whereas the UH was second ranked by AIC2

and DIC2. There were only three measurement occasions,
and the correlations between grade years were high. This
made the comparison between the unstructured and UH dif-
ficult. In the presence of high between grade correlations and
a few time points, the information criteria results preferred
the UH (the most parsimonious model) and the unstructured
covariance matrix. From the various competing covariance
structures, the unstructured covariance matrix was used for
further analysis.

Different model fit assessment tools, based on posterior
predictive densities of different quantities were used to eval-
uate the LIRTmodel with the ARMAH covariance structure.
The p-value based on a chi-squared distance, and predic-
tive distributions of latent scores and Bayesian latent resid-
uals were considered, see for more details about the poste-
rior checks Albert and Chib (1995), Azevedo (2008), and
Azevedo et al. (2011).

The Bayesian p-value was p = .398, which indicates that
the model fitted well. In addition, the observed scores fall
almost all within the credible intervals for each grade, except
for observed scores equal to 20 in gradefive, seeFig. 3. Figure
4 represents an estimated quantile-quantile plot of the latent
trait residuals of each grade. In general, from visual inspec-
tion follows that the assumed normal probability distribution
in each grade seems to be appropriate.

Table 6 represents the population parameter estimates
and 95 % HPD credible intervals of the three grade lev-
els while accounting for a time-heterogenous correlation
structure among latent traits. A significant growth in latent

Table 6 Population parameter estimates and 95 % credible intervals

Grade Mean SD HPD 95%

Mean

Four (reference) 0 – –

Five .240 .040 [ .170, .319]

Six .763 .048 [.680, .862]

Variance

Four (reference) 1 – –

Five 1.032 .081 [.876, 1.183]

Six .969 .087 [.794, 1.131 ]

Correlations

Four and five .857 .012 [ .832, .879]

Four and six .759 .017 [ .724, .790]

Five and six .810 .015 [ .784, .840]

trait means was detected given the non-overlapping credible
intervals. As expected, the mean growth of math achieve-
ment over grade years is significant. The within-grade vari-
ability is relatively small, but the between-grade correla-
tions are significant. Eachwithin-examinee latent growthwas
computed, while accounting for the complex dependencies,
which showed a comparable pattern compared to the mean
latent growth over grade years.

Finally, Figs. 5 and 6 represent the posterior means and
95 % credible intervals of the item discrimination and orig-
inal difficulty estimates (b∗

i ), respectively. The discrimina-
tion parameter estimates are relatively low, where approx-
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Fig. 5 Posterior means and
HPD intervals for the
discrimination parameters
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imately 50 % of the items have sufficient discriminating
power. In addition, by comparing the difficulty parameter
estimates with the population mean estimates, it follows that
the tests were relatively easy, since most of the difficulty
values are below zero. To obtain more accurate estimates of
latent growth of well-performing and excellent examinees,
more difficult test items are needed. The relatively easy items
led to skewed population distributions (see Fig. 3), where a
lot of students performed very well, which makes it difficult
to accurately measure the math performances of these stu-
dents. However, note that the within-examinee dependency
structure over time contributes to an improved estimate of
subject-specific latent trait, since it supports the use of infor-
mation from other grade years to estimate the achievement
level.

7 Conclusions and comments

A longitudinal item response model is proposed, where
the within-examinee latent trait dependencies are explicitly
modeled using different covariance structures. The time-
heterogenous covariance structures allow for time-varying
latent trait variances, covariances, and correlations. The com-
plex dependency structure across time and identification
issues lead to restrictions on the covariance matrix, which
complicates the specification of priors and implementation
of an MCMC algorithm. By conditioning on a reference or
baseline time-point, an unrestricted unstructured covariance
matrix was specified given the baseline population parame-
ters. Furthermore, the restricted structured covariance mod-
els were handled as restricted versions of the unstructured
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restricted covariance model, which was estimated through
the developed MCMC method.

The developed Bayesian methods include anMCMC esti-
mationmethod, and different posterior predictive assessment
tools. In a simulation study, the MCMC algorithm showed a
good recovery of themodel parameters. The assessment tools
were shown to be useful in evaluating the fit of the model.

