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Abstract Wepropose two fast covariance smoothingmeth-
ods and associated software that scale up linearly with the
number of observations per function.Most availablemethods
and software cannot smooth covariance matrices of dimen-
sion J > 500; a recently introduced sandwich smoother is an
exception but is not adapted to smooth covariancematrices of
large dimensions, such as J = 10,000.We introduce twonew
methods that circumvent those problems: (1) a fast imple-
mentation of the sandwich smoother for covariance smooth-
ing; and (2) a two-step procedure that first obtains the singular
value decomposition of the data matrix and then smoothes
the eigenvectors. These new approaches are at least an order
ofmagnitude faster in high dimensions and drastically reduce
computer memory requirements. The new approaches pro-
vide instantaneous (a few seconds) smoothing formatrices of
dimension J = 10,000 and very fast (<10min) smoothing
for J = 100,000. R functions, simulations, and data analy-
sis provide ready to use, reproducible, and scalable tools for
practical data analysis of noisy high-dimensional functional
data.
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1 Introduction

The covariance function plays an important role in func-
tional principal component analysis (fPCA), functional lin-
ear regression, and functional canonical correlation analysis
(see, e.g., Ramsay andSilverman2002, 2005). Themajor dif-
ference between the covariance function of functional data
and the covariance matrix of multivariate data is that func-
tional data is measured on the same scale, with sizable noise
and possibly sampled at an irregular grid. Ordering of func-
tional observations is also important, but it can easily be
handled by careful indexing. Thus, it has become common
practice in functional data analysis to estimate functional
principal components by diagonalizing a smoothed estima-
tor of the covariance function; see, e.g., Besse and Ramsay
(1986), Ramsay and Dalzell (1991), Kneip (1994), Besse
et al. (1997), Staniswalis and Lee (1998), Yao et al. (2003,
2005).

Given a sample of functions, a simple estimate of the
covariance function is the sample covariance. The sample
covariance, its eigenvalues and eigenvectors havebeen shown
to converge to their population counterparts at the opti-
mal rate when the sample paths are completely observed
without measurement error (Dauxois et al. 1982). However,
in practice, data are measured at a finite number of loca-
tions and often with sizable measurement error. For such
data the eigenvectors of the sample covariance matrix tend
to be noisy, which can substantially reduce interpretability.
Therefore, smoothing is often used to estimate the functional
principal components; see, e.g., Besse and Ramsay (1986),
Ramsay and Dalzell (1991), Rice and Silverman (1991),
Kneip (1994), Capra and Müller (1997), Besse et al. (1997),
Staniswalis and Lee (1998), Cardot (2000), Yao et al. (2003,
2005). There are threemain approaches to estimating smooth
functional principal components. The first approach is to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-014-9485-x&domain=pdf


410 Stat Comput (2016) 26:409–421

smooth the functional principal components of the sample
covariance function; for a detailed discussion see, for exam-
ple, Rice and Silverman (1991), Capra and Müller (1997),
Ramsay and Silverman (2005). The second is to smooth the
covariance function and then diagonalize it; see, e.g., Besse
and Ramsay (1986), Staniswalis and Lee (1998), Yao et al.
(2003). The third is to smooth each curve and diagonalize the
sample covariance functionof the smoothed curves; seeRam-
say and Silverman (2005) and the references therein. Our first
approach is a fast bivariate smoothing method for the covari-
ance operator which connects the latter two approaches. This
method is a fast and new implementation of the ‘sandwich
smoother’ in Xiao et al. (2013), with a completely different
and specialized computational approach that improves the
original algorithm’s computational efficiency by at least an
order of magnitude. The sandwich smoother with the new
implementation will be referred to as Fast Covariance Esti-
mation, or FACE. Our second approach is to use smoothing
spline smoothing of the eigenvectors obtained from a high-
dimensional singular value decomposition of the raw data
matrix and will be referred to as smooth SVD, or SSVD.
To the best of our knowledge, this approach has not been
used in the literature for low- or high-dimensional data.
Given the simplicity of SSVD, we will focus more on FACE,
though simulations and data analysis will be based on both
approaches.

The sandwich smoother provides the next level of com-
putational scalability for bivariate smoothers and has sig-
nificant computational advantages over bivariate P-splines
(Eilers and Marx 2003; Marx and Eilers 2005) and thin plate
regression splines (Wood 2003). This is achieved, essentially,
by transforming the technical problem of bivariate smooth-
ing into a short sequence of univariate smoothing steps.
For covariance matrix smoothing, the sandwich smoother
was shown to be much faster than local linear smoothers.
However, adapting the sandwich smoother to fast covariance
matrix smoothing in the ultrahigh dimensions of, for exam-
ple, modern medical imaging or high density wearable sen-
sor data, is not straightforward. For instance, the sandwich
smoother requires the sample covariance matrix which can
be hard to calculate and impractical to store for ultrahigh
dimensions. While the sandwich smoother is the only avail-
able fast covariance smoother, it was never tested for dimen-
sions J > 5,000 and becomes computationally impracti-
cal for J > 5,000 on current standard computers. All of
these dimensions are well within the range of current high-
dimensional data.

In contrast, our novel approach, FACE, is linear in the
number of functional observations per subject, provides
instantaneous (<1min) smoothing formatrices of dimension
J = 10,000 and fast (<10min) smoothing for J = 100,000.
This is done by carefully exploiting the low-rank structure
of the sample covariance, which allows smoothing and spec-

tral decomposition of the smooth estimator of the covariance
without calculating or storing the empirical covariance oper-
ator. The new approach is at least an order of magnitude
faster in high dimensions and drastically reduces memory
requirements; see Table 4 in Sect. 6 for a comparison of
computation time. Unlike the sandwich smoother, FACE also
efficiently estimates the covariance function, eigenfunctions,
and scores.

The remainder of the paper is organized as follows. Sec-
tion 2 provides the model and data structure. Section 3 intro-
duces FACE and provides the associated fast algorithm. Sec-
tion 4 extends FACE to structured high-dimensional func-
tional data and incomplete data. Section 5 introduces SSVD,
the smoothing spline smoothing of eigenvectors obtained
from SVD. Section 6 provides simulation results. Section 7
shows how FACE works in a large study of sleep. Section 8
provides concluding remarks.

FACE and SSVD are now implemented as R functions
“fpca.face” and “fpca2s”, respectively, in the publicly avail-
able package refund (Crainiceanu et al. 2013).

2 Model and data structure

Suppose that {Xi , i = 1, . . . , I } is a collection of inde-
pendent realizations of a random functional process X with
covariance function K (s, t), s, t ∈ [0, 1]. The observed data,
Yi j = Xi (t j ) + εi j , are noisy proxies of Xi at the sampling
points {t1, . . . , tJ }. We assume that εi j are i.i.d. errors with
mean zero and variance σ 2, and are mutually independent of
the processes Xi .

