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Abstract Particle Metropolis–Hastings (PMH) allows for
Bayesian parameter inference in nonlinear state space mod-
els by combining Markov chain Monte Carlo (MCMC) and
particle filtering. The latter is used to estimate the intractable
likelihood. In its original formulation, PMH makes use of
a marginal MCMC proposal for the parameters, typically a
Gaussian random walk. However, this can lead to a poor
exploration of the parameter space and an inefficient use of
the generated particles. We propose a number of alternative
versions of PMH that incorporate gradient and Hessian infor-
mation about the posterior into the proposal. This informa-
tion is more or less obtained as a byproduct of the likelihood
estimation. Indeed, we show how to estimate the required
information using a fixed-lag particle smoother, with a com-
putational cost growing linearly in the number of particles.
We conclude that the proposed methods can: (i) decrease
the length of the burn-in phase, (ii) increase the mixing of
the Markov chain at the stationary phase, and (iii) make the
proposal distribution scale invariant which simplifies tuning.
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1 Introduction

We are interested in Bayesian parameter inference in nonlin-
ear state space models (SSM) of the form

xt |xt−1 ∼ fθ (xt |xt−1), yt |xt ∼ gθ (yt |xt ), (1)

where the latent states and the measurements are denoted
by x = x0:T � {xt }Tt=0 and y = y1:T � {yt }Tt=1, respec-
tively. Here, fθ (·) and gθ (·) denote the transition and obser-
vation kernels, respectively, parametrised by the unknown
static parameter vector θ ∈ Θ ⊂ R

d . The initial state is
distributed according to some distribution μ(x0) which, for
notational simplicity, is assumed to be independent of θ .

The aim of Bayesian parameter inference (in SSMs) is to
compute the parameter posterior distribution

p(θ |y) = pθ (y)p(θ)

p(y)
, (2)

where p(θ) denotes the prior of θ and pθ (y) denotes the
likelihood, which for an SSM can be expressed as

pθ (y) = pθ (y1)

T∏

t=2

pθ (yt |y1:t−1). (3)

The one-step ahead predictor pθ (yt |y1:t−1), and thus also the
likelihood function, is in general not analytically tractable.
However, unbiased estimators of the likelihood can be
constructed using sequential Monte Carlo (SMC) (Doucet
and Johansen 2011; Del Moral 2004) and these can be
used as plug-in estimators. This is especially useful in the
Metropolis–Hastings (MH) algorithm that can be used for
estimating the parameter posterior in (2).

This combination of MH and SMC is known as the particle
Metropolis–Hastings (PMH) algorithm (Andrieu et al. 2010).
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The MH acceptance probability depends on the intractable
likelihood, which in PMH is estimated using SMC (see
Sect. 2). Despite the apparent approximation, this results in
an algorithm that targets the correct posterior distribution
(Andrieu et al. 2010). The original PMH algorithm makes use
of a marginal proposal for θ , i.e. only the current parameter is
used when proposing a new parameter. The theoretical prop-
erties of the marginal PMH algorithm have been analysed in
Andrieu and Vihola (2011), Pitt et al. (2012), Doucet et al.
(2012) and it has been applied for a number of interesting
applications in, e.g., economics, social network analysis and
ecology (Flury and Shephard 2011; Everitt 2012; Golightly
and Wilkinson 2011).

In this paper, we show that information such as the gra-
dient and the Hessian about the posterior can be included in
the construction of the PMH proposal. This idea is first sug-
gested by Doucet et al. (2011) in the discussions following
Girolami and Calderhead (2011). In two previous proceed-
ings, we have applied and extended this idea with gradient
information (Dahlin et al. 2013) and also using Hessian infor-
mation (Dahlin et al. 2014). The present article builds upon
and extends this preliminary work. A PMH method using gra-
dient information similar to Dahlin et al. (2013) has recently
been proposed by Nemeth and Fearnhead (2014).

In the context of MH sampling, it has been recognised that
the gradient and Hessian can be used to construct efficient
proposal distributions. In the Metropolis adjusted Langevin
algorithm (MALA) (Roberts and Stramer 2003), a drift term
is added to the proposal in the direction of the gradient,
which intuitively guides the Markov chain to regions of
high posterior probability. In the manifold MALA (mMALA)
(Girolami and Calderhead 2011), the Hessian (or some other
appropriate metric tensor) is also included to scale the pro-
posal to take the curvature of the log-posterior into account.
Drawing parallels with the optimisation literature, mMALA
shares some properties with Newton-type optimisation algo-
rithms (where MALA is more similar to a steepest ascent
method). In particular, scaling the proposal with the Hessian
can considerably simplify the tedious tuning of the method
since it removes the need for running costly pilot runs, which
are commonly used to tune the covariance matrices of the
random walk MH and the MALA.

In our problem, i.e. for inference in a nonlinear SSM (1),
the gradient and Hessian cannot be computed analytically.
However, in analogue with the intractable likelihood, these
quantities can be estimated using SMC algorithms, see e.g.
Poyiadjis et al. (2011); Doucet et al. (2013). This provides us
with the tools necessary to construct PMH algorithms in the
flavour of the MALA and the mMALA, resulting in the two
methods proposed in this paper, PMH1 and PMH2, respec-
tively. In particular, we make use of a fixed-lag (FL) particle
smoother (Kitagawa and Sato 2001) to estimate the gradient
and Hessian. The motivation for this is that this smoother

only makes use of the weighted particles computed by the
particle filter. Consequently, we obtain this information as a
byproduct of the likelihood computation in the PMH algo-
rithm. This results is only a small computational overhead
for the proposed methods when compared to the marginal
method.

Finally, we provide numerical experiments to illustrate the
benefits of using the gradient and Hessian and the accuracy of
the FL smoother. We demonstrate some interesting properties
of the proposed algorithms, in particular that they enjoy (i)
a shorter burn-in compared with the marginal algorithm, (ii)
a better mixing of the Markov chain in the stationary phase,
and (iii) a simplified tuning of the step length(s), especially
when the target distribution is non-isotropic.

