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Abstract A discrepancy measure to assess model fitness
against a nonparametric alternative is proposed. First,
a Polya tree prior is constructed so that the centering dis-
tribution is the null. Second, the prior is updated in the light
of data to obtain the posterior centering distribution as the
alternative. Third, a Kullback-Leibler divergence type of test
statistic is derived to assess the discrepancy between the two
centering distributions. The properties of the test statistic are
derived, and a power comparison with several well-known
test statistics is conducted. The use of the test statistic is
illustrated using network traffic data.

Keywords Goodness of fit · Nonparametric alternative ·
Packet train · Polya tree · Teletraffic data

1 Introduction

Many empirical studies in network traffic modeling (e.g.,
Leland et al. 1994; Willinger et al. 1997, 1998; Hsieh 2002)
have demonstrated that the classical queuing assumption of
normal tails is inappropriate for network data and a long-
tailed distribution is, in general, more suitable for such data.
However, due to the design of a network, the underlying dis-
tribution of traffic between a source (e.g., a server) and a
particular destination (e.g., a classroom computer) may or
may not significantly deviate from normality, and thus, the
well developed classical queuing theory and widely avail-
able tools may still be applicable. It is the main goal of this
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paper to develop a discrepancy measure that quantifies the
adequacy of an assumed model.

Assessing the adequacy of a posited model or of assump-
tions in general is fundamental to statistical analyses. The
posited model must be evaluated routinely in the light of em-
pirical evidence. In many such evaluations, the experimenter
may be concerned less with whether the posited model is
correct and more with whether the model remains adequate
(defined as closeness to the null posited model) and, if not,
how significant the departure from the posited model is.
Thus, the objective of this article is to develop a discrepancy
measure, ρ(F0,Fa), to assess model adequacy when an al-
ternative distribution is not specified, where the distribution
F0(x|θ) is the posited model for a random variable X with
a vector of real-valued parameters θ , and Fa is a nonpara-
metric alternative updated from F0 via data. In other words,
the discrepancy measure ρ suggests the “distance” between
F0 and Fa ; thus, a small value of ρ quantifies the notion
of model adequacy whereas a large value of ρ indicates the
inadequacy of the current posited model F0 and the non-
parametric alternative Fa can serve as the new F0. Similar
ideas can be found in, for example, Mengerson and Robert
(1996), Verdinelli and Wasserman (1998), and Goutis and
Robert (1998).

Two issues in this approach must be discussed: (1) the
construction of an alternative distribution Fa and (2) the
choice of a discrepancy measure. To address the first issue,
we consider the approach provided by Berger and Guglielmi
(2001) in which the nonparametric alternative Fa is embed-
ded in a mixture of Polya tree distributions. The choice of a
nonparametric alternative over a parametric one is certainly
subjective. But, if possible, it is always desirable in an analy-
sis to make fewer assumptions about the underlying distribu-
tion. Between the two popular Bayesian nonparametric pri-
ors, the Polya trees and the Dirichlet processes, our choice of
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the former is based mainly on the assumption that the possi-
ble alternative distribution is continuous. In other words, we
would like the alternative Fa to be a continuous distribution
even if the normal distribution (F0) assumed by the classi-
cal queuing theory is rejected. Lavine (1992) and Mauldin et
al. (1992) showed that the Polya trees, when properly con-
structed, assign a probability of one to the set of continu-
ous distributions. In contrast (e.g., Viele 2000), the Dirichlet
processes expect duplicate observations and therefore often
lead to unappealing results when the testing of an absolutely
continuous model is of primarily concern (see Carota and
Parmigiani 1996). Furthermore, in the course of this study,
we confirmed various attractive properties, such as compu-
tational and robustness advantages, inherent in the use of
Polya tree processes, as have been documented by Lavine
(1992, 1994) and Berger and Guglielmi (2001).

To address the second issue, we propose a test statistic de-
rived from the Kullback-Leibler divergence to discriminate
between F0 and Fa . Although various discrepancy measures
are available, for example, the Kolmogorov-Smirnov D,
Cramér-von Mises W 2, Watson U2, and Anderson-Darling
A2 statistics, we employ a Kullback-Leibler based discrep-
ancy measure because its sampling distribution can be rea-
sonably approximated by a normal distribution, even for
sample size as small as 20. The property of normal approx-
imation is advantageous because we eventually will need to
decide whether a resulting divergence measure is large or
small. Elaborative simulations to create ad hoc tables of crit-
ical values at different levels of significance or sample sizes
can thus be avoided.

The main idea of this article parallels Viele’s (2000), in
which a mixture of Dirichlet processes is used. In addition
to Berger and Guglielmi (2001), the model embedding ap-
proach to test a parametric model against a nonparamet-
ric alternative has been considered by, for example, Carota
and Parmigiani (1996), who applied a mixture of Dirichlet
processes, and Verdinelli and Wasserman (1998), who uti-
lized a mixture of Gaussian processes. The use of a diver-
gence measure, particularly entropy-based measures such as
the Kullback-Leibler divergence, in the hypothesis testing
framework has also been studied. For example, motivated
by Vasicek’s (1976) paper on sample entropy estimation,
Arizono and Ohta (1989), Dudewicz and van der Meulen
(1981), and Ebrahimi et al. (1992) derived entropy-based
test statistics specifically for tests of normality, uniformity,
and exponentiality, respectively. However, critical values for
these test statistics often depend on, say, the sample size, the
alternative distribution, and some auxiliary parameters and
can be tabulated only through Monte Carlo simulations.

The organization of this paper is as follows: In Sect. 2,
we define Polya trees and mixtures of Polya trees and sum-
marize their relevant properties. In Sect. 3, the proposed test

statistic is introduced, and its theoretical properties are de-
rived. A simulation study to explore the strengths and weak-
nesses of the proposed test statistic appears in Sect. 4. The
application of the proposed statistic is illustrated using net-
work data collected from a student laboratory in Sect. 5, fol-
lowed by concluding remarks in Sect. 6.

2 Polya tree distributions

2.1 Definitions

We follow the notation used by Lavine (1992) to define a
mixture of Polya tree distributions. Let E = {0,1}, E0 = ∅,
Em be the m-fold product E × · · · × E, and E∗ = ⋃∞

0 Em.
Let � = {�m,m = 0,1, . . .} be a separating binary tree of
partitions of real line �0 = �. That is, for the sequence of
partitions �0,�1, . . . of �,

⋃∞
0 �m generates the Borel

sets, and every B ∈ �m+1 is obtained by splitting some
B ′ ∈ �m into two pieces. For all ε = ε1 · · · εm ∈ E∗, let Bε0

and Bε1 be the two pieces into which Bε is split. Hence,
a random probability measure P on � is said to have a
Polya tree distribution, or a Polya tree prior, with parame-
ters � and A, denoted by P ∼ PT(�, A), if there exist non-
negative numbers A = {αε : ε ∈ E∗} and random variables
Y = {Yε : ε ∈ E∗} such that the following conditions hold:

• All random variables in Y are independent;
• For every ε ∈ E∗, Yε has a beta distribution with parame-

ters αε0 and αε1; and
• For every m = 1,2, . . . and every ε ∈ E∗,

P (Bε1···εm) =
m∏

j=1,εj =0

Yε1···εj−1

×
m∏

j=1,εj =1

(1 − Yε1···εj−1),

where the first term in the products is interpreted as Y∅ or
1 − Y∅.

