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Abstract The adaptive Metropolis (AM) algorithm of
Haario, Saksman and Tamminen (Bernoulli 7(2):223–242,
2001) uses the estimated covariance of the target distribution
in the proposal distribution. This paper introduces a new ro-
bust adaptive Metropolis algorithm estimating the shape of
the target distribution and simultaneously coercing the ac-
ceptance rate. The adaptation rule is computationally simple
adding no extra cost compared with the AM algorithm. The
adaptation strategy can be seen as a multidimensional exten-
sion of the previously proposed method adapting the scale of
the proposal distribution in order to attain a given acceptance
rate. The empirical results show promising behaviour of the
new algorithm in an example with Student target distribution
having no finite second moment, where the AM covariance
estimate is unstable. In the examples with finite second mo-
ments, the performance of the new approach seems to be
competitive with the AM algorithm combined with scale
adaptation.

Keywords Acceptance rate · Adaptive Markov chain
Monte Carlo · Ergodicity · Metropolis algorithm ·
Robustness

1 Introduction

Markov chain Monte Carlo (MCMC) is a general method to
approximate integrals of the form

I :=
∫

Rd

f (x)π(x)dx < ∞
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where π is a probability density function which can be eval-
uated point-wise up to a normalising constant. Such an in-
tegral occurs frequently when computing Bayesian poste-
rior expectations (e.g., Robert and Casella 1999; Gilks et
al. 1998; Roberts and Rosenthal 2004). The MCMC method
is based on a Markov chain (Xn)n≥1 that is easy to simu-
late in practice, and for which the ergodic averages In :=
n−1 ∑n

k=1 f (Xk) converge to the integral I as the number
of samples n tends to infinity.

One of the most generally applicable MCMC method is
the random walk Metropolis (RWM) algorithm. Suppose q

is a symmetric probability density supported on R
d (for ex-

ample the standard Gaussian density) and let S ∈ R
d×d be a

non-singular matrix. Set X1 ≡ x1, where x1 ∈ R
d is a given

starting point in the support; π(x1) > 0. For n ≥ 2 apply re-
cursively the following two steps:

(M1) simulate Yn = Xn−1 + SUn, where Un ∼ q is a inde-
pendent random vector, and

(M2) with probability αn := α(Xn−1, Yn) := min{1,π(Yn)/

π(Xn−1)} the proposal is accepted, and Xn = Yn; oth-
erwise the proposal is rejected and Xn = Xn−1.

This algorithm will produce a valid chain, that is, In → I

almost surely as n → ∞ (e.g. Nummelin 2002, Theorem 1).
However, the efficiency of the method, that is, the speed of
the convergence In → I , is crucially affected by the choice
of the shape matrix S.

Recently, there has been an increasing interest on adap-
tive MCMC algorithms that try to learn some properties of
the target distribution π on-the-fly, and use this informa-
tion to facilitate more efficient sampling (Haario et al. 2001;
Andrieu and Robert 2001; Atchadé and Rosenthal 2005;
Andrieu and Moulines 2006; Roberts and Rosenthal 2007,
2009); see also the recent review by Andrieu and Thoms
(2008). In the context of the RWM algorithm, this is typi-
cally implemented by replacing the constant shape S in (M1)
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with a random matrix Sn−1 that depends on the past (on the
random variables Uk , Xk , and Yk for 1 ≤ k ≤ n − 1).

Different strategies have been proposed to compute the
matrix Sn−1. The seminal Adaptive Metropolis (AM) al-
gorithm (Haario et al. 2001) uses Sn−1 = θLn−1 where
Ln−1 is the Cholesky factor of the (possibly modified)
empirical covariance matrix Cn−1 = Cov(X1, . . . ,Xn−1).
Under certain assumptions, the empirical covariance con-
verges to the true covariance of the target distribution π

(see, e.g., Haario et al. 2001; Andrieu and Moulines 2006;
Saksman and Vihola 2010; Vihola 2011a). The constant
scaling parameter θ > 0 is a tuning parameter chosen by the
user; the value θ = 2.4/

√
d proposed in the original paper

is widely used, as it is asymptotically optimal under certain
theoretical setting (Gelman et al. 1996).

