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Abstract We propose a shrinkage procedure for simulta-
neous variable selection and estimation in generalized lin-
ear models (GLMs) with an explicit predictive motivation.
The procedure estimates the coefficients by minimizing the
Kullback-Leibler divergence of a set of predictive distribu-
tions to the corresponding predictive distributions for the
full model, subject to an l1 constraint on the coefficient vec-
tor. This results in selection of a parsimonious model with
similar predictive performance to the full model. Thanks to
its similar form to the original Lasso problem for GLMs,
our procedure can benefit from available l1-regularization
path algorithms. Simulation studies and real data examples
confirm the efficiency of our method in terms of predictive
performance on future observations.

Keywords Generalized linear models · Kullback-Leibler
divergence · Lasso · Optimal prediction · Variable selection

1 Introduction

A primary goal in statistics is to develop algorithms that pre-
dict future data well from past observations. In regression
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problems where a large number of predictors are involved,
predictive accuracy in statistical modeling may depend to
a large extent on model selection strategies. For general-
ized linear models (GLMs), for example, a large number
of potential predictors are often given in order to reduce
modeling bias, and one then would like to select a smaller
subset achieving some kind of optimality properties. Popu-
lar methods such as the Lasso and its variants can achieve
model selection consistency (under some conditions, see,
e.g., Zhao and Yu 2006), i.e., if the true model was included
in the model set under consideration, these methods would
be able to identify (asymptotically) the true model. How-
ever, whether or not the true model exists is a controver-
sial issue. For a real dataset, it is believed either that no true
model exists or that the true model has an infinite number of
parameters (Burnham and Anderson 2002). In this paper we
deal with the problem of estimation and variable selection
for GLMs with the goal of prediction in mind.

From the Bayesian perspective it is sometimes argued
that the full model should be used to achieve the best
prediction accuracy (Aitchison 1975; Geisser 1993). How-
ever, with many predictors prior specification and elicita-
tion may be difficult, and the full model does not have
interpretability—a property that is often desirable for many
statistical procedures—because it does not tell us in an eas-
ily accessible way which predictors are important. Another
drawback of using the full model is that if there is a cost
associated with data collection then it would be inadvis-
able to use all of the predictors. This motivates the idea of
choosing a submodel whose predictive distribution is close
to that of the full model. This idea has been somewhat recog-
nized in the literature. Brown et al. (2002) look at Bayesian
model averaging incorporating variable selection for predic-
tion. Tran (2011) and Vehtari and Lampinen (2004) propose
model selection methods based on Kullback-Leibler diver-
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gence from the predictive distribution of the full model to
the predictive distributions of the submodels. These works
are motivated by the idea of trading off between predic-
tion accuracy and parsimony. However, these methods are
challenging to implement because searching over the whole
model space is computationally infeasible. Similar to the
idea of the Lasso (Tibshirani 1996), we overcome this prob-
lem by using l1 constraints on the coefficients. By doing
this, we can enjoy the computational advantages of the al-
gorithms for convex optimization with l1 constraints. Un-
like the Lasso, however, our approach has an explicit pre-
dictive motivation which aims at selecting a useful model
with high prediction accuracy. A related approach is con-
sidered by Nott and Leng (2010) based on Kullback-Leibler
projections, motivated by earlier work of Dupuis and Robert
(2003) although these approaches are not based directly on
posterior predictive distributions.

For a collection of N predictive distributions obtained
from the full model, we write KLi (Mfull‖Mβ), i = 1, . . . ,N

for the Kullback-Leibler divergences from the predictive
distributions of the model based on coefficient vector β to
those of the full model. Our approach in its general form is
to solve for β the following optimization problem

min
β

N∑

i=1

KLi (Mfull‖Mβ) + λ‖β‖l1

with λ a shrinkage parameter as in the original Lasso. The
main contribution of the present paper is to motivate and de-
velop such a procedure for variable selection and estimation
in GLMs that (i) automatically simultaneously estimates the
coefficients and selects significant predictors; (ii) achieves
good prediction accuracy; (iii) is broadly applicable; (iv) is
computationally efficient. This procedure will be called the
predictive Lasso or pLasso for short.

The pLasso for GLMs will be presented in Sect. 2. Sec-
tion 3 presents useful prior specifications which can facili-
tate computation. In particular, we discuss in more detail the
pLasso for linear models and extend our previous discussion
to a weighted version of the basic approach. Simulation and
real data examples are presented in Sect. 4 to demonstrate
the use of the pLasso and to compare it with the adaptive
Lasso (Zou 2006) in terms of predictive performance. Sec-
tion 5 contains concluding remarks.

2 The predictive Lasso

We consider the problem of estimation and variable se-
lection for GLMs with potential covariates x = (x0 ≡
1, x1, . . . , xp)′ ∈ X and the response y ∈ Y . With a suit-
able link function g, g(E(y|x)) is assumed to be a linear
combination of x

g(E(y|x)) = β0 + β1x1 + · · · + βpxp = x′β. (1)

We assume that the covariates xi are in their final forms, no
further transformations are needed (i.e., for various reasons
and in order to keep things simple, we restrict ourselves to
the linear approximation (1)). The sampling distribution of
an observation �i = (xi , yi) then is assumed to have the
following form

p(�i |β, φ) = p(xi )p(yi |xi ,β, φ)

∝ p(xi ) exp

(
1

a(φ)

[
yiθ(x′

iβ) − b(θ(x′
iβ))

])
,

where β ∈ R
p+1, φ > 0 are the coefficient vector and scale

parameter, respectively, and θ, a and b are known functions.
In order to discuss the methodology in a general setting, we
consider predictors x as random. Bayesian variable selection
with a random covariate has been considered in a decision
theoretic framework where the main concern is prediction of
a future observation for which the corresponding predictor
is not yet observed (see, for example, Lindley 1968). The
case with fixed design points can be considered as a special
case, then the density p(xi ) in the above expression can be
omitted.

We are concerned with the problem of simultaneous co-
efficient estimation and variable selection with the goal of
prediction in mind. Like the Lasso, we would like to develop
a method for simultaneous variable selection and parameter
estimation. However, unlike the Lasso our approach has a
more explicit predictive motivation, which aims at produc-
ing a useful model with high prediction accuracy.

Given the past dataset D and certain priors for parameters
(β, φ) of the full model, the predictive distribution p(�|D)

for a future observation � = (x, y) is given by

p(�|D) = p(x|D)p(y|x,D)

= p(x|D)

∫ ∫
p(y|x,β, φ)p(β, φ|D)dβdφ. (2)

We can assume that p(x|D) ≡ p(x), i.e., future design
points are independent of past data. We propose to estimate
the coefficient vector β by solving the following optimiza-
tion problem:

min
β

∫ ∫
log

p(�|D)

p(�|β, φ)
p(�|D)dxdy

s.t.
p∑

j=1

wj |βj | ≤ τ

(3)

where the tuning parameter τ ≥ 0 and weights wj ≥ 0 are
chosen later. As usual in the regularization methods, we do
not regularize the intercept. As will become clear shortly,
φ plays no role in this optimization problem, we can assume
at the moment that φ is known. Note that the objective func-
tion is the Kullback-Leibler divergence from p(�|β, φ) to
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the predictive distribution p(�|D). We refer to this proce-
dure of estimating β through the optimization of (3) as the
predictive Lasso (pLasso).