Note that, on the basis of the above conditions, we may de-
rive

E [P (B0)] = 1 − E [P (B1)] = α0

α0 + α1
, (1)

and

E [P (Bε0|Bε)] = 1 − E [P (Bε1|Bε)] = αε0

αε0 + αε1
, (2)

where ε ∈ Em and m = 1,2, . . . .
Let X = {x1, . . . , xn} be a random sample drawn from a

random probability measure P ∼ PT(�, A). The posterior
distribution PT(�, B|X) can be easily obtained by updating
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the parameter A such that βε = αε +nε , where ε ∈ E∗, βε ∈
B, αε ∈ A, and nε is the number of observations in X that
belong to Bε .

Moreover, the distribution of a random probability mea-
sure P is said to be a mixture of Polya trees if there is a
random variable � (called the index variable) with mixing
distribution H and Polya tree parameters (�θ , Aθ ) such that
[P |� = θ ] ∼ PT(�θ , Aθ ). Finally, for a given θ ∈ �, the
posterior distribution of [P |θ,X] is obtained by updating
the parameter Aθ such that βε = αε + nε and is denoted by
PT(�θ , Bθ |X).

2.2 Constructing a Polya tree

Given a continuous distribution F0(x|θ) with an inverse
function F−1

0 (x|θ), we are interested in constructing a Polya
tree PT(�θ , Aθ ) such that, for a fixed θ ,

E[P |θ ] = F0(x|θ), (3)

where [P |θ ] ∼ PT(�θ , Aθ ). That is, we wish the “center”
of the probability measure P to be F0.

Lavine (1992) described a canonical construction of
Polya trees such that (3) is true. Conditional on � = θ , we
define

�θ,m =
{[

F−1
0

(
k

2m

∣
∣
∣θ

)

,F−1
0

(
k + 1

2m

∣
∣
∣θ

)]

,

k = 0,1, . . . ,2m − 1

}

, (4)

and

Aθ,m =
{
αε = m2, ε ∈ Em

}
. (5)

Thus, we obtain a Polya tree with parameters �θ = {�θ,m,

m = 1,2, . . .} and Aθ = {Aθ,m,m = 1,2, . . .} that satisfies
(3). Note that the canonical construction yields a P that is
absolutely continuous with a probability of one and enjoys
the best theoretical properties, such as invariance, as dis-
cussed by Lavine (1992). For different ways of construct-
ing Polya trees that are tailored to the specific data at hand,
we refer readers to Ferguson (1974), Mauldin et al. (1992),
Lavine (1992, 1994), and Walker and Muliere (1997).

3 The proposed discrepancy measure logρ

3.1 Derivation: case when θ is known

Recall that F0(x|θ) is the posited model and that we wish
to assess whether F0 is still adequate in light of recent
observations by measuring the “distance” between F0 and

an unspecified alternative Fa . To derive Fa , we first con-
struct a Polya tree PT(�θ , Aθ ) using the canonical con-
struction such that the expected value of the Polya tree is
F0(x|θ). We then update the Polya tree to obtain the pos-
terior PT(�θ , Bθ |X) and define the nonparametric alterna-
tive as the expected value of the updated Polya tree (i.e.,
Fa = E[P |θ,X]), where [P |θ,X] ∼ PT(�θ , Bθ |X).

Let dF0 and dFa be the Radon-Nikodym derivatives of
F0 and Fa , respectively, with regard to the Lebesgue mea-
sure. The Kullback-Leibler divergence is defined as

ρ(F0,Fa|θ,X) =
∫

log
dF0

dFa

dF0 (6)

and is considered here to measure the discrepancy between
F0 and Fa . According to Property 1, the divergence measure
ρ can be estimated by

ρm(F0,Fa|θ,X) =
∑

ε∈Em

F0(Bε|θ) log
F0(Bε|θ)

Fa(Bε)
. (7)

Property 1 (Chaganty and Karandikar 1996) Let PT(�θ ,

Aθ ) and PT(�θ , Bθ |X) be the Polya tree prior and poste-
rior, respectively, of a random probability measure P . Let
m′ < m. Since �θ,m, as defined in (4), is a finer partition
than �θ,m′ , in that each set of �θ,m′ can be written as the
union of disjoint sets in �θ,m, we find that

ρ(F0,Fa|θ,X) = lim
m→∞ρm(F0,Fa|θ,X), (8)

where F0 is the null posited model defined in (3) and Fa is
a nonparametric alternative defined as the expected value of
the updated Polya tree.

Instead of specifying an entire Polya tree, Property 1 en-
ables us to approximate ρ with a partially specified Polya
tree, namely, a Polya tree that is only updated to a pre-
determined level m. Thus, calculations and computer pro-
grams may be simplified, and the error of approximation can
be either estimated or bounded.

Inevitably, we are faced with a decision of whether a par-
ticular divergence measure is too large to justify the use of
the posited model F0. We conducted a simulation study to
explore the sampling distribution of logρm. Random sam-
ples of different sizes were generated from a uniform distri-
bution F0 with the domain [0,1), as denoted by U(0,1). For
each random sample, the Polya tree was updated to a level
m to obtain the alternative Fa and the test statistic logρm.
In Table 1, we report the means, standard deviations, and
percentiles of logρm for m = 5, 10, and 12, as well as the
sample size between 10 and 1000. By comparing the simu-
lated percentiles to those of a standard normal distribution,
we can see that the sampling distribution of logρm can be
reasonably approximated by a normal distribution for sam-
ple size as small as 20. The simulation also indicates that
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Table 1 Sampling distribution of logρm(F0,Fa |θ,X), where X ∼ Uniform(0,1). 5000 random samples were drawn for each sample size n and
the updating level m

n Mean Std. Percentiles (Standardized logρm)