2 Particle Metropolis–Hastings

In this section, we review the PMH algorithm and show how
the random variables used to compute the likelihood esti-
mator can be incorporated in the proposal construction. We
also outline the idea of how this can be used to construct the
proposed PMH1 and PMH2 algorithms.

2.1 MH sampling with unbiased likelihoods

The MH algorithm (see, e.g., Robert and Casella (2004)) is a
member of the MCMC family for sampling from a target dis-
tribution π(θ) by simulating a carefully constructed Markov
chain on Θ . The chain is constructed in such a way that it
admits the target as its unique stationary distribution.

The algorithm consists of two steps: (i) a new parameter
θ ′′ is sampled from a proposal distribution q(θ ′′|θ ′) given the
current state θ ′ and (ii) the current parameter is changed to
θ ′′ with probability α(θ ′, θ ′′), otherwise the chain remains at
the current state. The acceptance probability is given by

α(θ ′, θ ′′) = 1 ∧ π(θ ′′)
π(θ ′)

q(θ ′|θ ′′)
q(θ ′′|θ ′) , (4)

where we use the notation a ∧ b � min{a, b}.
In this paper, we have the parameter posterior distribution

(2) as the target distribution, i.e. π(θ) = p(θ |y). This implies
that the acceptance probability (4) will depend explicitly on
the intractable likelihood pθ (y), preventing direct application
of the MH algorithm to this problem. However, this difficulty
can be circumvented by using a pseudo-marginal approach
(Beaumont 2003; Andrieu and Roberts 2009).

Assume that there exists an unbiased, non-negative esti-
mator of the likelihood p̂θ (y|u). We introduce explicitly the
random variable u ∈ U used to construct this estimator, and
we let mθ (u) denote the probability density of u on U.
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The pseudo-marginal method is then a standard MH algo-
rithm operating in a non-standard extended space Θ × U,
with the extended target

π(θ, u|y) = p̂θ (y|u)mθ (u)p(θ)

p(y)
= p̂θ (y|u)mθ (u)p(θ |y)

pθ (y)
,

and proposal distribution mθ ′′(u′′)q(θ ′′|θ ′).
Since the likelihood estimator is unbiased, Eu|θ [ p̂θ (y|u)]

= pθ (y), it follows that the extended target admits p(θ |y) as
a marginal. Hence, by simulating from the extended target
π(θ, u|y) we obtain samples from the original target distrib-
ution p(θ |y) as a byproduct.

If the likelihood is estimated by using SMC (see Sect. 3)
we obtain the PMH algorithm. The random variable u then
corresponds to all the weighted particles generated by the
SMC algorithm. However, these random variables carry use-
ful information, not only about the likelihood, but also about
the geometry of the posterior distribution. We suggest to
incorporate this information into the proposal construction.
With (θ ′, u′) being the current state of the Markov chain we
simulate θ ′′ ∼ q(·|θ ′, u′) and u′′ ∼ mθ ′′(·), using some pro-
posal q (see Sect. 2.2).

It follows that the (standard) MH acceptance probability
for the extended target is given by

α(θ ′′, u′′, θ ′, u′)

= 1 ∧ p̂θ ′′(y|u′′)mθ ′′(u′′)p(θ ′′)
p̂θ ′(y|u′)mθ ′(u′)p(θ ′)

mθ ′(u′)q(θ ′|θ ′′, u′′)
mθ ′′(u′′)q(θ ′′|θ ′, u′)

= 1 ∧ p̂θ ′′(y|u′′)p(θ ′′)
p̂θ ′(y|u′)p(θ ′)

q(θ ′|θ ′′, u′′)
q(θ ′′|θ ′, u′)

. (5)

Note that q(θ ′′|θ ′, u′) may depend on the auxiliary variable
u′ in a (formally) arbitrary way. In particular, in Sect. 3 we
propose a construction making use of biased estimates of
the gradient and Hessian of the log-posterior. Nevertheless,
expression (5) still defines a correct MH acceptance prob-
ability for the extended target, ensuring the validity of our
approach. Note also that the aforementioned proposal con-
struction opens up for a wide range of adapted proposals,
possibly different from the ones considered in this work.

2.2 Constructing PMH1 and PMH2

We now turn to the construction of a proposal that makes
use of the gradient and Hessian of the log-posterior. Fol-
lowing Robert and Casella (2004), we do this by a Laplace
approximation of the parameter posterior around the current
state θ ′. Hence, consider a second order Taylor expansion of
log p(θ ′′|y) at θ ′:

log p(θ ′′|y) ≈ log p(θ ′|y)+(θ ′′ − θ ′)�
[
∇ log p(θ |y)

]

θ=θ ′

+1

2
(θ ′′−θ ′)�

[
∇2 log p(θ |y)

]

θ=θ ′
(θ ′′−θ ′).

Taking the exponential of both sides and completing the
square, we obtain

p(θ ′′|y) ≈ N
(
θ ′′; θ ′ + I−1

T (θ ′)ST (θ ′), I−1
T (θ ′)

)
,

where we have introduced ST (θ ′) = ∇ log p(θ |y)|θ=θ ′ and
IT (θ ′) = −∇2 log p(θ |y)|θ=θ ′ , for the gradient and the neg-
ative Hessian of the log-posterior, respectively. Here, we
assume for now that the negative Hessian is positive defi-
nite; see Sect. 3.5 for further discussion on this matter.