In fact, the theory behind the value θ = 2.4/
√

d con-
nects the mean acceptance rate to the efficiency of the
Metropolis algorithm in more general settings. Therefore,
it is sensible to try to find such a scaling factor θ that yields
a desired mean acceptance rate; typically 23.4% in multidi-
mensional settings (Roberts et al. 1997). The first algorithms
coercing the acceptance rate did not adapt the shape factor
at all, but only the scale of the proposal distribution. That
is, Sn−1 = θn−1I , a multiple of a constant matrix, where the
factor θn−1 ∈ (0,∞) is adapted roughly by increasing the
value of the acceptance probability is too low, and vice versa
(Atchadé and Rosenthal 2005; Andrieu and Thoms 2008;
Roberts and Rosenthal 2009; Atchadé and Fort 2010). This
adaptive scaling Metropolis (ASM) algorithm has some nice
properties, and it has been shown that the algorithm is stable
under quite a general setting (Vihola 2011b). It is, however,
a ‘one-dimensional’ scheme, in the sense that it is unable to
adapt to the shape of the target distribution like the AM al-
gorithm. This can result in slow mixing with certain target
distributions π having a strong correlation structure.

The scale adaptation in the ASM approach has been
proposed to be used within the AM algorithm (Atchadé
and Fort 2010; Andrieu and Thoms 2008). This algorithm,
which shall be referred here to as the adaptive scaling
within AM (ASWAM), combines the shape adaptation of
AM and the acceptance probability optimisation. Namely,
Sn−1 = θn−1Ln−1, where θn−1 is computed from the ob-
served acceptance probabilities α2, . . . , αn−1 and Ln−1 is
the Cholesky factor of Cov(X1, . . . ,Xn−1). This multi-
criteria adaptation framework provides a coerced acceptance
probability, and at the same time captures the covariance
shape information of π . Empirical findings indicate this al-
gorithm can overcome some difficulties encountered with
the AM method (Andrieu and Thoms 2008).

The present paper introduces a new algorithm alternative
to the ASWAM approach. The aim is to seek a matrix factor
S∗ that captures the shape of π and at the same time allows
to attain a given mean acceptance rate. Unlike the multi-
criteria adaptation in ASWAM, the new approach is based

on a single matrix update formula that is computationally
equivalent to the covariance factor update in AM. The al-
gorithm, called here the robust adaptive Metropolis (RAM),
differs from the ASWAM approach by avoiding the use of
the empirical covariance, which can be problematic in some
settings, especially if π has no finite second moment. The
proposed approach is reminiscent, yet not equivalent, with
robust pseudo-covariance estimation, which has also been
proposed to be used in place of the AM approach (Andrieu
and Thoms 2008).

The RAM algorithm is described in detail in the next sec-
tion. Section 3 provides analysis on the stable points of the
adaptation rule, that is, where the sequence of matrices Sn

is supposed to converge. In Sect. 4, the validity of the algo-
rithm is verified under certain sufficient conditions. It is also
shown that the adaptation converges to a shape of an ellip-
tically symmetric target distribution. The RAM algorithm
was empirically tested in some example settings and com-
pared with the AM and the ASWAM approaches. Section 5
summarises the encouraging findings. The final section con-
cludes with some discussion on the approach as well as di-
rections of further research.

2 Algorithm

In what follows, suppose that the proposal density q is
spherically symmetric: there exists a function q̂ : R →
[0,∞) such that q(x) = q̂(‖x‖) for all x ∈ R

d . Let s1 ∈
R

d×d be a lower-diagonal matrix with positive diagonal ele-
ments, and suppose {ηn}n≥1 ⊂ (0,1] is a step size sequence
decaying to zero. Furthermore, let x1 ∈ R

d be some point
in the support of the target distribution, π(x1) > 0, and let
α∗ ∈ (0,1) stand for the target mean acceptance probability
of the algorithm.

