
Stat Comput (2015) 25:227–242
DOI 10.1007/s11222-013-9428-y

Uniform random generation of large acyclic digraphs

Jack Kuipers · Giusi Moffa

Received: 8 April 2013 / Accepted: 14 October 2013 / Published online: 8 November 2013
© Springer Science+Business Media New York 2013

Abstract Directed acyclic graphs are the basic representa-
tion of the structure underlying Bayesian networks, which
represent multivariate probability distributions. In many
practical applications, such as the reverse engineering of
gene regulatory networks, not only the estimation of model
parameters but the reconstruction of the structure itself is
of great interest. As well as for the assessment of different
structure learning algorithms in simulation studies, a uni-
form sample from the space of directed acyclic graphs is
required to evaluate the prevalence of certain structural fea-
tures. Here we analyse how to sample acyclic digraphs uni-
formly at random through recursive enumeration, an ap-
proach previously thought too computationally involved.
Based on complexity considerations, we discuss in par-
ticular how the enumeration directly provides an exact
method, which avoids the convergence issues of the alter-
native Markov chain methods and is actually computation-
ally much faster. The limiting behaviour of the distribu-
tion of acyclic digraphs then allows us to sample arbitrarily
large graphs. Building on the ideas of recursive enumeration
based sampling we also introduce a novel hybrid Markov
chain with much faster convergence than current alternatives
while still being easy to adapt to various restrictions. Finally
we discuss how to include such restrictions in the combina-
torial enumeration and the new hybrid Markov chain method
for efficient uniform sampling of the corresponding graphs.

J. Kuipers (B)
Institut für Theoretische Physik, Universität Regensburg,
93040 Regensburg, Germany
e-mail: jack.kuipers@ur.de

G. Moffa
Institut für Funktionelle Genomik, Universität Regensburg,
Josef Engertstraße 9, 93053 Regensburg, Germany
e-mail: giusi.moffa@ukr.de

Keywords Random graph generation · Acyclic digraphs ·
Recursive enumeration · Bayesian networks · MCMC

1 Introduction

Acyclic digraphs or directed acyclic graphs (DAGs) com-
prise a collection of vertices or nodes linked by direc-
tional arrows. DAGs can be used to represent the struc-
ture of a popular class of probabilistic graphical models
(Lauritzen 1996) known as Bayesian networks (Neapolitan
2004). These in turn represent probabilistic relationships be-
tween a large number of random variables, in short multi-
variate probability distributions, with the appealing property
that conditional independence properties are encoded and
can be read directly from the graph. They are widely used
in many fields of applied statistics with especially important
applications in biostatistics, such as the learning of epistatic
relationships (Jiang et al. 2011). Triggered by the seminal
paper of Friedman et al. (2000) Bayesian networks have be-
come a popular tool for reverse engineering gene regulatory
networks from large-scale expression data (Emmert-Streib
et al. 2012). Inferring the structure as well as the parame-
ters of a model is particularly important to shed some light
on the mechanisms driving biological processes. The esti-
mation of DAGs or their equivalence class is a hard problem
and methods for their efficient reconstruction from data is a
very active field of research: a recent review is given by Daly
et al. (2011) while some new methodological developments
for estimating high dimensional sparse DAGs by constraint-
based methods are discussed by Colombo et al. (2012) and
Kalisch and Bühlmann (2007).

For simulation studies aimed at assessing the perfor-
mance of learning algorithms which reconstruct a graph
from data, it is crucial to be able to generate uniform samples

mailto:jack.kuipers@ur.de
mailto:giusi.moffa@ukr.de

228 Stat Comput (2015) 25:227–242

from the space of DAGs so that any structure related bias
is removed. The only currently available method relies on
the construction of a Markov chain whose properties ensure
that the limiting distribution is uniform over all DAGs with
a given number of vertices n. The strategy is based on a well
known idea first suggested by Madigan and York (1995) as a
Markov chain Monte Carlo (MCMC) scheme in the context
of Bayesian graphical models to sample from the posterior
distribution of graphs conditional on the data. A specific al-
gorithm for uniform sampling of DAGs was first provided
by Melançon et al. (2001), with the advantage over the stan-
dard MCMC scheme of not requiring the evaluation of the
sampled graphs’ neighbourhood, at the expense of slower
convergence. The method was later extended (Ide and Coz-
man 2002; Ide et al. 2004; Melançon and Philippe 2004) to
limit the sampling to restricted sets of DAGs. An R imple-
mentation was also recently provided (Scutari 2010).

Since Markov chain based algorithms pose non-negligible
convergence and computational issues, in practice random
upper or lower triangular adjacency matrices are often sam-
pled to generate random ensembles for simulation studies
(as for example implemented in the pcalg R package of
Kalisch et al. 2012). Sampling over the space of triangu-
lar matrices however does not provide uniformly distributed
graphs on the space of DAGs and is for example likely to
perform poorly to obtain starting points for hill-climbing al-
gorithms or slowly converging Markov chains. In fact due
to the non-uniformity the risk of remaining within a small
neighbourhood of certain graphs and more inefficiently ex-
ploring the space is increased. Likewise uniform sampling
allows the correct evaluation of structure learning algo-
rithms. Finally, a uniform sample is essential when evalu-
ating the prevalence of certain features in a population, in
order to count the relative frequency of structural features
in DAGs, which provides insight into the DAG landscape.
This was recently pursued for example in Borboudakis and
Tsamardinos (2012), to assign causal or associative struc-
tural priors in search and score algorithms.

In this work we therefore discuss a sampling strategy
based on the recursive enumeration of DAGs but where no
explicit listing is required and which follows directly from
a combinatorial result of Robinson (1970, 1977). An algo-
rithm for generating uniform DAGs easily follows from the
enumeration formula, which was also noted in an earlier
technical report version (Melançon et al. 2000) of Melançon
et al. (2001), where the method was thought computation-
ally impractical and its complexity overestimated with re-
spect to the Markov chain approach. Explicit evaluation of
both their complexities allows us to show that the enumer-
ation method is actually the least expensive of the two. Af-
ter re-establishing the practical convenience of enumeration
based sampling our main contribution is twofold. First we

exploit the asymptotic behaviour of DAGs to derive an ex-
tremely fast implementation for approximate (but highly ac-
curate) sampling, which has the same (minimal) complexity
as sampling triangular matrices. Very large DAGs can so be
de facto sampled uniformly.

Taking a different direction we also devise a new hybrid
MCMC method which is orders of magnitude faster than
current MCMC methods but which shares their advantage of
being easily adaptable to include restrictions or variations.
For example we can use this method to restrict the num-
ber of parents each vertex has or to weight the edges with a
certain probability as is often performed when sampling tri-
angular matrices. The new hybrid MCMC method therefore
offers a reasonably efficient alternative while avoiding bias
by sampling from the correct space.

2 Acyclic digraphs

A directed graph or digraph on n vertices has up to one di-
rected edge between each pair of vertices, from node i to
node j with 1 ≤ i, j ≤ n. Acyclic digraphs or DAGs are
those which admit no cycles so that there are no paths along
the directed edges from a node to itself. The total number an

of labelled DAGs with n nodes, which is sequence A003024
in Sloane (2013), and its asymptotic behaviour are respec-
tively (Robinson 1970, 1973; Stanley 1973)

an =
n∑

k=1

(−1)k+1
(

n

k

)
2k(n−k)an−k, an ∼ n!2L

Mqn
, (1)

with L = (
n
2

) = n(n − 1)/2 and where M = 0.574 . . . and
q = 1.48 . . . are constants. The number of unlabelled DAGs
was found later (Robinson 1977) and is recorded as se-
quence A003087 in Sloane (2013).

The directed edges of a DAG can be represented as en-
tries with value 1 of a vertex adjacency matrix with remain-
ing entries 0. Being acyclic the matrix can be made lower
triangular by relabelling the nodes, and this observation lies
behind the proof of McKay et al. (2004) that the number
of n × n (0,1)-matrices with only positive real eigenvalues
is also an. Hence DAGs can be easily generated by sam-
pling each of the L elements of a lower triangular matrix
from a Bernoulli distribution with probability p = 1/2 and
then permuting the n labels. The graphs so obtained how-
ever are non-uniform on the space of DAGs since several
permutations may correspond to the same graph. For exam-
ple, the DAG with no arcs (the 0 matrix) would be counted
n! times, while those with the most arcs (when all L lower
triangular elements are 1) only once. Choosing p �= 1/2
may reduce the overall non-uniformity but not remove it en-
tirely, because the overcounting is sensitive to the structure
of the DAG.