Let {�t = (xt , yt ), t = 1, . . . , T } be Markov chain
Monte Carlo (MCMC) samples from the predictive distribu-
tion p(�|D). The integral in (3) then can be approximated
by the average (1/T )

∑T
t=1 log[p(�t |D)/p(�t |β, φ)], and

(3) becomes

min− 1

T

T∑

t=1

logp(�t |β, φ)

s.t.
p∑

j=1

wj |βj | ≤ τ,

(4)

or more specifically

min
1

T

T∑

t=1

[
b(θ(x′

tβ)) − ytθ(x′
tβ)

]

s.t.
p∑

j=1

wj |βj | ≤ τ.

(5)

This optimization problem is also equivalent to

min
1

T

T∑

t=1

[
b(θ(x′

tβ)) − ytθ(x′
tβ)

] + λ

p∑

j=1

wj |βj | (6)

where λ is a tuning parameter. Such an optimization prob-
lem is easier to deal with if the objective function is convex.
The convexity of the objective function turns out to depend
on the link function, and holds for most popular GLMs with
the natural link functions.

Often, the integral in x is approximated by a sum over N

points x
f

1 , . . . ,x
f
N . These points might not coincide with the

observed design points, they “come from the future” (hence
the superscript “f ” stands for “future”). For each x

f
i , let ȳ

f
i

be the mean of MCMC samples {yit , t = 1, . . . , T0} drawn
from p(y

f
i |xf

i ,D)—the predictive distribution of the future

response y
f
i at design point x

f
i given past data D. Then, it

is easy to see that (6) becomes

min
1

N

N∑

i=1

[
b(θ(β ′xf

i )) − ȳ
f
i θ(β ′xf

i )
] + λ

p∑

j=1

wj |βj |. (7)

Note that, under the squared error loss, ȳ
f
i is an esti-

mate of the best prediction (w.r.t. the predictive distribution
p(y

f
i |xf

i ,D)) for the response at x
f
i . As will be seen in

Sect. 3, for linear regression with a convenient specification
of priors there is no need to conduct MCMC because the
predictions ȳ

f
i = E(y

f
i |xf

i ,D) have a closed form.
We have approximated the integral over x by a sum over

N “future” points x
f
i , i = 1, . . . ,N . Typically, these points

are specified depending on the context and/or on the dis-
tribution p(x) over X . As a default implementation of our
procedure, however, we propose to identify the future points
x

f
i with the observed training points xi , i = 1, . . . , n. The

reason behind this is that if the sample size n is large enough
and the observed training points xi were randomly selected
from p(x), then by the law of large numbers the integral
over x can be well approximated by the sum over xi . In
what follows therefore, if not otherwise specified, we con-
sider the pLasso for GLMs in the following form

min
1

n

n∑

i=1

[
b(θ(x′

iβ)) − ȳ
f
i θ(x′

iβ)
] + λ

p∑

j=1

wj |βj |. (8)

Note that the original (adaptive) Lasso for GLMs is

min
1

n

n∑

i=1

[
b(θ(x′

iβ)) − yiθ(x′
iβ)

] + λ

p∑

j=1

wj |βj |. (9)

The pLasso in this form differs from the original Lasso only
in the way it replaces the observed responses yi by the pre-
dictions ȳ

f
i = E(y

f
i |xi ,D). Available routines to solve (9)

then can be used for (8).
We have not yet considered the issue of choice of the

tuning parameters in the pLasso. As the primary goal of
the pLasso is to predict the future, cross-validation is a
very natural choice for estimating λ. As in the adaptive
Lasso, the weights wj can be assigned as 1/|β̃j | with β̃j

the MLE of βj . When the MLE is not available, the Lasso
method (more exactly, the non-adaptive pLasso method, i.e.,
the adaptive penalty term λ

∑
wj |βj | in (8) is replaced by

λ
∑ |βj |) can be used as a screening tool to effectively

eliminate unimportant predictors from consideration in the
first stage. The weights corresponding to remaining pre-
dictors then will be assigned as 1/β̃j with β̃j the non-
adaptive pLasso estimates. In a Bayesian context it is also
natural to consider β̃j as the posterior mode, and we fol-
low this strategy in the following examples for our pLasso.
As suggested by a reviewer, an alternative method for es-
timating λ is Bayesian estimation (Park and Casella 2008;
Leng et al. 2010).

3 Some useful prior specifications

Given the available routines to solve the optimization prob-
lem of form (8), all what we need to implement the pLasso
is to calculate the quantities ȳ

f
i = E(y

f
i |xi ,D). To do so,

in general, we first need to specify a useful prior for pa-
rameters, determine posterior distributions and then estimate
ȳ

f
i = E(y

f
i |xi ,D) by MCMC or some other method. How-

ever, in some cases there is no need to conduct MCMC. We
first present in this section a prior specification for linear
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models in which the predictions ȳ
f
i have closed form. For

generalized linear models, we present here two prior speci-
fications. The first is adapted from Chen and Ibrahim (2003)
which is interpretable in terms of observables rather than
parameters. The second one proposed recently by Gelman
et al. (2008) is useful for routine applied use.

3.1 Prior specification for linear models

Consider the linear model

y = Xβ + ε

where y is the n-vector of responses, X is an n × (p + 1)

design matrix and ε is an n-vector of iid normal errors

with mean zero and variance σ 2. The (p + 1)-vector β

consists of unknown mean parameters and we consider
the situation where σ 2 is also unknown. Consider the
conjugate prior specification (O’Hagan and Forster 2004,
Chap. 11) p(β, σ 2) = p(σ 2)p(β|σ 2) in which p(σ 2) is in-
verse gamma

p(σ 2) = (a/2)(d/2)

	(d/2)
(σ 2)−d/2−1 exp

(
− a

2σ 2

)

and p(β|σ 2) is multivariate normal, N(m, σ 2V ). With
these priors the predictive distribution of a new obser-
vation � = (x, y) is p(�|D) = p(x|D)p(y|x,D) with
p(y|x,D) = td+n(x

′β̃, s2(1 + x′V̂ x)) where

β̃ = (X′X + V −1)−1(V −1m + X′y),

V̂ = (V −1 + X′X)−1,

s2 = a + m′V −1m + y′y − (V −1m + X′y)′(V −1 + X′X)−1(V −1m + X′y)

n + d − 2
,

β̂ = (X′X)−1X′y.

We write w(x) = 1 + x′V̂ x.
Now consider the predictive Lasso (3) where as usual

the integral over x is approximated by a sum over N “fu-
ture” points x

f
i . Then equivalently, we need to minimize

(the scale φ is now re-denoted by σ 2)

N∑

i=1

∫ [− logp(y
f
i |xf

i ,β, σ 2)
]
p(y

f
i |xf

i ,D)dy
f
i

s.t.
p∑

j=1

wj |βj | ≤ τ.

(10)

Noting that

logp(y
f
i |xf

i ,β, σ 2) = −1

2
log(2πσ 2)

− 1

2σ 2
(y

f
i − (x

f
i )′β)2,

minimizing (10) is equivalent to minimizing

N

2
logσ 2 + 1

2σ 2

N∑

i=1

E
(
(y

f
i − (x

f
i )′β)2|xf

i ,D
)

s.t.
p∑

j=1

wj |βj | ≤ τ.

