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Abstract The maximum likelihood estimation in the finite
mixture of distributions setting is an ill-posed problem that
is treatable, in practice, through the EM algorithm. However,
the existence of spurious solutions (singularities and non-
interesting local maximizers) makes difficult to find sensible
mixture fits for non-expert practitioners. In this work, a con-
strained mixture fitting approach is presented with the aim
of overcoming the troubles introduced by spurious solutions.
Sound mathematical support is provided and, which is more
relevant in practice, a feasible algorithm is also given. This
algorithm allows for monitoring solutions in terms of the
constant involved in the restrictions, which yields a natural
way to discard spurious solutions and a valuable tool for data
analysts.

Keywords Mixtures · Maximum likelihood · EM
algorithm · Eigenvalues constraints

1 Introduction

Finite mixtures of distribution have been extensively applied
in the statistical literature to model very different types of
data (see, e.g., the monographies by Titterington et al. 1985
and McLachlan and Peel 2000). This wide use has been moti-
vated by the existence of feasible algorithms, mainly based
on variations of the expectation-maximization (EM) algo-
rithm of Dempster et al. (1977). However, in practice, there
are several difficulties which prevent the simple use for prac-
titioners.
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This paper focuses on the most extensively analyzed prob-
lem in mixture modeling. This deals with fitting a mixture
of G normal components to a given data set {x1, . . . , xn}
in R

p. Moreover, we will assume that the number of com-
ponents G is fixed beforehand. Our framework is that of
“Maximum Likelihood (ML)”, which makes us consider
(log-)likelihoods as

n∑

i=1

log

⎡

⎣
G∑

g=1

πgϕ(xi ;μg, �g)

⎤

⎦ , (1)

where ϕ(·;μ,�) stands for the probability density function
of the p-variate normal distribution with mean μ and covari-
ance matrix �.

One of the main difficulties in this context is that the maxi-
mization of the log-likelihood (1) without any constraint is an
ill-posed problem (Day 1969). It is known that ϕ(xi ; xi , �g)

tends to infinity when det(�g) approximates 0, making the
target function (1) unbounded. Moreover, there exist many
non-interesting local maximizers of (1), which are often
referred to as spurious solutions. The choice of meaningful
local maximizers (avoiding singularities and spurious solu-
tions) is thus an important, but complex, problem.

McLachlan and Peel (2000), after showing some illus-
trative examples of this problem, proposed monitoring the
local maximizers of (1), obtained after the application of EM
type algorithms and carefully evaluating them by resorting
to appropriate statistical tools. Unfortunately, this evaluation
is not an easy task for practitioners without enough statistical
expertise as can be seen, for instance, in Sect. 5.2.

An alternative approach is based on considering different
constrains on the �g scatter matrices. Most of them are based
on imposing constraints on the elements of the decomposition
of the scatter matrices in the form

123



620 Stat Comput (2015) 25:619–633

�g = λg Dg Ag D′
g

(see, e.g., Banfield and Raftery 1993 and Celeux and Diebolt
1995), where λg is the largest eigenvalue, Dg is the matrix of
eigenvectors of �g and Ag is a diagonal matrix. Considering
the λg , Dg and Ag as independent sets of parameters, the
idea is to constrain them to be the same among the different
mixture components or allow them to vary among mixture
components.

Penalized maximum likelihood approaches were consid-
ered (see, e.g., Chen and Tan 2009 and Ciuperca et al. 2003) to
overcome the problem of unboundedness of the likelihood,
and Fraley and Raftery (2007) proposed a Bayesian regu-
larization approach to address the problem of the spurious
solutions.

Another possibility for transforming the maximization
of (1) into a well-defined problem goes back to Hathaway
(1985) [he also refereed to Dennis 1982, who, in turn, cited to
Beale and Thompson (oral communications)]. In the univari-
ate case, Hathaway’s approach is based on the maximization
of (1) under the constraint

maxg=1,...,G σ 2
g

ming=1,...,G σ 2
g

≤ c, (2)

where c ≥ 1 is a fixed constant and�g = σ 2
g are the variances

of the univariate normal mixture components. Hathaway also
outlined an extension to multivariate problems based on the
eigenvalues of matrices � j�

−1
k , with 1 ≤ j �= k ≤ G. To

the best of our knowledge, this extension has not been imple-
mented in practical applications due to the non-existence of
appropriate algorithms for carrying out the associated con-
strained maximization. In fact, Hathaway’s attempt to pro-
vide an algorithm for this goal, even in the univariate case,
addressed a different (but not equivalent) problem through
the constraints

σ 2
g+1

σ 2
g

≤ c, for 1 ≤ g ≤ G − 1, and
σ 2

G

σ 2
1

≤ c.

These more feasible constraints were proposed as an alter-
native to constraints (2) in Hathaway (1983, 1986).

This paper addresses an easy extension of constraint (2),
which allows for a computationally feasible algorithm. The
approach is based on controlling the maximal ratio between
scatter matrices eigenvalues as it has been already considered
by the authors in a (robust) clustering framework (García-
Escudero et al. 2008). However, our aim there was (robustly)
to find clusters or groups in a data set instead of modeling it
with a finite mixture. Although the two problems are clearly
related, we are now using “mixture” likelihoods instead of
(trimmed) “classification” likelihoods. In both approaches, a
constant c serves to control the strength of the constraints on
the eigenvalues.

Similar type of constraints on the eigenvalues of the scatter
matrices have been also considered in Ingrassia and Rocci
(2007). Gallegos and Ritter (2009a) considered other type of
constraints on the � j scatter matrices in (robust) clustering
by resorting to the Löwner matrix ordering (�). To be more
specific, they constrained the scatter matrices to satisfy � j �
c−1�k for every j and k. Gallegos and Ritter (2009b) applied
this type of constraints to the mixture fitting problem.

The consideration of constraints in these problems must
be supported and guided by a double perspective. On the
one hand, it should be soundly justified from a mathematical
point of view. On the other hand, its numerical implementa-
tion should be feasible at an affordable computational cost.
Thus, the main contributions of this work are the results justi-
fying the proposed approach from a theoretical point of view
and the presentation of a feasible algorithm. Additionally, it
is shown that this methodology not only yields a natural way
to discard spurious solutions, but it also allows for monitoring
solutions in terms of the constant involved in the restrictions.
Hence, it can be considered as a valuable tool for data ana-
lysts.