Stat Comput (2015) 25:227–242 229

3 Markov chain method

The algorithm of Melançon et al. (2001) starts with a given
DAG, with no arcs say, and proceeds by repeatedly sampling
an ordered pair of vertices from the n available. If an arc al-
ready joins the pair in that direction it is deleted, otherwise
it is added as long as the graph remains acyclic. Addition
and deletion of an arc are inverse operations so that the re-
sulting transition matrix T is symmetric. As adding an arc
to any pair (i, i) would immediately create a cycle the prob-
ability to stay with the same graph is nonzero and at least
1/n. One could exclude all but one such pair from the sam-
pling to reduce this probability and marginally improve the
convergence of the chain. Finally a path exists between any
pair of DAGs since deleting all the arcs in turn leads to the
empty DAG and the steps are reversible. These three prop-
erties ensure that the stationary distribution of the Markov
chain is uniform over the space of graphs and that an (ap-
proximately) uniform DAG can be generated by running the
chain long enough.

The Markov chain method is very elegant, as no partic-
ular knowledge of DAGs is required apart from checking
whether the graphs remain acyclic, which can be done in a
time of the order between n and the number of edges (typi-
cally around n2) and on average in a time of order n log(n)

(Alon and Rodeh 1978; Melançon et al. 2001). In fact when
an edge is added, one only needs to check if cycles are added
downstream which speeds up the calculation, but does not
reduce its complexity.

3.1 Non-uniformity of the irreducible chain

The main issue for the applicability of the method is how
quickly the Markov chain converges. The longest path is be-
tween a DAG with the most arcs (L) and the same graph
with all the edges reversed. Therefore after 2L steps we ob-
tain an irreducible transition matrix U = T 2L, whose ele-
ments though are far from uniform. To illustrate this non-
uniformity, we consider the extreme elements of U . Moving
along the longest path, consider first the transition probabil-
ity of going from any DAG with L arcs to the empty DAG
with none. Removing all the arcs in L steps has a proba-
bility of L!/n2L. Adding arcs to arrive at the DAG with all
the arcs reversed has the same probability due to the sym-
metry. The transition probability of the single path moving
through the empty DAG is then (L!)2/n4L. Other paths ex-
ist as the L additions and deletions can be ordered in

(2L−2
L−1

)

ways, with the first and the last step fixed as an addition and
deletion respectively. The probability of moving along the
other paths corresponding to different orderings is however
lower. Hence the minimum transition probability, which is
the minimum element of U , is

<
(L!)2

n4L

(
2L − 2

L − 1

)
= L2(2L − 2)!

n4L
<

(2L)!
2n4L

, (2)

which is actually < 1/a2
n, much less than the required uni-

form value of 1/an. For comparison the ratio between the
probabilities of the most and least likely DAGs, which can
be interpreted as a measure of non-uniformity, deriving from
sampling triangular matrices is only n!

This non-uniformity was overlooked in Melançon et al.
(2001) leading them to underestimate the complexity of the
Markov chain method. To obtain an approximately uniform
distribution the Markov chain needs to be run long enough
(say 2Lk steps) so that the elements of the resulting transi-
tion matrix Uk are close on a scale well below 1/an. This
means we require |(Uk)ij − 1/an| � 1/an, ∀ij or more ac-
curately

[
an · (Uk

)
ij

]±1 − 1 � 1, (3)

where we take the positive power if the matrix element is
larger than the uniform background and the negative power
if it is smaller. To see why we need such a restriction, con-
sider the case for example where ∃ij : [an · (Uk)ij]±1 ≈ 2
then the corresponding DAG will be sampled about twice or
half as often as it should be and the sample cannot yet be
considered uniform. This uniformity scale becomes finer as
n increases and leads to an additional dependence of k on n

which increases the complexity of the algorithm.

3.2 Speed of convergence and complexity

The difference between the maximum and minimum of the
elements of Uk decays at least exponentially ∼ exp(−αk)

with a rate α. Proving lower bounds for the rate α is ex-
tremely hard and a generally known one, given by twice the
minimum entry of U , is not enough to ensure that the al-
gorithm is useful in practice since (2) means that k would
need to be much larger than an for convergence. Instead, us-
ing the spectral decomposition as pursued in Appendix A,
one can express a lower bound in terms of the largest eigen-
value of U below that at 1. More importantly, each element
of U must approach uniformity at least at this rate. For the
maximum element of U for example we have

Uk
max − 1

an

≤ Cmax exp(−αk) (4)

in terms of some constant Cmax which is probably order 1
since the elements of U must satisfy 0 < Uij < 1, and cer-
tainly less than an as detailed in Appendix A. The condition
in (3) is guaranteed to be satisfied if

anCmax exp(−αk) � 1. (5)

Taking the logarithm in (5), it follows αk of order n2 is suffi-
cient to compensate for the quadratic growth of log(an). The
more detailed consideration in Appendix A suggests that in
fact αk has to be at least this order for convergence.

230 Stat Comput (2015) 25:227–242

What matters next for the speed of convergence is how
the eigenvalues of U and α depend on n. For DAGs with 2
or 3 nodes, T can be easily filled out and we find α = 0.575
and α = 0.594 respectively. By removing all but one of the
arcs (i, i) from the edge sampling, we can improve this to
α = 0.811 and α = 0.776 instead. The behaviour should be
verified, but as long as α does not decrease asymptotically
with n, a uniformly sampled DAG can be obtained by throw-
ing away the first O(n4) steps of the Markov chain. Analo-
gously O(n4) steps should also be discarded between fur-
ther samples to ensure they are independent. These condi-
tions should be observed when using implementations like
that in Scutari (2010). As each step may involve checking
for acyclicity, the entire algorithm then becomes approxi-
mately O(n5 log(n)) which limits the size of graphs that can
be sampled.

A marginal improvement in the speed of convergence
could be achieved by starting each Markov chain on DAGs
from a randomly drawn permuted triangular matrix.

4 Enumeration method

In order to obtain a uniform sample directly, we return to the
enumeration of labelled DAGs detailed in Robinson (1970,
1977). Nodes with no incoming arcs are called ‘outpoints’
and can be used to further classify and recursively enumer-
ate DAGs. Due to the acyclicity each DAG has at least one
outpoint. Let an,k be the number of labelled DAGs with n

nodes of which k are outpoints (1 ≤ k ≤ n). Removing the
latter and the arcs originating from them leaves a smaller
DAG with m = n− k nodes, with s outpoints say. An exam-
ple with n = 5, k = 3 and s = 1 can be seen at the start of
Fig. 1.

Reversing the process, the required DAGs can be built by
adding k new outpoints and allowing all the possible con-
nections from them to the previous nodes. For each of the
m − s non-outpoint nodes there are 2k possibilities of hav-
ing an arc or not. Each of the s old outpoints must be con-
nected to at least once, giving a factor of 2k − 1. Finally the

Fig. 1 Removing the outpoints from a DAG (and all their outgoing
arcs), a smaller DAG is created until only outpoints remain. For the
DAG depicted on the left, one can first remove 3 outpoints, then 1 to be
left with a single one. Reversing the process by adding new outpoints
and recording the number of possible ways of adding new edges and
permuting the node labels leads to the recursive formula in (6)

labels can be rearranged in
(n

k

)
ways, giving the recursions

(Robinson 1970, 1977)

an,k =
(

n

k

)
bn,k, bn,k =

m∑

s=1

(
2k − 1

)s2k(m−s)am,s, (6)

with an,n = 1 the DAGs with no arcs and bn,k auxiliary
quantities useful later, also with the initialisation bn,n = 1.
The total number of DAGs with n nodes is an = ∑n

k=1 an,k

which can be turned into the more compact form in (1) by
means of the inclusion-exclusion principle. The separation
in terms of outpoints however is the key to sampling labelled
DAGs uniformly.

4.1 Recursively generating the outpoints

The first step in the algorithm is to compute all the inte-
gers an,k (and bn,k) as well as the totals an. From (1) it
follows that the number of bits needed to store them grows
like L, while 2n + 1 integers are needed for each n (since
1 ≤ k ≤ n). Finally each of them is obtained by adding an
order of n smaller integers (multiplied by the binomial func-
tion) so that the process becomes O(n5) as detailed in Ap-
pendix B. However, they only need to be calculated once
and then stored for sampling arbitrarily many DAGs. Later
we also discuss how to avoid their explicit evaluation.

The second step is, given n, to sample the number of out-
points. An integer is drawn between 1 and an, for example
by sampling from a Bernoulli(1

2) the digits of a binary string
long enough to represent an (if the resulting number is larger
than an the string is rejected and resampled, which happens
with probability less than a half). The chosen number of out-
points is the minimum k for which the partial sum

∑k
i=1 an,i

is larger than or equal to the sampled integer.
The final DAG will be obtained by connecting the k out-

points to a smaller one of size m = n − k, whose number
of outpoints can be taken to be the minimum s for which
the partial sum

∑s
i=1(2

k − 1)i2k(m−i)am,i is larger than or
equal to a randomly drawn integer between 1 and bn,k . Sim-
ilarly a DAG with m nodes and s outpoints can be sampled
by drawing an integer between 1 and bm,s . Let ki denote
the number of outpoints removed at each step, which can so
be recursively sampled until their sum

∑I
i=1 ki = n. In total

one needs to sample and manipulate I ≤ n integers whose
size in bits is at most of order L, so that generating the se-
quence is O(n3) as detailed in Appendix B.