Dev. 0.5% 1% 2.5% 5% 10% 90% 95% 97.5% 99% 99.5%

m = 12

10 −3.26 0.91 −2.43 −2.42 −2.16 −1.95 −0.99 1.48 1.59 1.72 2.29 2.34

20 −3.39 0.75 −2.55 −2.29 −1.92 −1.70 −1.31 1.27 1.63 1.85 2.29 2.35

30 −3.52 0.68 −2.54 −2.34 −1.96 −1.66 −1.28 1.30 1.64 1.95 2.23 2.46

50 −3.62 0.58 −2.62 −2.30 −2.00 −1.67 −1.29 1.28 1.63 1.91 2.26 2.51

100 −3.86 0.46 −2.56 −2.37 −2.03 −1.71 −1.31 1.26 1.59 1.90 2.24 2.45

200 −4.07 0.38 −2.60 −2.36 −1.97 −1.67 −1.30 1.28 1.59 1.92 2.26 2.45

500 −4.35 0.28 −2.50 −2.32 −1.95 −1.66 −1.29 1.27 1.66 1.96 2.29 2.40

1000 −4.57 0.22 −2.55 −2.25 −1.98 −1.67 −1.30 1.28 1.65 1.94 2.28 2.59

m = 10

10 −3.26 0.91 −2.43 −2.42 −2.16 −1.95 −0.99 1.48 1.59 1.72 2.29 2.34

20 −3.39 0.75 −2.55 −2.29 −1.92 −1.70 −1.31 1.27 1.63 1.85 2.29 2.35

30 −3.52 0.68 −2.54 −2.34 −1.96 −1.66 −1.28 1.30 1.64 1.95 2.23 2.46

50 −3.62 0.58 −2.62 −2.30 −2.00 −1.67 −1.29 1.28 1.63 1.91 2.26 2.51

100 −3.86 0.46 −2.56 −2.37 −2.03 −1.71 −1.31 1.26 1.59 1.90 2.24 2.45

200 −4.07 0.38 −2.60 −2.36 −1.97 −1.67 −1.30 1.28 1.59 1.92 2.26 2.45

500 −4.35 0.28 −2.50 −2.33 −1.95 −1.66 −1.29 1.27 1.66 1.96 2.29 2.40

1000 −4.57 0.22 −2.56 −2.25 −1.99 −1.67 −1.30 1.28 1.65 1.94 2.28 2.59

m = 5

10 −3.26 0.91 −2.43 −2.42 −2.16 −1.95 −0.99 1.48 1.59 1.72 2.29 2.34

20 −3.40 0.76 −2.56 −2.30 −1.92 −1.70 −1.31 1.27 1.63 1.85 2.28 2.35

30 −3.52 0.68 −2.55 −2.35 −1.96 −1.66 −1.28 1.30 1.64 1.95 2.23 2.46

50 −3.63 0.58 −2.63 −2.31 −2.01 −1.68 −1.29 1.27 1.63 1.91 2.25 2.50

100 −3.88 0.47 −2.60 −2.39 −2.05 −1.71 −1.32 1.25 1.58 1.89 2.22 2.44

200 −4.12 0.40 −2.68 −2.43 −1.99 −1.70 −1.29 1.27 1.59 1.90 2.22 2.41

500 −4.48 0.32 −2.57 −2.36 −2.04 −1.68 −1.29 1.24 1.62 1.90 2.20 2.33

1000 −4.83 0.29 −2.76 −2.50 −2.05 −1.75 −1.30 1.26 1.60 1.91 2.20 2.40

Percentiles under −2.58 −2.33 −1.96 −1.65 −1.28 1.28 1.65 1.96 2.33 2.58

standard normal

the resulting summary statistics are insensitive to the choice
of m, given m ≥ 10. Note that the closed form formulas for
the mean and standard deviation of logρm are difficult to de-
rive. We approximate the formulas by running a regression
of the means and standard deviations from the simulation
with m = 10 for the sample sizes 10 ≤ n ≤ 1000. We obtain

μ̂0 = − exp(1.01 + 0.07 logn), and (9)

log σ̂0 = 0.65 − 0.31 logn, (10)

where the R2 statistic, defined as the sum of squares due
to regression divided by the total sum of squares, for both
regression equations exceeds 0.996.

3.2 Derivation: case when θ is unknown

An intuitive approach to dealing with the case of unknown
parameter θ is to construct the alternative Fa with its max-
imum likelihood estimate (M.L.E.) θ̂ . As n increases, θ̂ →
θ and the Kullback-Leibler divergence ρ can be approxi-
mated by ρm(F0,Fa|θ̂ ,X). To demonstrate that the distri-
bution of logρ can be fairly approximated by a normal dis-
tribution, we generated 5000 random samples of size n ∈
{10,20,30,50,100,200,500,1000} from a standard nor-
mal distribution, i.e., X ∼ N(μ = 0, σ = 1), and calculate
logρ with m = 10 under four possible scenarios: (1) both
μ and σ are known (Case 0), (2) μ is unknown but σ is
known (Case 1), (3) μ is known but σ is unknown (Case 2),
and (4) neither μ nor σ is known (Case 3). The unknown
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Table 2 Sampling distribution of logρm(F0,Fa |X) with m = 10 levels. 5000 samples were generated from a standard normal distribution

n Mean Std. Percentiles (Standardized logρm)

