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Abstract In Bayesian statistics, the marginal likelihood
(evidence) is one of the key factors that can be used as
a measure of model goodness. However, for many practi-
cal model families it cannot be computed analytically. An
alternative solution is to use some approximation method
or time-consuming sampling method. The widely applica-
ble Bayesian information criterion (WBIC) was developed
recently to have a marginal likelihood approximation that
works also with singular models. The central idea of the
approximation is to select a single thermodynamic integra-
tion term (power posterior) with the (approximated) optimal
temperature β∗ = 1/ log(n), where n is the data size. We
apply this new approximation to the analytically solvable
Gaussian process regression case to show that the optimal
temperature may depend also on data itself or other vari-
ables, such as the noise level. Moreover, we show that the
steepness of a thermodynamic curve at the optimal tempera-
ture indicates the magnitude of the error that WBIC makes.

Keywords WBIC · Gaussian process regression ·
Thermodynamic integration · Log marginal likelihood

1 Introduction

In model selection the marginal likelihood is used as a model
fitting criterion. It tells us, how well our set of observations
(data) fits to ourmodel. This is not an equivalent taskwith the
predictive model selection, where one tries to find a model
that predicts best the next observation. For numerical reasons,
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usually the logarithm of the marginal likelihood is computed
and themeasure is called the negative logmarginal likelihood
or the Bayes free energy. It can be written rigorously as

F = − log
∫ n∏

i=1

p(Xi |w)p(w)dw, (1)

where Xi is a sample, n is the data size andw is a parameter or
a parameter vector. The above formula also assumes that the
likelihood can be partitioned. For many model families there
do not exist analytical solutions for the criterion and therefore
actual values have to be computed either by sampling or by
approximating.

Gaussian process (GP) models can be used for regres-
sion and classification tasks (Rasmussen andWilliams 2006).
Thesemodels consist of latent variables aswell as hyperpara-
meters, whichmakes a situationmore complicated. In the full
Bayesian treatment, we integrate over all unknowns, which
means in the GP setting analytically intractable computa-
tions. In general, a slowMCMCsampling approach is consid-
ered to give themost accurate value of the logmarginal likeli-
hood.However,withGaussian processmodels this option has
turned out not to be very viable (Kuss and Rasmussen 2005).
The problem is that with the two levels of unknown variables,
efficient chain mixing is very hard to achieve, because of the
strong coupling between these two sets. In practice, accurate
values can be computed using annealed importance sampling
(AIS) that has a close connection to thermodynamic integra-
tion (Kuss and Rasmussen 2005; Filippone 2013). The ther-
modynamic integration method (defined later in this section)
is itself considered to be one of the best ways to compute
an accurate value of the log marginal likelihood (Calderhead
and Girolami 2009), even though it is slow as it needs a lot of
sampled estimates. In the GP framework also Hybrid Monte
Carlo (HMC) (Filippone et al. 2012) and elliptical slice sam-
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pling (Filippone 2013) approaches are considered to work
very well. The elliptical slice sampling method is automatic
in a sense that it needs no tuning (Murray and Adams 2010).
Yet another methodology with large datasets is to use addi-
tionally a sparse Gaussian process approximation to ease the
computational burden (Quiñonero-Candela and Rasmussen
2005).

The other largely used main approach is to simplify the
original problem by using fixed hyperparameter values. The
hyperparameters are commonly optimized to the maximum
of a marginal posterior (type II MAP) or to the maximum
of a marginal likelihood (type II ML). The log marginal
likelihood of the regression problem using the Gaussian
observation model becomes analytically tractable and the
other regression and classificationmodelswith non-Gaussian
observation models can be solved time-efficiently with the
Laplace approximation (LA) or the expectation propaga-
tion (EP) method. Although both approximations rely on
the Gaussian assumption (a posterior is relatively close to
a Gaussian distribution), the latter one that minimizes local
KL-divergence, is shown to be much better (Kuss and Ras-
mussen 2005; Nickisch and Rasmussen 2008). It gives very
accurate approximations for the log marginal likelihood.
Notice that usability of LA and EPmethods are not restricted
to fixed hyperparameter settings as for example the INLA
package has shown uswith respect to the Laplace approxima-
tion (Rue et al. 2009). However, we bypass all the sampling
difficulties in this paper by using the analytically solvable
GP regression models (with fixed hyperparameters), as they
do everything that is needed in our case.

In this paper we focus on the performance of a new sam-
pling based approximation method called Widely Applica-
ble Bayesian Information Criterion (WBIC) that Professor
Sumio Watanabe recently introduced (Watanabe 2013):

Definition 1 WBIC can be written as

WBIC = −
∫
log(p(X |w))p(X |w)β p(w)dw∫

p(X |w)β p(w)dw
,

where β = β∗ = 1

log(n)
.