Regarding the mathematical aspects of the problem, we
will prove the existence and consistency of constrained solu-
tions under very general assumptions. Hathaway (1986) pro-
vided existence and consistency results in the univariate case
that, surprisingly, have not been properly extended to mul-
tivariate cases. In any case, even in the one-dimensional
setup, our results are considerably more general due to
the milder conditions imposed on the underlying distrib-
ution. For instance, our results cover not only the “per-
fect” normal mixture model (as is the case of Hathaway’s
results), but also the more realistic assumption that the
underlying model is “close” to a normal mixture model.
A direct consequence of these results is that the pro-
posed constraints lead to well-defined underlying theoret-
ical or population problems. Without them, it is not per-
fectly clear the true goal we are pursuing when apply-
ing the EM algorithm. In other words, the “maximiza-
tion” of the target function (1) without constraints results
in an EM algorithm whose performance strongly depends on
the probabilistic way that it is initialized (see, e.g., Maitra
2009).

Even though the considered constraints result in math-
ematically well justified problems, it is very important to
develop feasible and fast enough algorithms for their practi-
cal implementation. With this in mind, the direct adaptation
of the type of algorithm introduced in García-Escudero et
al. (2008) is not satisfactory at all. This type of algorithm
implies solving several complex optimization problems in
each iteration of the algorithm, through Dykstra’s algorithm
(Dykstra 1983). Instead of considering this type of algorithm,
we propose adapting the algorithm in Fritz et al. (2013) to this
mixture fitting problem. The proposed adaptation provides an
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efficient algorithm for solving the constrained maximization
of (1).

As already commented, Gallegos and Ritter (2009b) con-
sidered constraints on the scatter matrices by resorting to the
Löwner matrix orderings. However, a specific algorithm was
not given to solve those problems for a fixed value of the con-
stant c. Instead, they proposed obtaining all local maxima of
the (trimmed) likelihood and investigate the value of c needed
in order that each solution fulfills one of these constraints.

Ingrassia and Rocci (2007) proposed algorithms trying to
approximate the solution of Hathaway’s original constraints
for the multivariate case. In this way, they suggested algo-
rithms based on truncating the scatter matrices eigenvalues
by using known lower and upper bounds on these eigenval-
ues. When no suitable external information is available for
bounding them, they also considered a bound on the ratio of
the eigenvalues as we do in this work (c must be replaced
by c−1). However, their algorithm for this last proposal did
not directly maximize the likelihood as done in Step 2.2 of
our algorithm. Their algorithm was based on obtaining iter-
ative estimates of η, which is a lower bound on the scatter
matrices eigenvalues, to properly truncate the eigenvalues
and thus, as the authors commented in their paper, the pro-
posed algorithm is quite sensitive to the proper determination
of an initial good choice η0 for parameter η.

The outline of the work is as follows. We properly state
the constrained problem and give mathematical properties
that support its interest in Sect. 2. Section 3 is devoted to
the description of the proposed algorithm. Section 4 presents
a simple simulation study to show how the use of the pro-
posed constraints avoids the detection of spurious solutions.
In Sect. 5, we analyze some examples already considered in
the literature. Throughout them, we illustrate how alterna-
tive mixture fits can be explored when moving the constant
c defining the constraints. Finally, we conclude in Sect. 6
where some hints are also presented about how to explore
these alternative mixture fits.

2 Problem statement and theoretical results

Let us denote by {x1, . . . , xn} ⊂ R
p an i.i.d random sample

from an underlying distribution P . We could ideally assume
that P is a mixture of G multivariate normal components
but, in the presented results, only mild assumptions on the
underlying distribution P will be required. Given this sample,
the proposed approach is based on the maximization of the
mixture log-likelihood given in (1) but with the additional:

(ER) eigenvalues-ratio constraint

Mn/mn ≤ c

for

Mn = max
g=1,...,G

max
l=1,...,p

λl(�g) and

mn = min
g=1,...,G

min
l=1,...,p

λl(�g),

with λl(�g) being the eigenvalues of the �g scatter matrices,
with g = 1, . . . , G and l = 1, . . . , p, and c ≥ 1 being a fixed
constant.

This type of constraints simultaneously controls differ-
ences between groups and departure for sphericity. Note that
the relative length of the equidensity ellipsoids axes based
on ϕ(·;μg, �g) is forced to be smaller than

√
c (Fig. 1). The

smaller c, the more similarly scattered and spherical the mix-
ture components are. For instance, these ellipsoids reduce to
balls with the same radius in the most constrained c = 1
case.

The previously stated empirical problem admits an under-
lying theoretical or population counterpart:

Constrained mixture-fitting problem Given a probability
measure P , maximize:

EP

⎡

⎣log

⎡

⎣
G∑

g=1

πgϕ(·;μg, �g)

⎤

⎦

⎤

⎦ , (3)

in terms of the parameters θ = (π1, . . . , πG , μ1, . . . , μG ,

�1, . . . , �G) corresponding to weights πg ∈ [0, 1], with∑G
g=1 πg = 1, location vectors μg ∈ R

p and symmetric
positively definite (p × p)-matrices �g satisfying the (ER)
constraint for a fixed constant c ≥ 1. The set of θ parameters
obeying these conditions is denoted by Θc.

If Pn stands for the empirical measure, Pn = (1/n)
∑n

i=1
δ{xi }, we recover the original empirical problem by replacing
P by Pn .

Fig. 1 If {lg,l } are the length of the axes of the equidensity ellipsoids
based on the ϕ(·; μg, �g) normal density, we set max{lg,l}/ min{lg,l} ≤√

c
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In this section, we give results guaranteeing the existence
of both empirical and population problem solutions, together
with a consistency result of the empirical solutions to the
population one. These two results only require mild assump-
tions on the underlying distribution P . Namely, we require
P to have finite second moment, i.e. EP [‖ · ‖2] < ∞, and to
avoid that P is completely unappropriate for a mixture fitting
approach by requesting:

(PR) The distribution P is not concentrated on G points.

This condition trivially holds for absolutely continuous dis-
tributions and for empirical measures corresponding to large
enough samples drawn from an absolutely continuous distri-
bution.

We can state the following general existence result:

Proposition 1 If (PR) holds for distribution P and
EP [‖ · ‖2] < ∞, then there exists some θ ∈ Θc such that the
maximum of (3) under (ER) is achieved.

The following consistency result also holds under similar
assumptions:

Proposition 2 Let us assume that (PR) holds for the distrib-
ution P with EP [‖ · ‖2] < ∞ and θ0 be the unique maximum
of (3) under (ER). If θn ∈ Θc denotes a sample version esti-
mator based on the empirical measure Pn, then θn → θ0

almost surely.

Recall that the original problem without the (ER) con-
straint is an ill-posed problem and, thus, results like the pre-
vious ones are not possible.

The proofs of these results, which will be given in the
Appendix, follow similar arguments as those given for the
existence and consistency results of the TCLUST method in
García-Escudero et al. (2008). However, a special mathemat-
ical treatment is now needed. For instance, the consistency
result presented in García-Escudero et al. (2008) needed an
absolutely continuous distribution P with strictly positive
density function (in the boundary of the set including the
non-trimmed part of the distribution). This condition was
needed due to the “trimming” approach considered by the
TCLUST methodology. On the other hand, the new results
for mixtures do not longer need this assumption, but they
need finite second order moments to control the tails of the
mixture components. The tails of the distribution were not
problematic when considering trimming.