As pointed out above, these quantities cannot be computed
in closed form, but they can be estimated from the random
variable u′ (see Sect. 3). This suggests three different versions
of the PMH algorithm, each resulting from a specific choice
of the proposal:

q(θ ′′|θ ′, u′) =

⎧
⎪⎪⎨

⎪⎪⎩

N
(
θ ′, Γ

)
, [PMH0]

N
(
θ ′ + 1

2Γ ŜT (θ ′|u′), Γ )
, [PMH1]

N
(
θ ′ + Ĝ(θ ′|u′), Ĥ(θ ′|u′)) . [PMH2]

(6)

Here, we use the notation Ĝ(θ |u) = 1
2Γ Î−1

T (θ |u) ŜT (θ |u)

and Ĥ(θ |u) = Γ Î−1
T (θ |u) for the natural gradient and scaled

inverse Hessian, respectively. Furthermore, Γ denotes a scal-
ing matrix that controls the step lengths of the proposal. For
PMH0 and PMH1, Γ can be chosen as the inverse of an esti-
mate of the posterior covariance matrix. However, computing
this estimate typically requires costly and tedious trial runs.
For PMH2, the curvature of the problem is captured by the
Hessian matrix, i.e. a single step length can by used which
can significantly simplify the tuning. It is also possible to
choose different step lengths for the drift term and for the
covariance matrix of the proposal.

The final PMH2 algorithm is presented in Algorithm 1. It
makes use of Algorithm 2, described in Sect. 3, to estimate
the quantities needed for computing the proposal and the
acceptance probability. Clearly, PMH0 and PMH1 are special
cases obtained by using the corresponding proposal from (6)
in the algorithm. Note that, while the algorithm make explicit
reference to the auxiliary variable u, it only depends on this
variable through the estimates p̂θ ′(y), ŜT (θ ′) and ÎT (θ ′).

2.3 Properties of the PMH1 and PMH2 proposals

In the sequel, we use a single step size Γ = γ 2 Id for all the
parameters in the (standard) proposal. This is done to illus-
trate the advantage of adding the Hessian information, which
rescales the step lengths according to the local curvature.
Hence, it allows for taking larger steps when the curvature is
small and vice verse.

This property of PMH2 makes the algorithm scale-free
in the same manner as a Newton algorithm in optimisation
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Algorithm 1 Second order particle Metropolis–Hastings
Inputs: Algorithm 2. M > 0 (no. MCMC steps), θ0 (initial parameters),
γ (step length).
Output: θ = {θ1, . . . , θM } (samples from the posterior).

1: Run Algorithm 2 to obtain p̂θ0 (y), ŜT (θ0) and ÎT (θ0).
2: for k = 1 to M do
3: Sample θ ′ ∼ q(θ ′|θk−1, uk−1) by (6), ŜT (θk−1) and ÎT (θk−1).
4: Run Algorithm 2 to obtain p̂θ ′ (y), ŜT (θ ′) and ÎT (θ ′).
5: Sample ωk uniformly over [0, 1].
6: if ωk < α(θ ′, u′, θk−1, uk−1) given by (5) then
7: θk ← θ ′. {Accept the parameter}
8: { p̂θk (y), ŜT (θk),̂ IT (θk)} ← { p̂θ ′ (y), ŜT (θ ′),̂ IT (θ ′)}.
9: else
10: θk ← θk−1. {Reject the parameter}
11: { p̂θk (y), ŜT (θk),̂ IT (θk)} ← { p̂θk−1 (y), ŜT (θk−1),̂ IT (θk−1)}.
12: end if
13: end for

(Nocedal and Wright 2006, Chapter 3). That is, the proposal
is invariant to affine transformations of the parameters. Note
that, since the local information is used, this is different from
scaling the proposal in PMH0 with the posterior covariance
matrix estimated from a pilot run, as this only takes the geom-
etry at the mode of the posterior into account.

Some analyses of the statistical properties are available
for PMH0 (Sherlock et al. 2013), MH using a random walk
(Roberts et al. 1997) and MALA (Roberts and Rosenthal
1998). It is known from these analyses that adding the gradi-
ent into the proposal can increase the mixing of the Markov
chain. Note that these results are obtained under somewhat
strict assumptions. Also, we know from numerical experi-
ments (Girolami and Calderhead 2011) that there are further
benefits of also taking the local curvature into account.

3 Estimation of the likelihood, gradient, and Hessian

In this section, we show how to estimate the likelihood
together with the gradient and Hessian using SMC methods.

3.1 Auxiliary particle filter

An auxiliary particle filter (APF) (Pitt and Shephard 1999)
can be used to approximate the sequence of joint smoothing
distributions (JSDs) pθ (x1:t |y1:t ) for t = 1 to T . The APF
makes use of a particle system consisting of N weighted
particles {x (i)

1:t , w
(i)
t }Ni=1 to approximate the JSD at time t by

p̂θ ( dx1:t |y1:t ) �
N∑

i=1

w
(i)
t∑N

k=1 w
(k)
t

δ
x (i)

1:t
(dx1:t ). (7)

Here, δz(dx1:t ) denotes the Dirac measure placed at z. The
particle system is propagated from t−1 to t by first sampling
an ancestor index a(i)

t , with

P(a(i)
t = j) = ν

( j)
t−1

[
N∑

k=1

ν
(k)
t−1

]−1

, i, j = 1, . . . , N , (8)

where ν
(i)
t−1 denotes the resampling weights. Given the ances-

tor index, a new particle is sampled according to

x (i)
t ∼ Rθ

(
xt |xa(i)

t
1:t−1, yt

)
, i = 1, . . . , N . (9)

Finally, we append the obtained sample to the trajectory by

x (i)
1:t = {xa(i)

t
1:t−1, x (i)

t } and compute a new importance weight
by

w
(i)
t �

w
a(i)

t
t−1

ν
a(i)

t
t−1

gθ

(
yt

∣∣∣x (i)
t

)
fθ
(

x (i)
t

∣∣∣xa(i)
t

t−1

)

Rθ

(
x (i)

t

∣∣∣xa(i)
t

1:t−1, yt

) , i = 1, . . . , N .

(10)

Hence, the empirical approximations of the smoothing dis-
tributions (7) can be computed sequentially for t = 1 to T
by repeating (8)–(10).

Note that the random variables u appearing in the extended
target of the PMH algorithm correspond to all the random
variables generated by the APF, i.e. all the particles and
ancestor indices,

u =
({

x (i)
t , a(i)

t

}N

i=1
, t = 1, . . . , T

)
.