If β is not fixed, the above formula can be interpreted
as a posterior expectation over the log likelihood function
E

β
w(log p(X |w)), where β is the temperature (related to the

thermodynamic integration, see below) between zero and one
and n is the data size. Watanabe calls β the inverse tempera-
ture, but we adopt a more straightforward term ’temperature’
(used also in Friel and Pettitt 2008). The WBIC criterion has
its roots in the singular learning theory and therefore it is
designed to also work with singular models. In the case of
regular (non-singular) statistical models the first terms of its
series expansion coincidewith theBayesian InformationCri-
terion (BIC) (Watanabe 2013).

Thermodynamic integration is generally used to obtain an
accurate sampling estimate of the logarithm of the marginal
likelihood (Friel and Pettitt 2008). It is based on the idea
that a definite integral within the range from 0 to 1 can be
estimated in a piecewisemanner given amonotonically rising
sequence of temperatures 0 = β0 < β1 < · · · < βJ = 1.
Integrals within each sub-range are then estimated using a
linear approximation, the trapezoidal rule

βt+1∫

βt

g(v)dv = (βt+1 − βt )

2
(g(βt ) + g(βt+1)).

Now as

−
1∫

0

E
β
w (log p(X |w)) dβ = F ,

we obtain an accurate estimate for the marginal likelihood
as long as a β-sequence is dense enough in the areas where
g(v) changes rapidly. One rather good and simple scheme to
select temperatures is to set βt = (t/n)5, where n is the data
size and t is the index from 0 to n (Friel et al. 2013), but there
is also a faster way to compute the log marginal likelihood.
Watanabe shows in Watanabe (2013) that there exists a βopt

for which the following equivalence is true:

− E
βopt

w (log p(X |w)) = F . (2)

This intuitively says that we can compute the marginal
likelihood just by computing one thermodynamic term using
optimal temperature βopt. Equation (2) is true because the

β opt

β*
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Fig. 1 A point where a thermodynamic curve meets the true log mar-
ginal likelihood value (horizontal solid line) gives the optimal temper-
ature βopt. In this example, WBIC uses the point β∗ ≈ 0.217, which is
slightly off
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left hand side is a continuous increasing function and with
different values ofβ it gets both smaller and larger values than
the right hand side (Fig. 1). The definition of WBIC arises
from this observation and the criterion uses an approximated
optimal temperature from Definition 1. WBIC can be further
approximated with a BIC-looking formula (Watanabe 2013):

Definition 2 An approximation for WBIC is

WBICapprox = − log(p(X |w0)) + λ log(n),

wherew0 is a parameter vector that minimizes the Kullback–
Leibler divergence from a true distribution to a statistical
model and λ is a learning coefficient.

The quantity w0 is not necessary just a single parameter
vector, but it can be also a set of parameter vectors (dis-
tributions) (Watanabe 2009). Singular learning theory uses a
concept of the true distribution, but separates cases where the
true distribution is included in a model family or excluded
from it (Watanabe 2009). The historical burden of the true
model concept is heavy, because many ad-hoc methods have
not made this separation. However, one can also argue that
in real life, distributions change in time and therefore the
assumption of a static distribution is too unrealistic. Here we
are examining the goodness ofWBIC and therefore the valid-
ity of the theoretical foundation is irrelevant to this research,
unless it explains some observed phenomenon.

The coefficient λ can be approximated in the following
way:

λ̂ = −E
β1
w (log(p(X |w))) − E

β2
w (log(p(X |w)))

1/β1 − 1/β2

= β1β2

(
E

β1
w (log(p(X |w))) − E

β2
w (log(p(X |w)))

β1 − β2

)

= β1β2U (β1, β2),

where β1 = a/ log(n) and β2 = b/ log(n) and a and b are
positive constants. The first formwas introduced inWatanabe
(2013) without giving any real suggestion how the constants
should be selected. However, the forms after it give more
insight as function U (β1, β2) can be seen as a derivative
approximation for

g′(β) = −Dβ(Eβ
w(log(p(X |w)))) at β = 1

log(n)
,

while a = 1 − ε and b = 1 + ε and ε is a positive constant
close to zero. Relying on this interpretation, it is evident that
selection of the constants have some effect on the value of
λ̂. Otherwise β1β2 and the derivative would cancel out each
other to maintain λ̂ as a fixed constant. Moreover, the dif-
ference between constants a and b must be greater, if the
approximation is computed using a sampling method (due to

inaccuracy caused by stochasticity), but as we handle only
analytically computable cases in this paper, we can use val-
ues that are very close to actual limits. In the experimental
part, we discussmore closely of this derivative interpretation.

We aim to show that even if the temperature β∗ =
1/ log(n) is optimal in general (without knowledge of a used
model family), it is non-optimal for example in the case of
Gaussian process regression. Model family specific features
can have huge effects on the selection of the optimal β and
a training data size is not the only affecting feature.