(11)

With the closed form of the predictive distribution as a t-
distribution we have

E
(
(y

f
i − (x

f
i )′β)2|xf

i ,D
)

= s2w(x
f
i ) + (

(x
f
i )′β̃ − (x

f
i )′β

)2
.

Substituting this into (11) we must minimize

N

2
logσ 2 + 1

2σ 2

N∑

i=1

s2w(x
f
i )

+ 1

2σ 2

N∑

i=1

(
(x

f
i )′β̃ − (x

f
i )′β

)2 (12)

subject to the constraint. Minimizing this as a function of β

amounts as before to an ordinary Lasso problem where the
responses are replaced with the fitted values from the full
model at the future design points x

f
i , i = 1, . . . ,N . In the

case with a non-informative prior, n > p, and the x
f
i as the

observed design points xi , this is the ordinary Lasso, since
in this case β̃ = β̂ and for the least squares estimator

n∑

i=1

(yi − x′
iβ)2 =

n∑

i=1

(yi − x′
i β̂)2 +

n∑

i=1

(x′
i β̂ − x′

iβ)2
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where the first term on the right hand side does not depend
on β .

If (12) has been minimized with respect to β subject to
the constraint to obtain an estimate β̂pLasso (this in general
depends on the constraint τ but we suppress this in the no-
tation) then substituting in β̂pLasso and minimizing with re-
spect to σ 2 gives

σ̂ 2
pLasso

=
∑N

i=1 Var(yf
i

|xf
i
,D) + ∑N

i=1((x
f
i
)′β̃ − (x

f
i
)′β̂pLasso)2

N

=
∑N

i=1 s2w(x
f
i
) + ∑N

i=1((x
f
i
)′β̃ − (x

f
i
)′β̂pLasso)2

N
. (13)

The weighted version of pLasso One extension that gives
different results to the ordinary Lasso in the noninformative
case with the x

f
i the observed design points xi is the fol-

lowing. Suppose that instead of considering predictive dis-
tributions in our predictive Lasso objective function where
the variance does not depend on x we predict y

f
i with

p
(
y

f
i |β, σ 2w(x

f
i )

) = N
(
(x

f
i )′β, σ 2w(x

f
i )

)
.

That is, we allow our normal form predictive distributions to
have variances which vary in proportion to the true predic-
tive variances in the full model Var(yf

i |xf
i ,D). The stan-

dard deviation in the full model
√

Var(yf
i |xf

i ,D) is often
considered a more realistic estimate of the standard error,
because it incorporates model uncertainty. We now consider
minimization of

N∑

i=1

∫ [− logp(y
f
i |β, σ 2w(x

f
i ))

]
p(y

f
i |xf

i ,D)dy
f
i

subject to the constraint and following a similar argument to
our previous one we must minimize

N∑

i=1

1

w(x
f
i )

(
(x

f
i )′β̃ − (x

f
i )′β

)2

subject to the constraint in order to estimate β . This is sim-
ilar to before, but now with weights of 1/w(x

f
i ) for the

different design points. We will refer to this procedure as
the weighted pLasso (wpLasso). After β has been estimated
as β̂wpLasso say, the minimization with respect to σ 2 gives

σ̂ 2
wpLasso =

∑N
i=1

1
w(xi)

Var(yf
i |xf

i ,D) + ∑N
i=1

1
w(x

f
i )

((x
f
i )′β̃ − (x

f
i )′β̃wpLasso)

2

N

=
∑N

i=1 s2 + ∑n
i=1

1
w(x

f
i )

((x
f
i )′β̃ − (x

f
i )′β̃wpLasso)

2

N
.

Elicitation of hyperparameters We now discuss on the
choice of the hyperparameters m and V . There are many dif-
ferent ways proposed for choosing the matrix V . For exam-
ple, Zellner (1986) proposed the so-called g-prior in which
V is set equal to c(X′X)−1 with some c > 0 (c = n is a com-
mon choice). Raftery et al. (1997) proposed an alternative
where V is a block-diagonal matrix. For noncategorical co-
variates, V is a diagonal matrix diag(s2

y , κ2s−2
1 , . . . , κ2s−2

p )

where s2
y is the sample variance of y, and s2

i are the vari-
ances of the columns of X. For a categorical covariate, the
corresponding diagonal element will be a matrix induced
from the corresponding dummy variables. Raftery et al.
(1997) proposed a value of 2.85 for κ together with a = 0.72
and d = 2.58. For the parameter m, they proposed the de-
fault value of m = (β̂OLS

0 ,0, . . . ,0)′ where β̂OLS
0 is the OLS

estimate of β0. An alternative is m = 0. These two choices
of m often lead to very similar inferences. We will use the
setup of Raftery et al. (1997) in our following numerical ex-
amples.

Comparison with the elastic net The pLasso method can

be viewed as a two-stage procedure: a prior-based regular-

ization in the first stage, and a Lasso-type thresholding in

the second stage. As suggested by a reviewer, this makes the

pLasso method closely related to the elastic net method of

Zou and Hastie (2005), which consists of a ridge-type regu-

larization followed by a Lasso-type thresholding. The elastic

net (enet) method has proved to be superior to the Lasso in

terms of prediction accuracy. Therefore, a comparison be-

tween the two methods may provide insight into the pLasso.

Consider the elastic net problem

min
β

(y − Xβ)′(y − Xβ) + β ′V −1β

s.t.
p∑

j=1

|βj | ≤ τ,
(14)
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which is equivalent to

min
β

(β − β̃)′(X′X + V −1)(β − β̃)

s.t.
p∑

j=1

|βj | ≤ τ.
(15)

If we select the future predictors x
f
i such that Xf ′

Xf =
X′X + V −1 (we may simply select Xf as the square roof
of X′X + V −1), then the pLasso problem (12) is exactly the
same as the elastic net problem (15). Now, with x

f
i ≡ xi ,

the pLasso problem (12) is

min
β

(β − β̃)′X′X(β − β̃)

s.t.
p∑

j=1

|βj | ≤ τ.
(16)

If we use the Zellner g-prior V = c(X′X)−1 in the first stage
of elastic net, then the elastic net problem (15) is equivalent
to the pLasso problem (16). If X is centered and has or-
thonormal columns, using the Raftery et al. prior also leads
to the equivalence between the two methods.

That is, under some conditions, the two methods are
equivalent to each other. However, the pLasso framework is
more flexible than the elastic net. Unlike the elastic net, the
pLasso is not restricted to the penalty that comes from use
of a normal prior. Other regularization priors, such as those
based on the Cauchy distribution, can be used too (Sect. 4).
Furthermore, no restriction is put on the predictive distribu-
tion p(�|D) of the full model. Any model that gives good
predictions ȳ

f
i can be used.

3.2 Prior specifications for generalized linear models

There is an extensive literature on prior specifications for
GLMs. We will briefly present here two of them: the first
one is due to Chen and Ibrahim (2003) and the second is
proposed recently by Gelman et al. (2008).

