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Abstract Global regression assumes that a single model ad-
equately describes all parts of a study region. However, the
heterogeneity in the data may be sufficiently strong that rela-
tionships between variables can not be spatially constant. In
addition, the factors involved are often sufficiently complex
that it is difficult to identify them in the form of explanatory
variables. As a result Geographically Weighted Regression
(GWR) was introduced as a tool for the modeling of non-
stationary spatial data. Using kernel functions, the GWR
methodology allows the model parameters to vary spatially
and produces non-parametric surfaces of their estimates. To
model count data with overdispersion, it is more appropri-
ate to use a negative binomial distribution instead of a Pois-
son distribution. Therefore, we propose the Geographically
Weighted Negative Binomial Regression (GWNBR) method
for the modeling of data with overdispersion. The results ob-
tained using simulated and real data show the superiority of
this method for the modeling of non-stationary count data
with overdispersion compared with competing models, such
as global regressions, e.g., Poisson and negative binomial
and Geographically Weighted Poisson Regression (GWPR).
Moreover, we illustrate that these competing models are spe-
cial cases of the more robust model GWNBR.
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1 Introduction

Geographically Weighted Regression (GWR) allows the
spatial modeling of non-stationary data and was defined by
Fotheringham et al. (2002). However, this technique is used
when the distribution of the data is Gaussian. In many ap-
plications the dependent variable represents a count which
makes classic GWR inappropriate to model this type of data.
Poisson and negative binomial are the most adequate dis-
tributions for the modeling of count data, and Geographi-
cally Weighted Poisson Regression (GWPR) was developed
by Nakaya et al. (2005). Kobayashi and Lane (2007) and
Hadayeghi et al. (2010) used GWPR because Geographi-
cally Weighted Regression for a negative binomial distribu-
tion was not available. The advantage of a negative binomial
distribution is the ability to model data with overdispersion
(Hilbe 2011) because this type of data has an additional pa-
rameter, α. Furthermore, this distribution is a generalization
of the geometric and Poisson distributions, when α = 1 and
α → 0, respectively.

The negative binomial and Poisson distributions belong
to the exponential family of distributions (Nelder and Wed-
derburn 1972). The Fisher Score algorithm of Generalized
Linear Models (GLM) can be extended to the spatial case
with a negative binomial distribution considering a modifi-
cation in the Iteratively Reweighted Least Squares (IRLS)
procedure, which results in the proposed Geographically
Weighted Poisson Regression (GWPR). The parameter α of
the negative binomial, which is supposedly known through
the IRLS method, can be estimated in a subroutine with
the maximum likelihood method using the Newton-Raphson
(NR) algorithm (Hilbe 2011).

Since the work of Nakaya et al. (2005), many other
studies have attempted to investigate the limitations and
problems associated with Geographically Weighted Regres-
sion, such as spatial error autocorrelation (Leung et al.
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2000b), multicollinearity (Wheeler and Tiefelsdorf 2005;
Geniaux et al. 2011) and extreme coefficients including sign
reversal (Farber and Paez 2007). In a more recent work,
Paez et al. (2011) investigated spatially varying relation-
ships in a simulation-based study using diverse levels of
multicollinearity between the explicative variables. These
researches concluded that caution should be exercised when
attempting to interpret coefficients obtained through Gaus-
sian GWR.

The objective of this paper is to extend the IRLS and
NR methods to establish Geographically Weighted Regres-
sion for a negative binomial distribution, which is denoted
GWNBR, for the modeling of non-stationary count spatial
data with overdispersion. In addition, the procedure devel-
oped by Paez et al. (2011) will be used to investigate the
performance of our proposed method in the presence of mul-
ticollinearity between the explicative variables. Section 2
presents the specifications of the GWNBR methodology.
Section 3 presents some simulations and real applications
that were used to evaluate the potential of GWNBR com-
pared with GWPR and to conduct the simulations presented
by Paez et al. (2011). Some conclusions are drawn in Sect. 4.

2 Specifications of Geographically Weighted Negative
Binomial Regression

The most used global Negative Binomial Regression (NB-
2) considers a logarithm link function. Parameterizing this
model in terms of μj/tj , where tj is an offset variable, μj

is the predicted mean, α is the parameter of overdispersion,
βk is the parameter related to the explicative variable xk ,
for k = 1, . . . ,K , and yj is the j -th dependent variable for
j = 1, . . . , n we have

yj ∼ NB

[
tj exp

(∑
k

βkxjk

)
, α

]
(1)

where NB represents Negative Binomial.
GWNBR is an extension of the global or non-spatial

model (1), which allows the spatial variation of the param-
eters βk and α. Without limiting the functional form of this
variation, GWNBR produces non-parametric surfaces of the
parameter estimates. This local model is described as the
following:

yj ∼ NB

[
tj exp

(∑
k

βk(uj , vj )xjk

)
, α(uj , vj )

]
(2)

where (uj , vj ) are the locations (coordinates) of the data
points j , for j = 1, . . . , n.

The parameter estimation of the global model (1) is per-
formed interactively with the combination of the NR and
IRLS methods, i. e., using α̂, which is estimated by the NR

method, we estimate the vector β using the IRLS method.
Thus, from this new β̂ , we update α̂, and so forth until con-
vergence is obtained. However, modifications in the NR and
IRLS algorithms are necessary to incorporate the local vari-
ations.