In this article, we make use of two important special cases
of the APF: the bootstrap particle filter (bPF) (Gordon et
al. 1993) and the fully adapted particle filter (faPF) (Pitt
and Shephard 1999). For the bPF, we select the proposal
kernel Rθ (xt |x1:t−1, yt ) = fθ (xt |xt−1) and the auxiliary
weights νt = wt = gθ (yt |xt ). The faPF is obtained by
Rθ (xt |x1:t−1, yt ) = pθ (xt |yt , xt−1) and νt = pθ (yt+1|xt ),
resulting in the weights wt ≡ 1. Note, that the faPF can only
be used in models for which these quantities are available in
closed-form.

3.2 Estimation of the likelihood

The likelihood for the SSM in (1) can be estimated using
(3) by inserting estimated one-step predictors pθ (yt |y1:t−1)

obtained from the APF. The resulting likelihood estimator is
given by

p̂θ (y|u) = 1

N T

N∑

i=1

w
(i)
T

{
T−1∏

t=1

N∑

i=1

ν
(i)
t

}
. (11)

It is known that this likelihood estimator is unbiased for any
number of particles, see e.g. Pitt et al. (2012) and Proposition
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7.4.1 in Del Moral (2004). As discussed in Sect. 2.1, this is
exactly the property that is needed in order to obtain p(θ |y)

as the unique stationary distribution for the Markov chain
generated by the PMH algorithm.

Consequently, PMH will target the correct distribution for
any number of particles N ≥ 1. However, the variance in the
likelihood estimate is connected with the acceptance rate and
the mixing of the Markov chain. Therefore it is important to
determine the number of particles that balances a reasonable
acceptance rate with a reasonable computational cost. This
problem is studied for PMH0 in Pitt et al. (2012), Doucet et
al. (2012).

3.3 Estimation of the gradient

As we shall see below, the gradient of the log-posterior can
be estimated by solving a smoothing problem. The APF can
be used directly to address this problem, since the particles
{x (i)

1:T , w
(i)
T }Ni=1 provide an approximation of the JSD at time

T according to (7) (see also Poyiadjis et al. 2011). However,
this method can give estimates with high variance due to
particle degeneracy.

Instead, we make use of the FL smoother (Kitagawa and
Sato 2001) which has the same linear computational cost,
but smaller problems with particle degeneracy than the APF.
Alternative algorithms for estimating this information are
also available (Del Moral et al. 2010; Poyiadjis et al. 2011).

The gradient of the parameter log-posterior is given by

ST (θ) = ∇ log p(θ)+∇ log pθ (y), (12)

where it is assumed that the gradient of the log-prior
∇ log p(θ) can be calculated explicitly. The gradient of
the log-likelihood ∇ log pθ (y) can, using Fisher’s identity
(Cappé et al. 2005), be expressed as

∇ log pθ (y) = Eθ

[
∇ log pθ (x, y)

∣∣∣y
]
, (13)

where for an SSM (1) we can write the gradient of the com-
plete data log-likelihood as

∇ log pθ (x, y) =
T∑

t=1

ξθ (xt , xt−1), where (14)

ξθ (xt , xt−1) = ∇ log fθ (xt |xt−1)+∇ log gθ (yt |xt ).

Combining (14) with Fisher’s identity (13) yields

∇ log pθ (y) =
T∑

t=1

∫
ξθ (xt , xt−1)pθ (xt−1:t |y) dxt−1:t ,

which depends on the (intractable) two-step smoothing dis-
tribution pθ (xt−1:t |y). To approximate this quantity we use
the FL smoother which relies on the assumption that there

is a decaying influence of future observations yt+Δ:T on the
state xt . This means that

pθ (xt−1:t |y) ≈ pθ (xt−1:t |y1:κt ),

holds for some large enough κt = min{t + Δ, T }. Here,
Δ denotes a pre-determined lag decided by the user, which
depends on the forgetting properties of the model. By
marginalisation of the empirical smoothing distribution
p̂θ (x1:κt |y1:κt ) over x1:t−2 and xt+1:κt , we obtain the approx-
imation

p̂�
θ (dxt−1:t |y) �

N∑

i=1

w(i)
κt

δ
x̃ (i)
κt ,t−1:t

(dxt−1:t ). (15)

Here, we use the notation x̃ (i)
κt ,t to denote the ancestor at time t

of particle x (i)
κt and x̃ (i)

κt ,t−1:t = {x̃ (i)
κt ,t−1, x̃ (i)

κt ,t }. Inserting (14)–
(15) into (13) provides an estimator of (12),

ŜT (θ |u) = ∇ log p(θ)+
T∑

t=1

N∑

i=1

w(i)
κt

ξθ

(
x̃ (i)
κt ,t , x̃ (i)

κt ,t−1

)
,

(16)

which is used in the proposal distributions in (6).

3.4 Estimation of the Hessian

The negative Hessian of the parameter log-posterior can be
written as

IT (θ) = −∇2 log p(θ)− ∇2 log pθ (y), (17)

where it is assumed that the Hessian of the log-prior
∇2 log p(θ) can be calculated analytically. The negative
Hessian of the log-likelihood, also known as the observed
information matrix, can using Louis’ identity (Cappé et al.
2005) be expressed as

−∇2 log pθ (y) = ∇ log pθ (y)2 − Eθ

[
∇2 log pθ (x, y)

∣∣∣y
]

−Eθ

[
∇ log pθ (x, y)2

∣∣∣y
]
. (18)

Here, we have introduced the notation v2 = vv� for a vec-
tor v. From this, we can construct an estimator of (17) using
the estimator of the gradient in (16), of the form

ÎT (θ |u) = −∇2 log p(θ)+ ŜT (θ |u)2− Î(1)
T (θ |u)− Î(2)

T (θ |u),

(19)

where we introduce I(1)
T (θ) = Eθ

[∇2 log pθ (x, y)|y] and

I(2)
T (θ) = Eθ

[∇ log pθ (x, y)2|y]. We obtain the estimator of
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the first term analogously to (16) as

Î(1)
T (θ |u) =

T∑

t=1

N∑

i=1

w(i)
κt

ζθ

(
x̃ (i)
κt ,t , x̃ (i)

κt ,t−1

)
, where (20)

ζθ (xt , xt−1) = ∇2 log fθ (xt |xt−1)+ ∇2 log gθ (yt |xt ).

