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Abstract This paper concentrates on the stable distribu-
tions which have maximum skewness to the left. The expo-
nentials of such stable distributions are called finite moment
log-stable distributions. They have the property that all
moments are finite, and are of interest in financial options
pricing as an alternative to log-normal distributions. Com-
putation of density and distribution functions has been made
faster by using interpolation formulae in two variables and
made less error-prone by using computational objects to rep-
resent the distributions and performing computational pro-
cedures on those objects. Some computations using finite
moment log-stable distributions for options pricing are illus-
trated. The most important qualitative difference from the
Black–Scholes log-normal model for options pricing is that
the log-stable model suggests that dynamic hedging will
reduce portfolio risk by a much smaller amount than is sug-
gested by the log-normal model. This suggests that finite
moment log-stable distributions could be used to provide
conservative assessments of portfolio risk.

Keywords Stable distributions · Interpolation ·
Computation · Option pricing · Hedging of risk

1 Introduction

This work is motivated by the idea that it might be useful
to assess the financial risk of a portfolio of options using
finite moment log-stable distributions. The intuitive basis
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for this idea is that these distributions differ from the log-
normal distributions which are commonly used for assessing
the financial risk of options over assets in that they include
the possibility of large decreases in asset values. However,
this paper concentrates on some numerical analysis difficul-
ties associated with use of log-stable distributions. The main
development is a set of interpolation formulae described in
Sect. 3.

The remainder of this section introduces the families of
stable distributions and finite moment log-stable distribu-
tions, and outlines their computational difficulties. Section 2
gives technical details of how to achieve good precisionwhen
computing values of the distribution function or probabil-
ity density by numerical integration. Section 3 discusses
computing values of the distribution function or probabil-
ity density by interpolation. Section 4 discusses the use of
these basicmethodologies for calculating option prices. AnR
package which implements these ideas allows reliable com-
putations based on stable and log-stable distributions.

1.1 Stable distributions

Stable distributions were originally defined as the solution to
a theoretical problem. They have the property that the sum of
several independent and identically distributed random vari-
ables has the same distribution as the individual random vari-
ables, except that the location and scale parameters may be
different. According to Feller (1966) page 169, Lèvy (1925)
first found Fourier transforms of the family of stable distrib-
utions.

One parametrization of the characteristic function of a
stable distribution, called the A parametrization by Zolotarev
(1986) and called the S1 parametrization by Nolan (2013),
is that if Y has a stable distribution then

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-014-9478-9&domain=pdf


1234 Stat Comput (2015) 25:1233–1246

E[exp(i tY )] ={
exp

{−σα |t |α [
1 − iβ tan πα

2 sign(t)
] + iμt

}
if α �= 1

exp
{−σ |t | [1 + iβ 2

π
sign(t) log |t |] + iμt

}
if α = 1.

(1)

The distribution and density functions are not generally
available in closed form, and are often computed by numer-
ical integration using formulae given by Zolotarev (1986).
He showed that the distributions are all unimodal and that
the density functions are infinitely differentiable.

The family of stable distributions has four parameters: a
location parameter denoted by μ, a scale parameter denoted
by σ , a skewness parameter denoted by β and a parameter
denoted by α which is called the characteristic exponent. If
two independent random variables X and Y have identical
stable probability distributions then the sum X + Y has a
stable probability distributionwith a scalewhich is 21/α times
the scale of X .

One feature of stable distributions which has caused con-
fusion is that there are many different parametrizations. See,
for instance, Zolotarev (1986), Samorodnitsky and Taqqu
(1994) or Nolan (2013). Different parametrizations are con-
venient for different purposes. Hall (1980) pointed out that
mistakes concerning the direction of skewness of different
parametrizations had been made by many people, including
himself.

I wish to discourage readers from being distracted by
the mathematical complexity of stable distributions. As
described in Sect. 2.2 of this paper, I commenced by compu-
tational effort in this area mywriting a computer program for
calculating the density and distribution function for general
stable distributions. However, maximally-skew stable distri-
butions (ie, ones with β = ±1) can be regarded as more fun-
damental becauseChambers et al. (1976) shows that all stable
distributions can be expressed asmixtures of twomaximally-
skew stable distributions. Most of the work described in this
paper is concerned only with the maximally-skew stable dis-
tributions.

1.2 Finite moment log-stable distributions

If X has a maximally skew stable distribution which is
skewed to the right (and β must be either +1 or−1, possibly
depending on the parametrization used) then exp(−X) can
be said to have a logmaximally skew stable distribution. This
terminology is by analogy to the fact that if X has a normal
distribution then exp(X) is said to have a log-normal dis-
tribution. The log maximally skew stable distributions have
also been called “finite moment log-stable distributions” by
Carr and Wu (2003), highlighting their important property
that all moments are finite. This makes them superficially
attractive for modelling financial risk, following arguments
including those by Mandelbrot (1963) and Fama (1965) that

log-normal distributions are not adequate for modelling the
prices of financial assets.

The family of finite moment log-stable distributions has
three parameters. Relative to the four parameters for general
stable distributions, this has two convenient consequences.
Some of the complexity of the alternative parametrizations
can be ignored; and interpolation for computing the density
and distribution functions is much simpler.

Another difference fromgeneral stable distributions is that
general stable distributions are not defined for α = 0, but
limits of finite moment log-stable distributions as α → 0 are
well-defined and useful. They are discrete distributions with
atoms of probability at zero and at one other point. From the
point of view of financial risk, the case α = 0 corresponds
to the situation where the only risk is catastrophic: either the
value will drop to precisely zero or the value will be some
knownpositive value. In contrast, the caseα = 2 corresponds
to the casewhere risk is due to a large number of small effects
each operating on a multiplicative scale: so the central limit
theorem applies and the distribution of possible future values
is log-normal.

1.3 Moments of finite moment log-stable distributions

The moment generating function for log maximally skew
stable distributions is given by Samorodnitsky and Taqqu
(1994) page 15, proposition 1.2.12. It can be found by tak-
ing the analytic continuation of the characteristic function
given in Eq. (1) to values of t on the imaginary axis. We will
only deal with the case where α �= 1 for this parametriza-
tion because the limit as α → 1 will be dealt with later using
theM parametrization. Using notation which reflects the fact
that Eq. (1) uses what Zolotarev (1986) calls the A parame-
trization and Nolan (2013) calls the S1 parametrization, the
moment generating function is

MA(t) = E
[
exp (−t (δ + γ XA))

]
= exp

(
−γ αtα/ cos

(
π

2
α
)

− δt
)

. (2)

The different ways of parametrizing general stable distrib-
utions do lead to differentways of parametrizing the logmax-
imally skew stable distributions, but the translation between
alternative parametrizations is much simpler because there
is one parameter fewer.