The sample covariance function can be computed at each
pair of sampling points (t j , t�)by ̂K (t j , t�) = I−1 ∑

i Yi j Yi�.
For ease of presentation we assume that Yi j have been cen-
tered across subjects. The sample covariance matrix, ̂K, is
the J × J dimensional matrix with the ( j, �) entry equal to
̂K (t j , t�). Covariance smoothing typically refers to applying
bivariate smoothers to ̂K. Let Yi = (Yi1, . . . ,Yi J )T , i =
1, . . . , I , then ̂K = I−1 ∑I

i=1 YiYT
i = I−1YYT , where

Y = [Y1, . . . ,YI ] is a J × I dimensional matrix with the
i th column equal toYi . When I is much smaller than J , ̂K is
of low rank; this low-rank structure of ̂K will be particularly
useful for deriving fast methods for smoothing ̂K.

3 FACE

The FACE estimator of the covariance matrix has the follow-
ing form

˜K = ŜKS, (1)

where S is a symmetric smoother matrix of dimension J × J .
Because of (1), we say FACE has a sandwich form. We
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use P-splines (Eilers and Marx 1996) to construct S so that

S = B
(

BTB + λP
)−1

BT . Here B is the J ×c design matrix
{Bk(t j )}1≤ j≤J,1≤k≤c,P is a symmetric penaltymatrix of size
c×c, λ is the smoothing parameter, {B1(·), . . . , Bc(·)} is the
collection of B-spline basis functions, c is the number of
interior knots plus the order (degree plus 1) of B-splines. We
assume that the knots are equally spaced and use a difference
penalty as inEilers andMarx (1996) for the construction ofP.
Model (1) is a special case of the sandwich smoother in Xiao
et al. (2013) as the two smoother matrices for FACE are iden-
tical. However, FACE is specialized to smooth covariance
matrices and has some further important characteristics.

First, ˜K is guaranteed to be symmetric and positive semi-
definite because ̂K is so. Second, the sandwich form of the
smoother and the low-rank structure of the sample covariance
matrix can be exploited to scale FACE to high and ultra high
dimensional data (J > 10,000). For instance, the eigende-
composition of ˜K provides the estimates of the eigenfunc-
tions associatedwith the covariance function.However,when
J is large, both the smoother matrix and the sample covari-
ance matrix are high dimensional and even storing themmay
become impractical. FACE, unlike the sandwich smoother,
is designed to obtain the eigendecomposition of ˜K without
computing the smoother matrix or the sample covariance
matrix.

FACE depends on a single smoothing parameter, λ, which
needs to be selected. The algorithm for selecting λ in Xiao
et al. (2013) requires O(J 2 I ) computations and can be hard
to compute when J is large. We propose efficient smoothing
parameter estimation algorithms that requires only O(J I c)
computations; see Sect. 3.2 for details.

3.1 Estimation of eigenfunctions

Assuming that the covariance function K is in L2([0, 1]2),
Mercer’s theorem states that K admits an eigendecomposi-
tion K (s, t) = ∑

k λkψk(s)ψk(t) where {ψk(·) : k ≥ 1} is
a set of orthonormal basis of L2([0, 1]) and λ1 ≥ λ2 ≥ · · ·
are the eigenvalues. Estimating the functional principal com-
ponents/eigenfunctions ψk’s is one of the most fundamen-
tal tasks in functional data analysis and has attracted a lot
of attention (see, e.g., Ramsay and Silverman 2005). Typ-
ically, interest lies in seeking the first few eigenfunctions
that explain a large proportion of the observed variation.
This is equivalent to finding the first few eigenfunctions
whose linear combination could well approximate the ran-
dom functions Xi . Computing the eigenfunctions of a sym-
metric bivariate function is generally not trivial. The com-
mon practice is to discretize the estimated covariance func-
tion and approximate its eigenfunctions by the correspond-
ing eigenvectors (see, e.g., Yao et al. 2003). In this sec-
tion, we show that by using FACE we can easily obtain the

eigendecomposition of the smoothed covariance matrix ˜K in
Eq. (1).

We start with the decomposition (BTB)−1/2P(BTB)−1/2

= Udiag(s)UT , where U is the matrix of eigenvectors and
s is the vector of eigenvalues. Let AS = B(BTB)−1/2U.

Then AT
SAS = Ic which implies that AS has orthonor-

mal columns. It follows that S = AS�SAT
S with �S =

{Ic + λdiag(s)}−1. Let ˜Y = AT
SY be a c × I matrix, then

˜K = AS
(

I−1�S˜Y˜YT�S
)

AT
S . Thus only the c × c dimen-

sional matrix in the parenthesis depends on the smoothing
parameter; this observation will lead to a simple spectral
decomposition of ˜K. Indeed, consider the spectral decom-
position I−1�S˜Y˜YT�S = A�AT , where A is the c × c
matrix of eigenvectors and � is the c × c diagonal matrix
of eigenvalues. It follows that ˜K = (ASA)�(ASA)T which
is the eigendecomposition of ˜K and shows that ˜K has no
more than c nonzero eigenvalues (Proposition 1). Because of
the dimension reduction of matrices (c × c versus J × J ),
this eigenanalysis of the smoothed covariance matrix is fast.
The derivation reveals that through smoothing we obtain
a smoothed covariance operator and its associated eigen-
functions. An important consequence is that the number
of elements stored in memory is only O(Jc) for FACE,
while using other bivariate smoothers requires storing the
J × J dimensional covariance operators. This makes a
dramatic difference, allows non-compromise smoothing of
covariance matrices, and provides a transparent, easy to use
method.

3.2 Selection of the smoothing parameter

We start with the following result.

Proposition 1 Assume c = o(J ), then the rank of the
smoothed covariance matrix ˜K is at most min(c, I ).

This indicates that the number of knots controls the maxi-
mal rank of the smoothed covariance matrix, ˜K, or equiv-
alently, the number of eigenfunctions that can be extracted
from ˜K. This implies that using an insufficient number of
knots may result in severely biased estimates of eigenfunc-
tions and number of eigenfunctions. We propose to use a
relatively large number of knots, e.g., 100 knots, to reduce
the estimation bias and control overfitting by an appropri-
ate penalty. Note that for high-dimensional data, J can be
thousands or more and the dimension reduction by FACE
is sizeable. Moreover, as only a small number of func-
tional principal components is typically used in practice,
FACE with 100 knots seems adequate for most applica-
tions. When the covariance function has a more complex
structure or a larger number of functional principal compo-
nents are needed, one may use a larger number of knots;
see Ruppert (2002) and Wang et al. (2011) for simula-
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tions and theory. Next we focus on selecting the smoothing
parameter.

We select the smoothing parameter by minimizing the
pooled generalized cross validation (PGCV), a functional
extension of the GCV (Craven and Wahba 1979),

I
∑

i=1

‖Yi − SYi‖2 /{1 − tr(S)/J }2. (2)

Here ‖ · ‖ is the Euclidean norm of a vector. Crite-
rion (2) was also used in Zhang and Chen (2007) and
could be interpreted as smoothing each sample, Yi , using
the same smoothing parameter. We argue that using cri-
terion (2) is a reasonable practice for covariance esti-
mation. An alternative but computationally hard method
for selecting the smoothing parameter is the leave-one-
curve-out cross validation (Yao et al. 2005). The following
result indicates that PGCV can be easily calculated in high
dimensions.