Though for simplicity, we sampled an integer at each step
above, the original one between 1 and an could equally be
reused to obtain the entire sequence of outpoints. In fact,
this can be computationally more efficient than resampling
at each step and more directly follows the mapping between
the integers and the DAGs. For example, given the original
integer r sampled uniformly between 1 and an, we first find

Stat Comput (2015) 25:227–242 231

the minimal k so that 1 ≤ r − ∑k−1
i=1 an,i ≤ an,k . The corre-

sponding integer between 1 and bn,k is then

⌈
r − ∑k−1

i=1 an,i(
n
k

)
⌉
, (7)

where we round up to the next integer. As the numerator was
already calculated when finding k we can see why this can
be cheaper than resampling. Repeating these steps with the
next partial sums gives the full sequence of outpoints.

4.2 Reconstructing the DAG

To represent the sampled DAG we fill a null n×n adjacency
matrix from the top left to obtain a lower triangular matrix.
Since the recursion ends when all the remaining nodes are
outpoints, the first kI × kI elements stay zero. These must
connect to at least one of kI−1 newly added outpoints which
must not connect to each other, hence the elements of each
column from 1 to kI in rows kI + 1 to kI + kI−1 can be
sampled from a Bernoulli(1

2). Any samples where all the el-
ements in a column are 0 can be rejected columnwise (alter-
natively a direct binomial sampling with this case excluded
can be performed).

When adding an additional kI−2 nodes, the elements in
columns 1 to kI and rows kI + kI−1 + 1 to kI + kI−1 + kI−2

are again sampled from a Bernoulli(1
2), while for each col-

umn kI + 1 to kI + kI−1 we need to ensure that not all new
entries are 0. Completing the adjacency matrix is a step of
order n2 since up to L integers need to be sampled. The fi-
nal sampled DAG can be obtained by permuting the labels
only at the end, rather than at each step as suggested by (6),
since each permutation must be equally likely. Although dif-
ferent permutations may still correspond to the same DAG,
the procedure of Sect. 4.1 for drawing the number of out-
points at each step is weighted so that the resulting sample
is perfectly uniform.

The procedure is simply a 1 to 1 mapping between the
integers 1 to an and the DAGs with n nodes. In principle the
originally sampled integer r uniquely identifies the edges
and node permutations. For example the remainder when
dividing by

(
n
k

)
in (7) can be mapped to the permutation of

the k nodes. It is simpler to ignore the remainders and their
mappings while drawing the sequence of outpoints and just
sample the edges and permutation at the end. Since each
set of compatible edges and node permutations is equally
likely given the sequence of outpoints, the sample remains
uniform. The recursions weight the choice of the number of
outpoints removed at each step so that the probability of se-
lecting each sequence is proportional to the total number of
corresponding DAGs.

A detailed sampling procedure is provided in Appendix C
in the form of pseudocode.

Table 1 The number of DAGs with 5 nodes and k outpoints

k 1 2 3 4 5

a5,k 16 885 10 710 1 610 75 1

4.3 Illustration of recursive sampling

The method is best illustrate with an example. For n = 5,
Table 1 lists the quantities a5,k . An integer up to a5 = 29 281
is drawn uniformly, say r = 28 405. Since r is larger than
a5,1 this is subtracted to obtain 11 520, bigger in turn than
a5,2. A further subtraction leaves 810, smaller than or equal
to a5,3. The desired DAG is the 810th with 3 outpoints out
of 5. Dividing by the

(5
3

) = 10 ways of permuting the new
outpoint labels means that the sampled DAG corresponds to
the 81st of a list of b5,3 = 161. Also from (6)

b5,3 = 56a2,1 + 49a2,2, (8)

where a2,1 = 2 and a2,2 = 1. Since 81 ≤ 56×2, a DAG with
one outpoint is selected. In fact given that a2,1 = 2b2,1 and
	81/112
 = 1, the desired DAG is the first and only one of
b2,1. Removing the outpoint, a single node remains and the
sampled sequence is

k1 = 3, k2 = 1, k3 = 1. (9)

Sampling any of the integers between 27 596 and 28 715
would result in the same sequence of outpoints.

To avoid confusion in Fig. 2, the permutation of the node
labels is drawn before reconstructing the edges. Let the per-
mutation be

π =
(

1 2 3 4 5
2 4 1 3 5

)
, (10)

in the two-line notation. Next a corresponding lower trian-
gular adjacency matrix can be sampled

2 4 1 3 5
2 0 0 0 0 0
4 1 0 0 0 0
1 1 0 0 0 0
3 1 1 0 0 0
5 1 1 0 0 0

. (11)

Let the 5 × 5 matrix inside the solid lines be denoted by Q.
The lower elements can be drawn uniformly as either 1 or 0,
with certain restrictions. First, not all the elements in bold in
each column can be 0. They correspond to possible connec-
tions between the old and new outpoints at adjacent steps in
the sequence of outpoints. Graphically the sampling of the
matrix in (11) can be represented by the recursive addition
of outpoints as in Fig. 2.

232 Stat Comput (2015) 25:227–242

Fig. 2 Once a sequence of outpoints has been drawn, for example as
in (9), the edges can be sampled by recursively adding new outpoints.
Here the labelling of the nodes respects the sampled permutation in
(10). Starting with one outpoint from k3, when the next one from k2
is added an arc must also be included. At least one arc must arrive at
node 4 from the last three nodes. Here there happened to be two. So

far the bold elements in (11) have been sampled. Elements below the
bold ones in the matrix in (11) may be drawn without restriction so that
node 2 can receive an arbitrary number of arcs from nodes 1, 3 and 5;
here all three were sampled. The final sampled DAG is identical to the
one at the start of Fig. 1, merely organised by the sequence of outpoints

The starting point is k3 = 1 outpoint labelled by 2 be-
cause of the permutation in (10). Then k2 = 1 new outpoint
labelled by 4 is added. Since node 2 must stop being an out-
point it has to receive an arc from node 4 and the correspond-
ing element Q2,1 = 1. At the next step the remaining k1 = 3
are added ensuring that node 4 receives at least one arc. Here
it happens to receive 2 corresponding to the second column
of Q in (11).

The second restriction is that the lower triangular matrix
elements above, or to the right, of the bold ones must all be
0 since no arcs are allowed between outpoints added at the
same time. The remaining lower triangular matrix entries
below the bold ones can be sampled without restriction. In
this case they correspond to arcs from nodes 1, 3 and 5 to
node 2. In the example they were all drawn to arrive at the
final sampled DAG in Fig. 2, which is just a redrawing of
the first DAG in Fig. 1.

To complete the example, the lower triangular ma-
trix in (11) can be rearranged to standard ordering using
Rπ(m),π(l) = Qm,l leading to the adjacency matrix

R =

⎛

⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 0 0 0
0 1 0 1 0
0 1 0 0 0
0 1 0 1 0

⎞

⎟⎟⎟⎟⎠
, (12)

which is also the adjacency matrix of the first DAG in Fig. 1.

4.4 Computational time and space complexity

As the different parts of the algorithm are performed sequen-
tially, the complexity is determined by the first step, which
is the most expensive. A uniform DAG can therefore be
sampled from scratch in O(n5), marginally better than the
O(n5 logn) required by the Markov chain algorithm. Once
the integers in (6) have been computed and stored, each

subsequent perfectly uniformly sampled DAG is obtained
in only O(n3). This is significantly better than the Markov
chain algorithm which requires the same O(n5 log(n)) for
each subsequent approximately independent and uniform
DAG. These considerations are important since in most
practical cases the aim is to draw a reasonably large sam-
ple of DAGs, rather than a single one.

Not only the time complexity is improved, but the com-
putational time is also vastly reduced. In a simple Maple
implementation, the first step is rather quick to perform, for
example taking under a second for n = 100. When reusing
the original integer drawn between 1 and an it takes about a
tenth of a second to sample each sequence of outpoints. The
final DAG given the sequence is then sampled in less than a
twentieth of a second so that the total time for all the steps is
still under a second. At least 6 uniformly distributed DAGs
can be obtained in a second before optimising the code fur-
ther. For reference, the computations were all run on a single
core of a standard Intel Q9550 processor with 4 GB of RAM.

The R implementation in Scutari (2010) of the Markov
chain method can perform about 80 000 steps of the chain
per second on the same machine. This means that in the time
it takes to sample each DAG perfectly uniformly using the
recursive enumeration, the Markov chain only just becomes
irreducible (recall that this takes 2L ≈ 104 steps). Before it
can be reasonably expected that an approximately uniform
sample is provided by the chain it needs to run for hundreds
of millions of steps (1004) as discussed in Sect. 3 and is
therefore tens of thousands of times slower than the enumer-
ation method for n = 100. This means going from the order
of seconds to the order of hours and given the complexity
arguments, things only get worse as n increases.