Let us consider first the modified IRLS method. Initially,
suppose that the parameters α(u, v) are known. Then, the
log-likelihood of GWNBR, as function of β(u, v), is given
by

L
(
β(uj , vj )|xjk, yj ,αj

)

=
n∑

j=1

{
yj log (αjμj ) − (yj + 1/αj )

× log (1 + αjμj ) + log
[
Γ (yj + 1/αj )

]
− log

[
Γ (1/αj )

] − log
[
Γ (yj + 1)

]}
(3)

where for j = 1, . . . , n,

μj = tj exp

(∑
k

βk(uj , vj )xjk

)
(4)

αj = α(uj , vj ) (5)

Γ (z) =
∫ ∞

0
tz−1e−t dt (6)

Considering that the surfaces of the parameters β(u, v)

are approximately planar (Fig. 1) in the neighborhood of the
regression point i, the local log-likelihood of GWNBR at
location i can be approximated as

L
(
β(ui, vi)|xjk, yj , αi

)

=
n∑

j=1

{
yj log

[
αiμj

(
β(ui, vi)

)]

− [yj + 1/αi] log
[
1 + αiμj

(
β(ui, vi)

)]
+ log

[
Γ (yj + 1/αi)

] − log
[
Γ (1/αi)

]
− log

[
Γ (yj + 1)

]}
w(dij ) (7)

where, for i = 1, . . . , g, μj (β(ui, vi)) is the predicted mean
at location j with the parameters at regression point i:

μj

(
β(ui, vi)

) = tj exp

(∑
k

βk(ui, vi)xjk

)
(8)

and w(dij ) is the geographical weight of observation j at
regression point i, which depends on the distance between
them. A kernel function can be used to determine these
weights, as will be described in Sect. 3.

Note that it is possible to estimate the parameters at any
regression point i. However, the estimated means are calcu-
lated only for the observed points j at which the information
xjk is known.
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Fig. 1 Surface of βk which is locally planar at point i

The maximum local log-likelihood (7) provides esti-
mates for the parameters β(ui, vi) of GWNBR at location
i. Thus, using the results provided by Nakaya et al. (2005)
for GWPR, the analytical solution for (7) is given by

β̂(ui, vi)
(m+1) = [

X′W(ui, vi)A(ui, vi)
(m)X

]−1X′

× W(ui, vi)A(ui, vi)
(m)z(ui, vi)

(m) (9)

where X is an n × k matrix of the explicative variables

X =

⎛
⎜⎜⎜⎝

1 x11 . . . x1k

1 x21 . . . x2k

...
...

. . .
...

1 xn1 . . . xnk

⎞
⎟⎟⎟⎠ (10)

W(ui, vi) is an n × n GWR diagonal weighting matrix for
point i

W(ui, vi) =

⎛
⎜⎜⎜⎝

wi1 0 . . . 0
0 wi2 . . . 0
...

...
. . .

...

0 0 . . . win

⎞
⎟⎟⎟⎠ (11)

and A(ui, vi)
(m) is an n×n GLM diagonal weighting matrix

for iteration m and location i

A(ui, vi)
(m) =

⎛
⎜⎜⎜⎜⎝

a
(m)
i1 0 . . . 0

0 a
(m)
i2 . . . 0

...
...

. . .
...

0 0 . . . a
(m)
in

⎞
⎟⎟⎟⎟⎠ (12)

z(ui, vi)
(m) = Xβ̂(ui, vi)

(m)

+ yj − μj (β̂(ui, vi)
(m))

a
(m)
ij (1 + αi × μj (β̂(ui, vi)(m)))

(13)

In this paper, the IRLS method will be used with the ob-
served Fisher Information Matrix. Thus, the elements a

(m)
ij

(j = 1, . . . , n) of GWNBR (12) are the following:

a
(m)
ij = μj (β̂(ui, vi)

(m))

1 + αiμj (β̂(ui, vi)(m))

+ [yj − μj (β̂(ui, vi)
(m))][αiμj (β̂(ui, vi)

(m))]
1 + 2αiμj (β̂(ui, vi)(m)) + α2

i μ
2
j (β̂(ui, vi)(m))

(14)

As in GWPR, the covariance matrix of the parameter es-
timates can be estimated by

Ĉov
[
̂β(ui, vi)

] = C(ui, vi)A(ui, vi)
−1C′(ui, vi) (15)

where

C(ui, vi) = [
X′W(ui, vi)A(ui, vi)X

]−1

× X′W(ui, vi)A(ui, vi) (16)

and the elements of W(ui, vi) and A(ui, vi) are given by
(11) and (12), respectively.

After an estimate of β(ui, vi) is obtained, the parame-
ters αi will be estimated using the NR method based on the
local log-likelihood (7). To facilitate the calculation, the pa-
rameters ri , where ri = 1/αi , will be estimated first. Thus,
rewriting (7), we have

L
(
ri |yj ,β(ui, vi)

)

=
n∑

j=1

{
yj log

[
μj

(
β(ui, vi)

)] − [yj + ri]

× log
[
ri + μj

(
β(ui, vi)

)] + ri log [ri]
+ log

[
Γ (yj + ri)

] − log
[
Γ (ri)

]
− log

[
Γ (yj + 1)

]}
w(dij ) (17)