With respect to the uniqueness condition, it can be guar-
anteed when P is a mixture of G normal components once
we choose a large enough c such that its scatter matrices
belong to the set Θc. This would also imply the consistency
toward the parameters of the mixture. Moreover, the unique-
ness condition often holds for smaller values of c. Unfortu-

nately, stating general uniqueness results is not an easy task
even in the most simple cases.

The presented approach is obviously not affine equivari-
ant due to the type of constraints considered. Although the
approach becomes closer to affine equivariance when consid-
ering large c values, it is always recommended to standard-
ize the variables when very different measurement scales are
involved.

Finally, we would like to comment that Hennig (2004) and
Greselin and Ingrassia (2010) can also be seen as first steps
toward the theoretical results presented here.

3 A feasible algorithm

In this section, we propose an algorithm that essentially fol-
lows the same scheme adopted by standard EM algorithms
in mixture fitting. However, in this new algorithm, it is very
important to update the parameters in the EM algorithm
in such a way that the scatter matrices satisfy the required
eigenvalues ratio constraint. The proposed algorithm may be
described as follows:

1. Initialization The procedure is initialized nstart times
by selecting different θ(0) = (π

(0)
1 , . . . , π

(0)
G , μ

(0)
1 , . . . ,

μ
(0)
G , �

(0)
1 , . . . , �

(0)
G ). For this purpose, we propose ran-

domly selecting G(p+1) observations and computing G
mean centers μ

(0)
g and G scatter matrices �

(0)
g from them.

The cluster scatter matrix constraints (to be described in
Step 2.2) are applied to these initial �(0)

g scatter matrices,

if needed. Weights π
(0)
1 , . . . , π

(0)
G in the interval (0, 1)

and summing up to 1 are also randomly chosen.
2. EM steps The following steps are alternatively executed

until ‖θ(l+1)−θ(l)‖ ≤ ζ for a small constant ζ > 0 (after
arranging properly the elements of θ in a vector) or until
a maximum number of iterations iter.max is reached.

2.1. E-step We compute the posterior probabilities for all
the observations by using the current θ(l) as

τg

(
xi ; θ(l)

)
=

π
(l)
g ϕ

(
xi ;μ

(l)
g , �

(l)
g

)

∑G
g=1 π

(l)
g ϕ

(
xi ;μ

(l)
g , �

(l)
g

) . (4)

2.2. M-step We update the θ(l) parameters as

π(l+1)
g =

n∑

i=1

τg

(
xi ; θ(l)

)/
n

and

μ(l+1)
g =

n∑

i=1

τg

(
xi ; θ(l)

)
xi

/ n∑

i=1

τg

(
xi ; θ(l)

)
.

Updating the scatter estimates is more difficult given
that the sample covariance matrices
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Tg =
n∑

i=1

τg

(
xi ; θ(l)

) (
xi − μ(l+1)

g

) (
xi − μ(l+1)

g

)′

/ n∑

i=1

τg

(
xi ; θ(l)

)

may not satisfy the required eigenvalues ratio con-
straint. In this case, the singular-value decompo-
sition of Tg = U ′

g DgUg is considered for each
Tg matrix, with U j being orthogonal matrices and
Dg = diag(dg1, dg2, . . . , dgp) diagonal matrices. Let
us define the truncated eigenvalues as

[dgl ]m =
⎧
⎨

⎩

dgl if dgl ∈ [m, cm]
m if dgl < m
cm if dgl > cm

, (5)

where m is some threshold value. The scatter matrices
are finally updated as
∑(l+1)

g
= U ′

g D∗
gUg,

with D∗
g = diag

([dg1]mopt , [dg2]mopt , . . . , [dgp]mopt

)

and mopt minimizing the real valued function

m �→
G∑

g=1

π(l+1)
g

p∑

l=1

(
log
([dgl ]m

)+ dgl

[dgl ]m

)
. (6)

3. Evaluate target function After applying the EM steps,
the value of the target function (1) is computed for each
random initialization. The set of parameters yielding the
highest value of the target function is returned as the
algorithm final output.

Remark 1 There is a closed form for obtaining mopt just by
evaluating 2pG + 1 times the function appearing in (6). To
do that, let us consider e1 ≤ e2 ≤ · · · ≤ e2Gp obtained by
ordering the values

d11, d12, . . . , dgl , . . . , dGp, d11/c,

d12/c, . . . , dgl/c, . . . , dGp/c,

and consider any 2pG +1 values satisfying f1 < e1 ≤ f2 ≤
e2 ≤ · · · ≤ f2Gp ≤ e2Gp < f2Gp+1. Compute

mi =
∑G

g=1 π
(l+1)
g

(∑p
l=1 dgl(dgl < fi ) + 1

c

∑p
l=1 dgl(dgl > c fi )

)

∑G
g=1 π

(l+1)
g

(∑p
l=1((dgl < fi ) + (dgl > c fi ))

) ,

for i = 1, . . . , 2Gp + 1, and choose mopt as the value of mi

which yields the minimum value of (6).

In each M-step, the constrained maximization in (1) just
needs to perform the minimization of the univariate func-
tion (6) instead of the minimization on Gp parameters in
expression (3.4) given in García-Escudero et al. (2008) under
Gp(Gp −1)/2 linear constraints. This original problem was
computationally expensive even for moderately high values

of G or p. On the other hand, with this new algorithm, the
computing times are not drastically increased with respect
to other (unrestricted) EM mixture fitting algorithms. Apart
from the obtention of the singular-value decompositions of
the Tg matrices, only the evaluation of a real valued function
2Gp + 1 times is needed in this modified M-step. Therefore,
this is a quite affordable modification in terms of computing
times with respect to standard EM algorithms.

The justification of Step 2.2 and Remark 1 follows exactly
the same lines as in Fritz et al. (2013). Once the τg(xi ; θ(l))

weights are fixed, the maximization of the likelihood done
in the M-step essentially coincides with that of the “classifi-
cation” likelihood in Fritz et al. (2013).

4 Simulation study

In this section, a simple simulation study is given to see how
the constrained mixture fitting algorithm actually works. The
simulation study is based on a random sample drawn from a
distribution P which is made of two normal components in
dimension p = 2 with density

0.5 · N2

((
0
0

)
,

(
1 0
0 1

))
+0.5 · N2

((
3
5

)
,

(
4 −2

−2 4

))
.

(7)

Independent and identically distributed noise variables drawn
from the standard normal distribution are added to the two
dimensional data sets generated from (7) in order to obtain
data sets in dimensions p = 6 and 10.