The time complexity analysis of the first step of the enu-
meration algorithm, on the other hand, does not account for
the space required to store and access all the numbers an,k

and bn,k which together require up to about n4/4 bits. Even

Stat Comput (2015) 25:227–242 233

with the gigabits of fast memory available on modern com-
puters, the space limit is reached when n gets to several hun-
dred. In fact, as we will see in the next section, fast access
is only needed for low k reducing the order of bits to n3.
The memory space limit is then only reached by DAGs on
about a thousand nodes but the time complexity still makes
the sampling on such ultra-large spaces unfeasible.

The exact sampling is just a way of mapping between the
integers between 1 and an and DAGs, whose superexponen-
tial growth as in (1) lies behind the space and time problems
for large n. As an indication of this growth, sampling a DAG
with just 21 nodes is akin to sampling an atom uniformly
from the observable universe. To move to arbitrarily large
DAGs, however, we can introduce an approximate method
which is both extremely fast and highly accurate.

5 Arbitrarily large DAGs

The number of outpoints sampled at each step is small and
most often just 1. In fact the fraction of DAGs with k out-
points among n,

Ak = lim
n→∞

an,k

an

, (13)

converges as was proved in Liskovets (1976) and to within
10−10 by n = 20. For n > 20, within the uniformity limits of
a 32 bit integer sampler, k could be directly sampled from
the limiting distribution in Table 2. Given the initial k the
next value s in the sequence of outpoints can be drawn from
the limiting conditional probabilities

Bs|k =
(

1 − 1

2k

)s
As

Zk

, Zk =
∑

s

(
1 − 1

2k

)s

As, (14)

which follow from (6) as detailed in Appendix D. The k-
dependent weight further shifts the distribution towards low
s so it would be computationally meaningful to store the
small number of relevant probabilities. The procedure is it-
erated until 20 nodes or fewer are left to be sampled, when
the tabulated distributions are no longer accurate enough.
For n ≤ 20 the exact distributions can be tabulated or one
may simply return to the exact enumeration method.

Generating the sequence of outpoints exploiting the lim-
iting behaviour is of order n while reconstructing the DAG
remains order n2. Again these steps are sequential so that

Table 2 The relative occurrence of the number of outpoints in large
DAGs, Ak multiplied by 1010. A8 is approximately 2.2 × 10−12, so
k > 7 can be excluded at this level of accuracy

A1 5 743 623 733 A4 29 023 072 A7 15

A2 3 662 136 732 A5 566 517 A8 0

A3 564 645 435 A6 4 496

a uniform (at scales above 10−10) DAG can be drawn in
O(n2) allowing the sampling of very large graphs. Sampling
a lower or upper triangular matrix of the same size has the
same complexity, which is therefore the minimum possible
for sampling DAGs. As it is built on the underlying space of
DAGs, the procedure above has the advantage over sampling
triangular matrices of removing (most of) the bias, while be-
ing faster than other potentially unbiased alternatives such as
the Markov chain method of Melançon et al. (2001).

For the latter, convergence of the transition matrix to a
given level of accuracy is reached in O(n2) steps so each
sample can be drawn in O(n3 log(n)), as follows from the
discussion in Sect. 3. The probabilities with which different
DAGs are sampled however vary wildly, with a more pro-
nounced variability than observed when sampling triangular
matrices. In the approximated method above instead, a zero
weight is given to the rare event of drawing more than 7
outpoints at any step, resulting in a zero probability for all
DAGs with any ki > 7. The rest however are sampled ex-
actly uniformly and again much faster than with the Markov
chain method.

The accuracy of the convergence to the limiting distribu-
tions of Ak nearly exactly doubles when doubling n. Unifor-
mity on the scale of a 64 bit integer sampler can be achieved
by a more accurately calculated distribution of Ak for n > 40
while returning to the exact enumeration for n ≤ 40.

6 Hybrid MCMC method

Although the approximate method of Sect. 5 will in prac-
tice give indistinguishable results from the full enumeration
sampler, it has the philosophical problem that certain DAGs
will never be sampled. As an alternative, and one which al-
lows restrictions and variations to be incorporated more eas-
ily, we propose a hybrid method combining the ideas from
the recursive enumeration and Markov chain approaches.

In the enumeration based sampler, most of the effort goes
towards sampling the sequence of outpoints ki added at each
step. As

∑I
i=1 ki = n, this sequence is just an ordered par-

tition of the number n. A MCMC on the space of partitions
can be introduced, where each partition is scored according
to the number of DAGs corresponding to it. Denoting each
partition by a sequence in square brackets [kI , . . . , k1], to
respect the order in Sect. 4, and setting a[kI ,...,k1] to be the
corresponding number of DAGs, from (6) we have

a[kI ,...,k1] = n!
kI ! · · ·k1!

I−1∏

i=1

(
2ki − 1

)ki+1
I−1∏

i=2

2Si−1ki+1 , (15)

with Si = ∑i
j=1 ki . The first term accounts for the number

of ways of organising the labels, the second for the number

234 Stat Comput (2015) 25:227–242

of ways of connecting edges between adjacent partition ele-
ments and the last term for the number of ways of connect-
ing edges between non-adjacent partition elements. Empty
products are given the value of 1 so that a[n] = 1 counts the
empty DAGs with no edges.

6.1 Partitions and binary sequences

There are 2n−1 ordered partitions of the integer n which can
be represented by the binary sequences of length (n − 1).
Each 0 corresponds to starting a new partition element
whose size is one larger than the number of 1’s since the
previous 0. For example the binary sequence (0,1,1,0,0,1)

gives the partition [1,3,1,2] of 7 when treating the brackets
as zeros. A Markov chain on the space of partitions can be
built by flipping one of the elements of the binary sequence.
Changing a 1 to a 0 splits a partition element into two, while
changing a 0 to a 1 joins two adjacent partition elements.
To introduce some probability of staying still, and ensure
aperiodicity, the binary sequence can be extended with an
artificial n-th element which does not affect the partition. At
each step of the chain one of the n elements is uniformly
drawn and flipped. Each partition then has (n − 1) neigh-
bours excluding itself and the chain takes (n − 1) steps to
become irreducible.

The Metropolis-Hastings acceptance probability to move
from partition P to a proposed partition P̂ is

min

(
1,

a
P̂

aP

)
, (16)

which involves the number of DAGs in each partition from
(15). The resulting MCMC scheme converges to a stationary
distribution where the probability of each partition is propor-
tional to the number of DAGs belonging to it.

Only one digit of the binary sequence is flipped at each
step. A single partition element is then split or two neigh-
bouring ones are joined depending on the direction of the
flip. The partition elements directly involved in the modifi-
cations and their neighbours are the only ones which can
be affected by changes in the edge configuration. Hence
the terms corresponding to the unaffected partition elements
simplify in the ratio a

P̂
/aP . For example, given a partition

P = [kI , . . . , ki+1, ki, ki−1, . . . , k1], (17)

if the element ki is split into elements c and ki −c to propose
partition

P̂ = [kI , . . . , ki+1, c, ki − c, ki−1, . . . , k1], (18)

the ratio in the acceptance probability becomes

a
P̂

aP

=
(

ki

c

)(
1 − 2−c

1 − 2−ki

)ki+1
(

1 − 2c−ki

1 − 2−ki−1 I{i>1}

)c

2c(ki−c),

(19)

depending just on ki−1, ki, c and ki+1. For convenience ki

is set to 0 for i outside 1, . . . , I and an indicator function is
included to correct for the case when i = 1.

6.2 Complexity of the MCMC steps

To evaluate the complexity of calculating the acceptance ra-
tio and sampling accordingly, the relative weight of different
partitions is first taken into account. In general, partitions
with a larger number of smaller partition elements are more
likely as they allow more DAGs. Therefore the chain will
have a preference to move to and spend more time on them.
In fact the most likely partition is the one with all ki = 1
for which the calculation of the ratio in (19) and sampling
can be performed in O(1). There is only a small chance of
moving to partitions with large enough elements to make
the ratio more complex, as noted in Sect. 5 for elements
with ki > 7. This should not suffice to increase the average
complexity. However for completeness consider the most
extreme case when the partition [n] is split into [n/2, n/2]
assuming n is even. The ratio in the acceptance probability
is then

a[n/2,n/2]
a[n]

=
(

n
n
2

)
2

n2
4 , (20)

involving large numbers but clearly larger than 1. The re-
verse move which is based on the inverse can however
be performed by iterative sampling as follows. Repeatedly
draw from a Bernoulli(1

2) and reject the move as soon as 0
is drawn. In the unlikely event that a 1 is drawn a total of
n2/4 times consecutively the procedure moves through the
binomial terms. More Bernoulli random variables are then
sampled with rate ranging from 1/n to n/(n + 2), but stop-
ping and effectively rejecting as soon as a zero is drawn.
A move may in principle take up to n2 steps, but it is on av-
erage rejected in just 2 steps. Even in this extreme case the
move is still O(1) on average leading to the conclusion that
each move of the chain can be performed with no complex-
ity overhead.