For the maximally skew stable distributions, the parame-
trization which Zolotarev (1986) calls theM parametrization
and Nolan (2013) calls the S0 parametrization differs from
theAor S1 parametrization in that the location parameter dif-
fers by tan(π

2 α). The moment generating function of the log
maximally skew stable distributions in this parametrization
is

MM (t) = exp
(
−γ αtα/ cos

(
π

2
α
)

+ t tan
(

π

2
α
)

− δt
)

,
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as can be seen by replacing δ by δ − tan(π
2 α) in Eq. (2). This

parametrization has the desirable feature of being continuous
around α = 1. If α is near to 1 then a computationally useful
alternative expression in terms of ε = α − 1 is

MM (t) = exp

{
γ t

sin
(

π
2 ε

) [
expm1 (ε log(γ t)) + 2 sin2

(
π

4
ε
)]

− δt

}
.

For α = 1, the moment generating function can be
found as the limit of this expression as ε → 0, namely
exp( 2

π
γ t log(γ t)) exp(−δt) = (γ t)2t/π−δt exp(−δt).

For the maximally skew stable distributions, the parame-
trization which Zolotarev (1986) calls the C parametrization
and which was used by Chambers et al. (1976) has a scale
which is different by a factor of cos1/α(π

2 α) from the A (or
S1) parametrization but has the same origin for its location
parameter. The moment generating function of the log max-
imally skew stable distributions in this parametrization is

MC (t) = exp
(−(γ t)α − δt

)
.

The mean and standard deviation of the finite moment
log-stable distribution, which will be denoted by μ and σ ,
can be readily computed. For the M parametrization, the first
moment is

exp(−δ) exp

(
γ

sin(π
2 ε)

[
γ α−1 − sin

(
π

2
α
)])

(3)

and the second moment is

exp(−2δ) exp

(
2γ

sin(π
2 ε)

[
(2γ )α−1 − sin

(
π

2
α
)])

. (4)

For the C parametrization, the first moment is

exp(−δ) exp
(−γ α

)
and the second moment is

exp(−2δ) exp
(−(2γ )α

)
.

For both parametrizations, the ratio of the second moment to
the square of the first moment (which ratio we will denote
by r ) is a function of γ which does not involve δ. So r can
be used to find the value for the parameter γ for specified
first moment, μ, and second moment, μ2 + σ 2. For the M
parametrization, provided that α �= 1, the equation for γ is
of the form

r = exp

(
2γ

sin(π
2 ε)

[
(2γ )α−1 + sin

(
π

2
α
)])

÷ exp

(
2γ

sin
(

π
2 ε

) [
γ α−1 + sin

(
π

2
α
)])

.

Taking logarithms of both sides and simplifying:

2γ

sin(π
2 ε)

[
(2γ )ε − γ ε

] = log(r).

Stable variate

D
is

tr
ib

ut
io

n 
fu

nc
tio

n
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

−2 −1 3 10 100 1000 10000

alpha = 2
alpha from 0.1 to 1.9
alpha = 0.03
alpha = 0

5 2 0.1 1e−10 1e−100 1.e−1000
Log−stable variate

Fig. 1 Distribution functions for variousα for finitemoment log-stable
distributions which have mean 1 and standard deviation 1

This is satisfied when

γ α = log(r) sin(π
2 ε)

2(2ε − 1)
= log(r) sin

(
π
2 ε

)
2 expm1(ε log 2)

.

For the case α = 1 or ε → 0, the corresponding equation
is γ = π log(r)/(4 log 2). For the C parametrization, the
equation for γ is of the form

exp
(−(2γ )α

) ÷ exp
(−2(γ )α

) = r.

This also has an explicit solution:

γ = [
log(r)/(2 − 2α)

]1/α
.

1.4 An easy-to-interpret parametrization

When working with finite moment log-stable distributions, I
often use the mean and standard deviation, μ and σ respec-
tively, as parameters rather than the location and scale, δ and
γ , of the corresponding stable distribution. It is easy to com-
pute one set of parameters from another. The main advantage
of the parameters μ and σ is that they are easy to interpret.

The most obvious standard values for μ and σ are both
unity. Using the upper horizontal axis, Fig. 1 shows these
standard log-stable distributions for a range of values of the
parameter α. The lower horizontal axis allows the corre-
sponding stable distributions to be seen. The figure illustrates
the following features.

– For α = 2 the stable variate has a normal distribution and
the log-stable variate has a log-normal distribution.

– The left-hand tails of the stable distributions are lighter
than the left-hand tail of the normal distribution which
corresponds to α = 2. The right-hand tails of the stable
distributions are heavier than the right-hand tail of the
normal distribution which corresponds to α = 2.
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Fig. 2 Distribution function for a finite moment log-stable distribution
which has mean 1, standard deviation 2 and probability 0.7 of being
larger than 0.00001

– The limit as α → 0 for the log-stable variate has proba-
bility 1

2 at X = 0 and probability 1
2 at X = 2. The limit of

the corresponding stable variates is not well-defined but
essentially has probability 1

2 at X = − log(2) and proba-
bility 1

2 at X = ∞.

1.5 Computational difficulties

A major barrier to using these distributions is that dealing
with stable and log-stable distributions is computationally
difficult.

– The density and distribution functions are not available in
closed form.

– Dealing with these distributions can often require use
of numbers outside the ranges commonly used for stor-
ing real numbers on computers (eg, 4.9 × 10−324 to
1.8×10308). For instance, Fig. 2 shows a log-stable distri-
bution with mean 1, standard deviation 2 and probability
0.7 of being larger than 0.00001. This might be suitable
as a model for uncertainty about the economic value of a
speculative venture at a future time when overall success
or failure is likely to be known.Themedian of this distribu-
tion is 2.2×10−504 and the 10% quantile is approximately
10−2395993567.

– Standard mathematical parametrizations of the stable dis-
tributions all seem unsatisfactory in one of two ways.
Either the distribution function is not continuous as a
function of the parameters; or there are regions where the
propagation of rounding errors from parameters to distri-
bution function, its complement or the probability density
is unsatisfactory. For instance for the S0 parametrization
(which Nolan (2013) advocates so that the distribution
function is continuous as a function of the parameters),
the density for the maximally skew stable distribution
with standard location and scale parameters is essentially

a function of x+ tan( 12πα). For α = 0.01 the density den-
sity is precisely zero for x ≤ − tan(0.005π) and reaches
its peak when x is approximately 5.706 × 10−201 larger
than this critical value. Behaviour of the density in this
region cannot readily be investigated using the S0 para-
metrization because the density is too sensitive to round-
ing errors in x . However the behaviour of the density can
be investigated using other parametrizations for which the
critical value for x is zero.