2 Gaussian process regression

Let us assume that we have surfaces like in Fig. 2. The data
is a sample of random locations (x, y) and the corresponding
values uT (x, y) added with some Gaussian noise σnN (0, 1),
where σn is a constant weight (noise level) and T ∈ {A,B}.
Surface B is more resistant to higher noise levels (the struc-
ture of the surface does not disappear so easily) than surface
A as the range in function values (z-axis) is larger and the
polynomial is simpler. In real life a surface is not known, but
it has to be estimated using data.

A Gaussian process is a finite set of random variables,
which have a joint Gaussian distribution (Rasmussen and
Williams 2006). The Gaussian process can be fully specified
withmean and covariance functions. The first one is assumed
here to be a constant function with value zero and the lat-
ter one is describing pairwise relationships between points.
In this paper, we assume the familiar squared exponential
covariance function:

k(zi , z j ) = σ 2
s exp

(
−1

2

d∑
k=1

(zi,k − z j,k)2

l2k

)
, (3)

where σ 2
s is a signal variance, lk is a length scale and d is the

dimensionality of the sample points. The GP prior is denoted
as p(f |D) = N (f; 0,K), where K is a covariance matrix (a
matrix of pairwise covariances over data points), f is a vec-

Fig. 2 Two polynomial surfaces: uA(x, y) = 1
4 x

4−x2−2y4+2y2−1
and uB(x, y) = x2 − y2 − 1
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tor of latent function values and D consists of covariate data.
The prior defines initial probabilities of different latent func-
tions living in the same space as our observations, where the
covariance function determines the properties of these func-
tions. The likelihood that incorporates data into the model is
p(y | f,D) = N (y; f, σ 2

n I), where y is a vector of observed
values. A set of hyperparameters (l1, l2, σs, σn) is optimized
to their MAP values to make computation easier (the Matlab
toolbox GPstuff (Vanhatalo 2013 is used in computations).
The posterior now gives probabilities over functions that take
into account data, and the mean function is our regression
function, the latent surface.

The model selection as well as computation of general GP
models need a good and reliable approximation of the mar-
ginal likelihood. The Bayesian information criterion (BIC)
cannot be used as GP models are non-parametric and there-
fore a parameter count does not tell the true dimensionality of
a model. To bypass this problem, we investigate the applica-
bility ofWBIC in approximating the logmarginal likelihood.
The main advantage inWBIC is that we can compute the log
marginal likelihood without making any Gaussian assump-
tion (EP or Laplace approximation) for the posterior.

3 Exact form of WBIC for GP regression

We derive a WBIC formula for the GP regression only to
compare the possible goodness and validity of WBIC for the
Gaussian process regression. As the analytic marginal like-
lihood formula can be derived in the Gaussian observation
model case (Rasmussen and Williams 2006), we can effi-
ciently plot solution surfaces achieved by varying hyperpa-
rameters. Our main target is to recognize possible problems
and failures of WBIC without any doubts of sampling accu-
racy or too sparse sampling. The approximation itself has
only comparison significance, because exact solutions can
be computed equally fast.

We start the derivation by transforming the general expres-
sions into GP regression equivalents

E
β
f (logN (y; f, σ 2

n I))

=
∫ ∞
−∞(logN (y; f, σ 2

n I))N (y; f, σ 2
n I)β N (f; 0,K) d f∫ ∞

−∞ N (y; f, σ 2
n I)β N (f; 0,K) d f

and as the final result we achieve the following theorem:

Theorem 1 WBIC function with a free parameter β for
Gaussian process regression is

WBICGP(β)

= n

2

(
log(2πσ 2

n ) + 1

β

)
+ σ 2

n

2β2

(
||Ay||2 − tr(A)

)
,

where a matrix A is

A =
((

σ 2
n

β
I
)

+ K
)−1

.

Proof see “Appendix”. ��
If we fix β = β∗ = 1/ log(n), we get the WBIC. Theorem
1 gives the form we are using in analyses and experiments.
We tested the validity of the theorem also by performing
full thermodynamic integrations for several different cases.
It gave correct logmarginal likelihood values, which gives an
additional empirical confirmation that derivation of function
WBICGP is correct.

4 Deriving the optimal temperature using a simplified
covariance matrix

Let us derive a tailored optimal β in the GP regression case,
which we will denote by β̂. A derivation of the optimal tem-
perature for the full case is too complicated, because β is
not only in a role of a multiplier for matrix A, but it stays
also inside matrix elements. The Taylor expansion trick for
the matrix inverse does not help either as the resulting series
diverges in this case. Therefore, we consider a heavily pruned
covariance matrix. We make a highly unrealistic assumption
that non-diagonal covariances are zero, which leaves us only
constant variance terms σ 2

s on the diagonal (Formula 3). We
do this derivation purely to show that this new β̂ is a func-
tion of latent noise. After this, we compare the result to the
full covariance matrix setting and show that both, a data size
and magnitude of latent noise, is needed to infer the optimal
temperature.

Our covariance matrix is now K = σ 2
s I. The task is

to derive expressions for the exact log marginal likelihood
and for WBIC in this particular case. The resulting functions
should both give the equivalent value when WBIC is using
the optimal temperature. This of course, gives us possibility
to solve the temperature analytically.