The Chen and Ibrahim prior Recall that the sampling dis-
tribution of observables y = (y1, . . . , yn) in the GLM case
is

p(y|X,β, φ) ∝ exp

(
n∑

1

1

a(φ)

[
yiθ(x′

iβ) − b(θ(x′
iβ))

]
)

= exp

(
1

a(φ)

[
y′θ − 1′b(θ)

])

where θ = θ(β) = (θ1, . . . , θn)
′, θi = θ(x′

iβ), b(θ) = (b(θ1),

. . . , b(θn))
′ and 11 is an n-vector of 1s. For ease of exposi-

tion, we assume that φ is known (and therefore suppressed

in the notation), as, for example, in logistic and Poisson re-
gression. Chen and Ibrahim (2003) proposed the following
prior for β

p(β) ∝ exp

(
γ0

1

a(φ)

[
α′

0θ − 1′b(θ)
])

(17)

where γ0 ≥ 0 and α0 ∈ R
n are hyperparameters determined

later on. Denote this distribution by β|φ ∼ D(γ0,α0). They
proved that the prior (17) is proper and that this prior is
conjugate with the posterior β|X,y ∼ D(1 + γ0, (γ0α0 +
y)/(1 + γ0)).

As shown by Chen and Ibrahim (2003), E(y) = α0, it
is natural to choose α0 as a prior guess for E(y). There-
fore, in practice, α0 should be obtained from experts in the
field although default empirical Bayes alternatives such as
choosing α0 as the fitted values based on the MLE or other
methods are also possible. The parameter γ0 weighs the im-
portance of the prior guess. In general, γ0 should be taken
such that γ0 = γ0(n) → 0 as n → ∞, i.e., the prior has less
influence when more data is available. An advantage of this
prior specification is that it is interpretable in terms of ob-
servables rather than parameters which are sometimes not
easy to elicit.

The Gelman et al. prior Gelman et al. (2008) proposed
a weakly informative prior distribution for GLMs, con-
structed by first standardizing the covariates to have mean
zero and standard deviation 0.5, and then putting indepen-
dent t-distributions on the coefficients. As a default choice,
they recommended a central Cauchy distribution with scale
10 for the intercept and central Cauchy distributions with
scale 2.5 for other coefficients. As argued by Gelman et
al. (2008), this prior specification has many advantages; be-
sides, it works in an automatic fashion with no hyperparam-
eter elicitation needed.

Recall that all what we need to implement the pLasso is
to calculate the quantities ȳ

f
i = E(y

f
i |xi ,D). After the prior

has been specified, ȳ
f
i can be estimated by MCMC or some

other method. It is well-known that

E(y|X,β) = ḃ(θ) = (ḃ(θ1), . . . , ḃ(θn))
′,

so that

ȳf = E(yf |X,y) = Eβ|X,y[E(yf |X,β)]
= Eβ|X,y[ḃ(θ(β))] (18)

which can be easily estimated by MCMC samples from the
posterior distribution β|X,y.

A procedure for fitting GLMs with the Gelman et al.
prior has been implemented in R by Gelman et al. (available
online at http://cran.r-project.org/web/packages/arm). In the
following numerical examples for logistic regression where

http://cran.r-project.org/web/packages/arm
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no expert advice is available, we use the default prior of Gel-
man et al. For high-dimensional cases where using MCMC
may be time consuming, we suggest using the plug-in pre-
dictive density to estimate the predictions ȳ

f
i . Our experi-

ences show that this is very fast compared to MCMC.

4 Experiments

In this section, we study the pLasso through simulations
and real data examples. We use the convenient prior spec-
ifications as in Sect. 3. The tuning parameter λ is se-
lected by 5-fold cross-validation. The code implement-
ing the pLasso and conducting the examples is available
on the authors’ websites. For the elastic net, we use the
Matlab implementation written by Hui Jiang and avail-
able at http://www-stat.stanford.edu/~tibs/glmnet-matlab/.
The tuning parameters λ1 and λ2 are tuned using cross-
validation.

A popular measure of predictive ability is the partial pre-
dictive score (PPS) (Good 1952; Geisser 1980; Hoeting et al.
1999). Suppose that the data is split into two parts, the train-
ing set DT and the prediction set DP . The partial predictive
score of the distributions induced by model parameters θ∗ is
defined as

PPS = − 1

|DP |
∑

�=(x,y)∈DP

logp(y|x, θ∗). (19)

It is understood that smaller PPS means better predictive
performance.

Although the PPS is widely used in practice, Gneiting
and Raftery (2007) argued that it is sometimes sensitive to
extreme cases because the use of logarithmic scale puts a
high penalty on low probability cases, and suggested using

the so-called continuous ranked probability score (CRPS) as
an alternative. Let F be the cumulative distribution function
(cdf) of the predictive distribution in use and x be an actual
observation. The CRPS is defined as

CRPS(F, x) = −
∫

R

(F (y) − 1y≥x)
2dy

which corresponds to the integral of the Brier scores (Hers-
bach 2000). A problem with using CRPS is that the above
integral is in general not available in closed form and needs
to be estimated in some way. However, when F is the cdf
of the normal distribution with mean μ and variance σ 2, the
CRPS is given by Gneiting and Raftery (2007, p. 367)

CRPS(N(μ,σ 2), x)

= σ

[
1√
π

− 2ϕ

(
x − μ

σ

)
− x − μ

σ

(
2φ

(
x − μ

σ

)
− 1

)]

where ϕ and φ are pdf and cdf of the standard Gaussian
variable; when F is the cdf of a Bernoulli variable X with
probability of success p = P(X = 1), the CRPS is given by

CRPS(F (p), x = 0) = −p2 and

CRPS(F (p), x = 1) = −(1 − p)2.

In our paper, the CRPS (evaluated on a prediction set DP )
of the predictive distributions induced by model parameters
θ∗ is defined as

CRPS ≡ CRPS(θ∗) = − 1

|DP |
∑

�∈DP

CRPS(F (θ∗),�). (20)

Under this formulation, it is (similar to PPS) understood that
smaller CRPS means better predictive performance.

In the simulation studies below, we also use mean
squared errors (MSE) in terms of coefficients and numbers

Fig. 1 Boxplots of performance
measures over replications for
comparing the methods in linear
regression: small p case with
normal predictors, n = 200 and
σ = 1

http://www-stat.stanford.edu/~tibs/glmnet-matlab/
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Table 1 Simulation results for linear regression: small p and normal predictors. The numbers in parentheses are standard deviations

nT = nP σ Measure Lasso aLasso npLasso pLasso wpLasso enet

50 1 PPS 0.79 (0.17) 0.78 (0.16) 0.61 (0.13) 0.61 (0.13) 0.60 (0.12) 0.64 (0.17)

MSE 0.53 (0.28) 0.55 (0.31) 0.23 (0.13) 0.24 (0.16) 0.24 (0.17) 0.26 (0.13)

NZE 4.02 (0.82) 5.02 (0.64) 2.47 (1.17) 3.42 (1.02) 3.51 (1.03) 2.08 (1.23)

CRPS 0.73 (0.11) 0.69 (0.11) 0.61 (0.07) 0.60 (0.06) 0.60 (0.07) 0.62 (0.07)

CFR 0.48 0.18 0.16 0.43 0.48 0.10

3 PPS 1.85 (0.16) 1.84 (0.17) 1.69 (0.14) 1.70 (0.14) 1.69 (0.13) 1.72 (0.16)

MSE 4.24 (2.23) 4.53 (2.58) 2.08 (1.63) 2.37 (1.80) 2.24 (1.76) 1.96 (1.56)

NZE 5.97 (0.90) 6.64 (0.58) 3.40 (1.56) 4.22 (1.38) 4.46 (1.37) 3.07 (1.62)