Maximizing the local log-likelihood (17) using the uni-
variate NR method, we obtain

r
(m+1)
i = r

(m)
i − [

H
(m)
i

]−1
U

(m)
i (18)

where U
(m)
i and H

(m)
i are the first and second derivatives of

the local log-likelihood with respect to r
(m)
i , i.e.,

U
(m)
i = dL(ri)

dri

=
n∑

j=1

{
ψ

[
r
(m)
i + yj

] − ψ
[
r
(m)
i

] + log
[
r
(m)
i

]

+ 1 − log
[
r
(m)
i + μj

(
β(ui, vi)

)]

− r
(m)
i + yj

r
(m)
i + μj (β(ui, vi))

}
w(dij ) (19)
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H
(m)
i = d2L(ri)

dr2
i

=
n∑

j=1

{
ψ ′[r(m)

i + yj

] − ψ ′[r(m)
i

] + 1

r
(m)
i

− 2

r
(m)
i + μj (β(ui, vi))

+ r
(m)
i + yj

[r(m)
i + μj (β(ui, vi))]2

}
w(dij ) (20)

where ψ(.) e ψ ′(.) are the digamma and trigamma func-
tions, respectively, which are given by

ψ(z) = d logΓ (z)

dz
and ψ ′(z) = dψ(z)

dz
= d2 logΓ (z)

dz2

Using delta method, we find that, for a function g(.)

that is differentiable in θ , if the distribution θ̂n → N(θ,σ 2
n )

achieves convergence, then the distribution g(θ̂n) →
N(g(θ), [g′(θ)]2 × σ 2

n ) also converges (Casella and Berger
2001). If, under certain conditions, the estimators that max-
imize the local likelihood are asymptotically normal, unbi-
ased and consistent (Staniswalis 1989), then

α̂i = 1

r̂i
and Var(α̂i) = −1

Hir̂
4
i

(21)

because Var(r̂i ) = −1/Hi , where Hi is given equation by
(20), and [g′(ri)]2 = 1/r4

i .
Thus, for each regression point i, the NR and IRLS al-

gorithms are used alternately until the parameter estimates
achieve convergence.

To complete the fitting of the model, it is necessary to
estimate the bandwidth of the chosen kernel function, which
helps determine the weights w(dij ). One possibility could
be to estimate it such that it minimizes the corrected AIC
criterion (AICc):

AICc = −2L(β,α) + 2k + 2k(k + 1)

n − k − 1
(22)

where k is the effective number of parameters and L(β,α) is
the log-likelihood of GWNBR shown in (3). Hereafter, the
term “AIC” represents AICc.

The effective number of parameters of GWNBR can be
written as k = k1 + k2, where k1 and k2 are the effective
number of parameters due to β and α, respectively. Fol-
lowing the method developed by Nakaya et al. (2005), k1

is given by the trace of the matrix R, which is given by ele-
ments

rj = Xj

[
X′W(uj , vj )A(uj , vj )X

]−1X′W(uj , vj )A(uj , vj )

(23)

where Xj is the j -th row of X.

However, to date, it has not been possible to estimate k2,
i.e., the contribution of the surface of α̂ on the effective num-
ber of parameters of the model. Consequently, we opted to
estimate the bandwidth using the cross-validation criterion
given by (Fotheringham et al. 2002):

CV =
n∑

j=1

[
yj − ŷ �=j (b)

]2 (24)

where ŷ �=j (b) is the estimated value for point j , omitting the
observation j and b is the bandwidth.

Note that the indetermination of k2 does not prevent
the adjustment of GWNBR. However, this indetermination
makes it difficult to compare the models because the com-
plexity of the GWNBR, which is given by the effective num-
ber of parameters, is unknown.

2.1 GWNBRg model

To avoid the difficult associate with the estimation of k2, we
propose the Geographically Weighted Negative Binomial
Regression with α global methodology, which is namely
GWNBRg. In this model, the spatial variation is allowed
only for β(ui, vi), i. e.,

yj ∼ BN

[
tj exp

(∑
k

βk(uj , vj )xjk

)
, α

]
(25)

where the parameters are the same as in (2).
In the GWNBRg model, the estimation of the parameter

α is made globally, i.e., we assume that all of the parameters
in the model are stationary, and we estimate a global overdis-
persion α̂ to be used in the local estimates β(ui, vi). Conse-
quently, we propose that the estimate of α in the GWNBRg
model will be the same as that obtained through non-spatial
(or global) negative binomial regression.

The parameters β(ui, vi) are estimated using the IRLS
method, as in the GWNBR model described earlier, assum-
ing that α̂i = α̂ for all i. Note that it is not necessary to alter-
nate the NR and IRLS methods, because once α̂ is estimated
globally, we estimate β(ui, vi) for each regression point i

using only the IRLS method.
Because there is no spatial variation for α, its contribu-

tion to the effective number of the parameters in the model
is the unity, i.e., k2 = 1. Consequently, the bandwidth can be
found using the AIC criterion (22), where

L
(
β(ui, vi), α|xjk, yj

)

=
n∑

j=1

{
yj log (αμj ) − (yj + 1/α) log (1 + αμj )

+ log
[
Γ (yj + 1/α)

] − log
[
Γ (1/α)

]
− log

[
Γ (yj + 1)

]}
(26)

and k = tr(R) + 1.
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Thus, the objective of the GWNBRg model is to perform
the GWNBR methodology in a simplified manner, which
has the disadvantage of obtaining a biased estimate of α and
the advantage of being a model with known complexity. We
hope that the GWNBRg methodology be a better approach
for the modeling of spatial count data with overdispersion
than the GWPR method, which considers that α is equal to
zero.