We compare the results of the proposed mixture fitting
algorithm for different values of c when G = 2 is assumed as
known. Namely, we consider c = 1, c = 6, c = 100 and c =
1010. Note that the “true” scatter matrices eigenvalues ratio
for this two-component mixture is equal to 6. The value c = 1
yields the most constrained case when we would be searching
for mixture components with scatter matrices being the same
diagonal matrix and with the same value in its diagonal. c =
100 can be seen as a “moderate” choice of c (we do not want
the length of any ellipsoid axis to be

√
100 = 10 times larger

than other) and c = 1010 means an (almost) unrestricted
case where the algorithm does not force any constraint on
the eigenvalues, but still avoids singularities.

In this simulation study, we will need a measure of how
two mixture fits, and the classification derived from them, are
close to each other. Given a fitted mixture M with parameters
θ = (π1, π2, μ1, μ2, �1, �2), we define

zM
i = 1 if π1φ(xi ;μ1, �1) >

π2φ(xi ;μ2, �2) and 0 if it is not (8)
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Table 1 Number of random initializations out of 1,000 (i.e., consider-
ing nstart=1,000 for each sample) which lead to mixtures close to
the “true” one (Concordance) and those that lead to solutions very

different from the “true” one (Spuriousness) when applying the
proposed constrained EM algorithm

n p c Concordance Spuriousness

δ < 0.1 δ < 0.2 δ ≥ 0.2 δ ≥ 0.1

100 2 1 990(990) 990(990) 0(0) 0(0)

6 993(993) 993(993) 0(0) 0(0)

100 657(657) 662(659) 0(0) 0(0)

1010 534(534) 536(535) 0(0) 0(0)

6 1 989(989) 989(989) 0(0) 0(0)

6 991(991) 991(991) 0(0) 0(0)

100 67(55) 83(80) 0(0) 0(0)

1010 19(16) 25(24) 10(10) 10(10)

10 1 991(991) 991(991) 0(0) 0(0)

6 984(984) 984(984) 0(0) 0(0)

100 3(3) 13(10) 0(0) 0(0)

1010 1(1) 2(1) 53(53) 53(53)

200 2 1 995(995) 995(995) 0(0) 0(0)

6 989(989) 989(989) 0(0) 0(0)

100 827(827) 827(827) 0(0) 0(0)

1010 697(697) 698(697) 0(0) 0(0)

6 1 993(993) 993(993) 0(0) 0(0)

6 993(993) 993(993) 0(0) 0(0)

100 474(472) 510(483) 0(0) 0(0)

1010 236(234) 254(239) 0(0) 0(0)

10 1 998(998) 998(998) 0(0) 0(0)

6 998(998) 998(998) 0(0) 0(0)

100 22(22) 31(29) 0(0) 0(0)

1010 5(5) 7(6) 3(3) 4(4)

The results with δ = δClassif as closeness measure are given and the same results when δ = δMixt are given within parenthesis

or

zM
i = π1φ(xi ;μ1, �1)

π1φ(xi ;μ1, �1) + π2φ(xi ;μ2, �2)
. (9)

We can, thus, measure the “discrepancy” between two mix-
tures M1 and M2 as

δ(M1,M2) = min

{
n∑

i=1

∣∣∣zM1
i − zM2

i

∣∣∣ /n,

n∑

i=1

∣∣∣zM1
i

−
(

1 − zM2
i

)∣∣∣ /n
}

We use the notation δClassif(M1,M2) when considering zi

as defined in (8) and the notation δMixt(M1,M2) when con-
sidering zi as in (9).

Let us denote the mixture (7) which generated our data set
by M0. Given that M0 is known, we can measure through
these δ discrepancies how close a fitted mixture is to the
“true” underlying mixture M0.

Table 1 shows the result of applying the presented algo-
rithm with nstart=1,000 random initializations, as those
proposed in Sect. 3. The performance of the algorithm for
different values of the constant c is evaluated through two
criteria:

(a) Concordance: The number of random initializations
that ends up with mixtures M such that δ(M,M0) <

0.2 and δ(M,M0) < 0.1. In other words, we are
interested in the number of random initialization which
lead to mixtures that essentially coincide with the “true”
underlying mixture M0.

(b) Spuriousness: The number of random initializa-
tions that ends up with mixtures M such that δ(M,M0)

≥ 0.2 and δ(M,M0) ≥ 0.1 and taking strictly larger
values for the target function (1) than the value obtained
for the “true” solution M0. That is, they are spurious
solutions which do not essentially coincide with the
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“true” underlying mixture M0, but with higher values
of the likelihood.

To read this table, we must take into account that Spurious
ness= 0 and Concordance>0 are really needed for a
good performance of the algorithm. With Spuriousness
= 0, we are avoiding the detection of spurious solutions
that would be eventually preferred (due to the value of
their likelihoods) to solutions closer to the “true” one.
Concordance>0 gives the algorithm some chance of
detecting a mixture close to the “true” solution. Notice
that, due to the definition of Spuriousness, the sum of
Concordance andSpuriousness does not add to 1,000
in Table 1.

We can see in Table 1 that the small sample size n = 100
makes it easier for the algorithm to detect spurious solutions.
The same happens with higher dimensions as p = 10. How-
ever, small or even moderate values of c serve to avoid the
detection of these spurious solutions. Note that the consider-
ation of c = 1 (smaller than the true eigenvalues ratio which
was equal to 6) is not too detrimental. We can also see that
the choice of small values of the constant c increases the
chance of initializations ending up close to the “true” solu-
tion. On the contrary, the use of more unrestricted algorithms
entails the detection of spurious solutions and makes harder
the detection of solutions close to the true one, especially, in
the higher dimensional cases (even when n = 200).

5 Examples

This section is based in some examples presented in McLach-
lan and Peel (2000) to illustrate the difficulties that spurious
solutions introduce in mixture fitting problems. We see how
the proposed constrained mixture fitting approach can be suc-
cessfully applied to handle these difficulties.

5.1 McLachlan and Peel’s “Synthetic Data Set 3”

This data set corresponds to Fig. 3.8 in McLachlan and Peel
(2000). Since it is a simulated data set, the “true” cluster
partition is known and shown in Fig. 2a. It is always interest-
ing to monitor the restricted ML solutions for different val-
ues of the constant c. Figure 2 shows some of the solutions
obtained for different values of constant c. In Fig. 2b–f the
associated cluster partition derived from the posterior prob-
abilities is used to summarize the mixture fitting results. As
already commented, spurious local maximizers correspond
to solutions including populations with “little practical use
or real-world interpretation”. This is the case of the solution
shown in Fig. 2f. Although that solution yields a likelihood
value, which is higher than the one of the “true” solution, it is
clear that the model is fitting a small local random pattern in

the data, rather than a proper mixture component. The ratio
between the maximum and the minimum eigenvalue is close
to 1,000 for this spurious solution, while it is only around 3
for the “true” one.