Lemma 1 The Bayes free energy (negative log marginal
likelihood) for the pruned GP regression model is

FprunedGP = 1

2(σ 2
s + σ 2

n )
yᵀ y+n

2
log(2π(σ 2

s + σ 2
n )).

Proof Westart from the analyticmarginal likelihood formula
(with the Gaussian observation model), which is

− log p(y |X)

= 1

2
yᵀ(K+σ 2

n I)−1 y+1

2
log |K+σ 2

n I | + n

2
log(2π).
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By plugging in diagonal matrix K = σ 2
s I we obtain

1

2
yᵀ((σ 2

s + σ 2
n )I)−1 y+1

2
log |(σ 2

s + σ 2
n )I|

+ n

2
log(2π)

= 1

2
yᵀ

(
1

(σ 2
s + σ 2

n )
I
)
y+1

2
log

∏
(σ 2

s + σ 2
n )

+ n

2
log(2π)

= 1

2(σ 2
s + σ 2

n )
yᵀ y+n

2
log(2π(σ 2

s + σ 2
n ))

��
The first part is data related as the latter part is a more general
term without a direct data relationship. Next we do the same
operation for the general WBIC formula.

Lemma 2 The WBIC function for the pruned GP regression
model is

WBICprunedGP(β)

= n

2
log(2πσ 2

n ) + n

2β
− nσ 2

n

2β2σ 2
s + 2βσ 2

n

+ σ 2
n

2(βσ 2
s + σ 2

n )2
yᵀ y .

Proof We start by manipulating matrix A:

A =
((

σ 2
n

β
+ σ 2

s

)
I
)−1

= 1
σ 2
n
β

+ σ 2
s

I = β

σ 2
n + βσ 2

s
I .

After thiswe plug in diagonalmatrixA to theWBIC formula:

WBICpruned(β) = n

2

(
log(2πσ 2

n ) + 1

β

)

+ σ 2
n

2β2

(∣∣∣∣
∣∣∣∣ β

σ 2
n + βσ 2

s
I y

∣∣∣∣
∣∣∣∣
2

− tr

(
β

σ 2
n + βσ 2

s
I
))

= n

2

(
log(2πσ 2

n ) + 1

β

)

+ σ 2
n

2β2

((
β

σ 2
n + βσ 2

s

)2

yᵀ y− nβ

σ 2
n + βσ 2

s

)

= n

2
log(2πσ 2

n ) + n

2β
− nσ 2

n

2β2σ 2
s + 2βσ 2

n

+ σ 2
n

2(βσ 2
s + σ 2

n )2
yᵀ y

��
The last term is directly data dependent and the rest of the
terms are not. Now let us derive a result that does not depend

directly on data. This operation is done tomake computations
simpler and to derive a neat looking function for the optimal
temperature, which also seems to work better than β∗ with
full covariance matrices (see Sect. 6). We discard the data
depending terms from the logmarginal likelihood andWBIC
to have the equivalence

n

2
log(2π(σ 2

s + σ 2
n ))

= n

2
log(2πσ 2

n ) + n

2β
− nσ 2

n

2β2σ 2
s + 2βσ 2

n
.

The optimal temperature can be easily solved from this equa-
tion.

Theorem 2 The optimal temperature β̂ for the pruned GP
regression case without data depending terms is

β̂ = 1

log
(
1 + σ 2

s
σ 2
n

) − σ 2
n

σ 2
s

.

Proof

n

2
log(2π(σ 2

s + σ 2
n )) = n

2
log(2πσ 2

n ) + n

2β

− nσ 2
n

2β2σ 2
s + 2βσ 2

n

log

(
1 + σ 2

s

σ 2
n

)
= βσ 2

s + σ 2
n − σ 2

n

β2σ 2
s + βσ 2

n

(β2σ 2
s + βσ 2

n ) log

(
1 + σ 2

s

σ 2
n

)
= βσ 2

s

β

[
βσ 2

s log

(
1 + σ 2

s

σ 2
n

)
+ σ 2

n log

(
1 + σ 2

s

σ 2
n

)
− σ 2

s

]
= 0

Solving the first order equation inside the square brackets
with respect toβ gives the answer. The other solution (β = 0)
is not a valid one as it ignores the likelihood entirely. ��

We can immediately notice that the solution does not
depend on the data size at all. Increasing the data size does
not help to predict the values of other points. This is clearly
an unrealistic result, and it is caused by the simplifications
we have made. However, notice that β̂ seems to be a function
related to latent noise and signal variance. This derivation is
essentially equal to the one that with WBIC has been made
in a more general setting by truncating series expansions to
consist only of general data independent terms (Watanabe
2013). One problem is that the data dependent parts (actu-
ally y independent) that we just discarded, differ from each
other sometimes by a great amount. If the data dependent
terms in the computation formulas are roughly of the same
size in the optimal temperature, they do not have effect on
its value. The derivation therefore implicitly expects that we
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Fig. 3 On the left, a solid curve showsmean β̂opt (mean of 50 runs) and
a dotted line represents suboptimal mean temperatures (β̂), where data
dependent terms are ignored. On the right, WBIC function values are
computed using the optimal (equals to the true logmarginal likelihoods)
and suboptimal temperatures with n = 150 (for surface B)

can have a data independent optimal temperature, but next
we will investigate the difference of the cropped terms to
show that the assumption is not always justified.