Dev. 0.5% 1% 2.5% 5% 10% 90% 95% 97.5% 99% 99.5%

Case 0. Both μ and σ are known

10 −3.29 0.92 −2.36 −2.35 −2.09 −1.89 −1.44 1.48 1.59 1.73 2.29 2.34

20 −3.40 0.75 −2.67 −2.30 −1.95 −1.73 −1.33 1.26 1.54 1.85 2.29 2.40

30 −3.50 0.66 −2.53 −2.30 −2.00 −1.70 −1.30 1.29 1.61 1.89 2.23 2.45

50 −3.64 0.58 −2.56 −2.32 −2.02 −1.68 −1.29 1.27 1.63 1.93 2.27 2.44

100 −3.85 0.47 −2.49 −2.32 −2.02 −1.69 −1.31 1.29 1.62 1.93 2.25 2.51

200 −4.06 0.38 −2.66 −2.38 −1.98 −1.65 −1.30 1.29 1.64 1.95 2.31 2.48

500 −4.35 0.28 −2.63 −2.37 −2.02 −1.70 −1.31 1.26 1.63 1.91 2.29 2.51

1000 −4.57 0.22 −2.61 −2.35 −1.98 −1.67 −1.27 1.28 1.60 1.94 2.31 2.61

Case 1. μ is unknown but σ is known

10 −3.83 0.85 −1.99 −1.94 −1.93 −1.70 −1.60 1.37 1.64 1.72 1.94 2.10

20 −3.82 0.72 −2.91 −2.41 −1.93 −1.62 −1.26 1.30 1.58 1.88 2.18 2.32

30 −3.83 0.64 −2.53 −2.35 −1.93 −1.64 −1.29 1.31 1.67 1.89 2.18 2.42

50 −3.91 0.57 −2.44 −2.24 −1.93 −1.68 −1.31 1.29 1.64 1.94 2.28 2.50

100 −4.04 0.46 −2.51 −2.30 −1.94 −1.68 −1.28 1.28 1.67 1.97 2.32 2.58

200 −4.18 0.37 −2.53 −2.34 −1.98 −1.64 −1.29 1.31 1.67 1.96 2.28 2.48

500 −4.43 0.28 −2.56 −2.35 −1.99 −1.65 −1.29 1.31 1.63 1.89 2.21 2.43

1000 −4.61 0.22 −2.56 −2.33 −1.99 −1.62 −1.31 1.26 1.63 1.95 2.38 2.60

Case 2. μ is known but σ is unknown

10 −3.37 0.96 −2.21 −2.17 −1.96 −1.87 −1.55 1.50 1.61 1.74 2.27 2.33

20 −3.49 0.78 −2.60 −2.32 −1.93 −1.66 −1.37 1.29 1.57 1.91 2.34 2.46

30 −3.60 0.68 −2.55 −2.29 −1.95 −1.65 −1.30 1.30 1.65 1.94 2.22 2.51

50 −3.73 0.59 −2.55 −2.36 −2.01 −1.66 −1.29 1.29 1.61 1.92 2.26 2.49

100 −3.94 0.48 −2.53 −2.32 −1.99 −1.67 −1.29 1.28 1.64 1.91 2.26 2.50

200 −4.13 0.38 −2.58 −2.32 −1.99 −1.63 −1.29 1.28 1.60 1.92 2.34 2.54

500 −4.40 0.28 −2.55 −2.32 −2.00 −1.67 −1.29 1.28 1.62 1.95 2.29 2.47

1000 −4.60 0.22 −2.75 −2.41 −1.98 −1.61 −1.28 1.25 1.65 1.95 2.27 2.54

Case 3. Neither μ nor σ is known

10 −3.98 0.86 −1.78 −1.78 −1.72 −1.67 −1.44 1.25 1.73 1.85 1.89 2.07

20 −3.96 0.71 −3.09 −2.66 −1.85 −1.55 −1.20 1.29 1.63 1.91 2.29 2.41

30 −3.96 0.64 −2.63 −2.40 −1.96 −1.59 −1.28 1.30 1.63 1.98 2.26 2.52

50 −4.03 0.57 −2.51 −2.27 −1.97 −1.67 −1.28 1.29 1.64 2.00 2.32 2.57

100 −4.15 0.46 −2.59 −2.33 −1.99 −1.67 −1.28 1.27 1.62 1.96 2.35 2.51

200 −4.26 0.37 −2.61 −2.33 −1.96 −1.65 −1.25 1.26 1.64 1.97 2.25 2.49

500 −4.48 0.28 −2.47 −2.29 −1.93 −1.66 −1.30 1.30 1.65 1.96 2.28 2.51

1000 −4.65 0.22 −2.58 −2.26 −1.94 −1.64 −1.27 1.28 1.66 1.97 2.31 2.56

Percentiles under −2.58 −2.33 −1.96 −1.65 −1.28 1.28 1.65 1.96 2.33 2.58

standard normal

parameters are replaced with the corresponding maximum
likelihood estimates and are used to construct a Polya tree
prior. The simulation results are given in Table 2. Similar
to the findings in Table 1, the asymptotic normality can be
reasonably obtained for sample size as small as 20 across all

four cases. Again, the closed form formulas for the asymp-
totic mean and variance of logρm, similar to (9) and (10), are
not available. We approximate the mean and standard devi-
ation of logρm, with m = 10, by running a regression of the
simulated means and standard deviations on the sample size
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Table 3 The mean and variance estimators of logρm(F0,Fa |θ,X) as
a function of the sample size n, where m = 10 and θ = {μ,σ } is re-
placed by its maximum likelihood estimate for Cases 1, 2, and 3. All
estimates of regression coefficients are significant with the p-value <

0.0001

Case Estimator R2

The mean estimators

0. μ is known μ̂0 = − exp(1.01 + .07 logn) .997

σ is known

1. μ is unknown μ̂1 = −√
13.64 + .25

√
n .988

σ is known

2. μ is known μ̂2 = − exp(1.05 + .07 logn) .998

σ is unknown

3. μ is unknown μ̂3 = −√
14.85 + .22

√
n .987

σ is unknown

The standard deviation estimators

0. μ is known log σ̂0 = .65 − .31 logn .999

σ is known

1. μ is unknown log σ̂1 = .54 − .29 logn .996

σ is known

2. μ is known log σ̂2 = .71 − .32 logn .999

σ is unknown

3. μ is unknown log σ̂3 = .56 − .30 logn .997

σ is unknown

10 ≤ n ≤ 1000. Table 3 summarizes the approximate means
and standard deviations for all four cases. Equations (9) and
(10) are certainly identical to the mean and standard devi-
ation approximation formulas under Case 0 because both
parameters μ and σ are known. All but two regression fits
result in a R2 greater than 0.99.

From a Bayesian perspective, we may estimate the (log)
Kullback-Leibler divergence logρ(F0,Fa|X) using

logρ∗
m(F0,Fa|X) =

∫

θ

logρm(F0,Fa|θ,X) × H(θ |X)dθ,

(11)

where H(θ |X) is the posterior distribution of �. An ana-
lytical solution to (11) is difficult to derive except in a few
special cases (e.g., Goutis and Robert 1998), and thus, the
use of the Monte Carlo technique may be considered. A ran-
dom sample of θ1, . . . , θL is generated from H(θ |X). For
each θj , a Polya tree prior is constructed with F0(x|θj ), and
logρm(F0,Fa|θj ,X) is calculated using (7). Finally, logρ∗

m

can be approximated by [∑L
j=1 logρm(F0,Fa|θj ,X)]/L.

Alternatively, we may consider the posterior predictive
assessment technique described by Gelman et al. (1996).
Again, a random sample of θ1, . . . , θL is generated from
the posterior distribution H(θ |X). Let Xrep be replicated

data that could have been observed under the posited model
F0. For each θj , we construct a Polya tree prior and draw
a replicated data X

rep
j from F0(x|θj ). We then obtain two

updated Polya tree posterior distributions from the observed
and simulated data, X and X

rep
j , respectively, and, as a re-

sult, two discrepancy measures, logρm(F0,Fa|θj ,X) and
logρm(F0,Fa|θj ,X

rep
j ). With L pairs of discrepancy mea-

sures, we can estimate the posterior predictive p-value (Ru-
bin 1984; Meng 1994) by the proportion of the L pairs for
which logρm(F0,Fa|θj ,X) < logρm(F0,Fa|θj ,X

rep
j ).

A similar simulation study was conducted to investigate
the distribution of logρ with the use of non-informative pri-
ors under all four cases. For each case, random samples of
various sizes are generated from a standard normal distri-
bution to update the posterior distribution H(θ |X) of the
parameter �. L = 250 θs are generated from H(θ |X) to
construct Polya tree priors. The non-informative priors con-
sidered for each cases are H(μ) ∝ constant, H(σ 2) ∝ 1/σ 2,
and H(μ,σ 2) ∝ 1/σ 2, for Cases 1, 2, and 3, respectively.

For a large sample, H(θ |X) degenerates toward θ and
one may consider substituting θ with its M.L.E. However,
the simulation shows that the sample size required for the
normal approximation to be as good as the M.L.E. case is
rather large and, in general, the distribution of logρm is
skewed to the right even for sample size as large as 200.
This may be attributed to the choice of L = 250 in our sim-
ulation. A larger sample of θ1, . . . , θL from the posterior dis-
tribution H(θ |X) may provide a more accurate description
of the distribution; however, the computational time required
for sampling additional θs, on top of the already computa-
tionally intensive calculation of logρm, makes the Bayesian
consideration of unknown θ less practical. As a results, we
will focus on the M.L.E. approach in the following sections.
The simulation results are available upon request.