3 Simulations and applications

This section aims to show the fit of the GWNBR and GWN-
BRg models to simulated and real data. Using simulated
data, our objective is to evaluate whether the models cor-
rectly reproduce the parameters. The real data was used to
show a practical application of the proposed model. In both
cases, the results will be compared with GWPR and Nega-
tive Binomial (NBR) and Poisson (PR) regressions.

It is important to mention that the discussion presented
here is mainly focused on the comparison between different
distributions for the modeling of count data. The analysis
of the limitations and problems associated with the GWR
framework, such as the spatial error autocorrelation (Le-
ung et al. 2000b), multicollinearity (Wheeler and Tiefelsdorf
2005; Geniaux et al. 2011) and extreme coefficients includ-
ing sign reversal (Farber and Paez 2007) will not be treated
as in previous studies, but some of the results show that our
approach does retain some of these problems.

The simulations will be conducted using the SAS 9.2
software and the procedure presented by Paez et al. (2011),
i.e., we will simulate spatial data and spatial coefficients,
and we will introduce varying levels of correlations between
variables x1 and x2 (from −0.75 to 0.75 by 0.25 and 100
times for each level), using a transformation similar to that
used by Wheeler and Tiefelsdorf (2005):

xθ
2 = sin(θ)x1 + cos(θ)x2 (27)

where θ is the correlation level.
The correlation between variables x1 and x2 and the cor-

relation measured on simulated data are presented below. As
shown, the pattern is approximately the same.

Corr.
Between x1 Corr.
and x2 Measured

-0.75 -0.80719
-0.50 -0.68474
-0.25 -0.39143
0 -0.08982
0.25 0.27470
0.50 0.52585
0.75 0.75624

Fig. 2 True coefficients of surfaces b1, b2, and α of the GWNBR
framework

3.1 Simulation of GWNBR

The main objective of the GWNBR and GWNBRg frame-
works is the modeling of non-stationary count data with
overdispersion. Thus, we first simulate data with these char-
acteristics using the following structure:

yj ∼ NB
[
μ(uj , vj ), α(uj , vj )

]
(28)

where

μ(uj , vj ) = exp
{
b0(uj , vj ) + b1(uj , vj )xj1

+ b2(uj , vj )xj2
}

b0(uj , vj ) = 1

b1(uj , vj ) =
√

[uj − uj ]2 × [vj − vj ]2

b2(uj , vj ) = 2
{−[

(uj − uj )/5
]2 − [

(vj − vj )/5
]2

+ 0.13
}

uj = −40.7693, vj = −19.5915

α(uj , vj ) = 2
{
10−7[|vj |]5}2

(29)

The explicative variables xj1∗ and xj2∗ were initially
simulated from a Uniform(0,1) distribution, and the vari-
able x1 was then updated to be spatially dependent by xj1 :=
(
xj1∗|uj |

1000 )2 +(
xj1∗|vj |

90 )2 and the variable x2 was updated such
that it is correlated with x1 using (27). We use the shape of
the Brazilian state Espirito Santo as a geographical refer-
ence to simulate the data (77 municipalities) because irreg-
ular tessellations are more representative of real geographic
systems, as described by Farber et al. (2009). Figure 2 shows
the spatial distributions of the parameters, and Fig. 3 shows
the spatial distributions of the variables, assuming that the
correlation between x1 and x2 is equal to zero.

To confirm whether the method used to find the best
bandwidth affects the results based on the suggestion pro-
vided by Farber and Paez (2007), we fit the GWNBR, GWN-
BRg, and GWPR using AIC and Cross-Validation (CV) ap-
proaches, but the comparison between the models will be
performed using log-likelihood. To determinate the geo-
graphical weights using the nearest-neighbor bandwidth, we
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Fig. 3 Spatial patterns of y, x1, and x2 of the GWNBR framework

Table 1 Frequency of the best model for the fitting of GWNBR simu-
lated data

Corr GWNBR GWNBRg GWPR NB Total

−0.75 66 1 33 0 100

−0.50 51 3 46 0 100

−0.25 65 0 35 0 100

0 69 1 28 2 100

0.25 60 1 39 0 100

0.50 71 1 28 0 100

0.75 73 4 23 0 100

Total 455 11 232 2 700

65.00 % 1.57 % 33.14 % 0.29 % 100 %

will use the adaptive bi-square kernel given by

wij =
⎧⎨
⎩

[1 − (dij /b)2]2, if j is one of the N -th nearest
neighbors of i;

0, otherwise.

(30)

where dij is the distance between the j -th and i-th nearest
neighbors and b is the bandwidth.

To determine the geographical weights by the distance
bandwidth, we will use the Gaussian kernel function given
by

wij = exp

{
−1

2
(dij /b)2

}
(31)

where dij is the distance between the j -th and i-th locations
and b is the bandwidth.

Table 1 shows the frequency of the best model using
cross-validation or the AIC approach for the distance or
the nearest-neighbor bandwidths. As shown, approximately
65 % of the best fits were obtained using the GWNBR
method, and approximately 33 % of the best fits were ob-
tained from the GWPR framework.