In this example, we obtain cluster partitions close to the
“true” solution when enforcing the relative size of the eigen-
values to be smaller than (approximately) c = 200. This
c = 200 level for the constraints would imply that we are no
allowing relative variabilities higher than

√
200 � 14 times

in the sense of standard deviations.
We can also see that no many essentially different solu-

tions need to be examined in the proposed monitoring
approach. In order to highlight this fact, we have plotted in
Fig. 3 the value of the constant c against the obtained scat-
ter matrices eigenvalues ratio from the solution that the pro-
posed algorithm returns for this value of constant c. Note that,
of course, the obtained eigenvalue ratio is always smaller or
equal than c but we can also see that many times the constraint
is not needed to be “enforced” in the returned solution by the
proposed algorithm once an upper bound on the eigenvalues
ratio is posed. We say that the constraints are “enforced” by
the algorithm if Mn/mn = c in (ER).

5.2 “Iris Virginica” data set

The well-known Iris data set, originally collected by Ander-
son (1935) and first analyzed by Fisher (1936), is considered
in this example. This four-dimensional (p = 4) data set
was collected by Anderson with the aim of seeing whether
there was “evidence of continuing evolution in any group of
plants”. Thus, it is interesting to evaluate whether “virginica”
species should be split into two subspecies or not. Hence, as
in McLachlan and Peel (2000)’s Sect. 3.11, we focus on the
50 virginica iris data and fit a mixture of G = 2 normal
components to them.

McLachlan and Peel (2000) listed 15 possible local ML
maximizers together with different quantities summarizing
aspects as the separation between clusters, the size of the
smallest cluster and the determinants of the scatter matri-
ces corresponding to these solutions. After analyzing this
information, an expert statistician could surely choose the
so-called “S1” solution as the most sensible solution among
them, even though this solution is not the one providing the
largest likelihood. The cluster partition associated to this S1

solution is shown in Fig. 4 in the two first principal compo-
nents.

Unfortunately, the careful examination of such (typically
big) lists of local ML maximizers is not an easy task for
non-expert users. Our proposal is to compute constrained
ML mixture fits for a grid of c values and choose a sensible
one among the associated constrained solutions. This list of
constrained solutions could be even more simplified by con-
sidering only those solutions which are essentially different
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Fig. 2 McLachlan and Peel’s
“Synthetic Data Set 3” and
constrained ML clustering
solutions depending on constant
c

’True’ assignments c = 1

c = 4 c = 25

c = 200 c = 10000

(a) (b)

(c)

(e) (f)

(d)

(we will outline this further simplification in Sect. 6). For
this example, after setting the restrictions at different c values
ranging from c = 4 to c =1,000, we only get essentially the
solution S1. In fact, the differences with that solution reduce
to less than one observation when analyzing the associated
cluster partitions based on maximum posterior probabilities.

In order to reinforce previous claims, we show in Fig. 5,
a huge number of local ML maximizers obtained by running
the proposed algorithm with a large c = 1010 value. McLach-
lan and Peel (2000) found 51 local maxima with likelihoods
greater than that corresponding to S1 out of 1,000 initializa-
tions when using the stochastic version of the EM algorithm
(Celeux and Diebolt 1985). Since the proposed algorithm
in Sect. 3 is able to visit many local maximizers, we find
787 local maximizers with higher likelihoods, than that cor-
responding to S1, when considering nstart= 50,000 and
iter.max= 100. Thus, the number of local maxima to be

explored is huge even in this very simple example. The val-
ues of the log-likelihood and the eigenvalues-ratio for these
ML local maximizers are plotted in Fig. 5. The same val-
ues are plotted (enclosed by square symbols) for the con-
strained solutions obtained from a sequence of c values on
an equispaced grid within [1, 108] in a logarithmical scale.
The corresponding values for 13 out of the 15 solutions listed
in McLachlan and Peel (2000) are also represented enclosed
by circle symbols (2 of these solutions are not found among
the here obtained 787 local maxima) and the preferred S1

solution is also highlighted.
As was previously commented, all the constrained solu-

tions when c ∈ [4, 103] are very close to solution S1 (with
very similar log-likelihood values). In fact, there are two con-
strained ML solutions which have smaller eigenvalue ratios
than their corresponding c values which essentially coin-
cide with the S1 solution (by examining the values reported
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Fig. 3 Plot of constant c against the “true” eigenvalues ratio for the
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Fig. 4 Plot of the first two principal components of “virginica” data
set and the “S1” solution in McLachlan and Peel (2000)

in Table 3.9 of McLachlan and Peel 2000). Values c ≤ 4
are only desirable if the user is actually interested in rather
homoscedastic solutions (no axes lengths larger than 2 times
the others) and c >1,000 leads to solutions likely to be con-
sidered as spurious since the lengths of the ellipsoid axis are
very different. Thus, the practitioner, by choosing a moderate
value of constant c, would have obtained the same solution
(or a very close solution) as that obtained by an expert sta-
tistician.

5.3 Galaxy data set

This data set corresponds to the velocities (in thousand of
km/sec) of 82 galaxies in the Corona Borealis region, ana-
lyzed in Roeder (1990). This data set was also used in
McLachlan and Peel (2000) to show that clusters having rela-
tive very small variances (seemingly spurious solutions) may
be sometimes also considered as legitimate ones. Of course,
this data set has a very small sample size to answer this ques-
tion and this forces us to be cautious with our statements as
McLachlan and Peel did.

Figure 6 shows the galaxy data set and the solution for
this data set proposed by McLachlan and Peel (2000) with
G = 6 components. The obtained parameters for this mix-
ture of normals can be seen in Table 3.8 of that book. In
Fig. 6, the two clusters suspicious of being due to a spuri-
ous local maximizer of the likelihood are labeled with letters
“A” (component centered around 16.127) and “B” (centered
around 26.978). Both components “A” and “B” account for
2% of the mixture distribution and their variances are 781
or 5,000 times, respectively, smaller than the variance of the
most scattered component.

After examining Fig. 6, it is quite logical to wonder
whether components “A” and “B” can be considered just as
spurious local maximizers or they are legitimate ones.

Table 2 gives the restricted ML solutions for c = 4, 25,
100 and 200. The “A” component is detected for this wide
range of c values and, therefore, “A” can be more clearly
considered as a “legitimate” population. The “B” component
is also detected when we set the c value to be greater than
100. A value c = 100 corresponds to allowing ten times
more relative variability in the sense of standard deviation.
Under the premise that this relative scatter variability was
acceptable, the population “B” could be seen as a legitimate
population too. McLachlan and Peel (1997) provided support
for the G = 6 components solution and Richardson and
Green (1997), following a Bayesian approach, concluded that
the number of components G ranges from 5 to 7.