CRPS 2.17 (0.32) 2.17 (0.35) 1.83 (0.20) 1.82 (0.21) 1.84 (0.22) 1.83 (0.21)

CFR 0.01 0 0.07 0.04 0.04 0.06

100 1 PPS 0.67 (0.11) 0.66 (0.11) 0.54 (0.09) 0.54 (0.09) 0.54 (0.08) 0.55 (0.10)

MSE 0.30 (0.14) 0.33 (0.13) 0.12 (0.09) 0.12 (0.09) 0.12 (0.09) 0.12 (0.08)

NZE 3.81 (0.64) 4.64 (0.56) 2.14 (1.14) 3.25 (0.94) 3.18 (1.10) 1.98 (1.27)

CRPS 0.67 (0.07) 0.65 (0.07) 0.59 (0.05) 0.58 (0.05) 0.58 (0.05) 0.59 (0.05)

CFR 0.67 0.34 0.14 0.47 0.48 0.14

3 PPS 1.77 (0.10) 1.76 (0.10) 1.64 (0.08) 1.64 (0.08) 1.64 (0.08) 1.65 (0.08)

MSE 3.06 (1.41) 3.54 (1.78) 1.01 (0.76) 0.93 (0.79) 0.92 (0.83) 0.92 (0.59)

NZE 5.60 (0.84) 6.39 (0.69) 2.94 (1.43) 3.84 (1.20) 3.90 (1.36) 2.59 (1.45)

CRPS 2.00 (0.20) 1.98 (0.20) 1.76 (0.13) 1.75 (0.13) 1.75 (0.13) 1.75 (0.13)

CFR 0.04 0 0.11 0.10 0.08 0.09

200 1 PPS 0.62 (0.07) 0.61 (0.07) 0.52 (0.05) 0.52 (0.05) 0.52 (0.05) 0.52 (0.06)

MSE 0.18 (0.07) 0.22 (0.09) 0.06 (0.04) 0.05 (0.03) 0.05 (0.04) 0.05 (0.03)

NZE 3.84 (0.42) 4.31 (0.50) 2.18 (1.26) 3.19 (0.97) 3.11 (1.19) 1.92 (1.31)

CRPS 0.63 (0.05) 0.63 (0.04) 0.57 (0.03) 0.57 (0.03) 0.57 (0.03) 0.58 (0.03)

CFR 0.85 0.66 0.15 0.48 0.50 0.11

3 PPS 1.72 (0.07) 1.71 (0.07) 1.62 (0.05) 1.62 (0.05) 1.62 (0.05) 1.62 (0.06)

MSE 1.59 (0.65) 2.04 (0.88) 0.47 (0.26) 0.42 (0.30) 0.42 (0.30) 0.46 (0.25)

NZE 5.44 (0.74) 6.22 (0.62) 2.53 (1.32) 3.63 (1.14) 3.62 (1.31) 2.23 (1.31)

CRPS 1.90 (0.14) 1.89 (0.13) 1.73 (0.09) 1.73 (0.09) 1.73 (0.09) 1.73 (0.09)

CFR 0.07 0 0.14 0.20 0.20 0.13

of zero-estimated (NZE) coefficients to measure the perfor-
mance. We also report correctly-fitted rates (CFR), i.e., fre-
quency of correctly-fitted models. Note, however, that our
methodology does not focus on finding the true model but
useful one for prediction.

4.1 Simulation studies

A simulation study for linear regression Consider the fol-
lowing linear model

y = 2 + x′β + σε (21)

where β = (3, 1.5, 0, 0, 0.5, 0.5, 0, 0)′ (so that there
are some main and also small effects), ε is iid N(0,1), and

σ > 0 is the noise level. We want to compare the perfor-
mance of the pLasso and the wpLasso to that of the adap-
tive Lasso (aLasso). We also consider the original Lasso
and the non-adaptive pLasso (i.e., the adaptive penalty term
λ

∑
wj |βj | in (8) is replaced by λ

∑ |βj |) which will be
abbreviated as npLasso.

In our first simulation study, design points xj are simu-
lated from a multivariate normal distribution N8(0,�) with
σij = 0.5|i−j |. We first generate from model (21) a dataset
which serves as the training set DT . Another dataset DP

then is generated, which is used to test the predictive per-
formance. Table 1 presents the PPS (after ignoring the con-
stants independent of models), MSE, NZE, CRPS and CFR
averaged over 500 replications with various factors n = nT
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Table 2 Simulation results for linear regression: small p and long-tailed t -distribution predictors. The numbers in parentheses are standard
deviations

nT = nP σ Measure Lasso aLasso npLasso pLasso wpLasso enet

50 1 PPS 7.07 (43.7) 5.44 (27.3) 8.24 (96.5) 2.43 (10.8) 0.70 (0.30) 6.78 (49.5)

MSE 0.20 (0.19) 0.23 (0.26) 0.44 (4.81) 0.40 (4.44) 0.42 (4.70) 0.92 (13.2)

NZE 3.01 (0.99) 3.88 (0.81) 1.66 (1.16) 3.13 (1.08) 3.22 (1.21) 2.26 (1.23)

CRPS 0.94 (0.60) 0.94 (0.54) 0.90 (1.22) 0.84 (1.09) 0.84 (1.09) 0.92 (1.61)

CFR 0.32 0.61 0.06 0.49 0.58 0.11

3 PPS 3.15 (4.03) 3.29 (8.47) 3.00 (6.47) 2.81 (6.13) 1.74 (0.16) 3.61 (16.92)

MSE 1.39 (1.11) 1.71 (1.56) 0.84 (0.71) 0.77 (0.69) 0.78 (0.72) 0.84 (1.14)

NZE 4.06 (1.32) 5.12 (1.11) 2.22 (1.33) 3.45 (1.14) 3.71 (1.24) 2.41 (1.50)

CRPS 2.54 (1.20) 2.69 (1.19) 2.17 (0.73) 2.16 (0.79) 2.15 (0.73) 2.18 (0.86)

CFR 0.15 0.09 0.06 0.22 0.26 0.10

100 1 PPS 3.90 (35.6) 1.86 (7.10) 1.01 (2.69) 0.86 (1.83) 0.61 (0.20) 1.52 (8.95)

MSE 0.07 (0.07) 0.09 (0.27) 0.07 (0.31) 0.06 (0.30) 0.06 (0.31) 0.13 (0.91)

NZE 3.11 (1.08) 3.69 (0.73) 1.62 (1.21) 3.13 (0.96) 3.20 (1.13) 2.44 (1.24)

CRPS 0.76 (0.30) 0.73 (0.26) 0.68 (0.31) 0.66 (0.30) 0.66 (0.30) 0.72 (0.51)

CFR 0.47 0.75 0.06 0.44 0.54 0.19

3 PPS 7.12 (74.8) 14.9 (51.5) 1.96 (1.74) 2.00 (3.08) 1.67 (0.11) 3.61 (28.8)

MSE 0.57 (0.39) 0.68 (0.65) 0.31 (0.54) 0.28 (0.54) 0.29 (0.54) 0.30 (0.53)

NZE 3.45 (1.26) 4.66 (0.98) 1.84 (1.16) 3.19 (1.03) 3.26 (1.17) 2.09 (1.35)