The robust adaptive Metropolis process is defined recur-
sively through

(R1) compute Yn := Xn−1 + Sn−1Un, where Un ∼ q is an
independent random vector,

(R2) with probability αn := min{1,π(Yn)/π(Xn−1)} the
proposal is accepted, and Xn = Yn; otherwise the pro-
posal is rejected and Xn = Xn−1, and

(R3) compute the lower-diagonal matrix Sn with positive
diagonal elements satisfying the equation

SnS
T
n = Sn−1

(
I + ηn(αn− α∗)

UnU
T
n

‖Un‖2

)
ST

n−1 (1)

where I ∈ R
d×d stands for the identity matrix.

The steps (R1) and (R2) implement one iteration of the
RWM algorithm, but with a random matrix Sn−1 in (R1).
In the adaptation step (R3) the unique Sn satisfying (1) al-
ways exists, since it is the Cholesky factor of the matrix in



Stat Comput (2012) 22:997–1008 999

the right hand side, which is verified below to be symmetric
and positive definite.

Proposition 1 Suppose S ∈ R
d×d is a non-singular matrix,

u ∈ R
d is a non-zero vector and a ∈ (−1,∞) is a scalar.

Then, the matrix M := S(I + a uuT

‖u‖2 )ST is symmetric and
positive definite.

Proof The symmetricity is obvious. Let x ∈ R
d \{0}, denote

ũ := u/‖u‖ and define z := Sũ. We may write M = SST +
azzT , whence

xT Mx = ‖xT S‖2 + a(xT z)2 = ‖xT S‖2
(

1 + a
(xT z)2

‖xT S‖2

)
.

This already establishes the claim in the case a ≥ 0. Suppose
then a ∈ (−1,0). Clearly (xT z)2 = ‖xT Sũ‖2 ≤ ‖xT S‖2 and
so xT Mx ≥ ‖xT S‖2(1 − |a|) > 0. �

Let us then see what happens in the adaptation in in-
tuitive terms. Observe first that in (R1) the proposal Yn

is formed by adding an increment Wn := Sn−1Un to the
previous point Xn−1. Since Un is distributed according to
the spherically symmetric q , the random variable Wn is
distributed according to the elliptically symmetric density
qSn−1(w) := det(Sn−1)

−1q(S−1
n−1w) with the main axes de-

fined by the eigenvectors and the corresponding eigenvalues
of the matrix Sn−1S

T
n−1.

To illustrate the behaviour of the RAM update (R3),
Fig. 1 shows two examples how the contours of the pro-
posal change in the update. The example on the left shows
how the contour ellipsoid expands to the direction of Wn

when ηn(αn − α∗) = 0.8 > 0. Similarly, the example on the
right shows how the ellipsoid shrinks when ηn(αn − α∗) =
−0.8 < 0. These examples reflect the basic idea behind the
approach. If the acceptance probability is smaller than de-
sired, αn < α∗ (or more than desired, αn > α∗) the proposal
distribution is shrunk (or expanded) with respect to the di-
rection of the current proposal increment.

Fig. 1 Two examples of the RAM update (R3). The solid line rep-
resents the contour ellipsoid defined by Sn−1S

T
n−1, and the vector

Sn−1Un/‖Un‖ is drawn as a dot. The contours defined by SnS
T
n are

dashed

We can also see this behaviour from the update equation
by considering the radius of the contour ellipsoid defined by
SnS

T
n with respect to different directions. Let v ∈ R

d be a
unit vector. As in the proof of Proposition 1, we may write

‖ST
n v‖2 = ‖ST

n−1v‖2 + ηn(αn − α∗)(ZT
n v)2

where Zn = SnUn/‖Un‖. If Zn and v are orthogonal, the
latter term vanishes and ‖ST

n v‖ = ‖ST
n−1v‖. If they are par-

allel, that is, v = ±Zn/‖Zn‖, then the factor (ZT
n v)2 equals

‖ST
n−1v‖2, and so ‖ST

n v‖ = √
1 + ηn(αn − α∗)‖ST

n−1v‖.
Any other choices of the unit vector v fall in between these
two extremes.