6 Discussion

We have presented a constrained ML mixture modeling
approach. It is based on the traditional maximization of the
likelihood, and constraining the ratio between the scatter
matrices eigenvalues to be smaller than a fixed in advance
constant c. We have seen that this approach has nice theo-
retical properties (existence and consistency results) and a
feasible algorithm has been presented for its practical imple-
mentation.

The practitioner has sometimes an initial idea of the maxi-
mum allowable difference between mixture component scat-
ters. For instance, a small c must be fixed if components
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Fig. 5 Log-likelihoods and
eigenvalues-ratios for several
local ML maximizers in the “Iris
Virginica” data set and for the
constrained ML solutions
(square). The considered
sequence of c values is
represented by using vertical
lines. The 13 solutions listed in
McLachlan and Peel (2000),
including the “S1” solution, are
enclosed by circle symbols
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Fig. 6 Histogram for the galaxy data set and the G = 6 normal mixture
fitted in McLachlan and Peel (2000)

with very similar scatters are expected. In any case, after
standardizing the data variables, we should always choose a
small or moderate value of c just to avoid degeneracies of
target function and the detection of non-interesting spurious
solutions.

However, we think that more useful information can be
obtained from a careful analysis of the fitted mixtures when
moving parameter c in a controlled way. In fact, our experi-
ence tell us that no many essentially different solutions are
needed to be examined when considering “sensible” values
of c (see some examples of it in this work). This would lead
to a very reduced list of candidate mixture fits to be carefully
investigated. To give a more accurate picture of this idea, we
propose using a grid {cl}L

l=1 of values for the eigenvalues

ratio constraint factor c, ranging between c1 = 1 and a sen-
sible upper bound cL = cmax of this ratio. For instance, an
equispaced grid in logarithmical scale may be used for this
grid. For this sequence of c values, we obtain the associated
sequence of constrained ML fitted mixtures {Ml}L

l=1 and
we can see how many “essentially” different solutions exist.
In order to do that, we propose using the discrepancy mea-
sures δClassif or δMixt introduced in Sect. 4 (they were intro-
duced for the G = 2 case but they can be easily extended to
higher number of components G). We say that two mixtures
Mi and M j are essentially the same when δ(Mi ,M j ) <

ε for a fixed tolerance factor ε, which can be easily
interpreted.

Table 3 shows how many essentially different solutions
can be found for the random samples used in Sect. 4
for the two discrepancy measures (δClassif and δMixt) and
different values of the tolerance factor ε (0.01, 0.05 and
0.1). We start from the constrained solutions obtained
from 18 values of constant c taken in [1, 108] (namely,
c = {20, 21, . . . , 29, 103, 104, . . . , 1010}). This table also
includes the number of essentially different solutions when
considering 5 random samples (instead of only one) from
these mixtures enclosed in parentheses. We can see that the
number of solutions is not very large, apart from the p = 10
and n = 100 cases where the sample size is not very large
for the high dimension considered (in fact, a smaller number
of essentially different solutions are found when consider-
ing no so large values of constant c and, thus, avoiding the
detection of the most clear spurious solutions). In spite of this
huge range of c values, we find 5, 4, and 3 essentially different
solutions for the “Synthetic Data Set 3” in Sect. 5 when con-
sidering ε = 0.01, 0.05 and 0.1, respectively. Analogously,
we have 8, 6, and 3 for the “Iris Virginica Data Set” and the
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Table 2 Constrained solutions
with G = 6 for the galaxy data
set and different values of
constant c

c = 4 c = 25

π μ σ 2 π μ σ 2

A 0.10 9.710 0.3306 0.13 9.710 0.1785

0.04 16.127 0.3306 0.04 16.127 0.1291

0.49 19.902 0.5655 0.33 19.765 0.4288

0.18 22.600 0.4816 0.16 22.689 0.8068

0.16 24.363 1.3248 0.29 23.138 3.2263

0.04 33.044 0.8501 0.05 33.044 0.8496

c = 100 c = 200

π μ σ 2 π μ σ 2

A 0.07 9.710 0.1789 0.12 9.710 0.1789

0.02 16.127 0.0166 0.02 16.127 0.0058

0.30 19.703 0.3906 0.38 19.827 0.4844

0.50 22.711 1.6615 0.37 23.013 1.1621

B 0.01 26.977 0.0166 0.02 26.978 0.0058

0.09 33.044 0.8501 0.09 33.044 0.8501

Table 3 Numbers of “essentially” different solutions for a grid of c values of length 18 taken in [1, 1010] when considering the random samples
in Sect. 4

n p δClassif δMixt

ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.01 ε = 0.05 ε = 0.1

100 2 1 (1) 1 (1) 1 (1) 1 (2) 1 (1) 1 (1)

6 4 (6) 4 (6) 2 (4) 4 (6) 4 (6) 2 (4)

10 8 (12) 7 (11) 7 (9) 8 (13) 7 (11) 7 (9)

200 2 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

6 1 (2) 1 (2) 1 (2) 1 (2) 1 (2) 1 (2)

10 2 (3) 2 (3) 2 (2) 2 (3) 2 (3) 1 (2)

The numbers within parenthesis are the maximum numbers of “essentially” different solutions when considering 5 random samples from those
mixtures

same values of the tolerance factor ε. The “true” solution
and the S1 solution are always found in these smaller lists of
solutions for these two examples. The discrepancy measure
δClassif has been used, but similar numbers are obtained with
δMixt.

Moreover, the solutions which are not “enforced” by the
algorithm (i.e., those with Mn/mn < c) are often the most
interesting ones as shown in Sect. 5. Thus, within the list of
essentially different solutions, we can obtain an even smaller
list of “sensible” mixture fits by focusing only on the not
“enforced” ones.

This type of monitoring approach requires solving sev-
eral constrained ML problems and, thus, it is only affordable
if we rely on efficient and fast enough algorithms as those
presented in Sect. 3.