Table 2 shows the frequency of the best model us-
ing only cross-validation for the distance or the nearest-
neighbor bandwidths. As shown, the percentage of times

Fig. 4 Distributions of log-likelihood of GWNBR

Table 2 Frequency of the best model for the fitting of GWNBR simu-
lated data

Corr GWNBR GWNBRg GWPR NB Total

−0.75 79 10 5 6 100

−0.50 69 12 14 5 100

−0.25 69 12 6 13 100

0 69 14 8 9 100

0.25 68 17 9 6 100

0.50 78 17 1 4 100

0.75 77 15 5 3 100

Total 509 97 48 46 700

72.71 % 13.86 % 6.86 % 6.57 % 100 %

that GWNBR is chosen as the best model increases to 72 %,
and increases to 14 % for GWNBRg.

Figures 4 and 5 show the variability of the log-likelihoods
for the GWNBR for no correlation case and PR and NBR
models, respectively. In general, when the AIC was mini-
mized to find the optimal bandwidth, the variability of the
log-likelihood was smaller than when the CV was used to
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Fig. 5 Distributions of log-likelihood of PR and NBR

find the optimal bandwidth. We found the same results for
each level of correlation between x1 and x2 and for GWN-
BRg and GWPR. Also, it is interesting to note that the NBR
model is influenced by the correlation between variables x1

and x2, whereas the Poisson regression is not.
Because the cross-validation approach apparently gives

the best results for the modeling of count data, let us ana-
lyze the variability in the optimal bandwidth. Figure 6 shows
the box-plot of the optimal bandwidth using cross-validation
or AIC for the distance and nearest-neighbor bandwidths of
GWNBR. Figure 7 shows the box-plot of the optimal band-
width using cross-validation or AIC for the distance and
nearest-neighbor bandwidths of GWPR. In addition, Fig. 8
shows the box-plot of the optimal bandwidth using cross-
validation or AIC and for the distance and nearest-neighbor
bandwidths of GWNBRg.

In summary, the correlation between variables x1 and
x2 appears to influence the distance bandwidth used in the
GWNBR framework, but this correlation does not affect the
results when the type of bandwidth is nearest-neighbor and
when the model is GWPR or GWNBRg.

Table 3 shows some median statistics for the goodness of
fit. Column b refers to the bandwidth, which is expressed
in terms of the numbers of points included in the local re-

Fig. 6 Distributions of the optimal bandwidth of GWNBR

Fig. 7 Distributions of the optimal bandwidth of GWPR
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Fig. 8 Distributions of the optimal bandwidth of GWNBRg

gressions, see (30), and which was found by minimizing the
AIC for the GWPR and GWNBRg models and minimizing
the CV for the GWNBR model. The column labeled Par in-
dicates the effective number of parameters, see (23) and the
column labeled L(β,α) indicates the log-likelihood.

The negative binomial regression shows a goodness of fit
that is better than that obtained from the Poisson regression.
This finding was expected because the simulated data were
simulated according to a negative binomial distribution. In
addition, allowing α to vary spatially, the best estimated
model was GWNBR compared with GWNBRg, which uses
a fixed α. As expected, the Poisson regression was the worst
model.

Figures 9, 10 and 11 show the differences between the
real and the values estimated by the GWNBR, GWPR and
GWNBRg models, respectively. In summary, GWNBR was
the best model, which successfully adjusted the simulated
data based on a spatial negative binomial distribution. In
addition, GWNBRg, despite of its biased estimate for the
overdispersion parameter α also gave good results. Unfor-
tunately, the variability was very large as was observed by
Paez et al. (2011) with a small sample size. It is interesting
to study this behavior for larger samples.

Figure 12 shows the sample distributions of RMSE of
the parameter estimates using 700 replications for each. In
general, the approach that found the best bandwidth and the

Table 3 Median of the results obtained from the GWNBR simula-
tions, where b refers to the bandwidth and Par indicates the effective
number of parameters

Model Corr b Par L(β,α) AIC

PR −0.75 – 3 −16269.11 32544.54

−0.50 – 3 −9243.15 18492.64

−0.25 – 3 −14632.07 29270.47

0 – 3 −12810.82 25627.96

0.25 – 3 −13005.57 26017.47

0.50 – 3 −15602.13 31210.59

0.75 – 3 −17393.98 34794.28

GWPR −0.75 7 56.13 −391.16 1244.44

−0.50 7 55.18 −354.44 1124.20

−0.25 7 56.24 −420.55 1378.83

0 7 55.85 −439.40 1359.65

0.25 7 56.34 −404.53 1397.97

0.50 7 56.08 −490.22 1479.71

0.75 7 56.66 −502.84 1760.46

NBR −0.75 – 4 −353.29 715.14

−0.50 – 4 −349.33 707.21

−0.25 – 4 −373.17 754.90

0 – 4 −378.77 766.10

0.25 – 4 −390.60 789.75

0.50 – 4 −411.34 831.23

0.75 – 4 −422.81 854.17

GWNBRg −0.75 49 8.76 −1959.04 3936.19

−0.50 52 8.25 −2003.00 4021.74

−0.25 51 8.70 −2047.44 4110.23

0 59 7.30 −2116.69 4259.69

0.25 50 8.57 −1905.63 3829.91

0.50 53 7.47 −1077.48 2167.11

0.75 49 8.32 −1586.76 3190.46

GWNBR −0.75 45 – −321.51 –

−0.50 38 – −328.57 –

−0.25 32 – −362.61 –

0 31 – −366.78 –

0.25 34 – −396.87 –

0.50 36 – −397.72 –

0.75 36 – −412.07 –

type of bandwidth produced the same distribution of the pa-
rameters estimates. As shown, the distribution of RMSE for
GWNBR model presents smaller values and less variability
than GWNBRg and GWPR models.