3.3 An illustration

Consider the logrithms of 100 stress-rupture lifetimes of
Kevlar pressure vessels on p. 183 of Andrews and Herzberg
(1985). Evans and Swartz (1994) fitted the data to the fam-
ily of polynomial-normal densities and concluded that “it is
clear that this is a highly non-normal dataset.” Verdinelli and
Wasserman (1998) calculated a Bayes factor of 0.10 mean-
ing that the odds are 10 to 1 against the underlying distri-
bution being normal. Using the proposed test procedure, we
first update the Polya tree prior to m = 2, 5, 10, 15, and 20
levels and calculate the corresponding logρm. The discrep-
ancy measure logρm are then standardized using the μ̂i and
σ̂i formulas, i = 0,1,2,3, in Table 3. For Cases 0, 1 and 2,
the assumed known parameter values, either μ, σ , or both,
are set to be equal to the sample mean and/or sample stan-
dard deviation. The summary in Table 4 strongly supports
the conclusion of prior studies. That is, the data are not from
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Table 4 An illustration using the logrithms of 100 stress-rupture life-
times of Kevlar pressure vessels

Case i μ̂i σ̂i m logρm z statistic p-value

0 −3.790 0.460 2 −3.365 0.924 0.1776

5 −2.913 1.909 0.0281

10 −2.905 1.926 0.0271

15 −2.905 1.926 0.0271

20 −2.905 1.926 0.0271

1 −4.017 0.451 2 −3.365 1.445 0.0742

5 −2.913 2.448 0.0072

10 −2.905 2.465 0.0069

15 −2.905 2.465 0.0069

20 −2.905 2.465 0.0069

2 −3.945 0.466 2 −3.365 1.244 0.1068

5 −2.913 2.215 0.0134

10 −2.905 2.231 0.0128

15 −2.905 2.231 0.0128

20 −2.905 2.231 0.0128

3 −4.129 0.440 2 −3.365 1.737 0.0412

5 −2.913 2.766 0.0028

10 −2.905 2.784 0.0027

15 −2.905 2.784 0.0027

20 −2.905 2.784 0.0027

a normal distribution. Other than m = 2, all cases show large
z statistics and convincing p-values. Since the discretization
is not fine enough for m = 2, we do not expect logρ2 to
be able to detect the discrepancy. In addition, this example
again supports our assertion that logρm is relatively robust
to the choice of m, given m ≥ 10. The resulting logρm val-
ues are identical to 4 decimal places for m ≥ 10.

4 Power comparison

4.1 Test for the uniform distribution

The Monte Carlo simulation of the power of the proposed
test procedure was carried out for several alternative dis-
tributions. For each sample size 5 ≤ n ≤ 500, 5,000 sam-
ples of size n were generated from U(0,1) (i.e., the posited
model F0 is assumed to be uniform). The Polya tree prior
was constructed using the canonical construction and then
updated to the m = 10th level to obtain the Polya tree
posterior. The alternative model Fa was derived by taking
the expected value of the Polya tree posterior, and the test
statistic logρm(F0,Fa|X) was calculated. At the 5% signif-
icance level, the empirical power of the proposed test proce-
dure was estimated by the proportion of the 5,000 samples
that falls into the critical region σ̂−1

0 (logρm − μ̂0) > 1.645,
where μ̂0 and σ̂0 are defined in (9) and (10).

Independent samples were generated from the following
continuous distributions

Ak(x) = 1 − (1 − x)k if 0 ≤ x ≤ 1; (12)

Bk(x) =
{

2k−1xk if 0 ≤ x ≤ 0.5,

1 − 2k−1(1 − x)k if 0.5 ≤ x ≤ 1; (13)

Ck(x) =
{

0.5 − 2k−1(0.5 − x)k if 0 ≤ x ≤ 0.5,

0.5 + 2k−1(x − 0.5)k if 0.5 ≤ x ≤ 1; and
(14)

Dk(x) = x + 1

kπ
sin(kxπ)

if 0 ≤ x ≤ 1 and k is an integer. (15)

As described by Stephens (1974), Ak provides points closer
to zero than would be expected by the hypothesis of unifor-
mity and, thus, can be interpreted as a shift in the mean. Both
Bk and Ck , in contrast, can be considered changes toward a
smaller and a larger variance, respectively, because Bk gives
more points near 0.5, whereas Ck provides two clusters close
to 0 and 1. Dk , which has been studied by Swartz (1992)
and Ledwina (1994), is designed to represent “spiky” data
that can arise in mixtures of distributions. Figure 1 illustrates
these densities with selected values of k.

The proposed test procedure was compared with four
well-known test statistics for testing uniformity: Kolmogo-
rov-Smirnov D, Cramér-von Mises W 2, Watson U2, and
Anderson-Darling A2 statistics. We refer readers to d’Agos-
tino and Stephens (1986, Sect. 4.2) for the definitions, com-
putational formulas, and critical values of these test statis-
tics. The simulation results are summarized in Table 5.

The results shown in the table indicate that the power of
the proposed test statistic logρm increases rather quickly as
n increases with respect to the powers of D, W 2, and A2.
For example, for C1.5, the power of logρm is slightly higher
than that of W 2 but lower than those of D and A2 for n = 30.
However, as n increases to 50, the power of logρm increases
more than twofold and exceeds those of D, W 2, and A2.
Similar examples can be found in the cases of Ak , Bk , and
Dk distributions.

For Ak , which represents a shift in the mean, logρm

clearly dominates U2 in all sample sizes. Although it does
not have a higher power than do D, W 2, and A2, the pro-
posed test procedure is still compatible. Even for n = 30,
the difference in power between logρm and W 2 under A1.5

is only 0.07. The difference becomes trivial as n increases.
For Bk and Ck , which represent changes in variance, the
Watson statistic U2 dominates all test statistics. This is to
be expected, because U2 has been shown in several power
comparison articles (e.g., Quesenberry and Miller 1977) to
perform well in detecting changes in variance. The proposed
logρm, however, provides the same stability as U2 regard-
less of whether the change is towards a smaller (Bk) or
larger (Ck) variance. This stability is not observed for the
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Fig. 1 Graphs of Ak , Bk , Ck , and Dk . Except for Dk , densities with the parameters k = 1.5 and k = 2.0 are plotted as solid and dotted lines,
respectively. For Dk , D3.0 is represented as the solid line and D5.0 as the dotted line

test statistics D, W 2, and A2, all of which have lower pow-
ers than logρm in almost all cases. Finally, the simulation
shows that the proposed test procedure has distinctly higher
power than do the other test statistics in the case of “spiky”
Dk . In many cases, the power of logρm can be several times
higher than that of its competitors.

4.2 Tests for the normal distribution

If the parameter value θ in the posited model F0(θ) is speci-
fied, then the measure of discrepancy between F0(θ) and the
non-parametric alternative Fa(θ), ρ(F0,Fa), can be restated
as ρ(U0,Ua), where U0 = F0(θ) and Ua = Fa(θ) through

the probability integral transformation. As a result, the con-
clusions of the power comparison in the previous section
will still hold. To illustrate, 1000 samples of size n = 30,50,
and 100 were generated from a normal distribution with a
given mean μ and a given standard deviation σ , i.e. X ∼
N(μ,σ), θ = {μ,σ }. Setting H0 : F0(θ) = Normal(0,1),
we varied −0.4 ≤ μ ≤ 0.4 and 0.65 ≤ σ ≤ 1.45 to exam-
ine the power of ρ under the change of location and vari-
ation, similar to Ak , Bk , and Ck in the previous section.
For each sample, the observation xi is first converted to
ui = F0(xi |μ = 0, σ = 1) and the nonparametric alterna-
tive Ua is then updated to level m based on u1, . . . , un. The
discrepancy measure logρm is then calculated based on (7),
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Table 5 Powers of the Proposed logρm, Kolmogorov-Smirnov D,
Cramér-von Mises W 2, Watson U2, and Anderson-Darling A2 Test
Statistics. The posited model is assumed to be uniform, H0 : F0 ∼
Uniform(0,1) and Ak , Bk , Ck and Dk are the true distribution F that
generate the sample X