6.3 Speed of convergence

The chain requires (n − 1) steps to become irreducible.
Hence the speed of convergence is related to the eigenval-
ues of the transition matrix U = T n−1 with the elements
of T corresponding to a single move of the MCMC chain.
The difference between the maximum and minimum el-
ement of each column of Uk again decays exponentially
with a rate α dependent on the largest eigenvalue of U be-
low 1. Since the partition [n] only has one DAG, k of the

Stat Comput (2015) 25:227–242 235

order n2/α is again needed for convergence on the relevant
scale as in Sect. 3. To explore how α depends on n con-
sider the explicit values for n = 2, . . . ,5, which are found
to be α = 1.386,0.962,0.872,0.811 respectively. These de-
cay with increasing n, but α log(n) increases suggesting that
convergence is attained for k of the order of n2 log(n).

Since (n−1) steps are required to first obtain U and each
step takes O(1) the whole algorithm is O(n3 log(n)). Each
time a partition is sampled a corresponding DAG can also
be drawn according to Sect. 4.2 without a complexity over-
head. By combining DAGs into partitions irreducibility is
reached by shorter chains. Since there is also no need to
check for acyclicity, as the samples are DAGs by construc-
tion, the resulting algorithm is much faster than the Markov
chain method of Melançon et al. (2001) discussed in Sect. 3.
Recall that the standard Markov chain only becomes irre-
ducible in the time it takes for the hybrid partition method
to converge. The partition Markov chain can then be applied
to sample reasonably large graphs while sharing some of the
advantages of other Markov chain methods, such as the pos-
sibility of easily including restrictions.

Irreducibility could be achieved by an even shorter chain,
for example by sampling from all partitions (or binary se-
quences) at each step. The disadvantage lies in the poten-
tially increased complexity of the acceptance probability
evaluation and the associated sampling operation. Such large
moves would also reduce the probability of moving away
from the most likely partition (with all ki = 1) increasing the
chance that the chain gets temporarily stuck and so hinder-
ing the convergence. Flipping a single element of the binary
sequence allows more local and inexpensive moves with bet-
ter acceptance probabilities. Such moves should explore the
space more easily which is why we opted for them here.

7 Restrictions and variations

A promising application of the Markov chain method, as
particularly pursued in Ide and Cozman (2002), Ide et al.
(2004), is to impose restrictions on the DAGs to sample. For
example the number of edges and the degrees of the nodes
can be restricted by simply rejecting any steps producing
graphs which do not meet the requirements. More compli-
cated Markov chains are needed for sampling polytrees and
DAGs with restricted density (Ide and Cozman 2002; Ide
et al. 2004) but the speed of convergence to uniformity re-
mains an issue. Although the space of restricted graphs is
smaller, the probability of not moving for graphs on the bor-
der of the restricted set is increased due to the additional
rejections. If no recursive enumeration is possible for the re-
stricted graphs, however, a Markov chain approach remains
the only one available. For restrictions which can be incor-
porated combinatorially, direct enumeration again provides
a more efficient method and we discuss some examples be-
low.

7.1 Connected DAGs

The main restriction imposed in Ide and Cozman (2002),
Melançon and Philippe (2004) is that DAGs be weakly con-
nected (admitting a path between every pair of nodes in the
underlying undirected graph). They were also counted by
Robinson (1973) and are recorded as sequence A082402
in Sloane (2013). The standard Markov chain method can
be simply modified so to only delete an arc if the result-
ing graph is also connected (Ide and Cozman 2002) or,
more efficiently, instead to reverse its direction otherwise
(Melançon and Philippe 2004). Checking for connectedness
is of the order of the number of arcs making the algorithm
O(n6). At each step either connectedness or acyclicity needs
to be checked, the first when removing an edge and the sec-
ond when adding one. The resulting algorithm may than be
actually slower then simply rejecting unconnected DAGs at
the end. The fraction of connected DAGs tends to 1 as n

increases (Bender et al. 1986; Bender and Robinson 1988;
Robinson 1973); for n = 4 it is 82 % (for smaller n we can
enumerate the possibilities by hand), while it is > 99 % and
growing for n > 8. Therefore the above modifications of
the Markov chain, though theoretically interesting, are of no
practical use, as it is much more efficient to sample a DAG
at random and reject the disconnected ones.

When removing the k outpoints of a connected DAG the
rest breaks up into a set of smaller connected DAGs, hence a
recursive combinatorial enumeration (involving a sum over
the partitions of m) is possible. Again the increase in algo-
rithmic complexity makes a simple rejection step more effi-
cient, apart from possibly for small n.

7.2 Restricted new connections

Because new outpoints are added at each stage of the re-
cursive enumeration of DAGs, restrictions on the number of
incoming arcs the previous nodes can receive from them are
the simplest to treat. Allowing up to a maximum K new con-
nections (K ≥ 1 avoids only generating DAGs with no arcs)
the recursions change to

ãn,k =
(

n

k

) m∑

s=1

[min(k,K)∑

i=1

(
k

i

)]s[min(k,K)∑

i=0

(
k

i

)]m−s

ãm,s .

(21)

For K > k the above reduces to (6). A restriction on the
minimum number of new connections can be incorporated
analogously. Such restricted DAGs can easily be counted
and then sampled as in Sect. 4. In reconstructing the DAGs
new arcs can be uniformly sampled from the binomial dis-
tributions in (21). Retaining the limit on the arcs received
by the previous outpoints, it is also straightforward to sep-
arately limit the connections each new outpoint can send to

236 Stat Comput (2015) 25:227–242

the previous non-outpoints to a maximum of Kn. The corre-
sponding DAGs can be sampled through

ãn,k =
(

n

k

) m∑

s=1

[min(k,K)∑

i=1

(
k

i

)]s[min(m−s,Kn)∑

i=0

(
m − s

i

)]k

× ãm,s . (22)

7.3 Restricted number of children

Because they must be connected to, including previous out-
points when limiting the outgoing arcs from each new one
is more complicated. Since arcs only originate from newly
added outpoints, this means limiting the children to a cer-
tain K . Denote by C(k,m, s,K) the number of ways of
adding k new outpoints to a DAG with m nodes and s out-
points while restricting the number of children to K or be-
low. An expression for the ways C(k,m, s,K) of linking k

new outpoints may be found by subtracting from the ways
of connecting k nodes to m (with up to K arcs each) those
which leave any of the s outpoints unconnected to

C(k,m, s,K) =
[min(m,K)∑

i=0

(
m

i

)]k

−
s∑

i=1

(
s

i

)
C(k,m − i, s − i,K), (23)

ãn,k =
(

n

k

) m∑

s=1

C(k,m, s,K)ãm,s . (24)

The graph is reconstructed by drawing from the C(k,m,

s,K) possibilities at each step, and formula (23) simply sug-
gests rejecting the cases which leave some of the s outpoints
with no incoming link. It is however more efficient to first
derive the distribution of the number of arcs linking each
new outpoint to the old ones when excluding the cases with
a total < s. Samples from the resulting distribution where
any old outpoints do not receive arcs are then rejected. Arcs
to the remaining nodes can be drawn subsequently.

For C(k,m, s,K) much smaller than the first term on
the right of (23), or when the average number of new arcs
linking to the old outpoints falls, the acceptance ratio also
drops. In this limit it may be convenient to first draw exactly
one link to each of them and then sample the remaining arcs
among all the nodes, including the s old outpoints. The con-
figurations where each receives li incoming arcs are over-
counted by a factor F = ∏s

i=1 li , so the sample should only
be accepted with probability 1/F .

A balance of the two approaches may help minimise the
rejection probability, but this example highlights that just
knowing the number of possibilities is not sufficient for re-
construction, and a constructive method to generate them

is preferable. A uniformly drawn DAG with a limit on the
number of parents can be simply obtained by inverting all
the arcs of a DAG with a limited number of children.

7.4 Hybrid MCMC method to restrict parents

As illustrated in the previous subsection, the combinato-
rial enumeration based on recursively removing outpoints
reaches its limits when aiming to restrict the number of chil-
dren or parents. The difficulties can be avoided by work-
ing partitionwise, rather than directly on individual DAGs.
Given a partition [kI , . . . ki+1, ki, . . . , k1] the number of
ways, Gi,K , in which each of the ki+1 nodes can receive up
to K edges from the ki in the next partition element and the
remaining Si−1 further up the DAG can be easily computed

Gi,K =
min(K,ki)∑

l=1

(
ki

l

)[min(Si−1,K−l)∑

j=0

(
Si−1

j

)]
. (25)

For K = ∞ this directly reduces to the number of edges in
unrestricted DAGs: Gi,∞ = (2ki − 1)2Si−1 .

The corresponding number of restricted DAGs for each
partition is then simply

ã[kI ,...,k1] = n!
kI ! · · ·k1!

I−1∏

i=1

(Gi,K)ki+1 . (26)

This can replace expression (15) in the acceptance ratio (16)
of the MCMC method in Sect. 6 providing a way to uni-
formly sample DAGs with a restricted number of parents.