3.2 Simulation of GWPR

The main objective of this section is to show that GWNBR
can also model Poisson data that are spatially distributed
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Fig. 9 Distributions of the differences between the real values and the
values estimated with the GWNBR model

Fig. 10 Distributions of the differences between the real values and
the values estimated with the GWPR model

and to therefore reinforce that GWPR is a special case of
GWNBR. The simulated data were created 100 times, as
in the previous section, assuming that α is equal to zero
and that variable xj1 follows a normal (0,1) distribution. We
choose to not present all detailed results of the GWPR sim-
ulated data because of length constraints and because the
Poisson distribution was very stable to the correlation be-
tween variables. The results correspond to the median val-
ues.

yj ∼ Poisson
[
exp

{
b0(uj , vj ) + b1(uj , vj )xj1

}]
(32)
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Fig. 11 Distributions of the differences between the real values and
the values estimated with the GWNBRg model

Fig. 12 Distributions of the RMSE of the parameters estimates

where

b0(uj , vj ) = 0.000005[|uj |]3 + 0.000005[|vj |]3

b1(uj , vj ) =
√

[uj − uj ]2 × [vj − vj ]2

uj = −40.7693, vj = −19.5915

(33)
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Fig. 13 Bandwidth of the GWNBR model that minimize the CV

Table 4 Results obtained from simulations using the GWPR model

Model b Par L(β,α) AIC

PR – 2 −1515.6 3035.3

GWPR 15 25.5 −272.8 623.5

NBR – 3 −401.7 809.7

GWNBRg 48 7.8 −368.3 754.1

GWNBR 15 – −282.4 –

The bandwidth was found through an adaptive bi-square
kernel function, see (30) and the graphic of the minimization
of the CV was achieved through a golden section search al-
gorithm (resulting in b = 15), as shown in Fig. 13.

Table 4 shows some statistics for the goodness of fit ob-
tained for the models. As expected, the GWPR shows a
goodness of fit that is superior to that obtained with the other
models. However, the log-likelihood of GWNBR is close to
that of GWPR, which shows that this model is also a candi-
date. The quality measures for GWNBRg were worse than
those obtained with the other models. In addition, it is inter-
esting to see that, despite the fact that the data were derived
from a Poisson distribution, the Poisson regression was the
worst model because the data are spatially dependent. Even
the negative binomial regression showed a better fit than the
PR model, because its interpretation of the spatiality was
captured in the overdispersion parameter.

Figure 14 shows the estimated surfaces of parameters b0

and b1 and the real maps based on (33). As shown, all of
the models estimated the intercept correctly, but the adjust-
ment of parameter b1 by GWNBRg was the worst. In con-
trast, the values for parameter b1 estimated by the GWPR
and GWNBR models were almost the same. This result can
be explained by the fact that the parameters α of GWNBR
were close to zero (varying between 0 and 0.076) and, as
was found previously, the negative binomial distribution ap-
proximates a Poisson distribution when α tends to zero.

The GWNBRg model does not to differentiate between
non-stationarity and overdispersion well. Because α is es-
timated under the assumption that all of the parameters

Fig. 14 Real and estimated surfaces of the parameters of the GWPR

are constants, there is confusion between the two concepts.
Thus, we do not recommend that GWNBRg should be used
to model count data without overdispersion.

To demonstrate that GWPR is a special case of GWNBR,
we set the parameter α of the GWNBR framework to zero,
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and the results, including the quality measures, such as the
log-likelihood and AIC, obtained were exactly the same up
to the sixth decimal point. Thus, we concluded that GW-
NBR is able to model non-stationary data from a negative
binomial distribution and from Poisson distribution. In ad-
dition, if α = 0, the GWNBR framework overrides GWPR.

3.3 Application for Tokyo, Japan

The GWPR technique was developed by Nakaya et al.
(2005) and used to model the working-age deaths in the
Tokyo metropolitan area of Japan. The results indicate that
there are significant spatial variations in the variables and
that, consequently, the application of a traditional ‘global’
Poisson model would yield misleading results. Thus, our
objective is to compare the results found by Nakaya et al.
(2005) with those estimated by the GWNBR model (setting
α = 0, i.e., GWPR from GWNBR) and to also estimate the
overdispersion parameter α using GWNBR.

Another objective is to determine whether GWPR is the
best approach to model the mortality data from Japan and
whether GWNBR is capable to produce the same results.
In addition, we aimed to show the consistency of the SAS
%gwnbr macro compared with the GWR 3.x software.

The explicative variables are the following:

b1 = proportion of professional and technical workers
(PRO);

b2 = proportion of elderly people, i.e., over 64 years of
age (OLD);

b3 = rate of house-ownership (OWNH); and
b4 = unemployment rate (UNEMP).

Table 5 shows the parameter values estimated by Nakaya
et al. (2005) using the software GWR 3.x software and the
parameters estimated by GWNBR using the %gwnbr macro
developed in SAS/IML. Table 6 shows the standard errors
of the parameters estimates. The bandwidth estimated by
Nakaya et al. (2005) using the adaptive bi-square kernel
given by (30) and minimizing the AIC criterion was b = 95
neighbors. The bandwidth estimated using GWNBR was
b = 18 km, this bandwidth was found using the Gaussian
kernel function given by (31) and minimizing the CV.