The estimator of the second term needs a bit more work and
we start by rewriting the last term in (18) as

T∑

t=1

T∑

s=1

Eθ

[
ξθ (xt , xt−1)ξθ (xs, xs−1)

�
∣∣∣y
]

=
T∑

t=1

{
Eθ

[
ξθ (xt , xt−1)

2
∣∣∣y
]

+
t−1∑

s=1

Eθ

[(
ξθ (xt , xt−1), ξθ (xs, xs−1)

)†
∣∣∣y
] }

, (21)

where we have introduced the operator (a, b)† = ab�+ba�
for brevity. Consider the last term appearing in this expres-
sion, we can rewrite it as

t−1∑

s=1

Eθ

[
ξθ (xt , xt−1)ξθ (xs , xs−1)

�
∣∣∣y
]

= Eθ

[
ξθ (xt , xt−1)

{
t−1∑

s=1

Eθ

[
ξθ (xs , xs−1)

∣∣xt−1, y1:t−1
]
}�

︸ ︷︷ ︸
�αθ (xt−1)�

∣∣∣y
]
.

From this, we see that (21) can be written as an additive
functional of the form

T∑

t=1

Eθ

[
(ξθ (xt , xt−1))

2 + (
(ξθ (xt , xt−1), αθ (xt−1)

)†
∣∣∣y
]
,

which can be estimated using the FL smoother as before.
However, for this we need to compute the quantitiesαθ (xt−1).
One option is to make use of a type of fixed-lag approxima-
tion for αθ (xt−1), by assuming that xs and xt are condition-
ally independent given y1:κt , whenever |s − t | > Δ. This
approach has previously been used by Doucet et al. (2013).
Alternatively, we can use a filter approximation according to

α̂θ

(
x (i)

t

)
= α̂θ

(
x

a(i)
t

t−1

)
+ ξθ

(
x (i)

t , x
a(i)

t
t−1

)
, (22)

for i = 1, . . . , N . Note that this approach suffers from the
same particle degeneracy as the APF. However, this only
affects a small number of terms and in our experience this
approximation works sufficiently well to give estimates with

reasonable variance. The resulting estimator using (21) is

Î(2)
T (θ |u) =

T∑

t=1

N∑

i=1

w(i)
κt

ηθ

(
x̃ (i)
κt ,t , x̃ (i)

κt ,t−1

)
, where (23)

ηθ (xt , xt−1) = ξθ (xt , xt−1)
2 + (

ξθ (xt , xt−1), α̂θ (xt−1)
)†

.

Hence, the Hessian can be estimated using (19) by inserting
the estimators from (20), (22) and (23).

3.5 Regularisation of the estimate of the Hessian

The PMH2 proposal (6) relies on the assumption that the
observed information matrix is positive definite (PD). The
estimator given in (19) does not always satisfy this, espe-
cially when the Markov chain is located far from the poste-
rior mode. Typically, the amount of information is limited in
such regions and this results in that the curvature is difficult
to estimate. To cope with this issue, one alternative is to reg-
ularize the Hessian by adding a diagonal matrix to shift the
eigenvalues to be positive. The diagonal matrix can e.g. be
selected such that

Δ ÎT = max
{

0,−2λmin
(
ÎT

)}
Id , (24)

where λmin( ÎT ) denotes the smallest eigenvalue of ÎT (θ |u).
In this article, we make use of this method for handling non-
PD estimates of the negative Hessian for the PMH2 algo-
rithm. This heuristic is common for Newton-type optimisa-
tion algorithms (Nocedal and Wright 2006, Chapter 3.4).

Note, that there are other solutions available for ensuring
positive definiteness that only shifts the negative eigenval-
ues, see (Nocedal and Wright 2006, Chapter 3). We empha-
sise that this type of regularization keeps the Markov chain
invariant, i.e. still targets the correct posterior distribution
(recall Sect. 2.1).

Another alternative is to replace the estimate of the neg-
ative Hessian with the inverse sample covariance matrix
calculated using the trace of Markov chain when the esti-
mate is not PD. This can be seen as a hybrid between the
PMH2 algorithm and a pre-conditioned PMH1 algorithm.
This resembles some other adaptive MH algorithms (Andrieu
and Thoms 2008) in which the same procedure is used to
adapt the covariance matrix of a random walk proposal. For
this, we can make use of the last L iterations of the MH algo-
rithm after that the Markov chain has reached stationarity.
During the burn-in phase, non-PD estimates can be handled
using a regularization approach or by rejecting the proposed
parameter. In this article, we refer to this method for han-
dling non-PD estimates of the negative Hessian as the hybrid
PMH2 algorithm, where we use the latter alternative during
the burn-in phase. Note that this pre-conditioning can also
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Algorithm 2 Estimation of the likelihood, the gradient
and the Hessian of the log-posterior
Inputs: y (data), R(·) (propagation kernel), ν(·) (weight function), N >

0 (no. particles), 0 < Δ ≤ T (lag).
Outputs: p̂θ (y) (est. of the likelihood), ŜT (θ) (est. of the gradient),
ÎT (θ) (est. of the negative Hessian).

1: Initialise each particle x (i)
0 .

2: for t = 1 to T do
3: Resample and propagate each particle using (9).
4: Calculate the weights for each particle using (10).
5: end for
6: Compute p̂θ (y) by (11).
7: Compute ŜT (θ) and ÎT (θ) by (16), and (19).
8: if ÎT (θ) ≤ 0 then
9: [standard] Regularize ÎT (θ) by adding Δ̂IT computed by (24)
10: [hybrid] Replace ÎT (θ) by the inverse covariance matrix computed

using the L final samples of the Markov chain during the burn-in.
11: end if

be applied to the PMH0 and PMH1 algorithm, we return to
this in Sect. 4.4.