8 Weighted sample

When generating DAGs by sampling triangular matrices
their sparsity can be easily influenced by drawing the en-
tries from a Bernoulli with p �= 1/2. The associated weight-
ing however acts on an underlying non-uniform space of
DAGs. A weighted sample from an underlying uniform dis-
tribution may be preferable in practice when DAGs rather
than triangular matrices are the object of study. The prob-
ability of a DAG with l arcs should basically be propor-
tional to pl(1 − p)L−l and analogous factors should be in-
cluded in the recursive enumeration. Each of the m− s non-
outpoints may receive no links from the k new ones with
weight (1 − p)k , one link with weight kp(1 − p)k−1 and
so on to include all the terms in the binomial expansion of
[(1 − p) + p]k = 1. The possibility that no arcs link to the s

old outpoints is excluded. The k new outpoints on the other
hand could be theoretically connected by

(
k
2

)
links, but no

arcs are allowed between them, leading to the recursion

ân,k =
(

n

k

)
(1 − p)(

k
2)

m∑

s=1

(
1 − (1 − p)k

)s
âm,s, (27)

Stat Comput (2015) 25:227–242 237

where now ân,n = (1 − p)L correspond to the DAGs with
no arcs out of L possibilities. It is chosen to set 00 = 1 so
that â1,1 = 1 even for p = 1 where only one new outpoint is
added at each step. Weighted DAGs can be generated as in
Sect. 4 where links are now added at each step with proba-
bility p. The terms in the recursions are no longer integers in
general (though for rational p the numerator and denomina-
tor could be stored as a pair of integers) and exact sampling
can be obtained up to the precision limits of the computa-
tional implementation.

If many samples were required for a particular value of p

the limiting distribution could be derived again and used for
sampling large graphs, as discussed in Sect. 5 for the case
p = 1/2. However, as p is reduced more weight is shifted
towards DAGs with a larger number of outpoints added at
each step and more terms would need to be included. Often
sparse DAGs are required in practice for modelling reasons
where p might scale like 1/n to keep the average number of
parents low. In the limit of small p it may be necessary to
calculate all the numbers in (27) up to a given precision.

The hybrid MCMC method of Sect. 6 can be used instead
to treat weighted DAGs. Analogously to (27), the weight of
DAGs corresponding to a partition P = [kI , . . . , k1] can be
expressed as

â[kI ,··· ,k1] = n!
kI ! · · ·k1!

I∏

i=1

(1 −p)(
ki
2)

I−1∏

i=1

(
1 − (1 −p)ki

)ki+1 .

(28)

The acceptance ratio of a proposed partition P̂ where we
split element ki from P into two elements of size c and
(ki − c) simplifies to

â
P̂

âP

=
(

ki

c

)(
1 − (1 − p)c

1 − (1 − p)ki

)ki+1

×
(

1 − (1 − p)2ki−c

1 − (1 − p)ki−1 I{i>1}

)c

(1 − p)−c(ki−c). (29)

For p = 1/2 this reduces to the expression in (19). The hy-
brid MCMC method then allows us to efficiently sample
DAGs weighted by their number of arcs without needing to
calculate and store all the numbers in (27). For perfect sam-
pling with rational p the time and space complexity are at
least O(n5) and O(n4) respectively as discussed in Sect. 4.4
for uniform sampling. The hybrid MCMC method therefore
offers an alternative to sampling triangular matrices while
removing the bias of operating on the wrong underlying
space.

9 Conclusions

The recursive method for generating DAGs we analysed has
the advantage over the highly adopted strategy of sampling

triangular adjacency matrices of producing a uniformly dis-
tributed sample and over Markov chain based algorithms of
avoiding convergence problems and being computationally
more efficient. The recursive method provides a perfectly
uniform DAG on n vertices with a setup time of O(n5) and
a sampling time of O(n3) compared to the Markov chain
method which provides an approximately uniform DAG
in O(n5 log(n)). Comparing the actual computational time
for n = 100, the recursive method provides uniform DAGs
thousands of times faster than the Markov chain. Moreover,
an approximately uniform DAG can instead be obtained
through the limiting behaviour of the recursive enumera-
tion in just O(n2). The accuracy can be chosen at will and
this minimal level of complexity means that the very large
graphs which may be needed for practical applications can
be generated.

Along with using the limiting behaviour, we developed a
novel hybrid MCMC setup based on the space of partitions
of n. Each partition is simply scored according to the num-
ber of DAGs belonging to it. This offers the advantage com-
pared to current alternatives of shortening the chain needed
to reach irreducibility and avoiding the costs of checking for
acyclicity. Approximately uniform DAGs can be sampled in
O(n3 log(n)) which is a factor of n2 smaller than current
Markov chain methods. Such an MCMC on the space of
partitions can also be easily adapted to uniformly sample re-
stricted DAGs, for example by including a restriction on the
number of parents for each node or by weighting the edges.

The ideas discussed here could be integrated within
MCMC schemes in the inference of Bayesian graphical
models. A procedure can be built following the combinato-
rial construction where moves are suggested by going back a
certain number of steps in the sequence of adding outpoints
and resampling just the new connections at that step. As they
are sampled uniformly, such moves are reversible. To ensure
full space reachability, one could introduce some probability
of proposing a move uniformly amongst all DAGs or accord-
ing to the standard MCMC on network structures (Madigan
and York 1995). Alternatively, a number of moves through
partitions can be defined based on the underlying combina-
torial structure.

The hybrid MCMC method based on partitions is similar
in spirit to the sampling in the space of orders of Friedman
and Koller (2003) which actually acts on the space of tri-
angular matrices. Scoring all the DAGs in a given partition
therefore possibly has similar potential to greatly improve
the mixing properties of the chain produced, with the ad-
vantage of avoiding the bias inherent in the order version of
acting on a different space. The local changes in partition el-
ements could also possibly propose structures which are in
some sense close in the space of graphs while other moves
based on the combinatorial structure might be tuned to the
local scores. Since neither the original MCMC on network

238 Stat Comput (2015) 25:227–242

structures nor the order version appear to be completely sat-
isfactory in practice (Grzegorczyk and Husmeier 2008) the
possibilities outlined above seem promising.

Interpreted as Bayesian networks with random variables
placed on each node, DAGs encode conditional independen-
cies of multivariate distributions. However, several DAGs
might encode he same set of conditional independencies,
meaning that they typically cannot be uniquely identified
from data. The set of DAGs with the same probability dis-
tribution, also known as the Markov equivalence class, can
be represented by an essential graph (Andersson et al. 1997)
or a completed partially DAG. In practice, it might be de-
sirable to sample equivalence classes and work on the space
of essential graphs as opposed to DAGs. However, although
essential graphs can now be counted, the current formula
takes exponential time and their number is therefore only
known up to n = 13 (Steinsky 2013). Previously, essential
graphs had only been counted by running through all pos-
sible DAGs for n ≤ 10 (Gillispie and Perlman 2002) with
the n = 10 term corrected in sequence A007984 of Sloane
(2013).

MCMC methods can be restricted to the space of essen-
tial graphs, for example an implementation of the general
framework of Madigan and York (1995) was given in Madi-
gan et al. (1996) while a Markov chain algorithm specifi-
cally targeted at uniform sampling was developed by Peña
(2007). Comparing to the Markov chain for sampling DAGs
uniformly (Melançon et al. 2001; Scutari 2010) the algo-
rithm for essential graphs is notably slower, taking a similar
time to make each step for an essential graph with about
20 or 30 nodes as for a DAG with 100. Although no con-
vergence details are given, only a very small fraction of the
proposed moves result in an essential graph suggesting that
the convergence would also be much slower than for DAGs.

Although little is known about the exact number of essen-
tial graphs beyond the results in Steinsky (2013), the number
of essential graphs which are also DAGs is known (Steinsky
2003). More importantly, the asymptotic ratio of the number
of DAGs to those which are essential graphs is under 13.7
(Steinsky 2004). Since there are more essential graphs than
just those which are also DAGs, 13.7 is a bound on the aver-
age number of DAGs corresponding to each essential graph,
while the actual ratio seems to be less than 4. With such a
low bound, it might be worth thinking of rejection or impor-
tance sampling strategies, starting from the uniform DAG
generation discussed here, possibly leading to a simple and
more efficient alternative for sampling essential graphs.

Appendix A: Convergence of the Markov chain
sampler

To explore the convergence of the Markov chain sampler,
consider the spectral decomposition of the real, symmetric

transition matrix T

T =
an∑

i=1

λiviv
′
i , (30)

in terms of its real eigenvalues λ, which can be labelled by
their size

1 = λ1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λan |, (31)

and orthonormal eigenvectors v. The vector v1 is simply
(1, . . . ,1)′/√an and responsible for the underlying uniform
distribution. The matrix

T j = v1v
′
1 +

an∑

i=2

λ
j
i viv

′
i , (32)

then converges to this uniform background with a rate de-
pending on the remaining eigenvalues and λ2 in particular.
This is easiest to see in terms of the Frobenius norm, which,
setting Sj = T j − v1v

′
1 to be the transition matrix with the

uniform background removed, satisfies

‖Sj‖ =
√√√√

an∑

m,l=1

(Sj)
2
ml =

√√√√
an∑

i=2

λ
2j
i

≤ |λ2|j
√

an − 1 = |λ2|j‖S0‖, (33)

as T 0 is the identity matrix. From the resulting inequality,

∥∥T j − v1v
′
1

∥∥ ≤ |λ2|j
∥∥I − v1v

′
1

∥∥, (34)

since the Frobenius norm involves a sum over the elements
squared, it follows that every element of T j must approach
the uniform background exponentially at least as fast as
∼ exp(j log |λ2|), or
∣∣∣∣
(
T j

)
ml

− 1

an

∣∣∣∣ ≤ Cml exp
(
j log |λ2|

)
(35)

for some constants Cml . A similar inequality likewise holds
for the maximum and minimum elements of T j and their
difference with corresponding constants. We can obtain up-
per bounds for the constants by returning to (32).