First, because we are using the standardized values of y,
it follows by substituting ȳ = 0 (mean) and std = 1 (stan-
dard deviation) to the formula of unbiased standard normal
deviation that

std =
√√√√ 1

n − 1

n∑
i=1

(yi − ȳ)2

1 = 1

n − 1

n∑
i=1

(yi − 0)2

n − 1 = yᵀ y

Therefore, we do not need the actual data vector, only its size.
Second,we look at the limits of y dependent terms as σ 2

n → 0
(Lemmas 1 and 2). The term in the log marginal likelihood
goes to −(n− 1)/2σ 2

s and the term in WBIC vanishes. They
are not equal in this case, which means that discarding of
those terms can be harmful. Last, let us look at Fig. 3, where
data independent optimal temperatures are compared with
data dependent optimal temperatures (the full solution β̂opt,
which depends also on n is presented in the “Appendix”).
The noise level is affecting the goodness of our log marginal
likelihood approximation via an incorrect optimal tempera-
ture. With greater noise levels the slope of a thermodynamic
curve is getting milder, which leads to a smaller error, even if
the error in temperatures is still increasing (this is explained
in the next section more closely).

As the data dependent terms are not used in the derivation
of the optimal temperature, it inevitably leads to estimation
errors. Other message of our analysis is that a data size is
not always the dominating feature, but it can happen that
the optimal temperature may rather be a function of some
other model family related variables. Next we do experi-

ments using full covariance matrices to gain more support
for these findings.

5 Experiments

Our target is to show that the phenomenon of noise depen-
dence, we discovered with the simplified covariance matrix,
exists also in the general setting with full covariance matri-
ces. The optimal temperatures in this case have been found
using an optimization algorithm that finds the temperature,
which produces minimum error between the log marginal
likelihood and the WBIC function. We compare the opti-
mized temperature (βopt) and β∗ against each other. In this
section, we do not anymore use the results of Lemmas 1
and 2 were obtained using a rough oversimplification, but
the correct WBIC formula (see Theorem 1) for GP regres-
sion models with full covariance matrices. Everything is
therefore data dependent, except β∗ itself. We use in exper-
iments the example surfaces presented in Fig. 2 with the
given ranges. All those cases, where covariance matrices
turned out to be singular or the hyperparameter optimiza-
tion failed (in the Matlab toolbox GPStuff), were excluded
from experiments and replaced with new runs using different
datasets.
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Fig. 4 On the top row a solid line is β∗, a dashed line is mean βopt for
surfaceAand adotted line ismeanβopt for surfaceB.The corresponding
mean errors between marginal likelihood and WBIC are on the bottom
row. Dashed line represents errors computed for surface A and dotted
line errors computed for surface B. In data size plots (left column) noise
is fixed to 1.5 and in noise plots (right column) data size is fixed to 150.
All the dotted and dashed lines represent the mean values of 50 runs
with different data sets
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Fig. 5 On the left a low noise case σn = 0.05 and on the right a high
noise caseσn = 0.4.Wehave computed for 100data sets an approximate
derivative of a thermodynamic integration curve at the truth against the
error that WBIC makes (surface A, n = 50)

Let us start with the left column in Fig. 4. The fore-
most observation is that the optimal temperatures do not
seem to converge into β∗ with respect to n. In addition, the
optimal temperature curves are not on top of each other,
but different polynomial surfaces seem to give tempera-
ture curves of different vertical shifts, although the general
trend seems to match: larger temperatures for small data
sets and smaller temperatures for larger data sets. However,
despite the difference between β∗ and βopt, the marginal
likelihood approximations seem to be quite good when the
noise around the latent surface is large. The situation gets
worse if we fix dataset size to 150 and look at the mar-
ginal likelihood approximation with respect to different lev-
els of noise (right column). While there is not much noise,
errors are much larger and the worst situation is when we
have low noise (highly informative data) and tiny data sets,
because then the relative error raises (the marginal likeli-
hoods are close to zero, see Fig. 6). It is quite intuitive
that, if the data is informative then data dependent terms
in marginal likelihood and its approximations are likely
to be important and they cannot be discarded. Even with
an increased level of noise, the temperature is still non-
stabilized to a constant value, which suggests that the opti-
mal temperature should be a function of n as well as σ 2

n
(Fig. 6).