2 Accurate computations

My first step in developing fast and accurate computing pro-
cedures for dealing with finite moment log-stable distribu-
tions was to develop accurate computing procedures for gen-
eral stable distributions. These distributions were later used
as the basis for fast computing procedures based on inter-
polation. The main difficulty in this work was controlling
rounding errors.

2.1 Propagation of rounding errors

It is well known in numerical analysis that mathematically
equivalent formulae sometimes provide quite different com-
putational accuracy. Computer systems generally provide
facilities for computing common mathematical functions
such as log, exp, sin, arcsin, cos, arccos, sinh and asinh
to approximately the relative precision with which floating-
point numbers are stored: about 1 part in 252 or 2.2× 10−16.
The functions log1p and expm1 are also available in most
computer languages which are used for mathematical com-
puting.

In some circumstanceswhere the argument of the function
might sensibly be specified as a deviation from a standard
value or the quantity required is the function plus or minus a
constant, we need to be very conscious of the precision that
might be lost when numbers are subtracted. Some examples
of this where δ denotes a small positive number such as δ =
1× 10−13 known to good relative precision are that sin(δ) is
more accurate than sin(π − δ), expm1(δ) is more accurate
than exp(δ) − 1, log1p(δ) is more accurate than log(1 + δ),
2 sin2(0.5δ) ismore accurate than1−cos(δ), 2 arcsin(

√
0.5δ)

is more accurate than arccos(1 − δ), 2 sinh2(0.5δ) is more
accurate than cosh(δ) − 1, and asinh(

√
δ(2 − δ)) is more

accurate than acosh(1 + δ).
One example of sensitivity to deviations from a stan-

dard value involving stable distributions is that the right-
hand-tail probability for a maximally-skew stable distribu-
tion is asymptotically proportional to 2cαx−α where cα =
	(α) sin(π

2 α)/π. Mathematically, sin(π
2 α) is the same as

sin(π
2 δ) where δ = 2 − α. However, if α is near to 2 and
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δ = 2 − α is known to good relative precision, then cα can
be computed more accurately using cα = 	(α) sin(π

2 δ)/π.

A second example is translating numerical values of para-
meters between different parametrizations for general stable
distributions. The mathematical relationship between the β

parameters for the A and C parametrizations is usually writ-
ten βC = arctan(βA tan(π

2 α))/(π
2 α). Better computational

accuracy can be achieved using the followingmathematically
equivalent formulae in appropriate circumstances.

– If α is near unity and its difference from unity is
known more accurately than α itself, compute tan(π

2 α)

as 1/ tan(π
2 (1 − α)).

– If α is near two and its difference from two is knownmore
accurately than α itself, compute tan(π

2 α) as− tan(π
2 (2−

α)).

– If βA is near unity and 1 − βA is known more accurately
than βA then rather than computing βC = arctan(βA tan
(π
2 α))/(π

2 α) in the obvious way, first compute

tan
(

π

2
α (1 − βC )

)
= tan

(
π
2 α

) − tan
(

π
2 αβC

)
1 + tan

(
π
2 α

)
tan

(
π
2 αβC

)

= (1 − βA) tan
(

π
2 α

)
1 + βA tan2

(
π
2 α

)

and then compute 1− βC by taking the arctangent of this
quantity. Similar computation of 1+ βC from 1+ βA can
be done when βA is near −1.

Another circumstance where deviations from a standard
value might matter is in numerical quadrature. Computing
W using Eq. (5) on page 5 is much more accurate in circum-
stances where θ − φ0 and 1 − α are small in absolute value
if they can somehow be obtained to good relative precision
rather than being computed by subtraction from θ and α.

Taking care to control the propagation of rounding errors
has been a a dominant issue during the writing of the com-
puter code described in this paper. It has frequently been nec-
essary to use different computational algorithms in different
regions in order to reduce the sizes of rounding errors.

2.2 Precise computation of density and distribution
functions

I have written code in Fortran90 for computing the density
and distribution function of stable distributions. The math-
ematical formulae behind this computation are variations
of Zolotarev’s integral formulae, as used by Nolan (1997).
These may be understood relative to the simulation method
of Chambers et al. (1976) which uses the C parametrization.

For α �= 1, the distribution function is

Fα(x) =
∫

exp(−W (θ, x)) dθ

where

W = cos(θ − α(θ − φ0)) sin(α(θ − φ0))
α

1−α

× cos(θ)−
1

1−α x− α
1−α . (5)

The integration limits are some combination of −π
2 ,

π
2 and

φ0 = −π
2 βk(α)/α where k(α) = 1− |1− α|, depending on

the values of α, β and x . For α = 1, the distribution function
is of the form

F1(x) =
π
2∫

−π
2

exp(−W (θ, x)) dθ

where

W = 2

π
exp

[{(
π

2
+ βθ

)
tan θ − 2

π
x
}/

β
] (

π

2
+ βθ

)
sec θ.

Formally differentiating these expressions with respect to x
gives the density as a one-dimensional definite integral.

The accuracy of this Fortran90 code was checked during
its development by comparing results to values given by other
people. The precision was checked by comparing both inter-
mediate calculations and final results obtained using 64-bit
and 128-bit precision for the floating point numbers. It was
often found that rounding errors could be reduced by storing
critical quantities relative to more than one origin so that the
most appropriate could readily be used. For instance the val-
ues of α − 1, 2 − α, β + 1 and 1 − β were stored as well
as α and β. For numerical integration with respect to θ , the
quantities θ ± π

2 , α(θ −φ0)±π and θ −α(θ −φ0)± π
2 were

also stored as well as θ .
A simpler strategy for reducing rounding errors which is

more compatiblewith existing software for automatic numer-
ical integration was developed later. The variable of integra-
tionmay be scaled to range from−1 to+1, so that evenwhen
the range of integration is halved up to 52 times there will
be no rounding error in the computer representation of the
endpoints of subintervals. Therefore the quantities θ , θ ± π

2 ,
α(θ − φ0) ± π and θ − α(θ − φ0) ± π

2 may be computed
to high precision for the intermediate points from the values
at endpoints of subintervals. Code for computing the distri-
bution function of stable distributions using this strategy is
included in the R package FMStable.