∣∣∣∣
(
T j

)
ml

− 1

an

∣∣∣∣ =
∣∣∣∣∣

an∑

i=2

λ
j
i (vi)m(vi)l

∣∣∣∣∣ ≤ |λ2|j
an∑

i=2

∣∣(vi)m(vi)l
∣∣

≤ |λ2|j (an − 1). (36)

The comparison to (35) directly gives Cml < an.
For the irreducible matrix U = T 2L, its powers Uk con-

verge to uniformity ∼ exp(−αk) with a rate given by

α ≥ −2L log |λ2| (37)

Stat Comput (2015) 25:227–242 239

which is simply minus the log of the largest eigenvalue of
U below the one at unity. For the difference from the uni-
form background to converge on the scale below 1/an, as
discussed in Sect. 3.1, (35) provides an upper bound that
−j log |λ2|, or equivalently −2Lk log |λ2|, be of order n2.

For comparison with other methods, and in particular the
enumeration method studied in this paper, it would be use-
ful to obtain a tight lower bound for convergence on the
scale well below 1/an. If v2, like v1, also had its weight
evenly spread among all an DAGs, for example if v2 were
(±1, . . . ,±1)′/√an, then the term λ2v2v

′
2 would start at the

scale of 1/an and converge directly for −j log |λ2| of or-
der 1. The overall convergence would depend on the smaller
eigenvalues and how the weight of their eigenvectors is
spread amongst the DAGs. For a better handle on this, we
can focus on the diagonal elements of the transition matrix
in (30), which we can write as

diag(T) =
an∑

i=1

λiD
i, Di = diag

(
viv

′
i

)
, (38)

where the elements of the diagonal matrices Di are real, pos-
itive and satisfy

an∑

i=1

D
j
i,i = 1,

an∑

i=1

Di
j,j = 1. (39)

The diagonal elements of T depend on the number of
edges in each DAG and how they are arranged, but we can
consider the two extremes. For the empty DAG with no
edges, the probability of staying still is 1/n, so if this DAG
is chosen as the first element of the transition matrix

an∑

i=1

λiD
i
1,1 = 1

n
. (40)

At the other end of the spectrum are all the n! DAGs with L

arcs and a staying probability of 1/2 + 1/2n. If one of them
is chosen as the last element of the transition matrix

an∑

i=1

λiD
i
an,an

= 1

2
+ 1

2n
. (41)

Assuming the eigenvalues are all positive, this along with
(39) implies that the eigenvalues must cover a range from
O(1) to O(1/n) and that the DAG with no edges must have
its weight (in the matrices Di) preferentially spread over
the smaller eigenvalues. Similarly, the DAGs with as many
edges as possible concentrate their weight over the larger
eigenvalues. Intuitively, the different staying probabilities of
the DAGs is encoded in how far down the chain of eigenval-
ues the diagonal contribution is stored.

In fact, looking at the examples for n = 2 and n = 3 for
which we can fill out the transition matrix, we find that ma-
trices are positive definite and that we have repeated eigen-
values for n = 3. Looking at the sum over the largest eigen-
values below 1,
∑

i

Diδλ2,λi
, (42)

we find that almost all of the weight is evenly spread
amongst the n! DAGs with the highest number of edges.
This suggests that the corresponding diagonal elements of
the transition matrix are bounded below by

(
T j

)
an,an

− 1

an

� |λ2|j
n! . (43)

Convergence on the required scale still requires −j log |λ2|
to be order n2 to get the right hand side below 1/an. When
moving to the irreducible matrix U = T 2L, we have α =
−2L log |λ2| when combined with (37), making j of the or-
der of n4/α, or k of the order n2/α as in Sect. 3.

Appendix B: Complexity of the enumeration method

The time complexity of computing all the integers aj,k , bj,k

as well as the totals aj for j up to n is now considered. A bi-
nary representation is used to treat the integers, and from (1)
it follows that the number of bits needed to store aj grows
like

(
j

2

)
or is of order j2. Once all the aj,k for all j up to

n − 1 have been calculated, the bn,k can be computed using
(6) in the following way. For k > 1, for each s first multiply
am,s by (2k − 1)s . This can be done in s steps where first
a simple shift of the binary representation is performed to
multiply by 2k . Then a copy of the previous number is sub-
tracted, an operation which takes a time proportional to the
length of its binary representation which is bounded by n2.
For each s, calculating the term in the sum takes O(sn2)

while the final multiplication by 2k(m−s) is again just a shift
of the binary sequence. Finding all the terms in the sum is
then O(n3). Adding the terms to obtain bn,k then means
adding up to n sequences of length up to n2 which is also
O(n3).

Next the an,k are obtained by multiplying by the binomial
coefficients. These can be calculated recursively without any
complexity overhead over recursively calculating bj,k . The
binomial coefficients also have a binary length bounded by
n so that multiplying bn,k by

(n
k

)
is still below O(n3). How-

ever the bn,k need to be calculated for all 1 ≤ k ≤ n, which
leads to a complexity of O(n4) for computing an,k and bn,k

given all the previous values. Finding an by summing the
an,k is also order n3 so it does not further affect the com-
plexity.

240 Stat Comput (2015) 25:227–242

Computing all the integers aj,k , bj,k as well as the totals
aj for j up to n then involves repeating the above process n

times giving a final complexity of O(n5).
The above steps provide an upper bound for completing

the first step of the algorithm in Sect. 4 but it uses the as-
sumption that all of the an,k have a similar length to an. As
seen in Sect. 5 though, an,k has a similar length to an only
for a limited number of k and the length then decays to 1
for an,n. Looking at the distribution of s log(am,s) can then
give a more accurate estimate of the complexity of finding
all the terms in the sum to calculate bn,k . This also gives
a lower bound since at each of the s steps in the simpli-
fied algorithm above the length of the binary representa-
tion is actually increased. Numerically, this distribution has
a single peak for s just beyond m/2 but its maximal value
seems to grow like n3 which also leads to a total complexity
of O(n5).

When sampling the DAGs, the first step of finding k given
an integer between 1 and an involves subtracting up to n

numbers of binary length up to n2 and is O(n3). Then given
(n, k) we look to sample (m, s) again using the sums over s

that appear in (6). As discussed above, performing the sum
is O(n3) while in the end the sampling is performed up to
n times which seems to give a total complexity of O(n4).
However, the sum of the outpoints sampled has to be exactly
n while the complexity of sampling each ki is bounded by
(ki +1−δki ,1)n

2. With
∑

i ki = n, then
∑

i (ki +1)n2 ≤ 2n3

which reduces the total complexity to O(n3). Also, since
there is effectively no chance of choosing a large ki as dis-
cussed in Sect. 5 the complexity of sampling k1 and each of
the following ki reduces to O(n2) immediately leading to a
total complexity of O(n3).

Appendix C: Pseudocode for uniform DAG sampling

The code uses arbitrary precision integers as in Maple or
as provided by the GMP library and the ‘bigz’ package in R.
First we recursively calculate and store the numbers an,k and
bn,k for n ≤ N

for n = 1 to N do
for k = 1 to n − 1 do � when n > 1

bn,k ← ∑n−k
s=1 (2k − 1)s2k(n−k−s)an−k,s

an,k ← (n
k

)
bn,k

end for
an,n ← 1, bn,n ← 1
an ← ∑n

k=1 an,k

end for

If the binomial coefficients are not readily available they can
be built recursively in the same loops with no computational
overhead. Next we sample an integer between 1 and an

numbits ← 	log2(an)

repeat

r ← 1
for j = 1 to numbits do

r ← r + 2j−1rand{0,1}
end for

until r ≤ an

where ‘rand{0,1}’ provides a 0 or a 1 with probability 1/2.
Now we use the integer to sample the number of outpoints k

k ← 1
while r > an,k do

r ← r − an,k

k ← k + 1
end while
i ← 1
ki ← k

which we store as the first element of a vector k. The current
value of r should be between 1 and an,k which we rescale to
between 1 and bn,k

r ← 	 r

(n
k)

m ← n − k

Next we recursively generate the outpoints in the loop

while m > 0 do
s ← 1
t ← (2k − 1)s2k(m−s)am,s

while r > t do
r ← r − t, s ← s + 1
t ← (2k − 1)s2k(m−s)am,s

end while
r ← 	 r

(m
s)(2

k−1)s2k(m−s)

n ← m, k ← s

m ← n − k

i ← i + 1
ki ← k

end while
I ← i

The resulting vector k should be of length I and have its
elements sum to n. We can now use this to fill the lower
triangle of an empty matrix Q

j ← kI

for i = I to 2 do � when I > 1
for l = j − ki + 1 to j do

repeat
for m = j + 1 to j + ki−1 do

Qm,l ← rand{0,1}
end for

until
∑j+ki−1

m=j+1 Qm,l > 0
for m = j + ki−1 + 1 to n do � when i > 2

Qm,l ← rand{0,1}
end for

end for
j ← j + ki−1

end for

Stat Comput (2015) 25:227–242 241

Finally we sample a permutation π by randomly drawing all
the integers {1, . . . , n} without replacement. To obtain the
adjacency matrix R of the uniformly sampled DAG we cor-
respondingly permute the column and row labels of Q via
Rπ(m),π(l) = Qm,l .