To track down a deeper cause of the failure, let us look
at individual datasets instead of their mean behavior. If the
temperature is not accurate and a thermodynamic integration
curve is steep in the area of the true log marginal likelihood,
then we obtain a bigger error as can be seen from Fig. 5.
The plots are comparing approximate derivatives (difference
quotients) of thermodynamic curves at the optimal temper-
atures (βopt) against errors in the WBIC estimates and we
can see that the errors are higher for larger derivative val-
ues. As noise increases the slopes of thermodynamic curves
are not so steep anymore, which can be seen in the val-
ues of derivatives (on the right). The error changes sign,
which causes a change in the slope direction between the
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Fig. 6 Plots for surfaceB:Thepurple surfaces presentWBIC’s optimal
β∗ and the corresponding mean errors in log marginal likelihood values
(averages taken over 100 datasets per each hyperparameter setting).
The yellow surfaces present the true optimal β (acquired by optimizing
temperatures algorithmically). The orange surface represents themeans
of correct logmarginal likelihood values. The black dots indicate places
on the purple surface, fromwhere example cross-plots are taken. Points
in the cross-plots correspond different data sets generatedwith the given
parameter values (Color figure online)

panels. To give more insight, we can write the approxima-
tion of WBIC (using the derivative interpretation) in the
form
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− log(p(X |w0)) + λ̂ log(n)

= − log(p(X |w0)) + a

log(n)

b

log(n)
U (β1, β2) log(n)

≈ − log(p(X |w0)) + g′(β∗)
log(n)

,

where the approximation penalizes overfitting using the
derivative of the thermodynamic curve at point β∗. The plots
are therefore partly showing residual effects caused by using
β∗ instead of the true optimal temperature βopt.

Next, we look at the cross-plots in Fig. 6. The variance of
the error seem to be very low: the estimates are only biased.
The only exception is the case where we have small informa-
tive datasets (low noise). For a dataset of this kind, a WBIC
estimate can be quite bad as it is biased and the variance is
high.

In many cases, too accurate approximation formulas are
overly sensitive to small inaccuracies in parameter estima-
tion and it is better to use truncated series as Roos and Zou
have noticed in the case of BIC and its expansions (Roos and
Zou 2013). Therefore we also tested accuracy ofWBICapprox

using values a = 0.9999 and b = 1.0001. As we have
ruled out any singular covariancematriceswe know that there
is unique hyperparameter setting w0 minimizing Kullback–
Leibler divergence andwe expect it to be our optimizedMAP
hyperparameters. Then we can write

WBICGPapprox = n

2
log(2πσ 2

n )

+ 1

2
(y−E(f))ᵀ(σ 2

n I )
−1(y−E(f)) + λ̂ log(n),

where we have replaced latent vectors f with their expected
values givenby aGPmodel. TheWBICapproximation seems
to be better for surfaceA in amean sense as it does not exhibit
a positive error peak (Fig. 7). For surface B the full WBIC
gives better results. Standard deviations of errors stay at the
equal level,whetherwe are usingWBICor its approximation,
which means that the approximation is truly working better
with surface A.
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Fig. 7 TheWBICapproximation (gray line) versus the fullWBICwith
respect to surfaces A (left) and B (right). The data size is 150
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Fig. 8 β∗ against β̂ with real data (UCI: wine, random samples of 75
and 400 data points).Orange rectangles in the left column show zoomed
areas represented in the right column. Notice the scale change in the
y-axis between cases of 75 and 400 data points (Color figure online)

6 Experiment with real data

We show with a real dataset that the WBIC breakdown takes
place also in real situations. Our data is thewhitewine dataset
from the UCI machine learning repository (Cortez et al.
2009). It consists of 11 real valued variables that describe dif-
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ferent properties of white wines.Many of these properties are
quite correlated with each other, but not all. Our experiment
is the following: we take one property in turn and build a GP
regression model for it using the other properties as covari-
ates. Moreover, we do not use the whole data, but select ran-
domly sampled 75 (or 400) data points out of it and do this 20
times. Hence, we have 11 regression models (related to pre-
dicted variables) and as we use 20 different datasets, the total
number ofmodels is 220.Thenwecompare logmarginal like-
lihoods against the WBIC formula results for temperatures
β∗ and β̂ (Theorem 2). However, also the latter one is com-
puted using full covariancematrices. All covariates as well as
the target variable are standardized.We tested that the covari-
ate standardization does not essentially change the results.

With real data, we do not know the true noise level, but
we rely on model given noise estimate σ 2

n . It is immediately
evident that β∗ is failing when the noise level is low (Fig. 8),
hence in the cases where models fit really well. The phe-
nomenon is not as strong when we are using temperature β̂.
Moreover, the artificial cases already showed that there is a
sweet zone (top right panel), where β∗ coincides with βopt,
but after that the error changes sign and starts rising again,
until noise overwrites almost all the information from data
and WBIC again approaches the log marginal likelihood.