Proposition 2 The PGCV in expression (2) equals to
∑c

k=1 Ckk(λsk)2/(1 + λsk)2 − ‖˜Y‖2F + ‖Y‖2F
{

1 − J−1
∑c

k=1(1 + λsk)−1
}2 ,

where sk is the kth element of s,Ckk is the kth diagonal
element of ˜Y˜YT , and ‖ · ‖F is the Frobenius norm.

The result shows that ‖Y‖2F , ‖˜Y‖2F , and the diagonal
elements of ˜Y˜YT need to be calculated only once, which
requires O(I J+cI ) calculations. Thus, the FACE algorithm
is fast.

FACE algorithm:

Step 1 Obtain the decomposition (BTB)−1/2P(BTB)−1/2

= Udiag(s)UT .
Step 2 Specify S by calculating and storing s and AS =
B(BTB)−1/2U.
Step 3 Calculate and store˜Y = AT

SY.
Step 4 Select λ by minimizing PGCV in expression (2).
Step 5 Calculate �S = {Ic + λdiag(s)}−1.
Step 6 Construct the decomposition I−1�S˜Y˜YT�S =
A�AT .
Step 7 Construct the decomposition˜K=(ASA)�(ASA)T.

The computation time of FACE is O
(

I Jc + Jc2 + c3

+ck0), where k0 is the number of iterations needed for select-
ing the smoothing parameter, and the total required mem-
ory is O

(

I J + I 2 + Jc + c2 + k0
)

. See Proposition 3 in the
appendix for details. When c = O(I ) and k0 = o(I J ), the
computation time of FACE is O(J I 2 + I 3) and O(J I + I 2)
memory units are required. As a comparison, if we smooth

the covariance operator using other bivariate smoothers, then
at least O(J 2 + I J ) memory units are required, which
dramatically reduces the computational efficiency of those
smoothers.

3.3 Estimating the scores

Under standard regularity conditions (Karhunen 1947), Xi (t)
can be written as

∑

k≥1 ξikψk(t) where {ψk : k ≥ 1} is

the set of eigenfunctions of K and ξik = ∫ 1
0 Xi (s)ψk(s)ds

are the principals scores of Xi . It follows that Yi (t j ) =
∑

k≥1 ξikψk(t j ) + εi j . In practice, we may be interested in
only the first N eigenfunctions and approximate Yi (t j ) by
∑N

k=1 ξikψk(t j ) + εi j . Using the estimated eigenfunctions
̂ψk’s and eigenvalueŝλk’s from FACE, the scores of each Xi

can be obtained by either numerical integration or as best
linear unbiased predictors (BLUPs). FACE provides fast cal-
culations of scores for both approaches.

Let ˜Yi denote the i th column of ˜Y. Let ξ i = (ξi1, . . . ,

ξi N )T and let ̂AN denote the first N columns of A defined
in Sect. 3.1. Let ψk = {ψk(t1), . . . , ψk(tJ )}T and � =
[ψ1, . . . ,ψN ]. The matrix J−1/2� is estimated by AŜAN .
The method of numerical integration estimates ξik bŷξik =
∫ 1
0 Yi (t)̂ψk(t)dt ≈ J−1 ∑J

j=1 Yi (t j )̂ψk(t j ).

Theorem 1 The estimated principal scoreŝξ i = (̂ξi1, . . . ,
̂ξi N )T using numerical integration arêξ i = J−1/2

̂AT
N
˜Yi , 1 ≤

i ≤ I .

We now show how to obtain the estimated BLUPs for
the scores. Let εi j = Yi (t j ) − ∑N

k=1 ψk(t j )ξik and εi =
(εi1, . . . , εi J )

T . Then Yi = �ξ i + εi . The covariance
var(ξ i ) = diag(λ1, . . . , λN ) can be estimated by J−1

̂�N =
J−1diag(̂λ1, . . . ,̂λN ). The variance of εi j can be esti-
mated by

σ̂ 2 = I−1 J−1‖Y‖2F − J−1
∑

k

λ̂k . (3)

Theorem 2 Suppose � is estimated by J 1/2AŜAN , var(ξ i )
= diag(λ1, . . . , λN ) is estimatedbŷ�N =diag(̂λ1, . . . ,̂λN ),
and σ 2 is estimated by σ̂ 2 in Eq. (3). Then the esti-
mated BLUPs of ξ i are given by ̂ξ i = J−1/2

̂�N (̂�N +
J−1σ̂ 2IN )−1

̂AT
N
˜Yi , for 1 ≤ i ≤ I .

Theorems 1 and 2 provide fast approaches for calculat-
ing the principal scores using either numerical integration or
BLUPs. These approaches combined with FACE are much
faster because theymake use of the calculations already done
for estimating the eigenfunctions and eigenvalues. When J
is large, the scores by BLUPs tend to be very close to those
obtained by numerical integration; in the paper we only use
numerical integration.
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4 Extension of FACE

4.1 Structured functional data

When analyzing structured functional data such as multi-
level, longitudinal, and crossed functional data (Di et al.
2009; Greven et al. 2010; Zipunnikov et al. 2011, 2012; Shou
et al. 2013), the covariance matrices have been shown to be
of the form YHYT , where H is a symmetric matrix; see
Shou et al. (2013) for more details. We assume H is pos-
itive semi-definite because otherwise we can replace H by
its positive counterpart. Note that if H1 is a matrix such that
H1HT

1 = H, smoothing YHYT can be done by using FACE
for the transformed functional data YH1. This insight is par-
ticularly useful for the sleep EEG data, which has two visits
and requires multilevel decomposition.

4.2 Incomplete data

To handle incomplete data, such as the EEG sleep data
where long portions of the functions are unavailable, we pro-
pose an iterative approach that alternates between covariance
smoothing using FACE and missing data prediction. Miss-
ing data are first initialized using a smooth estimator of each
individual curve within the range of the observed data. Out-
side of the observed range the missing data are estimated as
the average of all observed values for that particular curve.
FACE is then applied to the initialized data, which produces
predictions of scores and functions and the procedure is then
iterated. We only use the scores of the first N components,
where N is selected by the criterion

N = min

{

k :
∑k

j=1 λ j
∑∞

j=1 λ j
≥ 0.95

}

.

Suppose �̂ is the p × N matrix of estimated eigenvectors
from FACE, �̂N = diag(λ̂1, . . . , λ̂N ) is the matrix of esti-
mated eigenvalues, and σ̂ 2

ε is the estimated variance of the
noise. Let yobs denote the observed data and ymis the missing
data for a curve. Similarly, �̂obs is a sub-matrix of �̂ corre-
sponding to the observed data and �̂mis is another sub-matrix
of �̂ corresponding to the missing data. Then the prediction
(ŷmis, ξ̂) minimizes the following

‖ŷmis− J 1/2�̂mis ξ̂‖22 + ‖yobs− J 1/2�̂obs ξ̂‖22
2σ̂ 2

ε

+ 1

2
ξ̂
T
�̂

−1
N ξ̂ .

Note that if there is no missing data, the solution to this min-
imization problem leads to Theorem 2. For the next iteration
we replace ymis by ŷmis and re-apply FACE to the updated
complete data. We repeat the procedure until convergence
is reached. In our experience convergence is very fast and
typically achieved in fewer than 10 iterations.