3 Interpolation of the distribution function and the
probability density function

The main novel contribution of this paper is to show how the
probability distribution function and probability density can

123



1238 Stat Comput (2015) 25:1233–1246

Fig. 3 Crude representation of regionswhere different approximations
were used for the density and distribution function for log maximally-
skew stable distributions. The boundaries between adjacent regions
which are shown as horizontal lines are simply based on the value of α.
The boundaries which are shown as vertical lines are based on several
different variables, considering Eq. (7), (11, (12) and (13). They are not
based on a single x variable. Adjacent regions generally overlap

be computed satisfactorily by interpolation. Concentration
on the maximally skew stable distributions means that only
two-dimensional interpolation is required.

In order to provide good approximations to the density, the
distribution function and the right tail probability for allα and
all x , it was found necessary to use different mathematical
forms in each of several different regions. The regions where
the various approximations have been used are indicated on
Fig. 3. These regions were chosen by starting with various
asymptotic approximations, investigating how many nodes
needed to be included in order that interpolation formulae
have relative precision of better than 10−14 over regions large
enough to overlap, and finally fitting interpolation formulae
over Region 4 (which is in the middle, so the approximations
do not have to be compatible with any asymptotic approx-
imations). Where there is overlap between adjacent regions
of validity of interpolation formulae, an arbitrary decision is
made as to which formula to use.

Chebychev nodes have been used for interpolations over
finite ranges. For a function f (x) defined over the inter-
val (−1,+1), this means evaluating f (x) at the n points
xi = cos ((2i − 1)π/(2n)) and using polynomial interpola-
tion. For interpolation over the interval (a, b), the function
is evaluated at the points 1

2 (a + b) + 1
2 (b − a)xi . Interpo-

lation over two variables is done by interpolating over one
variable for each of the nodes for the second variable, then
interpolating over the second variable.

One-dimensional interpolation was always based on 16
nodes. If there are 8 nodes available on each side of a point
for which an interpolated function value is required then the
nearest 8 nodes on each side of that point are used.Otherwise,
the nearest 16 nodes are used. This form of interpolation is
moderately efficient and was used as a standard method in
order to simplify the search for good methods of interpola-
tion.

3.1 Region 1

From Holt and Crow (1973) Sect. 2.21 or Zolotarev (1986)
Eqs. 2.4.3 and 2.4.8, the probability density at xC for the C
parametrization is given by the convergent series

fα(xC ) = 1

πxC

∞∑
k=1

(−1)k−1

k! Γ (αk + 1)x−αk
C sin

(
π

2
kα

)
.

The probability in the right tail is

1− Fα(xC )= 1

πα

∞∑
k=1

(−1)k−1

k × k! Γ (αk + 1)x−αk
C sin

(
π

2
kα

)
.

(6)

These series suggest that xC fα(xC ) and 1 − Fα(xC ) can
be interpolated as functions of x−α

C and α. Such interpolation
was found to be reasonably accurate (ie, relative errors appar-
ently less than 10−14) over the range α < 0.5 and xC > 1
in the C parametrization with 20 Chebyshev-spaced nodes in
each of the variables. This is Region 1 on Fig. 3.

Using the first term of series (6) and taking cα =
Γ (α) sin(π

2 α)/π gives the approximation

1 − Fα(xC ) ≈ 2cαx
−α
C .

This is useful as a first approximation when finding quantiles
in this region.

3.2 Region 2

From Eq. (6), as α → 0 the probability in the right tail tends
to

1

πα

∞∑
k=1

(−1)k−1

k × k! x−αk
C

[
π

2
kα

]
= 1

2

∞∑
k=1

(−1)k−1

k! x−αk
C

≈ 1

2

(
1 − exp(−x−α

C )
)
.

In Region 2, interpolation was done using the variable 1 −
exp(−x−α

C ), rather than exp(−x−α
C ) as inRegion 1.Again, 20

Chebyshev-spaced nodes were used in each of the variables
α and 1 − exp(−x−α

C ).
The approximation

Fα(xC ) ≈ 1 − 2cαx
−α
C .

was used as a first approximation when finding quantiles.
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3.3 Region 3 and its dual

Zolotarev (1986) Eq. (2.5.17) tells us that when α < 1 the
density of a maximally-skew stable variable for values of xC
in the C parametrization near zero is approximately

ν√
2πα

ξ
2−α
2α exp(−ξ)

{
1 +

∞∑
n=1

Qn(α)(αξ)−n

}

where

ξ = (1 − α)(xC/α)−α/(1−α) (7)

and ν = (1 − α)−1/α . The terms Qn(α) are polynomials of
degree 2n.

Similarly, Zolotarev (1986) Eq. (2.5.20) tells us that the
distribution function of a maximally-skew stable variable
when α < 1 for values of xC in the C parametrization near
zero is approximately

1√
2παξ

exp(−ξ)

{
1 +

∞∑
n=1

Q̃n(α)(αξ)−n

}
(8)

where the polynomials Q̃n(α) are not the same as Qn(α).
We do not need to evaluate the polynomials Qn(α) or

Q̃n(α). These formulae suggest that interpolation as func-
tions of α and (αξ)−1 can be used to approximate the expres-
sions in large brackets, at least when αξ is large. Calcula-
tions suggest that 20 Chebyshev-spaced nodes in α and 70
Chebyshev-spaced nodes in (αξ)−1 were adequate to achieve
good accuracy provided that αξ < 1

5 .

Zolotarev (1986) says that formula (8) also applies when
α > 1 and xC → ∞ provided that α is replaced by 1/α in
the summation. This could also be shown by the principle of
duality which is most simply stated in the C parametrization.
See Zolotarev (1986) Sect. 2.3. The portions of maximally
skew stable distributions for α > 1 for positive xC are related
to portions of the maximally skew stable distributions for
α < 1. Denoting the distribution function by Fα(xC ) and the
density function by fα(xC ): if α > 1 then

α (1 − Fα(xC )) = F1/α(x−α
C ) (9)

and

fα(xC ) = x−1−α
C f1/α(x−α

C ). (10)

The values of ξ are the same for points related by duality.
For α > 1, it should be noted that ξ as a function of xC in
the complex domain has an essential singularity at xC = 0
except for the case when α = 2. Hence this approximation
cannot be expected to be useful for negative xC or for xC
near to zero.