n True F logρm D W 2 U2 A2

30 A1.5 0.39 0.40 0.46 0.23 0.45

A2.0 0.87 0.87 0.92 0.65 0.92

B1.5 0.17 0.09 0.07 0.38 0.07

B2.0 0.51 0.24 0.25 0.85 0.30

C1.5 0.16 0.19 0.14 0.37 0.20

C2.0 0.51 0.44 0.39 0.86 0.55

D3.0 0.74 0.25 0.15 0.62 0.24

D5.0 0.32 0.13 0.07 0.18 0.11

50 A1.5 0.61 0.62 0.70 0.39 0.70

A2.0 0.99 0.99 0.99 0.89 1.00

B1.5 0.35 0.15 0.13 0.58 0.17

B2.0 0.88 0.51 0.63 0.98 0.76

C1.5 0.35 0.27 0.21 0.59 0.29

C2.0 0.87 0.68 0.70 0.99 0.82

D3.0 0.98 0.43 0.34 0.92 0.59

D5.0 0.71 0.19 0.10 0.38 0.17

100 A1.5 0.90 0.91 0.95 0.70 0.95

A2.0 1.00 1.00 1.00 1.00 1.00

B1.5 0.75 0.35 0.41 0.90 0.58

B2.0 1.00 0.94 0.99 1.00 1.00

C1.5 0.76 0.49 0.47 0.90 0.58

C2.0 1.00 0.96 0.99 1.00 0.99

D3.0 1.00 0.89 0.96 1.00 1.00

D5.0 1.00 0.36 0.19 0.90 0.45

and is standardized using the mean and standard deviation
formulas for Case 0 in Table 3. The discrepancy between F0

and Fa is considered to be large if the standardized logρm is
greater than 1.645 for the 5% significance level. Tables 6, 7,
and 8 summarize the power of logρm, D, W 2, U2, and A2

for n = 30, 50, and 100, respectively, under the column
heading H0 : F0(θ) = Normal(μ = 0, σ = 1). The conclu-
sions are similar to those discussed in the previous section
where the parameter θ is assumed known. Specifically, the
test statistic U2 clearly outperforms the others in the case
of changing variation σ . The power of the proposed logρm

in the case of varying variation is higher than those of D

and W 2. Although the power of A2 is higher than that of
logρm as σ increases, it falls short of the power of logρm

as σ decreases. logρm clearly outperforms U2 in the case of
varying μ, but its performance in detecting the mean shift is
not better than that of D, W 2, and A2.

If the parameter values μ and σ in the above simula-
tion are unspecified, we propose to estimate the parameters
with their corresponding maximum likelihood estimates, μ̂

and σ̂ , to ease the computational burden of the proposed
logρm as discussed in Sect. 3 before applying the proba-
bility integral transformation. The resulting logρm should
be standardized, however, using the mean and standard de-
viation formulas for Case 3 in Table 3, and the standard-
ized discrepancy between F0(θ̂) and Fa(θ̂) is considered to
be large if it exceeds 1.645 for the 5% significance level.
Hence, the number of false rejection is expected to be around
50 out of 1000 samples in the simulation. The results re-
ported in Tables 6, 7, and 8 under the column heading
H0 : F0(θ̂) = Normal(μ̂, σ̂ ) are in line with the expectation
for various sample sizes and parameter values. The simula-
tion also highlights two advantages of the proposed logρm

over the other test statistics. First, modifications to the test
statistics D, W 2, U2 and A2 are required for the case of un-
specified θ , see d’Agostino and Stephens (1986, Table 4.7);
whereas modification is not required of the proposed logρm.
Second, as demonstrated in Table 2, normal approximation
to the sampling distribution still holds for Case 3, as a result,
the p-value of the discrepancy measure logρm can be easily
approximated.

4.3 Summary of power comparison

The power of several test statistics in detecting shifts in
mean or changes in variance was examined in this section.
Although none of the test statistics clearly dominate the oth-
ers in all cases considered, the proposed logρm provides
a stable performance. When compared to logρm, it is not
surprising that U2 performs well in detecting changes in
variance but it falls short in detecting mean shift. Similarly,
while A2 enjoys higher power in detecting increasing vari-
ance, it suffers in detecting decreasing variance. Both D and
W 2 were designed to detect mean shift and did have higher
power in those cases; however, they did not compete well
in detecting changes in variance. Furthermore, in the case
of “spiky” Dk when both the mean and variance vary to-
gether, the proposed logρm clearly outperforms the other
test statistics. In real life situations where a change in mean
or in variance is typically not known a priori, the stability
of the proposed logρm provides a reasonable alternative for
assessing model adequacy.

5 Adequacy of the normal model for network data

A popular packet-train model (e.g., Leland et al. 1994; Will-
inger et al. 1997, 1998) assumes that the (log-transformed)
lengths of packet transmission between a source and destina-
tion pair during an “active” state (or ON-period) and “idle”
state (or OFF-period) are governed by two distributions,
FON and FOFF , respectively. Several studies have demon-
strated that the tails of FON and FOFF deviate from that
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Table 6 Powers of the Proposed logρm, Kolmogorov-Smirnov D, Cramér-von Mises W 2, Watson U2, and Anderson-Darling A2 Test Statistics.
1000 independent samples of size n = 30 were generated and the Polya tree was updated to level m = 10. Significance level = 5%

True distribution Case when θ is specified Case when θ is estimated by M.L.E.

X ∼ Normal(μ,σ ) H0 : F0(θ) = Normal(μ = 0, σ = 1) H0 : F0(θ̂ ) = Normal(μ̂, σ̂ )