Various model extensions of the LIRT model can be con-
sidered. The latent variable distribution is assumed to be
multivariate normal. This can be adjusted for example by
using a multivariate skewed latent variable distribution to
model asymmetric latent trait distributions. Furthermore, the
skewed latent variable approach of Azevedo et al. (2011)
could be used. The extension to nominal and ordinal response
data can be made by defining a more flexible response model
at level 1 of the longitudinal model. Dropouts and inclusions
of examinees were not allowed in the present data study. A
multiple imputation method could be developed to support
this situation, see Azevedo (2008). More general, the LIRT
model can be adapted to accommodate incomplete designs,
latent growth curves, collateral information for latent traits,
informative mechanisms of non-response, mixture structures
on latent traits and/or item and population parameters, and
flexible latent trait distributions, among other things. This
requires defining a more general IRT model for the response
data using flexible priors that can include the different exten-
sions.
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Appendix

– Step 1: Simulate the augmented data using Zi jt |(.),
according to Eq. (22).

– Step 2: Simulate the latent traits using

θ j.|(.) ∼ NT (Ψ̂ θ j θ̂ j , Ψ̂ θ j )

where

θ̂ j =
∑

i |Ii j t=1

aibi1T +
∑

i |Ii j t=1

ai zi j. + Ψ −1
θ μθ ,

Ψ̂ θ j =
⎛

⎝
∑

i |Ii j t=1

a2i IT + Ψ −1
θ

⎞

⎠

−1

,

where zi j. = (zi j1, . . . , zi jT )t .

– Step 3: Simulate the item parameters by using ζ i |(.) ∼
N (Ψ̂ ζ i ζ̂ i , Ψ̂ ζ i ), mutually indepedently, where

ζ̂ i = H t
i..zi.. + Ψ −1

ζ μζ ,

Ψ̂ ζ i =
(
H t

i..H i.. + Ψ −1
ζ

)−1
,

H i.. = [θ − 1] • Ii , (30)

where Ii is the indicator vector of item i , which indicates
the subjects responding to item i and “•” is theHadamard
product.

– Step 4: Simulate the population mean vector by using

μθ1 |(.) ∼ N (μ̃θ1 , ψ̂μ) ,

μθ(1)|(μθ1 , (.)) ∼ NT (μ̃θ(T−1), Ψ̂ μ(T−1) ) ,

where

μ̂θ = Ψ −1
θ

n∑

j=1

θ j. + Ψ −1
0 μθ

= (μ̂θ1 , μ̂θ2 , . . . , μ̂θT )t (μ̂θ1 , μ̂
(T−1)
θ )t ,

Ψ̂ μ =
(
nΨ −1

θ +Ψ −1
μ

)−1=
[

ψ̂μ ψ̂
t (T−1)
μ

ψ̂
(T−1)
μ Ψ̂

(T−1)
μ

]

,

μ̃θ = Ψ̂ μμ̂θ = (μ̃θ1 , μ̃θ2 , . . . , μ̃θT )t

= (μ̃θ1 , μ̃
(T−1)
θ )t ,

μ̃θ(T−1) = μ̃
(T−1)
θ + ψ̂−1

μ ψ̂
(T−1)
μ (μθ1 − μ̃θ1) ,

Ψ̂ μ(T−1) = Ψ̂
(T−1)
μ − ψ̂−1

μ ψ̂
(T−1)
μ ψ̂

t (T−1)
μ .

– Step 5: Simulate the first time point variance using
ψθ1 |(.) ∼ IG(υ̂0, κ̂0), where

υ̂1 = n + υ0

2
,

κ̂1 =
∑n

j=1(θ j1 − μθ1)
2 + κ0

2
.