Formulae (9) and (10) above are for the C parametrization.
For the M (or S0) parametrization, xC needs to be replaced
by

xC = xMs (11)

where s = (1 + tan2(π
2 k))

−1/(2α) in the formula for the
distribution function. For the density, there needs to be a
factor of s as well as this replacement. When α < 1,

ξ = (1 − α)

(
xM + tan

(
π
2 α

)
α cos

(
π
2 α

)
)−α/(1−α)

(12)

The inverse relationship for xM in terms of ξ is

xM = α

(
1 − α

ξ

)(1−α)/α (
cos(

π

2
α)

)−1/α − tan
(

π

2
α
)

.

This relationship is not computationally practical for α near
to 1. It can be rewritten as

xM = α

cos(π
2 α)

expm1

(
1 − α

α
log

1 − α

ξ cos(π
2 α)

)

+ α

cos(π
2 α)

− tan
(

π

2
α
)

.

Computationally, this formula is handled by first calcu-
lating four quantities which are dependent only on α or on
ε = 1 − α. It turns out that these formulae work for α > 1
also, even though the earlier relationships would need to be
modified by addition of some modulus signs and multiplica-
tion by sign(1 − α).

C1 = α

cos
(

π
2 α

) = α

sin
(

π
2 ε

)
C2 = 1 − α

α
= ε

1 − ε

C3 = 1 − α

cos
(

π
2 α

) = ε

sin
(

π
2 ε

)

C4 = α

cos
(

π
2 α

) − tan
(

π

2
α
)

= 1 − ε − sin
(

π
2 α

)
cos

(
π
2 α

)

= 2 sin2 π
4 ε − ε

sin π
2 ε

Then translation between xM and ξ for the M (or S0) para-
metrization can be handled using the equations

xM = C1expm1 (C2 log(C3/ξ)) + C4

ξ = C3/ exp

(
log1p

(
xM − C4

C1

) /
C2

)
.

In these regions, an approximation to ξ for given F is
found by approximately solving the equation

F = 1√
2παξ

exp(−ξ).

A first approximation is ξ = − log(F). This is refined using
a single Newton-Raphson iteration.
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3.4 Region 4

Because Region 4 is central, it is not necessary to match
the method of interpolation with any asymptotic behaviour.
The logarithm of the right hand tail probability and the loga-
rithmof the probability densitywere interpolated as functions
of α and xM . Accuracy appeared to be satisfactory with 40
Chebyshev-spaced nodes over α and 60 Chebyshev-spaced
nodes over xM .

Approximate quantiles are found by using the approxima-
tion for Regions 3 and its dual if the left hand tail probability
is the smaller, and by using the approximation for Regions 5
and 6 if the right hand tail probability is the smaller.

3.5 Regions 5 and 6

An approximation which is useful in these regions is given
in Zolotarev (1986) Theorem (2.5.6). We compute

η = tan
(

πα

2

)

and then compute y using the implicit equation

xM = y + ηy1−α. (13)

The density and right hand tail probability at xM are approx-
imately

fα(xM ) ≈ 1

πxM

∞∑
n=1

An(α)y−αn

1 − Fα(xM ) ≈ 1

πα

∞∑
n=1

1

n
(An(α) + (1 − α)An−1(α)) y−αn

(14)

where A0 = 0 and, using “Im” to stand for “imaginary part”,

An(α) = Im

[
n∑

k=1

Γ (αk + n − k + 1)

Γ (k + 1)Γ (n − k + 1)
(−η)n−k

× eiπαk/2(ηeiπ/2 − 1)k
]
.

In particular,

A1 (α) = Im
Γ (α + 1)

Γ (2) Γ (1)
eiπα/2

(
tan

(
π

2
α
)
eiπ/2 − 1

)

= Γ (α + 1) Im
{
cos

(
π

2
α
)

− i sin
(

π

2
α
)}

×
{
i tan

(
π

2
α
)

− 1
}

= 2	 (α + 1) sin
(

π

2
α
)

. (15)

For the purpose of interpolation, the density and the right
tail probability at xM can be expressed as quantities which
depend on αy−1−α times a polynomial in y−α which may be
taken to be unity at infinity (ie, xM = 0).

This for the A (or S1) parametrization. For the M (or S0)
parametrization, the value of xM for given y is

xM = y + ηy1−α − η = y + tan
(

π

2
α
) [

y1−α − 1
]

= y + expm1 (ε log(y)) / tan
(

π

2
ε
)

where ε = 1 − α. The limit as ε → 0 (ie, as α → 1) is
xM = y + 2

π
log(y).

Zolotarev (1986) indicates that this approximation is
intended to be applied when α < 1, so interpolation in terms
of α and y−1/α can be expected to be satisfactory. Numerical
work has indicated that such interpolation also works well
when α > 1.

Interpolation in Region 5 was done using 40 Chebyshev-
spaced nodes over α and 20 Chebyshev-spaced nodes
over y−1/α . Interpolation in Region 6 was done using 17
Chebyshev-spaced nodes over α and 20 Chebyshev-spaced
nodes over values of y−1/α .

Approximations to quantiles can be found by truncating
the series in Eq. (14) and using the known value for A1(α).

1 − Fα(xM ) ≈ 1

πα
2Γ (α + 1) sin

(
π

2
α
)
y−α.

Values for y can be substituted into Eq. (13) to find values
for xM .

3.6 Region 7

As α → 2, it appears that

f ′
2(xM ) = lim

α→2

∂ fα(xM )

∂α

and

F ′
2(xM ) = lim

α→2

∂Fα(xM )

∂α

are bounded and are smooth functions of xM . Interpolation in
this region was done using 17 Chebyshev-spaced nodes over
2−α and 100 Chebyshev-spaced nodes over xM . This could
probably be made computationally faster if good numerical
approximations (such as continued fractions) were available
for f ′

2(xM ) and F ′
2(xM ).

In this region, approximate quantiles were found using the
fact that the limiting distribution for α = 2 is normal with
variance 2.

4 Pricing financial options

Now we consider how the interpolation procedures for the
density and distribution function of maximally skew stable
distributions can be used for financial applications.

A financial derivative is a contract whose outcome
depends on fluctuations in the price of an asset (such as 1000
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shares in a company). “Call” and “put” options are finan-
cial derivatives whereby the purchaser acquires the right to
buy or sell an asset for a specified price (referred to as the
“strike”) prior to or on a specified date. The seller of the
option (sometimes referred to at the “writer”) is required to
assure that he/she will maintain the ability to uphold his end
of the transaction and is paid a fee.

The simplest options are ones where the purchaser’s right
may only be exercised at the specified date. They are referred
to as “European” options. Options where the purchaser’s
right may be exercised at any time prior to the specified are
referred to as “American” options. And there are many more
complicated styles of options which will not be of concern
here. See, for instance, Hull (2003), for details and further
information about options in finance.