3.6 Resulting SMC algorithm

In Algorithm 2, we present the complete procedure that com-
bines the APF with the FL smoother to compute the estimates
needed for the PMH2 proposal (6). Note that the two different
methods to handle non-PD estimates of the negative Hessian
matrix results in the standard and hybrid PMH2 algorithm,
respectively.

We end this section by briefly discussing the statisti-
cal properties of the estimates of the gradient and Hessian
obtained from the FL smoother. From Olsson et al. (2008),
we know that the FL smoother gives biased estimates of the
gradient and Hessian for any number of particles. Remember
that this does not effect the invariance of the Markov chain
(recall Sect. 2.1). The main advantage of the FL smoother
over the APF (which gives a consistent estimate) is that the
former enjoys a smaller variance than the APF, i.e. we obtain
a favourable bias-variance trade-off for a certain choice of lag
�. Note that a too small lag gives a large bias in the estimate
and a too large lag gives a large variance in the estimate; we
return to this choice in Sect. 4.

4 Numerical illustrations

In this section, we provide illustrations of the properties of
the FL smoother and the different proposed algorithms. The
source code in Python and the data used for some of the
numerical illustrations are available for download at: http://
liu.johandahlin.com/.
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Fig. 1 The log L1-error in the log-likelihood estimates and the esti-
mates of the gradient with respect to φ in the LGSS model with σe = 0.1
(left) and σe = 1 (right). The bPF (black) and faPF (red) are evaluated
by 1,000 MC iterations using a fixed data set with T = 100. (Color
figure online)

4.1 Estimation of the log-likelihood and the gradient

We begin by illustrating the use of the FL smoother for esti-
mating the log-likelihood and the gradient. Here, we consider
a linear Gaussian state space (LGSS) model given by

xt+1|xt ∼ N
(

xt+1;φxt , σ
2
v

)
, (25a)

yt |xt ∼ N
(

yt ; xt , σ
2
e

)
. (25b)

We generate two data realisations of length T = 100 using
parameters θ(1) = {φ, σ 2

v , σ 2
e } = {0.5, 1.0, 0.12} and θ(2) =

{0.5, 1.0, 1.0} with a known initial zero state. We use the lag
Δ = 5 and run the PFs with systematic resampling (Carpen-
ter et al. 1999).

For this model, we can compute the true values of the
log-likelihood and the gradient by running an RTS smoother
(Rauch et al. 1965). In Fig. 1, we present boxplots of the
L1-errors in the estimated log-likelihood and the gradient
of the log-posterior with respect to φ, evaluated at the true
parameters. When σe = 0.1, we observe that the faPF has
a large advantage over the bPF for all choices of N . When
σe = 1.0, we get smaller difference in the error of the gradient
estimates, but the log-likelihood estimates are still better for
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Fig. 2 The log L1-error in the estimates of the gradient with respect to
φ in the LGSS model with σe = 0.1 (left) and σe = 1 (right). The bPF
(black) and faPF (red) are evaluated by 1,000 Monte Carlo iterations
using a fixed data set with T = 100. (Color figure online)

the faPF. Similar results are also obtained for the gradient
with respect to σv .

In Fig. 2, we present the error in the gradient estimates
with respect to φ using a varying lag Δ and a varying num-
ber of particles N . The results are obtained by 1,000 Monte
Carlo runs on a single data set generated from the previously
discussed LGSS model with T = 100. We conclude again
that faPF is preferable when available. The results are largely
robust to the lag, as long as this is chosen large enough when
using the faPF. A lag of about 12 seems to be a good choice
for this model when T = 100 and when using the faPF with
systematic resampling.

4.2 Burn-in and scale-invariance

Consider the problem of inferring {θ1, θ2} = {φ, σv} in
the LGSS model (25a, b). We simulate a single data set with
parameters θ(1) (as defined in the previous section) of length
T = 250. We use an uniform parameter prior over |φ| <

1, σv > 0 and initialise in θ0 = {0.1, 2}. We use faPF with
systematic resampling, N = 100 and Δ = 12. Here, we use
the standard version in Algorithm 2 to adjust the estimate of
the Hessian in the cases when it is not PD, resulting in the
PMH2 algorithm.
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Fig. 3 The trace plots of the first 50 steps using PMH0 (upper), PMH1
(middle) and PMH2 (lower). The dotted lines show the true parameters
of the LGSS model. The gray contours show the log-posterior.

We adjust the step lengths γ to give an acceptance rate dur-
ing a pilot run of between 0.7 and 0.8 in the stationary phase.
We obtain γ = {0.04, 0.065, 1.0} for PMH{0, 1, 2}, respec-
tively. Note that a single step length is used for each proposal
to simplify the tuning. Of course, different step lengths can
be used for each parameter, and we could also use different
step lengths during the burn-in and the stationary phase of the
algorithm using the approach discussed in Sect. 2.2. As pre-
viously mentioned, the PMH2 algorithm avoids this (poten-
tially difficult and time-consuming) procedure, by taking the
local geometric information into account.

In the left column of Fig. 3, we present the first 50 itera-
tions of the Markov chain from the three different algorithms.
We note that the added information in the proposals of PMH1
and PMH2 aids the Markov chain in the burn-in phase. This
results in that the Markov chains for the proposed algorithms
reach the mode of the posterior quicker than the random walk
used in PMH0.

To illustrate the scale invariance of the PMH2 algorithm,
we reparametrise the LGSS model by {θ3, θ4} = {φ, σv/10}.
We keep the same settings as for the previous parametrisation
and rerun the algorithms. From this run we obtain the middle
column in Fig. 3. We see clearly that the PHM1-algorithm
does not perform well and gets stuck at the initial parameter
value. The reason is that the second component of the gradi-
ent is increased by a factor 10 for the rescaled model. Since
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we still use the same step length, this will cause the PMH1
algorithm to overshoot the region of high posterior proba-
bility when proposing new values, and these will therefore
never be accepted.