Remark 1 In dimension one, the value of Sn can be com-
puted directly by

logSn = logSn−1 + 1

2
log

(
1 + ηn(αn − α∗)

)
.

When ηn is small, this is almost equivalent to the update

logSn = logSn−1 + ηn

2
(αn − α∗)

implying that the RAM algorithm will exhibit a similar be-
haviour with the ASM algorithm as proposed by Atchadé
and Fort (2010), Andrieu and Thoms (2008) and analysed in
Vihola (2011b). Therefore, it is justified to consider RAM
as a multidimensional generalisation of the ASM adaptation
rule.

Remark 2 In practice, the matrix Sn in (R3) can be com-
puted as a rank one Cholesky update or downdate of Sn−1

when αn − α∗ > 0 and αn − α∗ < 0, respectively (Dongarra
et al. 1979). Therefore, the algorithm is computationally ef-
ficient up to a relatively high dimension. In fact, the full
d-dimensional matrix multiplication required when gener-
ating the proposal in (R1) has the same O(d2) complexity
as the Cholesky update or downdate, rendering the adapta-
tion to only add a constant factor to the complexity of the
RWM algorithm.

Remark 3 While the step size sequence ηn can be chosen
quite freely, in practice it is often defined as ηn = n−γ with
an exponent γ ∈ (1/2,1]. The choice γ = 1, which is em-
ployed in the original setting of the AM algorithm (Haario et
al. 2001) is not advisable for the RAM algorithm. For sim-
plicity, consider a one-dimensional setting like in Remark 1.
Then, if ηn = n−1 the logarithm of Sn can increase or de-
crease only at the speed ±∑n

k=1 ηk ≈ log(n). Therefore, Sn

can grow or shrink only linearly or at the speed 1/n, respec-
tively. This renders the adaptation inefficient, if the initial
value s1 differs significantly from the scale and shape of π .
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3 Stable points

The RAM algorithm introduced in the previous section has,
under suitable conditions, a stable point, that is, a matrix
S∗ ∈ R

d×d , where the adaptation process Sn should con-
verge as n increases. Before considering the convergence,
we shall study the stable points of the algorithm in certain
settings.

One can write the update equation (1) in the following
form

SnS
T
n = Sn−1S

T
n−1 + ηnH(Sn−1,Xn−1,Un) (2)

where

H(S,x,u) = S

(
min

{
1,

π(x + Su)

π(x)

}
− α∗

)
uuT

‖u‖2
ST .

The recursion (2) implements a so called Robbins-Monro
stochastic approximation algorithm on (SnS

T
n )n≥1 (e.g.

Benveniste et al. 1990; Kushner and Yin 2003; Borkar
2008). Such an algorithm seeks the root of the so called
mean field hπ defined as

hπ(S) := S

∫
Rd

∫
Rd

(
min

{
1,

π(x + Su)

π(x)

}
− α∗

)

× uuT

‖u‖2
q(u)duπ(x)dxST .

We shall see that under some sufficient conditions, there ex-
ists a stable point, that is, hπ(S) = 0.

First, we shall observe a fundamental property of the
RAM algorithm; that it is invariant under affine transforma-
tions.

Theorem 1 Let π be a probability density and let
(Xn,Sn)n≥1 be the RAM process (R1)–(R3) targeting π and
started from (x1, s1). Suppose A ∈ R

d×d is a non-singular
matrix, b ∈ R

d and define π̂ (x) := |det(A)|−1π(A−1x −b).
Let (X̂n, Ŝn)n≥1 be the RAM process targeting π̂ and
started from (Ax1 + b,As1). Then, the processes (AXn +
b, (ASn)(ASn)

T )n≥1 and (X̂n, ŜnŜ
T
n )n≥1 have identical dis-

tributions.

Proof Let Un ∼ q and Wn ∼ U(0,1) be the independent se-
quences that drive the RAM process (Xn,Sn)n≥1 targeting
π ; that is

Yn = Xn−1 + Sn−1Un (3)

Xn = Yn1{Wn≤αn} + Xn1{Wn>αn}. (4)

The proof proceeds by constructing an independent se-
quence Ûn ∼ q , so that the RAM process (X̃n, S̃n)n≥1 tar-
geting π̃ and driven by (Ũn)n≥1 and (Wn)n≥1 will satisfy
the claim path-wise: AXn = X̂n and ASn(ASn)

T = ŜnŜ
T
n

for all n ≥ 1.