One way of computing a fair price for a European option
is based on the assumption that uncertainty about the future
price of the asset may be described by a log-normal distribu-
tion. For instance, suppose that the logarithm of future price,
x = log(P), is normally distributed with density function

1√
2πσ

exp

[
−1

2

(
x − μ

σ

)2
]

.

For the case of no interest and dividends, the value of a Euro-
pean call option with strike S is the expectation of

(P − S)+ =
{

(P − S) if P − S ≥ 0
0 if P − S < 0.

Using Q(z) to denote the right hand tail probability for a
standard normal distribution, this expectation is

∞∫
log(S)

(exp(x) − S)
1√
2πσ

exp

[
−1

2

(
x − μ

σ

)2
]

dx

which is −SQ
(
log(S)−μ

σ

)
plus

∞∫
log(S)

1√
2πσ

exp

[
x − 1

2

(
x − μ

σ

)2
]

dx

=
∞∫

log(S)

1√
2πσ

exp

[
−1

2

(
x − μ − σ

σ

)2

+ 1

2
σ + μ

]
dx

= exp
( 1

2
σ + μ

)
Q

(
log(S) − μ − σ

σ

)
.

This is equivalent to a particular case of what are known as
the Black–Scholes formulas. Following Black and Scholes
(1973), these formulas are usually derived from a differen-
tial equation which is based on a hedging argument. The
above derivation based on calculating the expected payment
to the purchaser of the option has the advantage that the
same approach can easily be applied even if the form of the

distribution used to describe the future value of the asset is
something other than log-normal.

Option values are discussed in this section for the case of
zero interest rate and zero holding cost. The values of options
for non-zero interest rates and non-zero holding costs can be
calculated by transforming the problem to one in which these
are both zero, valuing the option for the standard case, then
back-transforming the option value.

The parameter σ in the log-normal model is generally
referred to as the “volatility” in the financial options litera-
ture.

The log-normal model is not regarded as anywhere near
perfect. One common way of discussing departures from it
is to use the Black–Scholes formulas implicitly to calculate
values for the volatility,σ , which give observedmarket prices
for options. These values are called “implied volatilities”. It
is commonly observed that the implied volatilities vary with
the strike price and with the time-to-expiry of options.

4.1 Using log-stable distributions to price options

Carr and Wu (2003) argued that log-stable distributions are
likely to be useful for modelling share-index options but not
for modelling currency options, because the underlying sta-
ble distributions are not symmetric and this asymmetry per-
sists as time-to-expiry increases. Vollert (2001) argued that
log-stable distributions are a natural generalization of log-
normal models for asset and index return distributions, with
the substantial disadvantage that they are “computationally
demanding”. Rachev et al. (1999) suggested that these dis-
tributions should be used more widely in econometrics.

For the case when the future value of an asset is assumed
to come from a finite moment log-stable distribution, the val-
ues of options can be computed by numerical integration of
the distribution function with respect to the asset price. This
provides high precision and is sufficiently rapid for current
purposes.

Figure 4 shows the values of options on scales which are
often used by options traders. The horizontal axis gives the
strike price on a logarithmic scale. The vertical axis gives
the implied volatility. The non-bold continuous lines are for
finite moment log-stable distributions with mean 1, standard
deviation 0.18, and probabilities 0.01, 0.003, 0.001, 0.0003,
0.0001, 0.00003, 0.00001, 0.000003 and 0.000001 that the
final asset price will be less than 0.01. The corresponding
values for α are 0.687, 1.197, 1.527, 1.769, 1.897, 1.964,
1.9873, 1.99609 and 1.99869. The bold line gives the implied
volatility for the distribution corresponding to α = 0, which
is discrete with probability 0.03138 at zero and probability
0.96861 at 1.0324. The dotted line gives the implied volatility
for the log-normal distribution corresponding to α = 2: It is
0.1786 and does not vary with the strike price.
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Fig. 4 Implied volatility for option prices based on finite moment log-
stable models with mean 1 and standard deviation 0.18 for several dif-
ferent values of the parameter α

The lines for values of α greater than 1.0 have shapes con-
sistent with what is sometimes called a “volatility smile”, a
“volatility skew” or a “volatility smirk”. The implied volatil-
ity is higher for options with a strike price below the expected
price than for options with a higher strike price. These graphs
curve upwards like a cartoon of a smiley face, but are asym-
metric. The left panel of Fig. 3 of Carr and Wu (2003) tells a
similar story using α values of 1.2, 1.5, 1.8 and 2.

Other computational methods that might be useful for
achieving greater speed are numerical inversion of Fourier
transforms, finding three-parameter approximations for the
most commonly-used regions of the parameter space (such
as α near to 2 and coefficient of variation in the range 0.01 to
0.3), and finding interpolation formulae for the distribution
functions of finite moment log-stable distributions that are
able to be integrated in closed form term by term.

As an example of a three-parameter approximation, I have
used non-linear optimization to fit models for the implied
volatility of log-stable distributions with mean 1 as a ratio of
polynomials in three variables, removing some terms which
did not substantially affect the precision of the approxima-
tion. Denoting the scale parameter of the underlying sta-
ble distribution for the M parametrization by γ , denoting
the standard deviation of the log-stable distribution by σ ,
denoting the standard deviation on the logarithmic scale of
a log-normal variable which has the same mean and vari-
ance as the log-stable variable by σLN , and denoting the
strike by s, the variables used in this curve-fitting exercise are
a = −(log(2− α) + 3)/2, l = (log(γ ) + 2.5)/1.5 and m =
(log(s)/σLN + 1)/3. The approximate implied volatility is

σLN ×
∑

P(i, j, k)ai l jmk
/ ∑

Q(i, j, k)ai l jmk (16)

where the coefficients P and Q are given in Table 1. The
largest relative error of this approximation when the absolute
values of a, l and m are smaller than 1 is about 1%.

The relationship between γ and σ is that Eqs. (3) and (4)
allow the variance σ 2 to be computed from γ . The relation-
ship between σ and σLN is

σLN =
√
log1p(σ 2)

from the properties of a log-normal variable with unit
mean. These relationships make the approximation given by
Eq. (16) mathematically convoluted, but do not prevent it
from being computationally practical.