Finally, to improve the performance we recalibrate the
three algorithms on the new parametrisation using the same
procedure as before. We then obtain the new step lengths
{0.005, 0.0075, 1.0}. The resulting Markov chains are pre-
sented in the right column of Fig. 3. Despite the new step
lengths, PMH0 and PMH1 continue to struggle. The rea-
son is that the step lengths are limited by the small posterior
variance in the θ4-parameter, resulting in a very slow progres-
sion in the θ3-direction. Again, for PMH2, the added Hessian
information is used to rescale the proposal in each dimension
resulting in a more efficient exploration of the posterior than
for PMH0 and PMH1.

4.3 The mixing of the Markov chains at stationarity

We continue by investigating the mixing of the Markov
chains at stationarity using an estimate of the integrated auto-
correlation time (IACT) given by

ÎACT(θ1:M ) = 1+ 2
K∑

k=1

ρ̂k(θ1:M ), (26)

where ρ̂k(θ1:M ) denotes the empirical autocorrelation at lag k
of θ1:M (after the burn-in has been discarded). A low value of
the IACT indicates that we obtain many uncorrelated samples
from the target distribution, implying that the chain is mixing
well. Here, K is determined as the first index for which the
empirical autocorrelation satisfies |ρ̂K (θ1:M )| < 2/

√
M , i.e.

when the coefficient is statistical insignificant.
We return to the LGSS model in (25a, b) with the original

parameterisation {θ1, θ2} = {φ, σv} using the same settings
as before. A total of 25 data sets are generated using the
parameters θ(1) and the algorithms are initialised at the true
parameter values to avoid a long burn-in phase. The step sizes
are determined using a series of pilot runs on the first gener-
ated dataset to minimise the total IACT for each algorithm.
This is done to make a fair comparison between the different
algorithms at their near optimal performance. The resulting
step sizes are obtained as {0.08, 0.075, 1.50}.

Finally, we estimate the mixing in each of the 25 simulated
data sets during M=30,000 MCMC iterations (discarding the
first 10,000 iterations as burn-in). The results are presented
in Table 1, where the median and interquartile range (IQR;
the distance between the 25 and 75 % quartiles) are presented
for each PMH algorithm. Here, we present the results for the
standard version of Algorithm 2.

We see that the added information decreases the IACT
about 2 times for PMH1 and PMH2 compared with PMH0.

Table 1 Median and IQR for the acceptance rate and IACT using dif-
ferent SMC algorithms

Acc. rate IACT (φ) IACT (σv)

Median Median IQR Median IQR

PMH0

bPF(500) 0.02 257 146 265 371

bPF(1000) 0.06 83 129 79 118

bPF(2000) 0.15 29 23 15 24

faPF(50) 0.37 9 8 8 5

faPF(100) 0.38 9 6 7 4

faPF(200) 0.38 7 6 7 4

PMH1

bPF(500) 0.02 187 271 203 347

bPF(1000) 0.10 64 85 49 72

bPF(2000) 0.22 23 16 12 24

faPF(50) 0.58 3 2 3 1

faPF(100) 0.59 4 2 3 1

faPF(200) 0.58 3 1 3 1

PMH2

bPF(500) 0.03 170 211 164 190

bPF(1000) 0.10 59 73 65 80

bPF(2000) 0.24 13 10 19 17

faPF(50) 0.66 3 1 4 2

faPF(100) 0.66 3 1 5 2

faPF(200) 0.66 3 1 4 2

The values are computed using 25 different data sets from the LGSS
model
Bold values indicate the best values in each column (i.e. the lowest
values of IACT)

We conclude that the extra information brought by the gra-
dient and the Hessian improves the mixing of the Markov
chains in this model, which results in a more efficient explo-
ration of the posterior. Note that, for this parametrisation of
the LGSS model the posterior is quite isotropic (which can
also be seen in the left column of Fig. 3). Hence, the condi-
tions are in fact rather favourable for PMH0 and PMH1.

4.4 Parameter inference in a Poisson count model

In this section, we analyse the annual number of major earth-
quakes1 (over 7 on the Richter scale) during the period from
year 1900 to 2014. Following Langrock (2011), we model

1 The data is obtained from the Earthquake Data Base System of the
U.S. Geological Survey, which can be accessed at http://earthquake.
usgs.gov/earthquakes/eqarchives/.
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Table 2 Median and IQR for the acceptance rate and IACT using different number of particles

Version SMC alg. Acc. rate IACT (φ) IACT (σ ) IACT (β)

Median Median IQR Median IQR Median IQR

PMH0 Standard bPF(500) 0.26 497 712 16 3 2,639 1,163

Standard bPF(1000) 0.30 89 150 15 3 2,680 438

Pre-cond. bPF(500) 0.73 1,063 912 982 274 2,815 706

Pre-cond. bPF(1000) 0.81 831 290 1,106 671 2,374 1,446

PMH1 Standard bPF(500) 0.76 665 442 277 162 2,651 364

Standard bPF(1000) 0.82 490 134 205 30 2,875 1,007

Pre-cond. bPF(500) 0.62 266 187 9 3 1,728 1638

Pre-cond. bPF(1000) 0.70 98 209 9 3 1,480 1732

PMH2 Standard bPF(500) 0.24 91 17 53 14 222 37

Standard bPF(1000) 0.28 60 14 47 17 139 59

Hybrid bPF(500) 0.45 20 3 17 4 30 15

Hybrid bPF(1000) 0.49 17 4 18 3 23 5

The values are computed using 10 runs on the Earthquake count data model
Bold values indicate the best values in each column (i.e. the lowest values of IACT)

the data using

xt+1|xt ∼ N
(

xt+1;φxt , σ
2
)
, (27a)

yt |xt ∼ P
(

yt ;β exp(xt )
)
, (27b)

with parameters θ = {φ, σ, β} and uniform priors over
|φ| < 1, σ > 0 and β > 0. Here, P(λ) denotes a Poisson
distribution with parameter λ.