Write the QR decomposition (ASn)
T = QnRn where

Qn is orthogonal and where Ŝn := RT
n is lower-diagonal

and chosen so that it has a positive diagonal. We observe
that ASn(ASn)

T = ŜnŜ
T
n and defining Ûn+1 := QT

n Un+1

we have also ASnUn+1 = ŜnÛn+1. Since the distribution of
Un+1 is spherically symmetric and Un+1 is independent of
orthogonal Qn, the sequence (Ũn)n≥1 is i.i.d. with distribu-
tion q .

Now, we may verify inductively using (3) and (4) that
X̂n = AXn can be computed through

Ŷn = X̂n−1 + Ŝn−1Ûn

X̂n = Ŷn1{Wn≤α̂n} + Xn−11{Wn>α̂n}

where

α̂n = min

{
1,

π̂(Ŷn)

π̂(X̂n−1)

}
= min

{
1,

π(Yn)

π(Xn−1)

}
= αn. �

After Theorem 1, it is no surprise that the mean field of the
algorithm satisfies similar invariance properties.

Theorem 2 Suppose π is a probability density.

(i) Let π̂ be an affine transformation of π , that is, π̂ (x) =
|det(A)|−1π(A−1x − b) for some non-singular matrix
A ∈ R

d×d and b ∈ R
d . Then, Ahπ(S)AT = hπ̂ (AS)

for all S ∈ R
d×d .

(ii) For any orthogonal matrix Q ∈ R
d×d and for all S ∈

R
d×d , hπ(S) = hπ(SQ).

(iii) Suppose that S is a unique lower-diagonal matrix with
positive diagonal satisfying hπ(S) = 0. Then, restricted
to such matrices, the solution of hπ̂ (Ŝ) = 0 is also
unique, and of the form Ŝ = ASQ for some orthogo-
nal Q ∈ R

d×d .

Proof The claim (i) follows by a change of variable x =
A−1z − b,

hπ(S) = S

∫
Rd

∫
Rd

(
min

{
1,

π(x + Su)

π(x)

}
− α∗

)

× π(x)dx
uuT

‖u‖2
q(u)duST

= S

∫
Rd

∫
Rd

(
min

{
1,

π̂(z + ASu)

π̂(z)

}
− α∗

)

× π̂(z)dz
uuT

‖u‖2
q(u)duST = A−1hπ̂ (AS)A−T .

The claim (ii) follows similarly, by a change of variable
u = Qv and due to the spherical symmetry of q . The unique-
ness up to rotations, that is, only the matrices of the form
Ŝ = ASQ satisfy hπ̂ (Ŝ) = 0 follows directly as above. The
claim (iii) is completed by writing the QR-decomposition
(AS)T = QR and by observing that the upper-triangular R

can be chosen to have positive diagonal elements. �
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Theorem 2 verifies that the stable points of the algo-
rithm are affinely invariant like the covariance (or more
generally robust pseudo-covariance) matrices (Huber 1981).
Theorem 3 below verifies that in the case of a suitable el-
liptically symmetric target distribution π , the stable points
of the RAM algorithm in fact coincide with the (pseudo-
)covariance of π . This is an interesting connection, but in
general the fixed points of the RAM algorithm do not coin-
cide with the pseudo-covariance.

Theorem 3 Assume α∗ ∈ (0,1) and π is elliptically sym-
metric, that is, π(x) ≡ det(Σ)−1p(‖Σ−1x‖) for some p :
[0,∞) → [0,∞) and for some symmetric and positive defi-
nite Σ ∈ R

d×d . Then,

(i) there exists a lower-diagonal matrix with positive diago-
nal S∗ ∈ R

d×d such that hπ(S∗) = 0 and such that S∗ST∗
is proportional to Σ2.

(ii) assuming the function p is non-increasing, the solution
S∗ is additionally unique.