4.2 Estimating the parameter α

The location and scale parameters of finitemoment log-stable
distributions canbe estimatedquickly and accurately bymax-
imum likelihood from data on daily or weekly returns, when
interpolation is used to compute the probability density.How-
ever, estimation of the parameter α seems to be unreliable.
A simulation study showed that if there are no large negative
returns in the data then the estimate of α was often near two
when the true value of α was 1.8. However, the lack of large
negative returns in a set of historical data does not guarantee
that there will not be large negative returns in the future.

One practical way to estimate α is to calculate the mean
and standard deviation of daily or weekly returns, and to
subjectively estimate the annual probability of bankruptcy or
of some large drop in price, say 30 or 90%. The parameters
of a finite moment log-stable distribution can then be fitted to
these three pieces of information. (The estimated probability
of bankruptcy must be interpreted as the probability of the
price falling to a small but non-zero fraction such as 0.01 or
0.001 of the original price, because the finite moment log-
stable model does not allow prices to drop to zero.)

A bank estimating the financial risk associated with its
holding of options might adopt a conservative version of this
approach whereby probabilities of large drops in prices were
computed using a worst-case-scenario. For instance, these
probabilities might be based on the observed frequencies of
large drops in share prices during the global financial crisis
or during major stock market crashes.

The influence of the probability P0.01 of a fall to 0.01 of
the original price on option values is illustrated in Tables 2
and 3. For the distributions in these tables the mean price
is 1 and the inter-quartile range is 0.3. The values for the
parameter α are given in the second column of Table 2.

The number P0.01 may be interpreted as the probability of
default or bankruptcy. The relationship between this number
and the ratings quoted by ratings agencies such as Moody’s
and Standard & Poor is not tightly defined. An approximate
interpretation is that an asset with P0.01 = 0.1 is specula-
tive grade, P0.01 = 0.01 is the high-risk limit of investment
grade, P0.01 = 0.001 is typical investment grade, and smaller
numbers indicate blue chip grades.

We can see that the option prices deviatiate from the
Black–Scholes option prices (which correspond to α = 2) as
the probability of default increases, especially for out-of-the-
money put options (such as the third column of Table 2). Note

123



Stat Comput (2015) 25:1233–1246 1243

Table 1 Coefficients for approximation given in Eq. (16) for implied volatility

Coefficient Power of Coefficient Power of

P a l m Q a l m

1.029363616 0 0 0 1.0 0 0 0

0.348154209 1 0 0 0.391648913 1 0 0

0.058864998 2 0 0 0.045548361 2 0 0

0.008385439 3 0 0 −0.074625035 2 1 0

0.020797849 3 0 1 0.115905959 2 0 1

−0.054483005 2 1 0 −0.007883062 1 1 0

0.050239581 2 1 1 1.036488598 1 0 1

−0.017114455 2 0 2 0.390884785 1 0 2

−0.046771760 1 1 0 0.027784890 0 2 0

−0.100838614 1 1 1 −0.028183303 0 2 1

1.267590348 1 0 1 0.022833130 0 1 1

0.317125888 1 0 2 −0.021728577 0 1 2

0.081706024 1 0 3 1.072511517 0 0 1

0.024735254 0 1 0 0.960902268 0 0 2

0.024747301 0 2 0 0.081673544 0 0 3

−0.036603213 0 2 1

0.014722270 0 2 2

0.084869804 0 1 1

−0.042633441 0 1 2

0.038446366 0 1 3

0.913585910 0 0 1

1.078219297 0 0 2

−0.076961913 0 0 3

0.031536359 0 0 4

Table 2 Put option values based on finite moment log-stable models with mean 1, inter-quartile range 0.3 and various probabilities P0.01 of being
less than 0.01. The second column gives values for the parameter α

P0.01 α Strike price

0.6 0.7 0.8 0.9

1.5E-90 2 0.00075 0.00473 0.01747 0.04499

0.00001 1.99212 0.00093 0.00500 0.01775 0.04518

0.0001 1.93287 0.00232 0.00702 0.01985 0.04660

0.001 1.66224 0.00896 0.01614 0.02959 0.05382

0.01 1.09248 0.02775 0.03907 0.05444 0.07588

0.1 0.34001 0.08796 0.10687 0.12726 0.14944

that all of these option values have been calculated ignoring
the uncertainty about future volatility. This is quite unreal-
istic for distributions such as that for P0.01 = 0.1 because
there is generally great uncertainty about future volatility for
speculative investments.

Another way to estimate α is to use data on the market
prices for options, and to find the finite moment log-stable
distribution which best fits those prices. This is complicated

by the fact that option prices are strongly affected by the spot
price of the underlying asset.

In order to check the computational feasibility of this
approach, some data on prices for European options over
BHP Billiton shares on the Australian Stock Exchange were
used. These data were for the 18th December 2012 during
which the spot price of BHP shares ranged from A$36.35 to
A$36.73.

123



1244 Stat Comput (2015) 25:1233–1246

Table 3 Call option values based on finite moment log-stable models with mean 1, inter-quartile range 0.3 and various probabilities P0.01 of being
less than 0.01

P0.01 Strike price

1.0 1.1 1.2 1.3 1.4

1.5E-90 0.09049 0.05321 0.02971 0.01589 0.00821

0.00001 0.09054 0.05314 0.02959 0.01577 0.00810

0.0001 0.09093 0.05268 0.02871 0.01484 0.00733

0.001 0.09344 0.05081 0.02457 0.01055 0.00404

0.01 0.10668 0.05182 0.01684 0.00256 0.00009

0.1 0.17395 0.10183 0.03573 0.00000 0.00000

Data about all series of options over BHP shares were
downloaded, but American options were ignored and only
268 European options trades were used. For each option
trade, a spot price appropriate to the time when the option
trade was made was computed using a Kalman filter fitted to
the spot prices for all share trades. This gives approximately
the average price of share trades over the two minutes before
the option trade.

Considering a stockbroker’s predictions about likely
future dividends and the likely taxation credits associated
with those dividends, option prices were modelled as if div-
idends of A$0.60, A$0.66 and A$0.72 would be paid on 1
March 2013, 6 September 2013 and 1 March 2014, respec-
tively.

An interest rate of 3%per annumwas used. Log-stable dis-
tributions were fitted assuming that the expected share price
increases at 3% per annum. The α and scale parameters were
estimated byminimizing the weighted sum of squared devia-
tions between modelled option prices and transaction prices,
usingweights proportional to the square root of the size of the
transaction. This was done twice, with option prices which
were more than 25 cents different from the modelled price
being ignored for the second fitting of the model, in the hope
that the fit might be more robust. (Prices for far-out-of-the-
money options were seldom ignored. A tentative explanation
for the prices that did not fit the model was that one party was
not an experienced trader.) The best fit for the distribution
describing the annual change in share price had a standard
deviation of 0.1710159 and α = 1.9256. For this distribu-
tion, the probability of the share price falling to less than 0.01
of its initial value in a year is 0.000057. (For an investment
grade asset likeBHP shares, it is likely to bemore satisfactory
to estimate the probability of default using credit ratings or
prices of 1 year Credit Default Swaps, because option values
are not very sensitive to this parameter but they are sensi-
tive to uncertainty about the volatility and this has not been
considered here.)