5 The SSVD estimator and a subject-specific smoothing
estimator

A second approach for estimating the eigenfunctions and
eigenvalues is to decompose the sample covariance matrix
̂K and then smooth the eigenvectors. First let UyDyVT

y be
the singular value decomposition (SVD) of the data matrix
Y. Here Uy is a J × I matrix with orthonormal columns, Vy

is an I orthogonal matrix, and Dy is an I diagonal matrix.
The columns of Uy contain all the eigenvectors of ̂K that are
associated with non-zero eigenvalues and the set of diagonal
elements of I−1D2

y contain all the non-zero eigenvalues of
̂K. Thus, obtaining Uy and Dy is equivalent to the eigende-
composition of ̂K. Then we smooth the retained eigenvec-
tors by smoothing splines, implemented by the R function
“smooth.spline”. SSVD avoids the direct decomposition of
the sample covariancematrix and is computationally simpler.
SSVD requires O{min(I, J )I J } computations.

The approach of smoothing each curve and then diag-
onalizing the sample covariance function of the smoothed
curves can also be efficiently implemented. First we smooth
each curve using smoothing splines. We use the R function
“smooth.spline” which requires only O(J ) computations for
a curve with J data points. Our experience is that the widely
used function “gam” in the R package mgcv (Wood 2013)
is much slower and can be computationally intensive with a
number of curves to smooth. Then instead of directly diag-
onalizing the sample covariance of the smoothed curves,
which requires O(J 3) computations, we calculate the sin-
gular value decomposition of the I × J matrix formed by
the smoothed curves, which requires only O(min(I, J )I J )

computations. The resulting right singular vectors estimate
the eigenfunctions scaled by J−1/2. Without the SVD step,
a brute-force decomposition of the J × J sample covari-
ance becomes infeasible when J is large, such as 5,000.
We will refer to the this approach as S-Smooth, which, to
the best of our knowledge, is the first computationally effi-
cientmethod for covariance estimation using subject-specific
smoothing.

We will compare SSVD, S-Smooth and FACE in terms of
performance and computation time in the simulation study.

6 Simulation

Weconsider three simulation studies. In the first studywe use
moderately high-dimensional data contaminated with noise.
We let J = 3,000 and I = 50, which are roughly the dimen-
sions of the EEG data in Sect. 7. We use SSVD, S-Smooth
and FACE. We did not evaluate other bivariate smoothers
because we were unable to run them on such dimensions
in a reasonably short time. In the second study we consider
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functional data where portions of the observed functions are
missing completely at random (MCAR). This simulation is
directly inspired by our EEG data where long portions of the
functions are missing. In the last study we assess the compu-
tation time of FACE and compare it with that of SSVD and
S-Smooth.We also provide the computation time of the sand-
wich smoother (Xiao et al. 2013).We use R code that is made
available with this paper. All simulations are run on modest,
widely available computational resources: an Intel Core i5
2.4GHz Mac with 8 gigabytes of random access memory.

6.1 Complete data

We consider the following covariance functions:

1 &2 Finitebasis expansion. K (s, t) = ∑3
�=1 λ�ψ�(s)ψ�(t)

whereψ�’s are eigenfunctions and λ�’s are eigenvalues.
Wechooseλ� = 0.5�−1 for� = 1, 2, 3and there are two
sets of eigenfunctions: case 1: ψ1(t) = √

2 sin(2π t),
ψ2(t) = √

2 cos(4π t) and ψ3(t) = √
2 sin(4π t); and

case 2:ψ1(t) = √
3(2t−1),ψ2(t) = √

5(6t2−6t+1)
and ψ3(t) = √

7(20t3 − 30t2 + 12t − 1).
3 Brownian motion. K (s, t) = ∑∞

�=1 λ�ψ�(s)ψ�(t)
with eigenvalues λ� = 1

(�−1/2)2π2 and eigenfunctions

ψ�(t) = √
2 sin((� − 1/2)π t).

4 Brownianbridge. K (s, t) = ∑∞
�=1 λ�ψ�(s)ψ�(t)with

eigenvalues λ� = 1
�2π2 and eigenfunctions ψ�(t) =√

2 sin(�π t).
5 Matérn covariance structure. The Matérn covariance
function

C(d;φ, ν) = 1

2ν−1�(ν)

(√
2νd

φ

)ν

Kν

(√
2νd

φ

)

with range φ = 0.07 and order ν = 1. Here Kν

is the modified Bessel function of order ν. The top
three eigenvalues for this covariance function are 0.209,
0.179 and 0.143.

We generate data at {1/J, 2/J, . . . , 1} with J = 3,000
and add i.i.d. N (0, σ 2) errors to the data. We let

σ 2 =
1

∫

s=0

1
∫

t=0

K (s, t)dsdt,

which implies that the signal to noise ratio in the data is 1.
The number of curves is I = 50 and for each covariance
function 200 datasets are drawn.

We compare the performance of the three methods to
estimate: (1) the covariance matrix; (2) the eigenfunctions;
and (3) the eigenvalues. For simplicity, we only consider the
top three eigenvalues/eigenfunctions. For FACE we use 100

knots; for SSVD and S-Smooth we use smoothing splines,
implemented through the R function ‘smooth.spline’. Fig-
ure 1 displays, for one simulated data set for each case, the
true and estimated eigenfunctions using SSVD and FACE,
as well as the estimated eigenfunctions without smoothing.

We see from Fig. 1 that the smoothed eigenfunctions
are very similar and the estimated eigenfunctions without
smoothing are quite noisy. The results are expected as all
smoothing-based methods are designed to account for the
noise in the data and the discrepancy between the estimated
and the true eigenfunctions is mainly due to the variation in
the random functions. Table 1 provides the mean integrated
squared errors (MISE) of the estimated eigenfunctions indi-
cating that FACEandS-Smooth have better performance than
SSVD. For case 5, the smoothed eigenfunctions for all meth-
ods are far from the true eigenfunctions. This is not surpris-
ing because for this case the eigenvalues are close to each
other and it is known that the accuracy of eigenfunction esti-
mation also depends on the gap between consecutive eigen-
values; see for example, Bunea and Xiao (2013). In terms of
covariance estimation, Table 2 suggests that SSVD is outper-
formed by the other two methods. However, the simplicity
and robustness of SSVD may actually make it quite popular
in applications.

Figure 2 shows boxplots of estimated eigenvalues that are
centered and standardized, ̂λk/λk − 1. The SSVD method
works well for cases 1 and 2, where the true covariance has
only three non-zero eigenvalues, but tends to overestimate the
eigenvalues for the other three cases, where the covariance
function has an infinite number of non-zero eigenvalues. In
contrast, the FACE and S-Smooth estimators underestimate
the eigenvalues for the simple cases 1 and 3 but are much
closer to the true eigenvalues for the more complex cases.
Table 3 provides the average mean squared errors (AMSEs)
of λ̂k/λk − 1 for k = 1, 2, 3, and indicates that S-Smooth
and FACE tend to estimate the eigenvalues more accurately.