Proof In light of Theorem 2, it is sufficient to consider any
spherically symmetric π , that is, the case Σ is an identity
matrix.

Let S be a lower-diagonal matrix with positive diagonal.
Observe that since S is non-singular, hπ(S) = 0 is equiva-
lent to S−1hπ(S)S−T = 0, that is∫

Rd

∫
Rd

(
min

{
1,

π(x + Su)

π(x)

}
− α∗

)

× uuT

‖u‖2
q(u)duπ(x)dx = 0. (5)

Define the function

h̄(S) :=
∫

Rd

∫
Rd

(
min

{
1,

π(x + Su)

π(x)

})

× uuT

‖u‖2
q(u)duπ(x)dx.

It is easy to see by symmetry and taking traces that (5) is
equivalent to h̄(S) = α∗

d
I , where I ∈ R

d×d stands for the
identity matrix.

We can write h̄(S) in a more convenient form by using
the polar coordinate representation u = rv, where v ∈ S d :=
{v ∈ R

d : ‖v‖ = 1} is a unit vector in the unit sphere, and
r = ‖u‖ is the length of u. Then, by Fubini’s theorem

h̄(S) =
∫

S d

[∫ ∞

0

∫
Rd

min {π(x),π(x + rSv)}dxq̃(r)dr

]

× vvT μ(dv)

where μ stands for the uniform distribution on the unit
sphere S d and the proposal is written in terms of the proba-
bility density q̃(‖u‖) ∝ ‖u‖d−1q(u).

By applying the representation of π by the radial function
p one can write the term above in brackets as

g(‖Sv‖) :=
∫ ∞

0

∫
Rd

min {p(‖x‖),p(‖x + rSv‖)}dxq̃(r)dr,

since due to symmetry, the value of the integral depends only
on the norm ‖Sv‖.

For any θ ∈ R+, one can now write

h̄(θI ) =
∫

S d

g(θ)vvT μ(dv) = g(θ)

d
I,

since trace(h̄(θI )) = g(θ) and by symmetry. Proposition 2
in Appendix A shows that g : (0,∞) → (0,∞) is con-
tinuous, that limθ→∞ g(θ) = 0 and that limθ→0+ g(θ) =∫ ∞

0 q̃(r)dr = 1. Therefore, there exists a θ∗ > 0 such that
g(θ∗) = α∗ so that h̄(θ∗I ) = α∗

d
I , establishing (i).

For (ii), let us first show that g is in this case strictly de-
creasing, at least before hitting zero. Observe that since p is
non-increasing, one can write

g(θ) =
∫ ∞

0

(∫
‖x‖>‖x+rθv‖

p(‖x‖)dx

+
∫

‖x‖≤‖x+rθv‖
p(‖x + rθv‖)dx

)
q̃(r)dr

=
∫ ∞

0

(
1 −

∫
Arθv

π(x)dx

)
q̃(r)dr.

It is easy to see that the width of the strip Arθv := {‖x‖ ≤
‖x + rθv‖} ∩ {‖x‖ < ‖x − rθv‖} is increasing with respect
to θ . Therefore, for any fixed r and v, the term brv(θ) :=
1 − ∫

Arθv
π(x)dx is strictly decreasing with respect to θ as

long as the support of π is not completely covered by Arθv ,
in which case brv(θ) = 0. This implies that g(θ) is strictly
decreasing with respect to θ , until possibly g(θ) = 0. There-
fore, there is a unique θ∗ > 0 for which g(θ∗) = α∗.