μ σ logρm D W 2 U2 A2 logρm D W 2 U2 A2

0.00 0.65 0.294 0.099 0.094 0.630 0.116 0.055 0.048 0.044 0.047 0.044

0.00 0.75 0.126 0.075 0.051 0.300 0.048 0.058 0.048 0.049 0.048 0.053

0.00 0.85 0.071 0.047 0.042 0.119 0.034 0.041 0.048 0.056 0.050 0.060

0.00 0.95 0.040 0.047 0.048 0.056 0.042 0.042 0.048 0.049 0.051 0.046

0.00 1.00 0.052 0.052 0.055 0.050 0.052 0.041 0.053 0.048 0.040 0.047

0.00 1.05 0.044 0.049 0.049 0.061 0.054 0.042 0.053 0.058 0.053 0.056

0.00 1.15 0.066 0.080 0.072 0.097 0.124 0.044 0.066 0.062 0.062 0.062

0.00 1.25 0.089 0.106 0.106 0.187 0.222 0.042 0.045 0.054 0.057 0.052

0.00 1.35 0.119 0.148 0.155 0.306 0.346 0.047 0.051 0.051 0.051 0.052

0.00 1.45 0.152 0.202 0.214 0.447 0.526 0.051 0.039 0.039 0.041 0.041

0.40 1.00 0.397 0.472 0.528 0.242 0.546 0.058 0.043 0.057 0.054 0.056

0.30 1.00 0.224 0.270 0.312 0.139 0.326 0.044 0.053 0.055 0.056 0.052

0.20 1.00 0.151 0.181 0.208 0.107 0.215 0.057 0.042 0.043 0.046 0.040

0.10 1.00 0.060 0.070 0.074 0.063 0.082 0.039 0.046 0.058 0.054 0.057

0.05 1.00 0.044 0.050 0.054 0.053 0.047 0.040 0.041 0.048 0.047 0.042

0.00 1.00 0.052 0.052 0.055 0.050 0.052 0.041 0.053 0.048 0.040 0.047

−0.05 1.00 0.069 0.074 0.071 0.058 0.072 0.047 0.050 0.047 0.047 0.042

−0.10 1.00 0.074 0.081 0.080 0.059 0.079 0.056 0.050 0.055 0.049 0.061

−0.20 1.00 0.144 0.174 0.200 0.100 0.200 0.052 0.059 0.051 0.051 0.064

−0.30 1.00 0.240 0.287 0.348 0.150 0.361 0.036 0.039 0.040 0.041 0.043

−0.40 1.00 0.393 0.451 0.525 0.237 0.548 0.046 0.068 0.053 0.050 0.057

of a normal distribution, and the classical queuing assump-
tion is not appropriate. In this section, we apply the pro-
posed logρm to measure the discrepancy between F ’s and
the normal distribution and identify the source-destination
pairs whose underlying distributions most deviate from the
normal distributions.

We collected a traffic trace (data set) from the student
computer laboratory at the author’s host college. The trace,
which consists of a total of 1,420,758 packets and 196
megabytes of data, contains the time stamp and source-
destination addresses of each packet in and out of a server
(source) that connects to 174 computers (destinations) in the
student laboratory. The aggregate trace is separated into 174
individual traces, each of which represents the traffic flow
between the server and a host computer.

In the following analysis, we define an OFF-period of a
trace as any intertrain gap longer than a threshold (t sec-
onds) that does not contain any packet transmission. In turn,
this definition defines the ON-period (packet-train length).
Two thresholds, t = 2 seconds and t = 0.075 seconds, are
considered. Due to lack of packet transmission in some of
the source-destination pairs, we only analyze and report the
findings on the 100 most active source-destination pairs,

which account for more than 95% of total packets recorded.
Table 9 provides summary statistics of the lengths (in sec-
onds) of intertrain gaps during the OFF period and the
lengths (in seconds) of packet trains during the ON period
from the 100 most active source-destination pairs. There are
at least 2475 records in the ON period but the sample sizes
vary between 20 and 953 for t = 0.075 and between 3 and
400 for t = 2.

By assuming the posited model is a normal distribution,
i.e., the log-transformed lengths during the ON and OFF
periods are normally distributed, we proceed to calculate
the proposed logρm statistic to quantify the discrepancy be-
tween the posited model and its nonparametric alternative.
Table 10 reports the testing results of the FON and FOFF

for all 100 source-destination Paris under t = 0.075, t = 2,
m = 10 and the significance level α = 5%. Case 0 assumes
the parameters are known and equal to the sample mean and
sample standard deviation whereas Case 3 considers both
parameters are unknown. As a result, different formulas are
used (see Table 3) to standardized logρm. The table clearly
shows that the FON distribution of each source-destination
pair and almost every FOFF under t = 0.075 significantly
deviate from normal. However, for t = 2, we do not have
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Table 7 Powers of the Proposed logρm, Kolmogorov-Smirnov D, Cramér-von Mises W 2, Watson U2, and Anderson-Darling A2 Test Statistics.
1000 independent samples of size n = 50 were generated and the Polya tree was updated to level m = 10. Significance level = 5%

True distribution Case when θ is specified Case when θ is estimated by M.L.E.

X ∼ Normal(μ,σ ) H0 : F0(θ) = Normal(μ = 0, σ = 1) H0 : F0(θ̂ ) = Normal(μ̂, σ̂ )

μ σ logρm D W 2 U2 A2 logρm D W 2 U2 A2

0.00 0.65 0.604 0.260 0.304 0.886 0.449 0.041 0.049 0.049 0.050 0.051

0.00 0.75 0.251 0.109 0.096 0.494 0.122 0.049 0.040 0.046 0.045 0.045

0.00 0.85 0.094 0.059 0.042 0.174 0.040 0.052 0.051 0.053 0.049 0.053

0.00 0.95 0.059 0.045 0.036 0.066 0.029 0.062 0.051 0.054 0.054 0.057

0.00 1.00 0.043 0.053 0.040 0.050 0.048 0.035 0.055 0.061 0.055 0.057

0.00 1.05 0.052 0.062 0.063 0.064 0.076 0.052 0.051 0.050 0.054 0.044

0.00 1.15 0.084 0.092 0.087 0.146 0.136 0.048 0.061 0.050 0.052 0.053

0.00 1.25 0.138 0.112 0.111 0.297 0.286 0.039 0.051 0.047 0.053 0.046

0.00 1.35 0.236 0.213 0.207 0.520 0.506 0.048 0.048 0.042 0.039 0.042

0.00 1.45 0.335 0.303 0.306 0.698 0.740 0.036 0.047 0.049 0.047 0.054

0.40 1.00 0.611 0.691 0.755 0.399 0.781 0.059 0.046 0.056 0.049 0.056

0.30 1.00 0.381 0.451 0.503 0.230 0.523 0.049 0.057 0.056 0.048 0.060

0.20 1.00 0.181 0.226 0.245 0.130 0.262 0.043 0.057 0.053 0.053 0.048

0.10 1.00 0.075 0.100 0.101 0.070 0.100 0.054 0.046 0.057 0.055 0.042

0.05 1.00 0.052 0.048 0.054 0.051 0.056 0.045 0.044 0.051 0.051 0.046

0.00 1.00 0.043 0.053 0.040 0.050 0.048 0.035 0.055 0.061 0.055 0.057

−0.05 1.00 0.058 0.055 0.053 0.055 0.055 0.055 0.057 0.069 0.060 0.068

−0.10 1.00 0.070 0.086 0.096 0.068 0.094 0.042 0.050 0.063 0.060 0.062

−0.20 1.00 0.171 0.209 0.259 0.107 0.266 0.043 0.046 0.051 0.050 0.051

−0.30 1.00 0.365 0.418 0.490 0.227 0.513 0.046 0.052 0.039 0.038 0.040

−0.40 1.00 0.589 0.670 0.743 0.396 0.758 0.051 0.036 0.040 0.038 0.038

strong enough evidence to conclude that the posited model
during the OFF period significantly deviates from the nor-
mal assumption for at least 25% of the source-destination
pairs (see, for example, Case 3). Note that the smaller sam-
ple size may be the contributing factor of the insignificance.
We also identify the top 5 source-destination pairs with the
largest standardized logρm values. The standardized values
are greater than 10 during the OFF period and are greater
than 70 during the ON period, exhibiting large deviation
from the normal assumption. In summary, it is clear that the
normal distribution is inappropriate to model network data.

6 Concluding remarks

A discrepancy statistic to assess model adequacy was pro-
posed. The discrepancy statistic logρm was developed to
measure the “distance” between a posited model F0 and a
nonparametric alternative Fa . To measure the discrepancy,
we first constructed a Polya tree prior such that the center-
ing distribution is the posited model (i.e., F0 = E[P |θ ]). We
then updated the prior to obtain a new centering distribution
Fa = E[P |θ,X] and applied (7) to calculate logρm. Finally,

normal approximation to the sampling distribution of logρm

provides us a convenient decision rule by which to judge
whether a resulting logρm is too large to justify the use of
the current model F0.