6.2 Incomplete data

In Sect. 4.2 we extended FACE for incomplete data, and here
we illustrate the extensionwith a simulation.We use the same
simulation setting in Sect. 6.1 except that for each subject we
allow for portions of observations missing completely at ran-
dom. For simplicity we fix the length of each portion so that
0.065J consecutive observations are missing. We allow one
subject to miss either 1, 2, or 3 portions with equal probabil-
ities so that in expectation 13% of the data are missing. Note
that the real data we will consider later also has about 13%
measurements missing.

In Fig. 2, boxplots of the estimated eigenvalues are shown.
The MISEs of the estimated covariance function and esti-
mated eigenfunctions and theAMSEs of the estimated eigen-
values appear in Tables 1, 2 and 3, respectively. The simu-
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Fig. 1 True and estimated eigenfunctions for three cases eachwith one
simulated data set. Each row corresponds to one simulated data set. Each
box shows the true eigenfunction (blue dot-dashed lines), the estimated
eigenfunction using FACE (red solid lines), the estimated eigenfunc-

tion using SSVD (cyan dashed lines), and the estimated eigenfunction
without smoothing (black dotted lines). We do not show the estimates
from S-Smooth and FACE (incomplete data) because they are almost
identical to these from FACE and SSVD. (Color Figure online)

Table 1 100×MISEs of the
three methods for estimating the
eigenfunctions

The incomplete data has about
13% observations missing

Eigenfunction No smoothing SSVD S-Smooth FACE FACE incomplete data

Case 1 1 9.19 7.27 7.01 6.86 6.97

2 16.95 12.12 11.76 11.65 11.96

3 20.27 6.90 6.74 6.74 6.74

Case 2 1 10.05 6.41 6.39 6.29 6.34

2 17.38 11.13 10.92 10.37 10.46

3 19.71 6.75 6.51 6.08 6.23

Case 3 1 3.14 0.58 0.58 0.58 0.58

2 23.84 4.40 4.37 4.37 4.37

3 55.51 14.07 13.40 13.41 13.14

Case 4 1 5.09 1.81 1.80 1.80 1.87

2 20.14 8.23 8.20 8.20 8.67

3 42.04 19.39 19.39 19.40 20.70

Case 5 1 70.34 64.71 64.71 64.71 65.79

2 96.39 90.57 90.31 90.38 90.84

3 93.09 84.15 83.88 83.99 84.66
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Table 2 100×MISEsof the threemethods for estimating the covariance
function

SSVD S-Smooth FACE FACE incomplete data

Case 1 9.34 8.96 8.94 8.93

Case 2 8.96 8.64 8.62 8.69

Case 3 1.22 0.76 0.76 0.76

Case 4 0.11 0.07 0.07 0.08

Case 5 2.69 1.98 1.98 2.18

The incomplete data has about 13% observations missing

lation results show that the performance of FACE degrades
only marginally.

6.3 Computation time

We record the computation time of FACE for various combi-
nations of J and I . All other settings remain the same as in
the first simulation study and we use the eigenfunctions from
case 1. For comparison the computation times of SSVD, S-

Smooth and the sandwich smoother (Xiao et al. 2013) are also
given. Table 4 summarizes the results and shows that FACE is
fast even with high-dimensional data while the computation
time of the sandwich smoother increases dramatically with
J , the dimension of the problem. For example it took FACE
only 5s to smooth a 10,000 by 10,000 dimensional matrix for
500 subjects, while the sandwich smoother did not run on our
computer. While SSVD, S-Smooth and FACE are all fast to
compute, FACE is computationally faster when I = 500.We
note that S-Smooth has additional problems when data are
missing, though a method similar to FACE may be devised.
Ultimately, we prefer the self-contained, fast, and flexible
FACE approach.

Although we do not run FACE on ultrahigh-dimensional
data, we can obtain a rough estimate of the computation time
by the formula O(J I c). Table 4 shows that FACE with 500
knots takes 5 seconds on data with (J, I ) = (10,000, 500).
For data with J equal to 100,000 and I equal to 2,000, FACE
with 500 knots should take 4min to compute, without taking
into account the time for loading data into the computermem-
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Fig. 2 Boxplots of the centered and standardized estimated eigenval-
ues,̂λk/λk − 1. The top panel is for case 2, the middle panel is for case
4, and the bottom panel is for case 5. The zero is shown by the solid

red line. Case 1 is similar to case 2 and case 3 is similar to case 4, and
hence are not shown. (Color Figure online)
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Table 3 100× average (λ̂k/λk−1)2 of the threemethods for estimating
the eigenvalues

Eigenvalue SSVD S-Smooth FACE FACE incomplete
data

Case 1 1 4.37 3.99 3.99 4.31

2 3.43 3.68 3.76 3.96

3 3.97 4.95 5.03 4.99

Case 2 1 4.40 4.05 4.05 4.10

2 3.58 3.78 3.81 3.83

3 3.38 4.02 4.38 4.22

Case 3 1 3.80 3.55 3.55 3.55

2 9.79 3.38 3.38 3.42

3 48.27 4.03 4.03 3.96

Case 4 1 4.22 3.81 3.81 3.84

2 5.65 3.69 3.69 3.64

3 14.77 3.53 3.53 3.43

Case 5 1 12.45 6.45 6.45 7.05

2 4.35 2.09 2.09 2.03

3 3.05 1.64 1.64 1.55

The incomplete data has about 13% observations missing

ory. Our code was written and run in R, so a faster implemen-
tation of FACEmay be possible on other software platforms.

7 Example

The Sleep Heart Health Study (SHHS) is a large-scale study
of sleep and its association with health-related outcomes.
Thousands of subjects enrolled in SHHS underwent two
in-home polysomnograms (PSGs) at multiple visits. Two-
channel electroencephalographs (EEG), part of the PSG,
were collected at a frequency of 125Hz, or 125 observations
per second for each subject, visit and channel. We model the
proportion of δ-power which is a summary measure of the
spectrum of the EEG signal. More details on δ-power can
be found in Crainiceanu et al. (2009) and Di et al. (2009).
The data contain 51 subjects with sleep-disordered breathing
(SDB) and 51matched controls; see Crainiceanu et al. (2012)
and Swihart et al. (2012) for details on how the pairs were
matched. An important feature of the EEG data is that long
consecutive portions of observations, which indicate wake
periods, are missing. Figure 3 displays data from 2 matched
pairs. In total about 13% of the data is missing.