As it usually happens in the literature on mixture models,
we have not considered the presence of contamination in

the data set, contrary to what we have previously done and
published. However, the proposed methodology could also
be easily adapted to tackle the problem of robust estimation of
mixture models, by defining trimmed ML approaches were a
fraction α of the data is allowed to be trimmed. For instance,
the way that eigenvalues ratio constraints are enforced in
the proposed algorithm may be easily incorporated to the
trimmed likelihood mixture fitting method in Neykov et al.
(2007) or to the robust improper ML estimator (RIMLE)
introduced in Hennig (2004) (see, also, Coretto and Hennig
2010).
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Appendix: Proofs of existence and consistency results

Existence

The proof of these results follow similar arguments as those
applied in García-Escudero et al. (2008) but in a mix-
ture framework instead of a clustering one. So, let us first
introduce some common notation for the clustering and
mixture problems. Given θ = (π1, . . . , πG , μ1, . . . , μG ,

�1, . . . , �G), let us define functions Dg(x; θ) = πgϕ(x;μg,

�g) and D(x; θ) = max{D1(x; θ), . . . , DG(x; θ)}. The
mixture problem is defined through the maximization on
θ ∈ Θc of

L(θ, P):=EP

⎡

⎣log

⎡

⎣
G∑

g=1

Dg(·; θ)

⎤

⎦

⎤

⎦ (10)

while, on the other hand, the clustering problem (classifi-
cation likelihood) is defined through the maximization on
θ ∈ Θc of

C L(θ, P):=EP

⎡

⎣
G∑

g=1

zg(·; θ) log Dg(·; θ)

⎤

⎦ (11)

with zg(x; θ) = I {x : D(x; θ) = Dg(x; θ)}.
Let us consider a sequence {θn}∞n=1 = {(πn

1 , . . . , πn
G ,

μn
1, . . . , μn

G , �n
1 , . . . , �n

G)}∞n=1 ⊂ Θc such that

lim
n→∞ C L(θn, P) = sup

θ∈Θc

C L(θ, P) = M > −∞ (12)

(the boundedness from below for (12) can be easily obtained
just considering π1 = 1, μ1 = 0, �1 = I and the fact that P
has finite second order moments). Since [0, 1]k is a compact
set, we can extract a subsequence from {θn}∞n=1 (that will be
denoted like the original one) such that

πn
j → πg ∈ [0, 1] for 1 ≤ g ≤ G, (13)

and satisfying for some k ∈ {0, 1, . . . , G} (a relabelling
could be needed) that

μn
g → μg ∈ R

p for 0 ≤ g ≤ k and min
g>k

‖μn
g‖ → ∞.

(14)

With respect to the scatter matrices, under (ER), we can also
consider a further subsequence verifying one (and only one)
of these possibilities:

�n
g → �g for 1 ≤ g ≤ G, (15)

Mn = max
g=1,...,G

max
l=1,...,p

λl(�g) → ∞, (16)

or

mn = min
g=1,...,G

min
l=1,...,p

λl(�g) → 0. (17)

Lemma 1 Given a sequence satisfying (12), if P satisfies
(PR) and EP [‖ · ‖2] < ∞, then only the convergence (15) is
possible.

Proof The proof is the same as in Lemma A.1 in García-
Escudero et al. (2008) but we need an analogous of inequality
(A.8) there to be applied in this untrimmed case. This result
appears in Lemma 2 below. ��
Lemma 2 If P satisfies (PR) then there exists a constant
h > 0 such that

EP

⎡

⎣
G∑

g=1

zg(·; θn)

∥∥∥· − μn
g

∥∥∥
2

⎤

⎦ ≥ h.

Proof Let B(y, ε) denote the ball centered at y with radius ε.
Since P is not concentrated on G points, we can choose G+1
points y1, . . . , yG+1 verifying P[B(yg, ε)] > δ(ε) > 0 for
g = 1, . . . , G + 1 with δ(ε) only depending on ε. If we take
ε0 < min

1≤ j<k≤G+1
‖y j − yk‖/2

and h = δ(ε0)ε
2
0, we have

EP

⎡

⎣
G∑

g=1

zg(·; θn)

∥∥∥· − μn
g

∥∥∥
2

⎤

⎦

≥ EP

[
min

g=1,...,G

∥∥∥· − μn
g

∥∥∥
2
]

≥ h > 0.

��
Let us now go back to our original mixture fitting problem

and let us assume again that:

lim
n→∞ L(θn, P) = sup

θ∈Θc

L(θ, P) = M > −∞ (18)

(the boundedness from below in (18) again follows from con-
sidering π1 = 1, μ1 = 0,�1 = I and that P has finite second
order moments). Displays (13)–(17) are also considered in
this mixture fitting setup.

Lemma 3 Given the sequence satisfying (18), if P satisfies
(PR) and EP [‖ · ‖2] < ∞, then only the convergence (15) is
possible.

Proof The proof is trivial from Lemma 1 just taking into
account the bound

L(θ, P) = EP

⎡

⎣log

⎡

⎣
G∑

g=1

Dg(·; θ)

⎤

⎦

⎤

⎦

≤ EP

[
log

(
G max

g=1,...,G
Dg(·; θ)

)]
(19)

= log G + EP

⎡

⎣
G∑

g=1

zg(·; θ) log Dg(·; θ)

⎤

⎦

= log G + C L(θ, P).

��
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Lemma 4 Given a sequence satisfying (18) and assuming
condition (PR) and EP [‖ ·‖2] < ∞ for P, if every πg in (13)
verifies πg > 0 for g = 1, . . . , G, then k = G in (14).

Proof If k = 0, we can easily see that L(θn; P) → −∞. So,
let us assume that 0 < k < G. We will prove that

EP

⎡

⎣log

⎡

⎣
G∑

g=1

Dg(·; θn)

⎤

⎦

⎤

⎦

−EP

⎡

⎣log

⎡

⎣
k∑

g=1

Dg(·; θn)

⎤

⎦

⎤

⎦→ 0. (20)

In order to do that, we can see that

0 ≤ log

[ G∑

g=1

Dg(x; θn)

]
− log

[ k∑

g=1

Dg(x; θn)

]

≤ log

(
1 +

∑G
g=k+1 Dg(x; θn)

D1(·; θn)

)

≤ log

[
1 +

G∑

g=k+1

πn
g

πn
1

(
Mn

mn

)p/2

× exp

(
1

2
M−1

n ‖x − μn
1‖2 − 1

2
m−1

n ‖x − μn
g‖2
)]

≤ log

[
1 +

G∑

g=k+1

πn
g

πn
1

(
Mn

mn

)p/2

exp

(
1

2
M−1

n ‖x − μn
1‖2

−1

2
m−1

n ‖μn
1 − μn

g‖2 + 1

2
m−1

n ‖x − μn
1‖2
)]

(21)

≤ log

[
1 + exp

(
− 1

2
m−1

n min
g=k+1,...,G

‖μn
1 − μn

g‖2
)

(22)

·
G∑

g=k+1

πn
g

πn
1

(
Mn

mn

)p/2

exp

(
m−1

n ‖x − μn
1‖2
)]

.

Expression (21) follows from the application of the trian-
gular inequality and (22) from the fact that M−1

n ≤ m−1
n .

Then, for fixed x , the expression (22) tends to 0 due to
(13) and that (14) makes ming=k+1,...,G ‖μn

1 − μn
g‖2 →

∞. Moreover, (22) is uniformly dominated by a function
k1 + k2‖x‖2 by using the elementary inequality log(1 +
a exp(x)) ≤ x + log(1 + a) for x ≥ 0 together with the
assumptions (13) and (14). Since EP [‖ · ‖2] < ∞, the
Lebesgue’s dominated convergence theorem finally proves
(20). Note that the constraint Mn/mn ≤ c has been also
used for deriving the pointwise convergence and the uniform
domination.