Let us assume that S ∈ R
d×d is a matrix satisfying

h̄(S) = α∗
d

I . By symmetry, we can assume S to be diag-
onal, with positive diagonal elements s1, . . . , sd > 0. Let
e1, . . . , ed stand for the standard basis vectors of R

d . The
diagonal element [h̄(S)]ii = α∗

d
is equivalent to

∫
S d

[
g(‖Sv‖) − α∗

]
(vT ei)

2μ(dv) = 0,

since
∫

S d (v
T ei)

2μ(dv) = d−1. Denoting ḡ(‖Sv‖) :=
g(‖Sv‖) − α∗, this implies

∫
S d

ḡ

((
d∑

i=1

s2
i v2

i

)1/2)(
d∑

i=1

λiv
2
i

)
μ(dv) = 0 (6)

for any choice of the constants λi ∈ R. Particularly, choosing
λi = 1 for i = 1, . . . , d implies that for any constant c ∈ R
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we have
∫

S d

ḡ

((
d∑

i=1

s2
i v2

i

)1/2)
cμ(dv) = 0. (7)

Now, summing (6) and (7) with a specific choice of con-
stants c = θ2∗ and λi = −s2

i , we obtain

∫
S d

ḡ

((
d∑

i=1

s2
i v2

i

)1/2)(
θ2∗ −

d∑
i=1

s2
i v2

i

)
μ(dv) = 0.

But now, ḡ((
∑d

i=1 s2
i v2

i )
1/2) ≥ 0 exactly when

∑d
i=1 s2

i v2
i ≤

θ2∗ , so the integrand is always non-negative. Moreover, if any
si �= θ∗, then by continuity there is a neighbourhood Ui ⊂
S d of ei such that the integrand is strictly positive, implying
that the integral is strictly positive. This concludes the proof
of the uniqueness (ii). �

The following theorem shows that when π is the joint
density of d independent and identically distributed ran-
dom variables, the RAM algorithm has, as expected, a stable
point proportional to the identity matrix.

Theorem 4 Assume α∗ ∈ (0,1) and π(x) = ∏d
i=1 p(xi) for

some one-dimensional density p. Then, there exists a θ > 0
such that ĥ(θI ) = 0.

Proof Let e1, . . . , ed stand for the coordinate vectors of R
d ,

and let q̃ and μ be defined as in the proof of Theorem 3.
Consider the functions

ai(θ) :=
∫

S d

∫ ∞

0

(∫
Rd

min {π(x),π(x + rθu)}dx

)

× q̃(r)dr(uT ei)
2μ(du).

Let P be a permutation matrix. It is easy to see that π(x +
rθu) = π(P (x + rθu)) by the i.i.d. product form of π .
Therefore, by the change of variable Px = z and Pu = v,
one obtains that

ai(θ) =
∫

S d

∫ ∞

0

(∫
Rd

min {π(z),π(z + rθv)}dx

)

× q̃(r)dr(vT P T ei)
2μ(dv) = aj (θ)

by a suitable choice of P . Moreover, limθ→∞ ai(θ) = 0
and limθ→0+ ai(θ) = d−1 and ai are continuous. There-
fore, there exists a θ∗ > 0 such that ai(θ∗) = α∗d−1, and
so eT

i h(θ∗I )ei = 0.
It remains to show that eih(θ∗I )ej = 0 for all i �= j . But

for this, it is enough to show that the integrals of the form∫
E∗

i,j

∫ ∞

0

(∫
Rd

min {π(z),π(z + rθv)}dx

)

× q̃(r)dr|(vT ei)(v
T ej )|μ(dv)

have the same value for both E+
i,j

:= {v ∈ S d : (vT ei)(v
T ej )

> 0} and E−
i,j

:= {v ∈ S d : (vT ei)(v
T ej ) < 0}. But this is

obtained due to the symmetry of the sets E+
i,j and E−

i,j and
the product form of π , since
∫

Rd

min {π(z),π(z + rθv)}dx

=
∫

Rd

min

{
π

(
z − 1

2
rθv

)
,π

(
z + 1

2
rθv

)}
dx

so one can change the sign of any coordinate of v without
affecting this integral. �

Remark 4 Checking the existence and uniqueness of the sta-
ble point in a more general setting is out of the scope of this
paper. It is believed that there always exists at least one so-
lution S∗ ∈ R

d×d such that h(S∗) = 0. Notice, however, that
the fixed point may not be always unique; see an example of
such a situation for one-dimensional adaptation (the ASM
algorithm) in Hastie (2005, Sect. 4.4).