Similar to Crainiceanu et al. (2012), we consider the fol-
lowing statistical model. The data for proportion of δ-power
are pairs of curves {Yi A(t),YiC (t)}, where i denotes subject,
t = t1, . . . , tJ (J = 2,880) denotes the time measured in 5-
second intervals in a 4-hour sleep interval from sleep onset,

Table 4 Computation time (in seconds) of the SSVD, S-Smooth and FACE methods averaged over 100 data sets on 2.4GHz Mac computers with
8 gigabytes of random access memory

J I SSVD S-Smooth FACE 100 knots FACE 500 knots Sandwich 100 knots Sandwich 500 knots

3,000 50 0.25 1.28 0.34 1.76 47.41 210.41

500 3.81 13.88 0.89 2.61 50.91 364.39

5,000 50 0.43 2.14 0.50 2.09 251.48 1,362.67

500 6.08 34.63 1.26 3.19 302.34 1,743.86

10,000 50 0.86 4.29 0.82 2.92 – –

500 12.78 98.41 2.34 4.68 – –

The computation time of the sandwich smoother is also provided except for J = 10,000 and is averaged over 10 datasets only

Fig. 3 Data for two matched
pairs of case and controls in the
Sleep Heart Health Study. The
red lines are for cases while the
black are for controls. For
simplicity only the last
observation in each minute of
the 4-hour interval is shown.
(Color Figure online)
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Fig. 4 The eigenfunctions
associated with the top three
eigenvalues of KX and KU for
the Sleep Heart Health Study
data. The left column is for KX
and the right one is for KU . The
red and green solid lines
correspond to the FACE
approach using the original and
modified GCV, respectively. The
black dashed lines are for thin
plate splines, and the cyan
dotted lines are for SSVD.
(Color Figure online)
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A stands for apneic and C stands for control. The model is
{

Yi A(t) = μA(t) + Xi (t) +Ui A(t) + εi A(t)
YiC (t) = μC (t) + Xi (t) +UiC (t) + εiC (t)

(4)

where μA(t) and μC (t) are mean functions of proportions
of δ-power, Xi (t) is a functional process with mean 0 and
continuous covariance operator KX (·, ·), Ui A(t) and UiC (t)
are functional processes with mean 0 and continuous covari-
ance operator KU (·, ·), and εi A(t), εiC (t) are measurement
errors with mean 0 and variance σ 2. The random processes
Xi ,Ui A,UiC , εi A and εiC are assumed to be mutually inde-
pendent. Here Xi accounts for the between-pair correlation
of the data whileUi A andUiC model the within-pair correla-
tion. TheMultilevel Functional Principal Component Analy-
sis (MFPCA) (Di et al. 2009) can be used to analyze data
with model (4). One crucial step of MFPCA is to smooth
two estimated covariance operators which in this example
are 2,880 × 2,880 matrices.

Smoothing large covariance operators of dimension 2,880
×2,880 can be computationally expensive.We tried bivariate
thin plate regression splines and used the R function ‘bam’
in the mgcv package (Wood 2013) with 35 equally-spaced
knots for each axis. The smoothing parameter was automat-
ically selected by ‘bam’ with the option ‘GCV.cp’. Running
time for thin plate regression splines was 3h. Because the

two covariance operators take the form in Sect. 4.1 (see the
details in “Appendix 2”), we applied FACE, which ran in less
than 10s with 100 knots. Note that we also tried thin plate
splines with 100 knots inmgcv, which was still running after
10h. Figure 4 displays the first three eigenfunctions for KX

and KU , using both methods. As a comparison, the eigen-
functions using SSVDare also shown. For the SSVDmethod,
to handle incomplete data the SVD step was replaced by a
brute-force decomposition of the two 2,880× 2,880 covari-
ance operators. Figure 4 shows that the top eigenfunctions
obtained from the two bivariate smoothing methods are quite
different, except for the first eigenfunctions on the top row.
The estimated eigenfunctions using FACE in general resem-
ble those by SSVD with some subtle differences, while thin
plate splines in this example seem to over-smooth the data,
probably because we were forced to use a smaller number of
knots.

The smoothed eigenfunctions from FACE using PGCV
(red solid lines in Fig. 4) appear undersmooth. This may be
due to the well reported tendency of GCV to undersmooth as
well as to the noisy and complex nature of the data. A com-
mon way to combat this problem is to use modified GCV
(modified PGCV for our case) where tr(S) in (2) is multi-
plied by a constant α that is greater than 1; see Cummins et al.
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Table 5 Estimated eigenvalues of KX and KU

Eigenfunction SSVD FACE Thin plate splines

KX 1 4.31 3.92 1.91

2 2.64 2.66 0.50

3 1.88 1.35 0.31

all 48.14 14.40 2.81

KU 1 8.84 6.33 6.75

2 5.69 3.18 2.55

3 5.03 2.86 2.04

all 107.95 22.75 12.95

All eigenvalues are multiplied by J to refer to the variation in the data
explained by the eigenfunctions. The row ‘all’ refers to the sum of all
positive eigenvalues

(2001) andKim andGu (2004) for such practices for smooth-
ing splines. Similar practice has also been proposed for AIC
in Shinohara et al. (2014). We re-ran the FACE method with
α = 2 and the resulting estimates (green solid lines in Fig. 4)
appear more satisfactory. In this case, the direct smoothing
approach of the eigenfunctions (Rice and Silverman 1991;
Capra andMüller 1997; Ramsay and Silverman 2005) might
provide good results. However, the missing data issue and
the computational difficulty associated with large J make
the approach difficult to use.

Table 5 provides estimated eigenvalues of KX and KU .
Compared to FACE (with α = 2), thin plate splines over-
shrink significantly the eigenvalues, especially those of the
between pair covariance. The results from FACE in Table 5
show that the proportion of variability explained by KX , the
between-pair variation, is 14.40/(14.40+ 22.75) ≈ 38.8%.

8 Discussion

In this paper we developed a fast covariance estimation
(FACE) method that could significantly alleviate the compu-
tational difficulty of bivariate smoothing and eigendecom-
position of large covariance matrices in FPCA for high-
dimensional data. Because bivariate smoothing and eigen-
decomposition of covariance matrices are integral parts of
FPCA, our method could increase the scope and applicabil-
ity of FPCA for high-dimensional data. For instance, with
FACE, one may consider incorporating high-dimensional
functional predictors into the penalized functional regression
model of Goldsmith et al. (2011).

The proposed FACEmethod can be regarded as a two-step
procedure such as S-Smooth (see, e.g., Besse and Ramsay
1986; Ramsay and Dalzell 1991; Besse et al. 1997; Cardot
2000; Zhang and Chen 2007). Indeed, if we first smooth data
at the subject level ̂Yi = SYi , i = 1, . . . , I , then it is easy
to show that the empirical covariance estimator of the ̂Yi is

equal to ˜K. There are, however, important computational dif-
ferences between FACE and the current two-step procedures.
First, the fast algorithm in Sect. 3.2 enables FACE to select
efficiently the smoothing parameter. Second, FACE could
work with structured functional data and allow for different
smoothing for each covariance operator. Third, FACE can be
easily extended for incomplete data where long consecutive
portions of data aremissingwhile it is unclear how a two-step
procedure could be used for such data.

The second approach, SSVD, is very simple and reason-
able, though some problems remain open, especially in appli-
cations with missing data. Another drawback of SSVD is
that the smoothed eigenvectors are not necessarily orthogo-
nal, though the fast Gram-Schmidt algorithm could easily be
applied to the smooth vectors. Overall, we found that using a
combination of FACE and SSVD provides a reasonable and
practical starting point for smoothing covariance operators
for high dimensional functional data, structured or unstruc-
tured.