– Step 6: Simulate the vector of covariances using ψ∗ ∼
NT−1(Ψ̂ ψ ψ̂ψ , Ψ̂ ψ ), where

ψ̂ψ = ψ
−1/2
θ1

Ψ ∗−1
θ

n∑

j=1

(
θ j (1) − μθ(1)

) (
θ j1 − μθ1

)

+ Ψ −1
ψ μψ ,

Ψ̂ ψ =
⎛

⎝ψ−1
θ1

Ψ ∗−1
θ

n∑

j=1

(
θ j1 − μθ1

)2 + Ψ −1
ψ

⎞

⎠

−1

.
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– Step 7: Simulate the covariance matrix Ψ ∗ ∼ IWT−1

(̂νΨ , Ψ̂ Ψ ), where

ν̂Ψ = n + νΨ ,

Ψ̂ Ψ = Ψ Ψ +
n∑

j=1

(
θ j (1) − μ∗

θ

) (
θ j (1) − μ∗

θ

)t
.

– Step 8: Calculate the original covariance matrix using
(10) and Ψ θ(1) = Ψ ∗ + ψ∗ψ∗t .

– Step 9: Calculate the population variances using

(ψθ2 , . . . , ψθT )t = ψ∗
θ(1) = Diag(Ψ ∗ + ψ∗ψ∗t ) , (31)

where Diag extracts the main diagonal of a square
matrix.

– Step 10:Depending on the restricted covariance structure
of interest, transformations are defined for unrestricted
parameters to facilitate draws of restricted model para-
meters. Below, in each subitem, the following notation is
used: ψ∗

θ(1) is given by (31), “•” denotes the Hadamard

product, (.)−1/2 is an inverse-square-root pointwise oper-
ator, and A[t] and A[t :] denotes the t-th component and
the remaining values of the vector A, starting at t , respec-
tively.

– ARH and UH: Calculate the correlation coefficient using

ρθ = 1

T − 1
1tT−1

(
ψ∗ • (ψ∗

θ(1))
−1/2

)
. (32)

– HT: Calculate the correlation coefficient using

ρθ = ψ∗[1] × (ψ∗
θ(1)[1])−1/2 . (33)

– HC: Calculate the covariance parameter using

ρθ = 1

T − 1
1tT−1

(√
ψθ1ψ

∗) . (34)

– ARMAH: Calculate the moving average parameter (γθ )
using

γθ = ψ∗[1] × (ψ∗
θ(1)[1])−1/2 (35)

and the correlation parameter (ρθ ) using

ρθ = 1

T − 2
1tT−1

(
ψ∗[T − 2 :] • (ψ∗

θ(1)[T − 2 :])−1/2
)

.

(36)

– AD: Calculate the correlation parameter using

ρθ1 = ψ∗[1] × (ψ∗
θ(1)[1])−1/2 (37)

and, for t = 2, ..., T − 1, using

ρθt = ψ∗[t :] × (ψ∗
θ(1)[t :])−1/2

∏t−1
t ′=1 ρθt ′

. (38)

– Step 11: A specific covariance pattern model is com-
puted using the appropriate restriction on the free para-
meters sampled from their joint distribution. The com-
puted restricted covariancematrix is used in the repeating
MCMC Steps.
The unstructured covariance matrix is the least restric-
tive version, and assumes unique variance and covariance
parameters for themeasurements of theta over time. Each
structured covariance pattern is a restricted version of
the unrestricted covariance pattern. The parameter space
defined by the unstructured covariance patternmodel rep-
resents all possible combinations of the different para-
meters. Therefore, this parameter space will contain all
possible combinations of parameters of each restricted
covariance patternmodel. This property is explicitly used
in the present sampling procedure. That is; each restric-
tion will be used to imply a relationship between the
parameters sampled from their joint distribution. Each
relationship is implied to restrict the free parameters,
which are sampled from their joint distribution,where the
restriction implies a common covariance or a function of
the common covariance parameter, which is defined by
the set of free covariance parameters.

By sampling parameters of the unrestricted covariance
pattern, potentially all possible restricted versions can
be drawn. In the procedure, a restricted version is com-
puted from the unstructured sampled covariance parame-
ters and the restricted set of parameters are considered to
be the implied restricted sample from the unrestricted
sample. Since all possible restricted samples are gener-
ated from all free possible combinations of parameters,
the restricted sample is obtained from theparameter space
of all possible combinations of the different parameters
of the restricted covariance pattern model.
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