Let us look at the case with more data (400 data points).
The first observation is that points are in two main clusters.
The points in a region of tiny noise correspond to the targets
that can be described well with covariates and the points in
a large noise region are the targets which are more difficult
to describe. With smaller data, these two regions were more
connected, because of stochasticity present in small sample
sets. Notice that the other 11 targets start to separate from
each other (notice the other visible clusters of ca. 20 points).
The general behavior of failing β∗ seems to be similar in 75
and 400 data point cases. However, in the region of realistic
noise, temperature β̂ performs much better than β∗. From
this, we can draw the conclusion that at least in this randomly
chosen real data example, our oversimple approximation for
the optimal temperature is better than β∗. Hence, signal and
noise variances approximate the optimal temperature better
than the data size, albeit all of these variables are needed in
the correct full solution.

7 Conclusions

We used the artificial setting, where the log marginal likeli-
hood can be easily calculated to show that theWBIC approxi-
mation fails in some occasions. This paper suggests that there
can also be other variables than data size n that have their con-
tribution to the optimality of the temperature and therefore
the optimal temperature should be derived the model family
dependent way. Moreover, discarding data dependent terms,

while deriving this optimal temperature, can also make esti-
mates worse. If the correct value exists in the steep part of a
thermodynamic curve, the optimal temperature approxima-
tion should be more accurate to maintain the overall level
of accuracy. Further studies are needed to investigate, if the
results in this paper are applicable also to other model fami-
lies. However, if lowered accuracy ofWBICwill be observed
with some other models, then one possible action is to check
how dependent the optimal temperature is on other relevant
variables.
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Appendix

Proof of Theorem 1:

Computing the denominator of WBIC for GP

In the following, we have simplified notation by setting σ 2
n =

σ 2 as variable σ 2
s is inside matrix K and therefore it does

not emerge in the proof. Let us start to compute β-weighted
marginal likelihood:

∞∫

−∞
p(y | f,D)β p(f |D) d f

=
∞∫

−∞
N (y; f, σ 2 I)β N (f; 0,K) d f

=
∞∫

−∞

1√
(2π)βn|σ 2 I |β e− 1

2 (y− f)ᵀ( σ2
β

I)−1(y− f)

× 1√
(2π)n|K | e

− 1
2 f

ᵀ K−1 f d f

= (2π)−
(β+1)n

2 |σ 2 I |− β
2 |K |− 1

2

×
∞∫

−∞
e− 1

2 (y− f)ᵀ( σ2
β

I)−1(y− f)− 1
2 fᵀ K−1 f d f .

Then complete the sum of squared forms to square (Petersen
and Pedersen 2008, 8.1.7 Sum of two squared forms)

− 1

2
(f − y)ᵀ

(
σ 2

β
I
)−1

(f − y) − 1

2
(f −0)ᵀK−1(f −0)

= −1

2

⎛
⎝f −

((
σ 2

β
I
)−1

+ K−1

)−1

(
σ 2

β
I)−1 y

⎞
⎠

ᵀ
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×
((

σ 2

β
I
)−1

+ K−1

)

×
⎛
⎝f −

((
σ 2

β
I
)−1

+ K−1

)−1 (
σ 2

β
I
)−1

y

⎞
⎠

+ 1

2

(
yᵀ

(
σ 2

β
I
)−1

) ((
σ 2

β
I
)−1

+ K−1

)−1

×
((

σ 2

β
I
)−1

y

)
− 1

2

(
yᵀ

(
σ 2

β
I
)−1

y

)

By using the matrix inversion lemma (Rasmussen and
Williams 2006, A.3 Matrix Identities) to the second term
we get

− 1

2

⎛
⎝f −

((
σ 2

β
I
)−1

+ K−1

)−1 (
σ 2

β
I
)−1

y

⎞
⎠

ᵀ

×
((

σ 2

β
I
)−1

+ K−1

)(
f −

((
σ 2

β
I
)−1

+ K−1

)−1

×
(

σ 2

β
I
)−1

y
)

− 1

2
yᵀ

((
σ 2

β
I
)

+ K
)−1

y

Now we continue with the integral after substituting the pre-
vious results and using after that an integration rule of a
Gaussian integral (Petersen and Pedersen 2008, 8.1.1 Den-
sity and normalization)

(2π)−
(β+1)n

2 |σ 2 I |− β
2 |K |− 1

2 e
− 1

2 yᵀ
((

σ2
β

I
)
+K

)−1
y

×
∞∫

−∞
exp

(
−1

2

(
f −

((
σ 2

β
I
)−1

+ K−1
)−1

×
(

σ 2

β
I
)−1

y
)ᵀ (

(
σ 2

β
I)−1 + K−1

)

×
(
f −

((
σ 2

β
I
)−1

+ K−1

)−1 (
σ 2

β
I
)−1

y
))

d f

= (2π)−
(β+1)n

2 |σ 2 I |− β
2 |K |− 1

2 e
− 1

2 yᵀ
(
( σ2

β
I)+K

)−1
y

× (2π)
n
2 |(σ

2

β
I)−1 + K−1 |− 1

2

= (2π)−
βn
2 |σ 2 I |− β

2 |K |− 1
2 e

− 1
2 yᵀ

(
( σ2

β
I)+K

)−1
y

×
(

|
(

σ 2

β
I
)