In this paper we have only considered the case when the
sampling points are the same for all subjects. Assume now for
the i th sample that we observeYi = {Yi (ti1), . . . ,Yi (ti Ji )}T ,
where ti j , j = 1, . . . , Ji can be different across subjects. In
this case the empirical estimator of the covariance opera-
tor does not have a decomposable form. Consider the sce-
nario when subjects are densely sampled and all Ji ’s are
large. Using the idea from Di et al. (2009), we can under-
smooth each Yi using, for example, a kernel smoother with
a small bandwidth or a regression spline. FACE can then
be applied on the under-smoothed estimates evaluated at an
equally spaced grid, {̂Y1, . . . ,̂YI }. Extension of FACE to the
sparse design scenario remains a difficult open problem.
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Appendix 1: Proofs

Proof of Proposition 1 The design matrix B is of full rank
(Xiao et al. 2012). Hence BTB is invertible and AS is of
rank c. �S is a diagonal matrix with all elements greater
than 0 and ˜Y is of rank at most min(c, I ). Hence ˜K =
AS

(

I−1�S˜Y˜YT�S
)

AT
S has a rank at most min(c, I ) and

the proposition follows. 	


Proof of Proposition 2 First of all, tr(S) = tr(�S) which
is easy to calculate. We now compute

∑I
i=1 ‖Yi − SYi‖2.

Because ‖Yi − SYi‖2 = YT
i (S − IJ )2Yi = tr{(S −

IJ )2YiYT
i },
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I
∑

i=1

‖Yi − SYi‖2 = tr

{

(S − IJ )2
I

∑

i=1

YiYT
i

}

= tr
{

(S − IJ )2YYT
}

.

It can be shown that S2 = AS�
2
SA

T
S . Hence tr(S2YYT ) =

tr(YTS2Y) = tr(˜YT�2
S
˜Y) = tr(�2

S
˜Y˜YT ). Similarly, we

derive tr(SYYT ) = tr(�S˜Y˜YT ).We have tr(YYT ) = ‖Y‖2F .
It follows that

I
∑

i=1

‖Yi − SYi‖2 = tr
{

(�S − Ic)2˜Y˜YT
}

− ‖˜Y‖2F + ‖Y‖2F .

	

Proposition 3 The computation time of FACE is O(I Jc +
Jc2 + c3 + ck0), where k0 is the number of iterations needed
for selecting the smoothing parameter (see Sect. 3.2), and
the total required computer memory is O(J I + I 2 + Jc+ c2

+ k0) memory units.

Proof of Proposition 3 We need to compute or store the fol-
lowing quantities: X, B, BTB, (BTB)−1/2,P, (BTB)−1/2

P(BTB)−1/2,AS,˜Y,A,U, and ASA. For the computa-
tional complexity, BTB, AS = B(BTB)−1/2U, and ASA
require O(Jc2) computations; (BTB)−1/2, P, (BTB)−1/2

P(BTB)−1/2, A, and U require O(c3) computations; ˜Y =
AT

SY requires O(J I c) computations. So in total, O(J I c +
Jc2+c3) computations are required. For thememory burden,
the loading of Y requires O(J I ) memory units, computer of
B and ASA requires O(Jc) memory units, and other objects
require O(c2) memory units. 	

Proof of Theorem 1 We have ̂ξ i = J−1/2(AŜAN )TYi =
J−1/2

̂AT
N (AT

SYi ) = J−1/2
̂AT

N
˜Yi . 	


Proof of Theorem 2 Let ˜AN denote the first N columns of
ASA, then ˜AN = AŜA. The estimated BLUPs for ξ i (Rup-
pert et al. 2003) is

̂ξ i = J−1/2
̂�N˜AT

N

(

˜AN̂�N˜AT
N + J−1σ̂ 2IJ

)−1
Yi .

The inverse matrix in the above equality can be replaced by
the following [Seber (2007), page 309, equality b(i)],
(

̂AN̂�N˜AT
N + J−1σ̂ 2IJ

)−1

= J

σ̂ 2

{

IN − J

σ̂ 2
˜AN

(

̂�
−1
N + J

σ̂ 2 IN

)−1
˜AT

N

}

.

It follows that

̂ξ = J−1/2 J

σ̂ 2
̂�

{

IN − J

σ̂ 2

(

̂�
−1
N + J

σ̂ 2 IN

)−1
}

̂AT
N
˜Yi

= J−1/2
̂�N

(

̂�N + J−1σ̂ 2IN
)−1

̂AT
N
˜Yi .

	


Appendix 2: Empirical covariance operators for KX and
KU

Let I denote the number of pairs of cases and con-
trols. For simplicity, we assume estimates of μA(t) and
μC (t) have been subtracted from Yi A and YiC , respec-
tively. Let Yi A = (Yi A(t1), . . . ,Yi A(tT ))T and YiC =
(YiC (t1), . . . ,YiC (tJ ))T . By Zipunnikov et al. (2011), we
have estimates of the covariance operators,

̂KX = 1

2I

I
∑

i=1

(

Yi AYT
iC + YiCYT

i A

)

,

and

̂KU = 1

2I

I
∑

i=1

(Yi A − YiC ) (Yi A − YiC )T .

LetYA = [Y1A, . . . ,YnA],YC = [Y1C , . . . ,YnC ] andY =
[YA,YC ]. Then Y is of dimension J × 2I . It can be shown
that ̂KX = YHXYT and ̂KU = YHUYT , where

HX = 1

2I

(

0I II
II 0I

)

, HU = 1

2I

(

II −II
−II II

)

.

References

Besse, P., Cardot, H., Ferraty, F.: Simultaneous nonparametric regres-
sions of unbalanced longitudinal data. Comput. Stat. Data Anal. 24,
255–270 (1997)

Besse, P., Ramsay, J.O.: Principal components analysis of sampled func-
tions. Psychometrika 51, 285–311 (1986)

Bunea, F., Xiao L.: On the sample covariance matrix estimator of
reduced effective rank population matrices, with applications to
fPCA. To appear in Bernoulli. http://arxiv.org/abs/1212.5321 (2013)

Capra, W., Müller, H.: An accelerated-time model for response curves.
J. Am. Stat. Assoc. 92, 72–83 (1997)

Cardot, H.: Nonparametric estimation of smoothed principal compo-
nents analysis of sampled noisy functions. J. Nonparametr. Stat. 12,
503–538 (2000)

Crainiceanu, C., Reiss, P., Goldsmith, J., Huang, L., Huo, L., Scheipl,
F., Swihart, B., Greven, S., Harezlak, J., Kundu, M., Zhao, Y.,
Mclean, M., Xiao, L.: R package refund: methodology for regres-
sion with functional data (version 0.1-9). http://cran.r-project.org/
web/packages/refund/index.html (2013)

Crainiceanu, C., Staicu, A., Di, C.: Generalized multilevel functional
regression. J. Am. Stat. Assoc. 104, 1550–1561 (2009)

Crainiceanu, C., Staicu, A., Ray, S., Punjabi, N.: Bootstrap-based infer-
ence on the difference in the means of two correlated functional
processes. Stat. Med. 31, 3223–3240 (2012)

Craven, P., Wahba, G.: Smoothing noisy data with spline functions.
Numer. Math. 31, 377–403 (1979)