CRPS 2.30 (1.25) 2.35 (1.86) 1.91 (0.34) 1.88 (0.36) 1.89 (0.36) 1.94 (0.67)

CFR 0.26 0.29 0.07 0.45 0.53 0.13

200 1 PPS 1.26 (3.04) 1.24 (4.26) 0.71 (0.65) 0.74 (1.11) 0.57 (0.19) 0.93 (2.39)

MSE 0.03 (0.03) 0.04 (0.06) 0.03 (0.13) 0.03 (0.13) 0.03 (0.13) 0.08 (0.38)

NZE 3.26 (0.91) 3.77 (0.55) 1.48 (1.28) 3.00 (1.02) 3.09 (1.14) 2.76 (1.12)

CRPS 0.67 (0.11) 0.67 (0.14) 0.63 (0.18) 0.62 (0.18) 0.62 (0.18) 0.68 (0.35)

CFR 0.51 0.82 0.07 0.38 0.46 0.24

3 PPS 3.47 (15.3) 3.57 (11.0) 2.05 (3.12) 1.98 (2.92) 1.63 (0.06) 2.26 (4.40)

MSE 0.27 (0.22) 0.31 (0.26) 0.12 (0.11) 0.10 (0.11) 0.10 (0.12) 0.14 (0.21)

NZE 3.29 (0.92) 4.14 (0.84) 1.85 (1.15) 3.21 (0.91) 3.32 (1.06) 2.24 (1.21)

CRPS 2.05 (0.49) 2.08 (0.51) 1.81 (0.23) 1.79 (0.21) 1.79 (0.21) 1.85 (0.36)

CFR 0.46 0.60 0.08 0.48 0.60 0.13

(size of training set) = nP (size of prediction set) and σ . The
numbers in parentheses are standard deviations. In general,
the enet and pLasso methods appear to have similar predic-
tive performance, and outperform (having smaller PPS and
CRPS) the Lasso methods. The results also suggest that, in
the current setting, the pLasso and wpLasso work slightly
better than the elastic net. As one may expect for predic-
tively motivated methods, models selected by the elastic net
and pLasso methods are less sparse (having smaller NZE)
than those selected by the Lasso and aLasso. In particular,
the pLasso methods constantly produce sparser models than
the enet, while still having good predictive performance.
In order to better compare the behaviour of the methods

over the replications, we plot in Fig. 1 boxplots for the case
n = 200 and σ = 1.

In our second simulation study, design points xj are sim-
ulated from a multivariate t-distribution with degrees of
freedom being 1.5. By doing so, we intend to simulate situa-
tions in which some predictors have high leverage, i.e., their
distributions have long tails. The simulation results are pre-
sented in Table 2. As one may expect, the wpLasso appears
to work better and to be more stable than the other meth-
ods because the variance is modeled to vary in proportion to
the true predictive variance. Boxplots of the measures over
replications for the case n = 200, s = 1 are given in Fig. 2.

In our last simulation study, we try a high-dimensional
example. We consider the linear model (21) with p = 100
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Fig. 2 Boxplots of performance
measures over replications for
comparing the methods in linear
regression: small p case with
long-tailed predictors, n = 200
and σ = 1. For ease of
comparison, the y axes have
been scaled so that the extreme
outliers are omitted

Fig. 3 Boxplots of performance
measures over replications for
comparing the methods in linear
regression: large p case with
normal predictors, n = 200 and
σ = 1. For ease of comparison,
the y axes have been scaled so
that the extreme outliers are
omitted

and most of the coefficients are zero except βj = 5, j =
10,20, . . . ,100. The results reported in Table 3 suggest that,
with large n, the pLasso and wpLasso compare favorably
with the others in this example. The aLasso is the best in
terms of identifying the true model. Note, however, that our
main goal is to select useful models for making good predic-
tions rather than selecting the true one—a philosophy that
is likely to be more useful in many real data applications
where all models under consideration may be misspecified.
Boxplots for the case n = 200, σ = 1 are given in Fig. 3.

In summary, the simulation study reveals that the elastic
net and pLasso methods have, in general, similar predictive
ability and show a better predictive performance than the
Lasso methods. In some cases, the pLasso and wpLasso ap-
pear to work slightly better than the elastic net: they select
sparser models while still enjoying good predictive perfor-
mance.

Bayesian adaptive pLasso As mentioned in the last para-
graph of Sect. 2, in a Bayesian context, it would be natu-
ral to select shrinkage parameters using Bayesian estima-
tion. A full Bayesian treatment of the Lasso was first devel-
oped in Park and Casella (2008), in which Gibbs samples
from the hierarchical Bayesian counterpart of the Lasso are
used for inference about λ. The non-adaptive pLasso with
Bayesian estimation for λ will be in the following referred
to as Bayesian pLasso (BpLasso). The Bayesian treatment
of the Lasso is further extended in Leng et al. (2010) to the
adaptive Lasso and other variants. Leng et al. (2010) propose
a hybrid Bayesian-frequentist method for simultaneous vari-
able selection and coefficient estimation, in which the adap-
tive shrinkage parameters λi = λwi in optimization problem
(9) are estimated using Gibbs samples from a hierarchical
Bayesian formulation. The adaptive pLasso with Bayesian
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Table 3 Simulation results for linear regression: large p and normal predictors. The numbers in parentheses are standard deviations

nT = nP σ Measure Lasso aLasso npLasso pLasso wpLasso enet

50 1 PPS 3.39 (5.70) 2.28 (6.65) 2.49 (2.17) 2.59 (8.48) 2.58 (0.23) 1.89 (0.89)

MSE 13.2 (38.1) 11.1 (36.7) 5.88 (17.8) 6.38 (23.6) 6.61 (26.7) 8.57 (19.6)

NZE 74.6 (6.69) 86.0 (5.04) 64.7 (9.07) 73.9 (9.86) 80.4 (8.19) 81.6 (3.97)

CRPS 1.58 (1.52) 1.32 (1.53) 1.32 (0.74) 1.18 (1.08) 1.21 (1.20) 1.60 (0.77)

CFR 0 0.30 0 0.01 0.01 0

3 PPS 3.45 (2.37) 2.96 (2.49) 8.53 (14.7) 6.68 (10.5) 3.25 (0.38) 3.76 (1.95)

MSE 51.9 (59.6) 39.6 (61.7) 36.6 (43.9) 28.6 (34.4) 33.0 (49.6) 25.8 (24.8)

NZE 78.5 (7.20) 87.4 (4.83) 68.0 (8.77) 75.6 (8.36) 81.3 (7.17) 73.1 (4.06)

CRPS 4.18 (1.93) 3.44 (2.07) 3.89 (1.57) 3.49 (1.53) 3.83 (1.92) 3.39 (1.12)

CFR 0 0.27 0 0 0 0

100 1 PPS 2.25 (3.31) 1.18 (0.69) 0.74 (0.32) 0.72 (0.45) 0.82 (0.08) 0.86 (0.27)

MSE 3.68 (2.12) 11.7 (5.42) 0.63 (0.58) 0.49 (0.86) 0.21 (0.55) 0.47 (0.20)

NZE 59.3 (6.92) 85.8 (8.51) 63.8 (13.2) 76.0 (14.5) 86.2 (7.26) 67.8 (7.75)

CRPS 3.34 (0.98) 2.69 (1.34) 0.69 (0.10) 0.66 (0.14) 0.62 (0.09) 0.68 (0.07)