The comparison of the results shown in Table 5 and Ta-
ble 6 reveals the same estimates, up to the third decimal
point, between GWPR (GWR 3.x) and GWNBR (%gwnbr
macro and α = 0), which indicates that the algorithm written
for GWNBR is correct.

Table 5 shows no estimates for the overdispersion param-
eters α for GWNBR, but these values vary between 0.0001
and 0.01 and are not significant in only 5.7 % of the ar-
eas. In addition, the log-likelihood of the GWPR and GW-
NBR frameworks were close (−985.9 and −980.7, respec-
tively), which indicates that both models exhibited a similar

Table 5 Summary of the parameter estimates obtained for the data
from Tokyo, Japan

Estimates GWR 3.x
GWPR

%gwnbr
GWPR

%gwnbr
GWNBR

b0

Min −0.942 −0.942 −0.651

Q1 −0.003 −0.003 −0.020

Median 0.099 0.099 0.095

Q3 0.259 0.260 0.161

Max 0.434 0.434 0.323

b1

Min −3.783 −3.783 −4.268

Q1 −2.682 −2.681 −2.487

Median −2.509 −2.506 −2.380

Q3 −1.800 −1.791 −1.833

Max 1.627 1.627 1.074

b2

Min 1.223 1.223 1.209

Q1 1.643 1.643 1.869

Median 2.069 2.079 2.066

Q3 2.437 2.448 2.401

Max 4.418 4.418 3.881

b3

Min −0.572 −0.572 −0.675

Q1 −0.381 −0.380 −0.347

Median −0.317 −0.316 −0.297

Q3 −0.210 −0.205 −0.267

Max 0.152 0.152 0.085

b4

Min −0.056 −0.056 −0.057

Q1 0.021 0.021 0.028

Median 0.038 0.039 0.051

Q3 0.078 0.079 0.079

Max 0.171 0.171 0.256

goodness of fit. Thus, we conclude that the data does not
exhibit overdispersion (and this fact was verified by GW-
NBR). Consequently, the GWPR model is the most adequate
model. Thus, to use the GWPR model with the GWNBR
framework, should be set α to zero in the SAS %gwnbr
macro.

3.4 Application for the Brazilian state of Espirito Santo

In this section, we analyze the distribution of the vehicles
used for road freight transportation in Espirito Santo, Brazil.
The understanding of the spatial distribution of these vehi-
cles in the country can help the Brazilian authorities for-
mulate public policies for the sector, such as supervision,
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Table 6 Summary of the standard errors of the parameters estimates

Estimates GWR 3.x
GWPR

%gwnbr
GWPR

%gwnbr
GWNBR

Std b0

Min 0.094 0.094 0.106

Q1 0.128 0.128 0.120

Median 0.172 0.172 0.156

Q3 0.211 0.211 0.226

Max 0.285 0.284 0.474

Std b1

Min 0.227 0.225 0.233

Q1 0.306 0.305 0.277

Median 0.449 0.449 0.393

Q3 0.586 0.590 0.572

Max 0.923 0.914 1.907

Std b2

Min 0.310 0.309 0.296

Q1 0.375 0.375 0.342

Median 0.474 0.474 0.433

Q3 0.663 0.667 0.617

Max 0.939 0.944 1.358

Std b3

Min 0.079 0.079 0.078

Q1 0.102 0.102 0.091

Median 0.121 0.121 0.114

Q3 0.146 0.146 0.145

Max 0.228 0.228 0.311

Std b4

Min 0.014 0.014 0.017

Q1 0.019 0.019 0.019

Median 0.029 0.029 0.026

Q3 0.039 0.039 0.039

Max 0.059 0.059 0.079

maintenance and expansion of the highways, which are the
main mode of transportation in Brazil. In addition, this spa-
tial configuration is of interest to the companies that need
these vehicles to transport their products.

To facilitate the interpretation and focus on the GWNBR
model, we used only one explicative variable. The amount
of industries (X) in the city, which represents the economic
aspect of the problem, will help explain the amount of vehi-
cles used in road freight transportation (Y). The spatial dis-
tributions of the variables (Fleet—Y and Industry—X) are
shown in Fig. 15.

As shown in Fig. 15, the trucks are concentrated in the
sea border of the state (southeast side), where the capital of
the state Vitoria is located. The same behavior was observed

Fig. 15 Spatial distribution of the variables Fleet and Industry

for the variable industry, which indicates that there is a rela-
tionship between these variables.

To check for linearity, which is required for the GWR
framework, we use the linear LOESS (Cleveland and Devlin
1988) and GAM models (Hastie and Tibshirani 1990; Wood
2006). As shown in Fig. 16, the adjustment achieved with
the GAM model is more sophisticated than those obtained
with the LOESS and linear models. However, linearity was
also shown due to the large number of data points around
the line.

The same procedure that was followed in the analysis of
the data obtained from Japan will be performed in this anal-
ysis, i.e., we will use the Poisson and Negative Binomial
models, in their global and spatial forms. For the GWNBR
and GWNBRg models, we used the Gaussian kernel, which
resulted in a bandwidth of 53 kilometers. For the GWPR
model, the bandwidth, which was found using the same ker-
nel, was b = 9.4 kilometers. However, the parameter esti-
mation with this bandwidth is inappropriate because there
are only between 1 and 9 points for each regression. There-
fore, we used the adaptive bi-square kernel with a bandwidth
equal to 10 points. Table 7 shows the results of the fit.