This model-fitting was repeated using the approximate
implied volatility model given in Eq. (16). Using the approx-
imatemethodology, the best fit for the distribution describing
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Fig. 5 Approximation errors for European options over BHP shares
on 18 December 2012

the annual change in share price had a standard deviation of
0.17266 and α = 1.91354. For this distribution, the proba-
bility of the share price falling to less than 0.01 of its initial
value in a year is 0.000069.

Figure 5 shows the discrepancies between the two sets
of fitted option prices. Only in two cases was the difference
substantially greater than half a cent. The smallness of the
discrepancies suggests that the approximate model is ade-
quate for estimating the parameter α in this way.

The accurate model-fitting procedure took about 7.2 sec-
onds computer time on a personal computer. The approx-
imate method took only 0.86 seconds. This comparison
understates the computational speed advantage of using the
approximate method because the fraction of the computa-
tion done using the interpreted R language (rather than using
compiled C code) was greater for the approximate method.

These computation times are sufficiently short to suggest
that log-stable distributions could be used in practice for
assessing the financial risk of portfolios that included large
numbers of options.

4.3 Hedging

One important aspect of the difference between finite
moment log-stable models and log-normal models is that
attempts to hedge risk are expected to be much less effective
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Table 4 Variances per unit time for portfolios which contains one share and has written 1/Δ at-the-money call options

α 1.5 1.7 1.9 1.999 2.
Δ 0.31994 0.33254 0.33255 0.33027 0.33024
Time interval

1.000 0.78503 0.72040 0.71997 0.75533 0.75583

0.500 0.67526 0.51429 0.37443 0.32441 0.32399

0.200 0.62942 0.42467 0.21756 0.12408 0.12319

0.100 0.61621 0.39806 0.16953 0.06175 0.06070

0.010 0.60509 0.37533 0.12784 0.00719 0.00599

0.001 0.60402 0.37312 0.12374 0.00181 0.00060

according to finite moment log-stable models with α sub-
stantially less than 2 than according to a log-normal model
(which is a finite moment log-stable with α = 2).

Consider a portfolio which contains one share and has
written some call options which are at-the-money (meaning
that the strike price is equal to the current price) and have one
year to expiry. The number of call optionswritten is chosen so
that the derivative of the value of the portfolio with respect to
current share price is zero. In Table 4, the second row gives
the partial derivative of the value of the call options with
respect to current price. This partial derivative is referred to
as �. The number of call options in the portfolio is 1/�. It
varies only a small amount with the parameter α over the
range from α = 1.5 to α = 2 as shown in Table 4.

The expected value of this portfolio is zero for any future
time. This takes the reduction in the time-to-expiry of the
options into account. However, the variance of the value of
the portfolio increaseswith time into the future. This variance
has been calculated by numerical integration of the probabil-
ity density times the square of portfolio value over possible
future asset prices. The numbers in the body of Table 4 are
these variances divided by the length of the time period.

We can see that for the log-normal model (α = 2) the
variance per unit time is much smaller for small time inter-
vals than for large time intervals. The variance per unit time
is approximately proportional to the length of the time inter-
val. Therefore this model predicts that the risk of a port-
folio can be substantially reduced by frequent adjustment
of the hedging ratio (ie, adjusting the relative numbers of
shares and options). The risk can be completely eliminated by
continuous-time hedging according to the log-normalmodel.
This apparent ability to reduce risk by dynamic hedging
decreases as α is reduced from two. For instance, for α = 1.9
the minimum variance per unit time of the value of the port-
folio per unit time is about 0.12. This is substantially smaller
than the variance per unit time of 0.72 if the hedging ratio is
not dynamically adjusted. It is also much larger than the vari-
ance per unit time over a period of 0.01 years according to
the log-normal model. Intuitively, this may be interpreted as
meaning that much of the risk of the portfolio can be reduced

by dynamic hedging, but that a component of the risk cannot
be eliminated.

5 Discussion

The main mathematical contribution of this paper is to show
that use of finite moment log-stable distributions is com-
putationally practical. The issues that have been most crit-
ical in making the computations fast are the concentration
on maximally-skew stable distributions, so that only two-
dimensional rather than three-dimensional interpolation is
required, the use of different forms of interpolation in dif-
ferent parts of the parameter space, and the functional forms
suggested by Zolotarev (1986). This is implemented in the R
package FMStable which is about 1000 times faster than
the alternative R package stabledist and is substantially
more accurate, but stabledist has the advantage that it
deals with stable distributions of arbitrary skewness.

The different parametrizations for stable distributions
and the complication of using different algorithms for a
single mathematical formula in different regions of the
parameter space are handled by computer software, rather
than requiring users to deal with this complexity. In the
package FMStable such objects are of a class called
stableParameters, but many other software solutions
would be at least as effective. Users are encouraged to use
commands which do not require explicit specification of
parameters.

In my opinion, the main reason for encouraging use of
finite moment log-stable distributions for modelling finan-
cial risk is that the reduction of risk achieved by hedging
may be much less than when log-normal distributions are
used. Methods based on finite moment log-stable distribu-
tions could be used for stress testing the portfolios of organi-
zations with large, partly-hedged portfolios, such as banks,
insurance companies and hedge funds. They could also be
used by the regulators of those organizations.

Finitemoment log-stable distributions canbe regarded as a
one-parameter extension of the log-normal model. It should
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be possible to consider variation in volatility varies due to
changes in market sentiment and variations in the rate at
which price-sensitive information is expected to arrive. This
is beyond the scope of this paper, but would be expected to
improve the ability of the log-stable model to fit observed
market prices for options.

Possible future extensions to this work are making use of
formulae for derivatives with respect to α at α = 2, extend-
ing the interpolation approach to three variables in order to
deal with general stable distributions, developing interpo-
lation formulae in three variables with a wider range than
approximation (16). Perhaps the quantity tabulated might be
the value of the put option divided by xF(x) in the lower
tail of the distribution, the value of the call option times
f (x)/F(x)2 in the upper tail, and the implied volatility in
the middle of the distribution.
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