+ K | |
(

σ 2

β
I
)−1

| |K−1 |
)− 1

2

= (2π)−
βn
2 |(σ 2 I)−1| β

2 |K−1 | 12 e− 1
2 yᵀ

(
( σ2

β
I)+K

)−1
y

×
(

|
(

σ 2

β
I
)

+ K | |
(

σ 2

β
I
)−1

| |K−1 |
)− 1

2

= 1√
(2π)βn |K+( σ 2

β
I)|

√√√√ |(σ 2 I)−1|β
|( σ 2

β
I)−1|

e
− 1

2 yᵀ
(
K+( σ2

β
I)

)−1
y

= DENOM

Notice that by setting β = 1 and taking the logarithm, we
end up to the well-known log marginal likelihood formula.

Computing the numerator of WBIC for GP

∞∫

−∞
log p(y | f,D)p(y | f,D)β p(f |D) d f

=
∞∫

−∞
logN (y; f, σ 2 I)N (y; f, σ 2 I)β N (f; 0,K) d f

=
∞∫

−∞

(
−n

2
log(2π) − 1

2
log |σ 2 I |

− 1

2
(y− f)ᵀ(σ 2 I)−1(y− f)

)

× 1√
(2π)βn|σ 2 I |β e− 1

2 (y− f)ᵀ( σ2
β

I)−1(y− f)

× 1√
(2π)n|K | e

− 1
2 fᵀ K−1 f d f

=
(

−n

2
log(2π) − 1

2
log |σ 2 I |

)
(2π)−

(β+1)n
2 |σ 2 I |− β

2

× |K |− 1
2

∞∫

−∞
e− 1

2 (y− f)ᵀ( σ2
β

I)−1(y− f)− 1
2 f

ᵀ K−1 f d f

− 1

2

∞∫

−∞
(y− f)ᵀ(σ 2 I)−1(y− f)(2π)−

(β+1)n
2 |σ 2 I |− β

2

× |K |− 1
2 e− 1

2 (y− f)ᵀ( σ2
β

I)−1(y− f)− 1
2 fᵀ K−1 f d f

=
(

−n

2
log(2π) − 1

2
log |σ 2 I |

)
× DENOM

− 1

2
(2π)−

(β+1)n
2 |σ 2 I |− β

2 |K |− 1
2 e

− 1
2 y

ᵀ
(
( σ2

β
I)+K

)−1
y

×
∞∫

−∞
(y− f)ᵀ(σ 2 I)−1(y− f)

× exp

(
−1

2

(
f −

((
σ 2

β
I
)−1

+ K−1

)−1
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×
(

σ 2

β
I
)−1

y
)ᵀ ((

σ 2

β
I
)−1

+ K−1

)

×
(
f −

((
σ 2

β
I
)−1

+ K−1

)−1 (
σ 2

β
I
)−1

y
))

d f

By using Matrix Cookbook formula 357 (Petersen and
Pedersen 2008, 8.2.2 Mean and variance of square forms)
and by compensating missing constants we will have

(
−n

2
log(2π) − 1

2
log |σ 2 I |

)
× DENOM

− 1

2
(2π)−

(β+1)n
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⎛
⎝
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(
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= DENOM × (−WBIC)

In the last line, we observe that as the numerator is divided
by the denominator and the numerator has the denominator as
a multiplier, then the rest of the numerator must be (negative)
WBIC itself. After a manipulation (using the matrix inver-
sion lemma to the all three appropriate terms) we achieve a
numerically stable version

− WBIC = −n

2
log

(
2πσ 2

)

− 1

2β

[
tr

(
1 −

((
σ 2

β
I
)

+ K
)−1 (

σ 2

β
I
))

+
((

σ 2

β
I
) ((

σ 2

β
I
)

+ K
)−1

y

)ᵀ((
σ 2

β
I
)

+K
)−1

y
]
,

which can be further manipulated by taking stuff outside of
the trace and interpreting the latter term as a matrix norm.
As a result we obtain a neat form

WBIC =n

2

(
log(2πσ 2) + 1

β

)

+ σ 2

2β2

(
||Ay||2 − tr(A)

)
, where

A =
((

σ 2

β
I
)

+ K
)−1

��

The exact solution to the pruned GP case

The following exact solution is computed with Mathematica
by equating the results of Lemmas 1and 2

Lemma 3 The optimal temperature for the pruned GP
regression case with all the terms included is

β̂opt =−
(

− 2 yᵀ y σ 2
n + σ 2

s nW + 2nσ 2
nW log

σ 2
n

W
+ √

W

×
√
4(yᵀ y)2σ 2

n +σ 4
s n

2W+4 yᵀ y nσ 2
nW log

W

σ 2
n

)

/ (
2σ 2

s

(
− yᵀ y+nW log

σ 2
n

W

))
,

where W = (σ 2
s + σ 2

n ).
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