The advantages of using the proposed statistic are sev-
eral. First, it can be applied to a wide class of distributions
F0 whose inverse function F−1

0 exists. Second, unlike many
popular test statistics, ad hoc tables of critical values for dif-
ferent levels of significance are not required of the proposed
logρm. Third, as shown in the power study, its power in-
creases quickly as the sample size increases and maintains
stable powers across a wide range of alternatives. It has dis-
tinctly higher power than several popular test statistics in
the case of “spiky” alternatives, dominates the well-known
Kolmogorov-Smirnov D statistic in all cases examined in
the article, and competes well with the highly recommended
Watson statistic U2 (Quesenberry and Miller 1977) in the
case of a variance change. The proposed logρm statistic is
applied to network data collected from a computer labora-
tory and the most active source-destination pairs whose ON-
and OFF-distributions significantly deviate from the normal
distribution are identified.
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Table 8 Powers of the Proposed logρm, Kolmogorov-Smirnov D, Cramér-von Mises W 2, Watson U2, and Anderson-Darling A2 Test Statistics.
1000 independent samples of size n = 100 were generated and the Polya tree was updated to level m = 10. Significance level = 5%

True distribution Case when θ is specified Case when θ is estimated by M.L.E.

X ∼ Normal(μ,σ ) H0 : F0(θ) = Normal(μ = 0, σ = 1) H0 : F0(θ̂ ) = Normal(μ̂, σ̂ )

μ σ logρm D W 2 U2 A2 logρm D W 2 U2 A2

0.00 0.65 0.983 0.706 0.831 1.000 0.968 0.047 0.051 0.053 0.057 0.055

0.00 0.75 0.646 0.272 0.292 0.860 0.493 0.053 0.053 0.051 0.047 0.046

0.00 0.85 0.213 0.094 0.071 0.356 0.096 0.058 0.037 0.051 0.047 0.049

0.00 0.95 0.059 0.039 0.036 0.068 0.034 0.057 0.040 0.038 0.037 0.043

0.00 1.00 0.060 0.050 0.058 0.052 0.061 0.055 0.047 0.043 0.044 0.044

0.00 1.05 0.038 0.047 0.061 0.062 0.075 0.053 0.052 0.052 0.052 0.049

0.00 1.15 0.139 0.091 0.084 0.248 0.198 0.066 0.059 0.054 0.053 0.050

0.00 1.25 0.334 0.215 0.217 0.577 0.529 0.049 0.045 0.044 0.040 0.042

0.00 1.35 0.632 0.387 0.438 0.829 0.808 0.050 0.044 0.049 0.045 0.042

0.00 1.45 0.780 0.569 0.628 0.940 0.942 0.048 0.042 0.034 0.036 0.035

0.40 1.00 0.898 0.932 0.965 0.725 0.973 0.040 0.066 0.057 0.058 0.052

0.30 1.00 0.651 0.747 0.833 0.453 0.855 0.039 0.064 0.055 0.055 0.053

0.20 1.00 0.300 0.390 0.470 0.206 0.487 0.045 0.042 0.044 0.043 0.050

0.10 1.00 0.098 0.127 0.151 0.063 0.153 0.053 0.060 0.056 0.060 0.055

0.05 1.00 0.053 0.069 0.078 0.059 0.081 0.051 0.049 0.053 0.050 0.043

0.00 1.00 0.060 0.050 0.058 0.052 0.061 0.055 0.047 0.043 0.044 0.044

−0.05 1.00 0.058 0.067 0.070 0.053 0.070 0.033 0.052 0.054 0.056 0.049

−0.10 1.00 0.106 0.130 0.152 0.082 0.153 0.061 0.051 0.045 0.047 0.048

−0.20 1.00 0.298 0.401 0.470 0.205 0.482 0.057 0.041 0.048 0.048 0.046

−0.30 1.00 0.649 0.748 0.806 0.421 0.834 0.045 0.052 0.057 0.054 0.052

−0.40 1.00 0.889 0.935 0.964 0.702 0.973 0.051 0.052 0.052 0.051 0.053

Table 9 Summary statistics of
length (in seconds) of intertrain
gap for the OFF period and
packet trains for the ON period
from the 100 most active
source-destination pairs

OFF-Period ON-Period

Lengths in seconds Top 100 Pairs t = 0.075 t = 0.2 t = 0.075 t = 0.2

Mininum 0.000002 0.075 2 0.000002 0.000002

1st Quartile 0.000145 0.1373 4.807 0.000142 0.000144

Median 0.000379 0.1941 5.006 0.000375 0.000377

Mean 0.1716 10.27 31.66 0.001287 0.004863

3rd Quartile 0.001041 4.128 20.52 0.000948 0.001011

Maximum 1309 1309 1309 0.07499 2

Standard deviation 5.900 44.651 74.899 0.004 0.056

Sample size

Total # of records 1351365 22428 7120 1328937 1344245

Minimum # 2648 20 3 2475 2582

1st Quartile 4294 109 27.75 4190.75 4246.5

Median # 8379 148 43.5 8298 8355

3rd Quartile 19552.5 263 85 19323.5 19414.25

Maximum # 75682 953 400 74890 75600

Standard deviation 13225.95 204.06 79.82 13100.97 13187.57
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Table 10 Percentage of the source-destination pairs whose underlying
distributions significantly deviate from the normal distribution based
on the proposed logρm. Significance level = 5%, and m = 10

OFF-Period ON-Period

t = 0.075 t = 2 t = 0.075 t = 2

Case 0 97% 55% 100% 100%

Case 1 99% 71% 100% 100%

Case 2 97% 58% 100% 100%

Case 3 99% 74% 100% 100%

Top 5 pairs with the largest standardized logρm values

Cases 0 and 2 8, 39, 41 8, 22, 39 8, 41, 43, 77, 159

43, 159 43, 159

Cases 1 and 3 8, 39, 41 8, 22, 39 8, 11, 43, 139, 159

43, 159 43, 159

The current study may lead to various research directions.
As suggested by a reviewer, it would be interesting to exam-
ine the impact of the selected priors on the derived discrep-
ancy measure. The current study chose the Polya trees prior
based on a continuous alternative Fa assumption, but what
will be the pros and cons of using, say, a Dirichlet process
in constructing a discrepancy measure? At the miminum, a
comprehensive simulation study must be carried out to ad-
dress this issue. Furthermore, the current construction of the
Polya trees alternative can be modified, according to the out-
line by Lavine (1992) and Neath (2003), to accommodate
censored or grouped data often observed in survival anal-
ysis. The sampling distribution of the test statistic logρm

might not be tractable in this case; nevertheless, its critical
values can be obtained through Monte Carlo simulations. Fi-
nally, if certain subsets of the underlying distribution are of
major concern, for example, routine estimation of the tail
area probabilities in risk analysis, the proposed logρm can
be modified to sum over the tail areas of the distribution
and thereby obtain the discrepancy in the tails between F0

and Fa .
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