Appendix D: Limiting conditional outpoint distribution

In the expression defining bn,k in (6), we can reorganise the
powers of two

bn,k = 2kmam

m∑

s=1

(
1 − 1

2k

)s
am,s

am

, (44)

and artificially bring out a factor of am. For large m, the
fraction am,s/am can be replaced by its limit As since it
is only non-zero for a small number of s at a given accu-
racy

bn,k ∝
∑

s

(
1 − 1

2k

)s

As. (45)

Given k, to sample the next number of outpoints s we
can sample uniformly between 1 and bn,k as in Sect. 4.1.
The limiting probability of sampling each value of s is
then

P(s | k) ∝
(

1 − 1

2k

)s

As, (46)

which through normalisation reduces to (14).

References

Alon, I., Rodeh, M.: Finding a minimum circuit in a graph. SIAM J.
Comput. 7, 413–423 (1978)

Andersson, S.A., Madigan, D., Perlman, M.D.: A characterization of
Markov equivalence classes for acyclic digraphs. Ann. Stat. 25,
505–541 (1997)

Bender, E.A., Robinson, R.W.: The asymptotic number of acyclic di-
graphs. II. J. Comb. Theory, Ser. B 44, 363–369 (1988)

Bender, E.A., Richmond, L.B., Robinson, R.W., Wormald, N.C.: The
asymptotic number of acyclic digraphs. I. Combinatorica 6, 15–
22 (1986)

Borboudakis, G., Tsamardinos, I.: Scoring Bayesian networks with
informative, causal and associative priors. Preprint (2012).
arXiv:1209.6561

Colombo, D., Maathuis, M.H., Kalisch, M., Richardson, T.S.: Learning
high-dimensional directed acyclic graphs with latent and selection
variables. Ann. Stat. 40, 294–321 (2012)

Daly, R., Shen, Q., Aitken, S.: Learning Bayesian networks: ap-
proaches and issues. Knowl. Eng. Rev. 26(2), 99–157 (2011)

Emmert-Streib, F., Glazko, G.V., Altay, G., de Matos Simoes, R.:
Statistical inference and reverse engineering of gene regulatory
networks from observational expression data. Front. Genet. 3, 8
(2012)

Friedman, N., Koller, D.: Being Bayesian about network structure.
A Bayesian approach to structure discovery in Bayesian networks.
Mach. Learn. 50, 95–125 (2003)

Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian net-
works to analyze expression data. J. Comput. Biol. 7, 601–620
(2000)

Gillispie, S.B., Perlman, M.D.: The size distribution for Markov equiv-
alence classes of acyclic digraph models. Artif. Intell. 141, 137–
155 (2002)

Grzegorczyk, M., Husmeier, D.: Improving the structure MCMC sam-
pler for Bayesian networks by introducing a new edge reversal
move. Mach. Learn. 71, 265–305 (2008)

Ide, J.S., Cozman, F.G.: Random generation of Bayesian networks.
In: Brazilian Symposium on Artificial Intelligence, pp. 366–375
(2002)

Ide, J.S., Cozman, F.G., Ramos, F.T.: Generating random Bayesian net-
works with constraints on induced width. In: European Confer-
ence on Artificial Intelligence, pp. 323–327 (2004)

Jiang, X., Neapolitan, R., Barmada, M.M., Visweswaran, S.: Learning
genetic epistasis using Bayesian network scoring criteria. BMC
Bioinform. 12, 89 (2011). doi:10.1186/1471-2105-12-89

Kalisch, M., Bühlmann, P.: Estimating high-dimensional directed
acyclic graphs with the PC-algorithm. J. Mach. Learn. Res. 8,
613–636 (2007)

Kalisch, M., Machler, M., Colombo, D., Maathuis, M.H., Buhlmann,
P.: Causal inference using graphical models with the R package
pcalg. J. Stat. Softw. 47, 1–26 (2012)

Lauritzen, S.L.: Graphical Models. Clarendon, Oxford (1996)
Liskovets, V.: On the number of maximal vertices of a random acyclic

digraph. Theory Probab. Appl. 20, 401–409 (1976)
Madigan, D., York, J.: Bayesian graphical models for discrete data. Int.

Stat. Rev. 63, 215–232 (1995)
Madigan, D., Andersson, S.A., Perlman, M.D., Volinsky, C.T.:

Bayesian model averaging and model selection for Markov equiv-
alence classes of acyclic digraphs. Commun. Stat., Theory Meth-
ods 25, 2493–2519 (1996)

McKay, B.D., Oggier, F.O., Royle, G.F., Sloane, N.J.A., Wanless, I.M.,
Wilf, H.S.: Acyclic digraphs and eigenvalues of (0, 1)-matrices. J.
Integer Seq. 7, 04.3.3 (2004)

Melançon, G., Philippe, F.: Generating connected acyclic digraphs uni-
formly at random. Inf. Process. Lett. 90, 209–213 (2004)

Melançon, G., Dutour, I., Bousquet-Mélou, M.: Random generation of
dags for graph drawing. Tech. rep. CWI INS-R 0005 (2000)

Melançon, G., Dutour, I., Bousquet-Mélou, M.: Random generation of
directed acyclic graphs. Electron. Notes Discrete Math. 10, 202–
207 (2001)

Neapolitan, R.E.: Learning Bayesian Networks. Prentice Hall, New
York (2004)

Peña, J.M.: Approximate counting of graphical models via MCMC.
In: Proceedings of the Eleventh International Conference on Arti-
ficial Intelligence and Statistics, pp. 352–359 (2007)

Robinson, R.W.: Enumeration of acyclic digraphs. In: Proceedings of
the Second Chapel Hill Conference on Combinatorial Mathemat-
ics and Its Applications, University of North Carolina, Chapel
Hill, pp. 391–399 (1970)

Robinson, R.W.: Counting labeled acyclic digraphs. In: New Direc-
tions in the Theory of Graphs, pp. 239–273. Academic Press, New
York (1973)

Robinson, R.W.: Counting unlabeled acyclic digraphs. In: Combina-
torial Mathematics V. Springer Lecture Notes in Mathematics,
vol. 622, pp. 28–43 (1977)

Scutari, M.: Learning Bayesian networks with the bnlearn R package.
J. Stat. Softw. 35, 1–22 (2010)

http://arxiv.org/abs/arXiv:1209.6561
http://dx.doi.org/10.1186/1471-2105-12-89

242 Stat Comput (2015) 25:227–242

Sloane, N.J.A.: The on-line encyclopedia of integer sequences (2013).
http://oeis.org

Stanley, R.P.: Acyclic orientations of graphs. Discrete Math. 5, 171–
178 (1973)

Steinsky, B.: Enumeration of labeled chain graphs and labeled essential
directed acyclic graphs. Discrete Math. 270, 267–278 (2003)

Steinsky, B.: Asymptotic behaviour of the number of labelled essen-
tial acyclic digraphs and labelled chain graphs. Graphs Comb. 20,
399–411 (2004)

Steinsky, B.: Enumeration of labelled essential graphs. Ars Comb. 111,
485–494 (2013)

http://oeis.org

	Uniform random generation of large acyclic digraphs
	Abstract
	Introduction
	Acyclic digraphs
	Markov chain method
	Non-uniformity of the irreducible chain
	Speed of convergence and complexity

	Enumeration method
	Recursively generating the outpoints
	Reconstructing the DAG
	Illustration of recursive sampling
	Computational time and space complexity

	Arbitrarily large DAGs
	Hybrid MCMC method
	Partitions and binary sequences
	Complexity of the MCMC steps
	Speed of convergence

	Restrictions and variations
	Connected DAGs
	Restricted new connections
	Restricted number of children
	Hybrid MCMC method to restrict parents

	Weighted sample
	Conclusions
	Appendix A: Convergence of the Markov chain sampler
	Appendix B: Complexity of the enumeration method
	Appendix C: Pseudocode for uniform DAG sampling
	Appendix D: Limiting conditional outpoint distribution
	References