Cummins,D., Filloon,T.,Nychka,D.:Confidence intervals for nonpara-
metric curve estimates: toward more uniform pointwise coverage. J.
Am. Stat. Assoc. 96, 233–246 (2001)

Dauxois, J., Pousse, A., Romain, Y.: Simultaneous nonparametric
regressions of unbalanced longitudinal data. J. Multivar. Anal. 12,
136–154 (1982)

123

http://arxiv.org/abs/1212.5321
http://cran.r-project.org/web/packages/refund/index.html
http://cran.r-project.org/web/packages/refund/index.html


Stat Comput (2016) 26:409–421 421

Di, C., Crainiceanu, C.M., Caffo, B.S., Punjabi, N.: Multilevel func-
tional principal component analysis. Ann. Appl. Stat. 3, 458–488
(2009)

Eilers, P., Marx, B.: Flexible smoothing with B-splines and penalties
(with Discussion). Stat. Sci. 11, 89–121 (1996)

Eilers, P., Marx, B.: Multivariate calibration with temperature interac-
tion using two-dimensional penalized signal regression. Chemometr.
Intell. Lab. Syst. 66, 159–174 (2003)

Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B., Reich, D.: Longi-
tudinal functional principal component. J. Comput. Graph. Stat. 20,
830–851 (2011)

Greven, S., Crainiceanu, C., Caffo, B., Reich, D.: Longitudinal func-
tional principal component. Electron. J. Stat. 4, 1022–1054 (2010)

Karhunen, K.: Uber lineare methoden in der wahrscheinlichkeitsrech-
nung. Annales Academie Scientiarum Fennicae 37, 1–79 (1947)

Kim, Y.J., Gu, C.: Smoothing spline Gaussian regression: more scalable
computation via efficient approximation. J. R. Stat. Soc. B 66, 337–
356 (2004)

Kneip, A.: Nonparametric estimation of common regressors for similar
curve data. Ann. Stat. 22, 1386–1427 (1994)

Marx, B., Eilers, P.: Multidimensional penalized signal regression.
Technometrics 47, 13–22 (2005)

Ramsay, J., Dalzell, C.J.: Some tools for functional data analysis (with
Discussion). J. R. Stat. Soc. B 53, 539–572 (1991)

Ramsay, J., Silverman,B.: Functional data analysis. Springer,NewYork
(2005)

Ramsay, J., Silverman, B.W.: Applied Functional Data Analysis: Meth-
ods and Case Studies. Springer, New York (2002)

Rice, J., Silverman, B.: Estimating the mean and covariance structure
nonparametrically when the data are curves. J. R. Stat. Soc. B 53,
233–243 (1991)

Ruppert, D.: Selecting the number of knots for penalized splines. J.
Comput. Graph. Stat. 1, 735–757 (2002)

Ruppert, D., Wand, M., Carroll, R.: Semiparametric Regression. Cam-
bridge University Press, Cambridge (2003)

Seber, G.: A Matrix Handbook for Statisticians. Wiley-Interscience,
New Jersey (2007)

Shinohara, R., Crainiceanu, C., Caffo, B., Reich, D.: Longitudinal
analysis of spatio-temporal processes: a case study of dynamic
contrast-enhancedmagnetic resonance imaging inmultiple sclerosis.
http://biostats.bepress.com/jhubiostat/paper231/ (2014)

Shou, H., Zipunnikov, V., Crainiceanu, C., Greven, S.: Structured func-
tional principal component analysis. http://arxiv.org/pdf/1304.6783.
pdf (2013)

Staniswalis, J., Lee, J.: Nonparametric regression analysis of longitu-
dinal data. J. Am. Stat. Assoc. 93, 1403–1418 (1998)

Swihart, B., Caffo, B., Crainiceanu, C., Punjabi, N.: Mixed effect pois-
son log-linear models for clinical and epidemiological sleep hypno-
gram data. Stat. Med. 31, 855–870 (2012)

Wang,X., Shen, J., Ruppert, D.: Some asymptotic results on generalized
penalized spline smoothing. Electron. J. Stat. 4, 1–17 (2011)

Wood, S.: Thin plate regression splines. J. R. Stat. Soc. B 65, 95–114
(2003)

Wood, S.: R package mgcv: mixed GAM computation vehicle with
GCV/AIC/REML, smoothese estimation (version 1.7-24). http://
cran.r-project.org/web/packages/mgcv/index.html (2013)

Xiao, L., Li, Y., Apanasovich, T., Ruppert, D.: Local asymptotics of
P-splines. http://arxiv.org/abs/1201.0708v3 (2012)

Xiao, L., Li, Y., Ruppert, D.: Fast bivariate P-splines: the sandwich
smoother. J. R. Stat. Soc. B 75, 577–599 (2013)

Yao, F.,Müller,H.,Clifford,A.,Dueker, S., Follett, J., Lin,Y.,Buchholz,
B., Vogel, J.: Shrinkage estimation for functional principal compo-
nent scores with application to the population kinetics of plasma
folate. Biometrics 20, 852–873 (2003)

Yao, F., Müller, H., Wang, J.: Functional data analysis for sparse longi-
tudinal data. J. Am. Stat. Assoc. 100, 577–590 (2005)

Zhang, J., Chen, J.: Statistical inferences for functional data. Ann. Stat.
35, 1052–1079 (2007)

Zipunnikov, V., Caffo, B.S., Crainiceanu, C.M., Yousem, D.,
Davatzikos, C., Schwartz, B.: Multilevel functional principal com-
ponent analysis for high-dimensional data. J. Comput. Graph. Stat.
20, 852–873 (2011)

Zipunnikov, V., Greven, S., Shou, H., Caffo, B.S., Reich, D.S.,
Crainiceanu, C.: Longitudinal high-dimensional principal compo-
nents analysis with application to diffusion tensor imaging of multi-
ple sclerosis. Ann. Appl. Stat.http://biostats.bepress.com/jhubiostat/
paper234/ (2012)

123

http://biostats.bepress.com/jhubiostat/paper231/
http://arxiv.org/pdf/1304.6783.pdf
http://arxiv.org/pdf/1304.6783.pdf
http://cran.r-project.org/web/packages/mgcv/index.html
http://cran.r-project.org/web/packages/mgcv/index.html
http://arxiv.org/abs/1201.0708v3
http://biostats.bepress.com/jhubiostat/paper234/
http://biostats.bepress.com/jhubiostat/paper234/

	Fast covariance estimation for high-dimensional functional data
	Abstract 
	1 Introduction
	2 Model and data structure
	3 FACE
	3.1 Estimation of eigenfunctions
	3.2 Selection of the smoothing parameter
	3.3 Estimating the scores

	4 Extension of FACE
	4.1 Structured functional data
	4.2 Incomplete data

	5 The SSVD estimator and a subject-specific smoothing estimator
	6 Simulation
	6.1 Complete data
	6.2 Incomplete data
	6.3 Computation time

	7 Example
	8 Discussion
	Acknowledgments
	Appendix 1: Proofs
	Appendix 2: Empirical covariance operators for KX and KU
	References