CFR 0.07 0.47 0 0.10 0.24 0

3 PPS 2.75 (2.23) 2.91 (0.33) 2.06 (0.88) 2.11 (1.19) 1.79 (0.09) 1.92 (0.21)

MSE 8.61 (7.40) 12.0 (24.0) 5.73 (4.74) 5.25 (8.33) 1.95 (2.44) 4.28 (1.53)

NZE 69.2 (12.5) 86.9 (2.81) 62.9 (14.5) 74.5 (15.5) 85.3 (6.52) 68.6 (6.66)

CRPS 3.41 (1.17) 2.80 (1.06) 2.12 (0.34) 2.05 (0.50) 1.95 (0.23) 2.04 (0.20)

CFR 0.02 0.41 0 0.06 0.16 0

200 1 PPS 0.96 (0.12) 0.59 (0.07) 0.61 (0.05) 0.58 (0.06) 0.58 (0.03) 0.64 (0.08)

MSE 1.55 (0.58) 0.19 (0.14) 0.27 (0.09) 0.16 (0.13) 0.08 (0.06) 0.25 (0.08)

NZE 89.2 (1.07) 89.5 (0.71) 67.6 (8.93) 79.1 (9.54) 86.2 (4.18) 70.5 (6.98)

CRPS 0.89 (0.10) 0.61 (0.04) 0.62 (0.03) 0.60 (0.04) 0.59 (0.03) 0.63 (0.04)

CFR 0.52 0.62 0 0.02 0.04 0

3 PPS 1.98 (0.11) 1.70 (0.09) 1.71 (0.08) 1.68 (0.09) 1.66 (0.05) 1.74 (0.11)

MSE 10.3 (3.54) 2.01 (1.57) 2.37 (0.87) 1.66 (1.41) 0.85 (0.51) 2.24 (0.69)

NZE 88.7 (1.41) 89.7 (0.59) 67.8 (9.12) 77.6 (10.1) 85.6 (4.14) 70.1 (7.34)

CRPS 2.46 (0.26) 1.87 (0.16) 1.88 (0.13) 1.83 (0.14) 1.79 (0.12) 1.88 (0.13)

CFR 0.39 0.75 0 0.03 0.07 0

estimation for λi will be referred to as the Bayesian adap-
tive pLasso (BapLasso).

We now consider a simulation study for the BpLasso and
BapLasso. We use the posterior median from the Gibbs sam-
ples of the smoothing parameters as their point estimate,
which appears to give better predictive performance. Us-
ing again the data sets generated from model (21), boxplots
over replications for comparing the methods are shown in
Fig. 4. It appears that the BapLasso works slightly better
than the pLasso and the others. The Lasso performs poorly
and adaptivity proves useful as both (cross-validation adap-
tive) pLasso and BapLasso appear to be superior to the
BpLasso. In the following, however, we no longer consider

the BapLasso in order to avoid heavy computation resulting
from many MCMC runs over simulation replications.

A simulation study for logistic regression We simulate in-
dependent observations from Bernoulli distributions with
probabilities of success

μi = P(yi = 1|xi ,β) = exp(2 + x′
iβ)

1 + exp(2 + x′
iβ)

where the design points xi are generated from a normal dis-
tribution as in the previous example. We consider two cases:
a small p case with β = (3,1.5,0.5,0.5,0,0,0,0)� and a
large p case with most of the βj zero except the first four
entries which are 3, 1.5, 0.5 and 0.5. We use the Gelman et
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Fig. 4 Boxplots for comparing the Lasso (L), pLasso (pL), BpLasso (Bp) and BapLasso (Bap) in four cases: n = 100, 200 and σ = 1,3. Data sets
are generated from model (21) in the case with normal predictors and small p

al. prior and the plug-in method discussed earlier for esti-
mating the predictions ȳ

f
i (using MCMC would give a more

accurate estimation but may be time consuming in simula-
tion when performance measures are to be averaged over
many replications). The simulation results are summarized
in Tables 4 and 5 with various sample sizes. Boxplots for two
cases are given in Figs. 5–6. As shown, both pLasso meth-
ods outperform the Lasso methods in terms of PPS, CRPS
and MSE. Furthermore, the aLasso seems to be unstable and
work poorly in the large p case when the number of obser-
vations is small. The pLasso with the regularization prior of
Gelman et al. (2008) works surprisingly well in this exam-
ple.

4.2 Real data examples

Example 1 (Linear regression—body fat percentage predic-
tion) Percentage of body fat is one important measure of
health, which can be accurately estimated by underwater
weighing techniques (Bailey 1994). These techniques of-
ten require special equipment and are sometimes not con-
venient, thus fitting percent body fat to simple body mea-
surements is a convenient way to predict body fat. Johnson
(1996) introduced a dataset in which percent body fat and
13 simple body measurements (such as weight, height and
abdomen circumference) are recorded for 252 men. After
omitting observations 39 (because a weight value of 363.15
pounds is unusually large), 42 (because a height value of
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Table 4 Simulation results for
logistic regression: small p case nT = nP Measure Lasso aLasso npLasso pLasso

100 PPS 0.284 (0.048) 0.281 (0.076) 0.276 (0.048) 0.272 (0.052)

MSE 3.515 (2.197) 5.203 (29.81) 2.455 (1.122) 1.953 (1.266)

NZE 1.95 (1.47) 3.11 (1.08) 0.65 (1.41) 2.41 (1.40)

CRPS 0.093 (0.021) 0.094 (0.024) 0.091 (0.021) 0.092 (0.023)

CFR 0.14 0.42 0.02 0.24

200 PPS 0.278 (0.034) 0.278 (0.038) 0.275 (0.036) 0.274 (0.038)

MSE 1.409 (0.765) 1.099 (0.816) 0.950 (0.484) 0.902 (0.524)

NZE 1.638 (1.423) 3.01 (1.325) 0.404 (1.218) 2.132 (1.427)

CRPS 0.087 (0.012) 0.088 (0.014) 0.086 (0.012) 0.086 (0.013)

CFR 0.14 0.15 0.03 0.14

500 PPS 0.266 (0.021) 0.266 (0.022) 0.264 (0.021) 0.263 (0.022)

MSE 0.605 (0.333) 0.477 (0.295) 0.389 (0.236) 0.351 (0.222)

NZE 2.071 (1.249) 3.820 (1.122) 1.093 (0.975) 2.660 (1.207)

CRPS 0.083 (0.007) 0.083 (0.008) 0.082 (0.007) 0.081 (0.007)

CFR 0.13 0.34 0.02 0.19

Table 5 Simulation results for
logistic regression: large p case nT = nP Measure Lasso aLasso npLasso pLasso

100 PPS 0.328 (0.043) 0.563 (0.211) 0.328 (0.044) 0.310 (0.050)

MSE 4.567 (1.260) 17.53 (8.902) 4.378 (1.249) 2.636 (1.085)

NZE 91.82 (5.271) 69.50 (6.228) 89.26 (7.676) 96.49 (2.157)

CRPS 0.100 (0.016) 0.145 (0.043) 0.101 (0.017) 0.096 (0.019)

CFR 0.01 0 0 0

500 PPS 0.278 (0.018) 0.693 (0.429) 0.279 (0.028) 0.269 (0.026)

MSE 2.105 (0.595) 15.90 (18.10) 1.135 (0.432) 0.696 (0.367)

NZE 89.62 (6.924) 45.82 (30.56) 60.82 (17.73) 82.18 (9.228)

CRPS 0.085 (0.006) 0.124 (0.034) 0.087 (0.009) 0.084 (0.008)

CFR 0.04 0 0 0

1000 PPS 0.263 (0.015) 0.260 (0.018) 0.273 (0.021) 0.255 (0.018)

MSE 1.320 (0.405) 0.593 (0.279) 0.792 (0.407) 0.297 (0.202)

NZE 89.58 (5.533) 96.18 (1.023) 38.9 (14.98) 83.58 (6.981)

CRPS 0.081 (0.006) 0.081 (0.007) 0.085 (0.007) 0.079 (0.006)

CFR 0.1 0.34 0 0

29.5 inches is unreasonable), and 182 (because the response
value is 0), we obtain a dataset of size 249.