We repeat the procedure from the previous subsection
and obtain the step lengths {0.06, 0.006, 0.85}. Here, we
use M = 30,000 MCMC iterations (discarding the first 10,000
iterations as burn-in), the bPF with systematic resampling,
� = 12, θ0 = {0.5, 0.5, 18} and L = 2,500. In this model,
the estimate of the negative Hessian is often non-PD (during
about half of the iterations) and the choice of regularisation
is therefore important. To explore the properties of the reg-
ularisation, we apply both the standard and hybrid version
of the PMH2 algorithm discussed in Sect. 3.5. We compare
these methods to standard and pre-conditioned versions of
the the PMH0 and PMH1 algorithms, using the sample pos-
terior covariance matrix calculated in the same manner as for
the hybrid PMH2 algorithm.

In Table 2, we present the resulting acceptance rates and
IACT values for each parameter and algorithm. We note the
large decrease in IACT for β when using the Hessian infor-
mation, where the hybrid PMH2 seems to perform better
than standard version for this model. The improved mixing
by using PMH2 is due to the scale invariance property, as the
parameter β is at least an order of magnitude larger than φ

and σ (c.f. Fig. 3). Note that a reparameterisation or using
separate step lengths for the parameters could possibly have
helped in improving the mixing in β for the standard versions
of PMH0 and PMH1.
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Fig. 4 Part of the trace (left) and posterior estimates (right) for the
β parameter in the earthquake count model using standard versions of
PMH0 (upper), PMH1 (middle) and hybrid version of PMH2 (lower).
Dotted lines indicate the posterior means.

Using the standard and hybrid version of PMH2, decreases
the overall computational cost by a factor of about 100 for a
specific number of effective samples. The poor performance
of the pre-conditioned algorithms is probably due to that the
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Fig. 5 The IACT for φ (black), σ (red) and β (blue) for varying step
sizes γ (upper) and lag � (lower). The values are computed as the
median of 10 runs using standard PMH2 with the same data. (Color
figure online)

sample posterior covariance matrix does not fully capture the
geometry of the posterior distribution.

In Fig. 4, we present the trace and posterior estimates for
β using the standard versions of PMH0 and PMH1 as well as
hybrid PMH2. The posterior estimates are obtained by pool-
ing the 10 parallel Markov chains after the burn-ins have
been discarded. We see that the traces behave rather differ-
ently with hybrid PMH2 exploring the space well compared
with the other methods.

Using the parameter posterior estimate, we can compute
point estimates for the parameters of the model. The poste-
rior mean for hybrid PMH2 is obtained as {0.88, 0.15, 16.58}
with standard deviations {0.07, 0.03, 2}. The parameter
estimate is comparable to the estimate {0.88, 0.15, 17.65}
obtained by a maximum likelihood-based method using the
same data and model in Dahlin (2014, Example 4.9).

4.5 Robustness in the lag and step size

The PMH2 algorithm requires a number of parameters to be
select by the user for each parameter inference problem. It is
therefore interesting to discuss the robustness of the method
with respect to these parameters. In the previous illustrations,
we have seen that the number of particles N is an important
factor in determining the mixing.

Two other important parameters are the step length γ and
the lag in the FL-smoother �. To illustrate the impact of
these quantities on the IACT, we return to the Earthquake
model in (27a, b) using the standard PMH2 algorithm with the
same settings but with M = 15,000 (discarding the first 5,000
iterations as burn-in) and N = 1,500. In Fig. 5, we present the
IACT for the three parameters in the model when varying γ

and �, keeping everything else fixed. The standard PMH2
algorithm seems to be rather robust to both the choice of
� and γ after a certain threshold. Recall the discussion in
Sect. 4.1 for the FL smoother. We conclude that a suitable
standard choice for the step length could be γ = 1, which
can be fine tuned if the performance is not good enough. This
recommendation is also common in the literature concerning
Newton-type algorithms.

5 Discussion and future work

Adding the gradient and Hessian information to the PMH
proposal can have beneficial results including: (i) a shorter
burn-in phase, (ii) a better mixing of the Markov chain, and
(iii) scale-invariance of the proposal which simplifies tun-
ing. The latter point is true in particular for PMH2, since
this method takes the local curvature of the posterior into
account, effectively making the method invariant to affine
transformations.

It is common to distinguish between two phases of MCMC
algorithms: the burn-in and stationary phases. We have seen
empirically that the proposed methods can improve upon
the original PMH0 during both of these phases but the best
choices for the step lengths can differ between these two
phases. Typically, a smaller step length is preferred during
burn-in and a larger during stationarity (the opposite holds for
PMH0). The reason for this is that during burn-in, the (nat-
ural) gradient information will heavily skew the proposal
in a direction of increasing posterior probability. That is,
the methods tend to be aggressive and propose large steps
to make rapid progression toward regions of high posterior
probability. While this is intuitively appealing, the problem
is that we require the Markov chains to be reversible at all
times. The reverse of these large steps can have very low
probability which prevents them from being accepted.

One interesting direction for future work is therefore to
pursue adaptive algorithms (see e.g. Andrieu and Thoms
2008; Peters et al. 2010; Pitt et al. 2012), to automatically tune
the step lengths during the different phases of the algorithms.
Another interesting possibility is to relax the reversibility
requirement during burn-in; see Diaconis et al (2000) for a
related reference. This would cause the methods to behave
like optimisation procedures during the initial phase, but tran-
sition into samplers during the second phase.
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Finally, another very interesting direction for future work
is to extend the proposed methods to develop a particle-
version of the manifold Hamiltonian Monte Carlo (mHMC)
algorithm (Duane et al. 1987; Neal 2010; Girolami and
Calderhead 2011). The reason for this is motivated by the
large improvement in mixing seen by e.g. Neal (2010), Giro-
lami and Calderhead (2011) for high dimensional problems
in vanilla MH sampling.
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