Taking into account (20) and if θ∗ is the limit of the sub-
sequence {(πn

1 , . . . , πn
k , μn

1, . . . , μn
k , �n

1 , . . . , �n
k )}∞n=1, we

have limn→∞ sup L(θn; P) = L(θ∗; P). As
∑k

j=1 π j <

1,the proof ends by defining a subsequence {θ̃n}∞n=1 =

{(π̃n
1 , . . . , π̃n

G , μ̃n
1, . . . , μ̃n

G , �̃n
1 , . . . , �̃n

G)}∞n=1 where

π̃n
g = πn

g
∑k

g=1 πn
j

for 1 ≤ g ≤ k and π̃n
k+1 = . . . = π̃n

G = 0

(23)

and

μ̃n
g = μn

g and �̃n
g = �n

g for 1 ≤ g ≤ k

(μ̃n
g and �̃n

g may be arbitrarily chosen when g > k only
taking into account that the eigenvalues ratio constraint must
be satisfied). We now have

lim
n→∞ sup L(θ̃n; P) < lim

n→∞ sup L(θn; P) = M.

This would lead to a contradiction with the optimality in (18)
and we thus conclude k = G. ��
Proof of Proposition 1 Taking into account previous lem-
mas, the proof is exactly the same as that of Proposition 2
in García-Escudero et al. (2008). Notice that if some weight
πg is equal to 0, then we can trivially choose some μg and
�g such that ‖μg‖ < ∞ and such that �g satisfies the
eigenvalue-ratio constraint without changing (10). ��

Consistency

Given {xn}∞n=1 an i.i.d. random sample from an underly-
ing (unknown) probability distribution P , let {θn}∞n=1 =
{(πn

1 , . . . , πn
k , μn

1, . . . , μn
k , �n

1 , . . . , �n
k )}∞n=1 ⊂ Θc denote

a sequence of empirical estimators obtained by solving the
problem (3) for P being the sequence of empirical measures
{Pn}∞n=1 with the eigenvalue-ratio constraint (ER) (notice that
the index n now stands for the sample size).

First we prove that there exists a compact set K ⊂ Θc

such that θn ∈ K for n large enough, with probability 1.

Lemma 5 If P satisfies (PR) and EP [‖ · ‖2] < ∞, then the
minimum (resp. maximum) eigenvalue, mn (resp. Mn) of the
matrices �n

g ’s can not verify mn → 0 (resp. Mn → ∞).

Proof The proof follows similar lines as that of Lemma 1
above by using again the bound (19). We also need a bound
like in Lemma 2 but for the empirical measure. I.e., we need
a constant h′ > 0 such that

EPn

⎡

⎣
G∑

g=1

z j (·; θn)

∥∥∥· − μn
g

∥∥∥
2

⎤

⎦ ≥ h′.

This constant can be obtained by a similar reasoning as that
in the proof of Lemma 2 just taking into account that the class
of the balls in R

p is a Glivenko-Cantelli class. ��
Lemma 6 If (PR) holds for distribution P and EP [‖ ·‖2] <

∞, then we can choose empirical centers μn
g’s such that their

norms are uniformly bounded with probability 1.
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Proof The proof of this result follows from applying a rea-
soning like that in the proof of Lemma 4. Notice that the same
uniform convergence to 0 on x that was needed for proving
(20) is applied here too. ��

In the following lemma, we will use the same notation and
terminology as in Vaart and Wellner (1996).

Lemma 7 Given a compact set K ⊂ Θc, the class of func-
tions

H :=
⎧
⎨

⎩log

⎛

⎝
G∑

g=1

Dg(·; θ)

⎞

⎠ : θ ∈ K

⎫
⎬

⎭ (24)

is a Glivenko-Cantelli class when EP [‖ · ‖2] < ∞.

Proof Let us first consider

G:=
⎧
⎨

⎩IB(·) log

⎛

⎝
G∑

g=1

Dg(·; θ)

⎞

⎠ : θ ∈ K

⎫
⎬

⎭ ,

where B is a fixed compact set.
We have that the class of functions

{log((2π)−p/2 det(�)−1/2) − (x − μ)′

×�−1(x − μ)/2 : μ ∈ R
p, � ∈ Mp×p},

with Mp×p being positive-definite p × p matrices, is a VC
class because is a finite-dimensional vector space of mea-
surable functions. Consequently, the class

{∑G
g=1 Dg(·; θ)

}

is a VC-hull class. Applying Theorem 2.10.20 in Vaart and
Wellner (1996) with φ(x) = IB(x) log(x), we obtain that G
satisfies the uniform entropy condition. Since it is uniformly
bounded, we have that G is a Glivenko-Cantelli class.

We can also see that there exist constants a and b such that

|h(x)| ≤ a‖x‖2 + b for everyh ∈ H. (25)

Since K is a compact set, there exist constants m and M
satisfying 0 < m ≤ λl(�g) ≤ M < ∞ for g = 1, . . . , G
and l = 1, . . . , p. For these constants, we have

G∑

g=1

Dg(x; θ) ≥
G∑

g=1

πg(2π)−p/2 M−p/2

× exp
(
−m−1‖x − μg‖2/2

)

≥ exp
(
−m−1‖x‖2/2

) G∑

g=1

πg(2π)−p/2

×M−p/2 exp
(
−m−1‖μg‖2/2

)
.

Now take into account that maxg=1,...,G ‖μg‖ < ∞ (recall
that θ ∈ K with K being a compact set). Thus, we see that
log(

∑G
g=1 Dg(x; θ)) ≥ a′‖x‖2 + b′. On the other hand, it

is easy to see that log(
∑G

g=1 Dg(x; θ)) ≤ (2π)−p/2m−p/2.
Thus, a bound like (25) holds.

Finally, for every h ∈ H and B a compact set on R
p, we

have
∣∣EPn [h(·)]−EP [h(·)]∣∣ ≤ ∣∣EPn [h(·)IB(·)]−EP [h(·)IB(·)]∣∣

+
∣∣∣EPn [(a‖ · ‖2 + b)IBc (·)]

−EP [(a‖ · ‖2 + b)IBc (·)]
∣∣∣→ 0.

The result follows from the fact that h(·)IB(·) ∈ G and that
EP [‖ · ‖2] < ∞. ��
Proof of Proposition 2 Taking into account Lemma 7, the
result follows from Corollary 3.2.3 in Vaart and Wellner
(1996). Notice that Lemmas 5 and 6 are needed in order
to guarantee the existence of a compact set K such that the
sequence of empirical estimators satisfies {θn}∞n=1 ⊂ K . ��
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