As shown in Table 7, the PR and GWPR models were
the worst models. The earlier problem detected in the esti-
mation of the bandwidth was a clue of the lack of fit ob-
tained with the Poisson distribution. Thus, we can conclude
that the fleet of vehicles used in road freight transportation
probably exhibits overdispersion. Therefore the negative bi-
nomial distribution is the best approach for the modeling of
these variables.

Although the difference between their AIC and log-
likelihood is marginal, GWNBR and GWNBRg are better
choices for the modeling of these data than the NBR model.
To highlight this fact, we performed a non-stationarity test
based on m = 999 replications for the GWNBR model, by
checking the variability of its estimates over space. For pa-
rameter k, the variability can be calculated as

Vk = 1

N

N∑
i=1

(
β̂ik − 1

N

N∑
i=1

β̂ik

)2

(34)
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Fig. 16 Relationship between
the variables Fleet and Industry

Table 7 Model results for the analysis of the data from Espirito Santo,
Brazil

Model b Par L(β,α) AICc

PR – 2 −5001.4 10006.9

GWPR 10 points 32.4 −1296.8 2708.2

NBR – 3 −458.5 923.3

GWNBRg 53.07 km 8.7 −444.4 908.7

GWNBR 53.20 km – −440.1 −

The significance of the Vk can be evaluated through a
randomization test (Hope 1968), in which the empirical dis-
tribution of the Vk is created under the null hypothesis of
spatial stationarity. Initially, the geographic coordinates of
the observations are randomly permuted and GWNBR is
computed for this new configuration. According to the new
estimates, we calculate Vk using (34), and repeat this pro-
cedure m times until the empirical distribution of Vk , under
the null hypothesis is obtained. By ranking the values of Vk

in descending order, including the original value for Vk we
obtain the p-value using the following equation: p/(m + 1),
where p is the rank of the original Vk , i.e., the number of
times that the simulated estimates were greater than the orig-
inal estimate. The randomization test has the advantage that
it does not use a probability distribution for Vk , but it is
computationally intensive. Another parametric test for non-
stationarity was proposed by Leung et al. (2000a), but this
method was not used in this analysis.

The p-values for β0, β1, and α were 1.2 %, 8.4 % and
62.6 %, respectively. Considering the null hypothesis of sta-
tionarity, we can conclude that β0 and β1 are statistical dif-
ferent across the space at level of 10 %.

The surface of the parameters and their standard errors
are shown in Fig. 17. The greater values for the intercept (b0)

are concentrated in the Vitoria metropolitan region (south-
east side), which is the capital of the state. This finding re-
flects the greater amount of vehicles located in that place. In
contrast, the parameter estimates for b1 are smaller in that
area because there are many industries and the link function
is exponential.

In summary, the results indicate that there is spatial vari-
ation and overdispersion in the distribution of vehicles used
for road freight transportation in Espirito Santo, Brazil. Con-
sequently, the application of a traditional negative binomial
model would yield misleading results. In addition, the Pois-
son models (global or spatial) would produce even poorer
results.

4 Conclusions

This paper aims to show a methodology for Geographical
Weighted Regression for data that follow a negative bino-
mial distribution; this method is denoted GWNBR. Due to
the difficulty associated with finding the effective number of
parameters, we also developed the GWNBRg approach. The
difference between these two methods is in the estimation
of the overdispersion parameter α. In GWNBRg, α is esti-
mated in globally, which generates a biased estimate for the
parameter of overdispersion. However, the simplicity of this
approach allows the calculation of the effective number of
parameters of the model. In GWNBR, although this amount
is unknown, GWNBR allows parameter α to vary spatially.

Based on the simulations presented, it was found that the
global regressions search for regularities and patterns is in-
adequate for the search for local particularities or excep-
tions. In addition, the models based on the Poisson distri-
bution were found to be inappropriate for the modeling of
data with overdispersion. Also, it is interesting to investigate
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Fig. 17 Surface of the parameter estimates and standard errors ob-
tained with the GWNBR model

whether the distribution of α influenced the results, i.e, sim-
ulate a spatial distribution of α for data that do not exhibit
overdispersion or non smoothy (more rugged data).

GWNBR shows a goodness of fit in the modeling of non-
stationary and overdispersion data that is superior to that ob-
tained with the other models, as was observed in the exam-
ple of the fleet of vehicles in the Brazilian state of Espir-
ito Santo. Also, GWNBR exhibits a good approximation for
GWPR when α → 0, or the same results when α = 0, as
was observed in the example of the distribution of deaths in
Tokyo, Japan.

The simulations of count data showed a pattern that was
the same as that found by Paez et al. (2011), who evalu-
ated the results of Gaussian GWR in the presence of multi-
collinearity, i.e., when the data are created from a negative
binomial distribution, NBR but not PR is sensitive to multi-
collinearity. The simulations also showed that the approach
used to find the best bandwidth influences the results: AIC
has a smaller variability than CV but CV produces a better
fit than AIC, as measured by the log-likelihood.

In conclusion, the GWNBR method is a robust tool for
the modeling of count data, especially when the data exhibit
non-stationarity and overdispersion, by incorporating the
Poisson Regression (PR), Geographically Weighted Pois-
son Regression (GWPR), and Negative Binomial Regres-
sion (NBR) models.
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