We are concerned with the problem of constructing a
model that predicts the response from the covariates. Fol-
lowing Hoeting et al. (1999), we use a linear regression
model. The primary goal is prediction accuracy for future
observations; besides this, parsimony is another important
objective, since a simple model is preferred for the sake of
scientific insight into the x–y relationship.

Using the full dataset, the aLasso, pLasso and wpLasso
estimates of β are given in Table 6. These methods simulta-

neously do parameter estimation and variable selection, be-
cause some of the estimated coefficients are exactly zero.
Recall that the goals at which the methods aim are some-
what different: pLasso and wpLasso have a more explicit
predictive motivation; besides, the wpLasso in some cases
is somewhat more realistic in the sense that it allows the
variances to vary in proportion to the predictive variance of
the full model.

We now examine the predictive performance of these
three procedures. To this end, we split the dataset into two
parts: the first 125 observations are used as the training set
D, the remaining observations are used as the prediction set
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Table 6 Predicting percent body fat. The abbreviations “aL”, “pL” and “wpL” stand for aLasso, pLasso and wpLasso, respectively

Full data Case I Case II Case III

aL pL wpL aL pL wpL aL pL wpL aL pL wpL

C −18.00 6.79 −0.18 −14.78 2.88 −0.28 −15.69 −2.95 −4.59 −23.31 −0.61 −3.87

X1 0 0.06 0.04 0.02 0.09 0.08 0 0 0 0 0 0

X2 0 0 0 0 0 0 0 0 0 0 0 0

X3 −0.20 −0.29 −0.27 −0.26 −0.40 −0.39 0 −0.17 −0.14 0 −0.24 −0.22

X4 0 −0.30 −0.11 0 −0.24 −0.17 0 0 0 0 −0.34 −0.25

X5 0 −0.09 0 0 0 0 0 0 0 0 0 0

X6 0.55 0.78 0.68 0.55 0.70 0.68 0.38 0.66 0.66 0.45 0.69 0.69

X7 0 −0.09 0 0 −0.09 0 0 0 0 0 0 0

X8 0 0.09 0 0 0.16 0.08 0 0 0 0 0 0

X9 0 0 0 0 0.09 0 0 0 0 0 0 0

X10 0 0.09 0 0 0.22 0.17 0 −0.39 −0.43 0 −0.04 0

X11 0 0.13 0.04 0 0 0 0 0.10 0.10 0 0.20 0.20

X12 0 0.19 0 0 0 0 0 0 0 0 0.19 0.07

X13 0 −1.62 −1.31 0 −1.34 −1.20 0 −1.16 −1.15 0 −1.44 −1.35

PPS 1.946 1.933 1.933 2.112 1.913 1.902 2.075 1.965 1.951

CRPS 2.443 2.362 2.368 3.005 2.350 2.349 2.937 2.340 2.262

Fig. 5 Boxplots of performance measures over replications for com-
paring the methods in logistic regression: small p case with n = 500

DP . The aLasso, pLasso and wpLasso estimates and their
PPS and CRPS are given in Table 6 (case I). As a second
examination, the first 125 observations are used as the pre-
diction set DP , the remaining observations are used as the
training set D. For the third examination, we randomly split
the full dataset into two (roughly) equal parts which serve
as the training and prediction sets. The coefficient estimates,
PPS and CRPS are summarized in Table 6. As one may ex-
pect for predictively motivated methods, the variables se-
lected by pLasso and wpLasso in general contain those se-

Fig. 6 Boxplots of performance measures over replications for com-
paring the methods in logistic regression: large p case with n = 1000

lected by aLasso, i.e., the models selected by pLasso and
wpLasso are bigger than the one selected by aLasso. In all
cases, the pLasso and wpLasso show a better predictive per-
formance over the aLasso. Indeed, the PPS of the aLasso,
pLasso and wpLasso averaged over 50 such random parti-
tions are 2.055, 1.998, 1.924, respectively and the averaged
CRPS are 2.703, 2.385, 2.370, respectively. It seems that
modelling the variances to vary in proportion to the predic-
tive variance of the full model is appropriate in this example,



Stat Comput (2012) 22:1069–1084 1083

Fig. 7 Spambase data: boxplots
of performance measures over
50 random partitions

because the wpLasso has a similar or better predictive per-
formance compared with the pLasso.

Example 2 (Logistic regression—the spambase data) We
consider in this example an application of the predictive
Lasso in the logistic regression framework with many pre-
dictors and instances. We consider the spam email data set
created by Mark Hopkins, Erik Reeber, George Forman and
Jaap Suermondt at the Hewlett-Packard Labs. The data set
consists of 4061 messages, each has been already classi-
fied as email or spam together with 57 attributes (predic-
tors) which are relative frequencies of commonly occurring
words. The goal is to design a spam filter that could filter
out spam before clogging the users’ mailboxes. Our goal as
usual is to construct a parsimonious model with a good pre-
diction accuracy.

With a large number of predictors and observations, us-
ing MCMC may be time consuming so that we use the
plug in method discussed earlier. To access the performance
of the aLasso and pLasso methods, we randomly split the
data set into two parts (training set and prediction set) and
record performance measures PPS, CRPS and NZE across
50 such random partitions. The averaged PPS, CRPS and
NZE for the aLasso are 0.261, 0.072, 27.2 and for the pLasso
are 0.251, 0.067, 25.1, respectively. Figure 7 gives side by
side boxplots for these three measures over the partitions.
As shown, the pLasso gives a better predictive performance
overall while selecting roughly 2 predictors more than the
aLasso.

5 Conclusion

The popular Lasso as a procedure for simultaneous variable
selection and estimation has many attractive properties, and
under certain conditions is able to identify the true model if

it is assumed to exist. Our suggested pLasso has a more ex-
plicit predictive motivation which aims at selecting a useful
model for prediction; besides, it enjoys the attractive proper-
ties of Lasso. A notable feature of pLasso is that we put no
restriction on the predictive distribution p(�|D). Although
we have considered p(�|D) as arising from a full model
including all potential covariates, it can in fact arise from
any model where a GLM approximation with variable se-
lection is desired. The approximation can also be an appro-
priately local one in the covariate space through a judicious
choice of the design points in the pLasso criterion, which
need not correspond to the observed design points. In this
paper we have motivated and developed the idea of pLasso
only for GLMs. It is clear that this idea can be extended to
other models rather than GLMs, and this is a topic for future
research.
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