Remark 5 It is not very difficult to show that for any given
target π and proposal q , there exist some constants 0 <

θ1 < θ2 < ∞ such that the matrices hπ(θ1I ) and hπ(θ2I )

are positive definite and negative definite, respectively. This
indicates that, on average, Sn should shrink whenever it is
‘too big’ and expand whenever it is ‘too small,’ so the algo-
rithm should admit a stable behaviour. The empirical results
in Sect. 5 support the hypothesis of general stability.

To be more precise, we can identify a Lyapunov func-
tion wπ for hπ in the case π is elliptically symmetric with a
non-increasing tail. This will allow us to establish the con-
vergence of the sequence (SnS

T
n )n≥1 in Theorem 7.

Theorem 5 Assume the conditions of Theorem 3(ii) and de-
note R∗ := S∗ST∗ . Define a function wπ : R

d×d → [0,∞) by

wπ(R) := trace(R−1∗ R) − log

(
detR

detR∗

)
− d.

Then, for any non-singular S ∈ R
d×d it holds that

〈∇wπ(SST ),hπ (S)〉 ≤ 0 with equality only if SST = R∗.

Proof Denote π̂ (x) := det(R∗)1/2π(R
1/2∗ x), then by The-

orem 2(i) hπ(S) = R
1/2∗ hπ̂ (R

−1/2∗ S)R
1/2∗ . Moreover, The-

orem 3(ii) together with Theorem 2(iii) imply that π̂ is
spherically symmetric and S = I is the unique solution of
hπ̂ (S) = 0 (up to orthogonal transformations).

We can write

∇wπ

(
R

1/2∗ S(R
1/2∗ S)T

) = R
−1/2∗

(
I − (SST )−1)R−1/2∗

= R
−1/2∗ ∇wπ̂(S)R

−1/2∗ ,
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so we obtain
〈∇wπ

(
R

1/2∗ S(R
1/2∗ S)T

)
, hπ (R

1/2∗ S
〉

= trace
[∇wπ

(
R

1/2∗ S(R
1/2∗ S)T

)T
hπ (R

1/2∗ )
]

= 〈∇wπ̂(S),hπ̂ (S)
〉
.

Therefore, it is sufficient to check that the claim holds for
spherically symmetric π̂ with R∗ = I .

Let S be non-singular and write the singular value de-
composition S = US̄V T where U and V are orthogonal and
S̄ = diag(s̄1, . . . , s̄d ) with positive diagonal entries. By The-
orem 2(ii) we have hπ̂ (S) = hπ̂ (SV ) = hπ̂ (US̄). We may
write, using the notation in Theorem 3,

trace
(
hπ̂ (S)

) = trace
(
UT hπ̂ (US̄)U

)

=
∫

S d

ḡ
(‖S̄w‖)

(
d∑

i=1

s̄2
i w2

i

)
μ(dw).

We have SST = US̄2UT , so we obtain similarly

trace
(
(SST )−1hπ̂ (S)

) = trace
(
S̄−1UT hπ̂ (SV )US̄−1)

=
∫

S d

ḡ
(‖S̄w‖)μ(dw).

Putting everything together,
〈∇wπ̂(SST ),hπ̂ (S)

〉

=
∫

S d

ḡ

((
d∑

i=1

s̄2
i w2

i

)1/2)(
d∑

i=1

s̄2
i w2

i − 1

)
μ(dw).

As in the proof of Theorem 3, ḡ((
∑d

i=1 s̄2
i w2

i )
1/2) > 0 ex-

actly when
∑d

i=1 s̄2
i w2

i < 1 and vice versa. The integral can
equal zero only if all s̄i = 1. �

4 Validity

This section describes some sufficient conditions under
which the RAM algorithm is valid; that is, when the em-
pirical averages converge to the integral

In = 1

n

n∑
k=1

f (Xk)
n→∞−−−→

∫
Rd

f (x)π(x)dx =: I (8)

almost surely.
Let us start by introducing assumptions on the forms of

the proposal density q and the target density π .

Assumption 1 The proposal density q is either a Gaussian
or a Student distribution, that is,

q(z) ∝ e− 1
2 ‖z‖2

or q(z) ∝ (1 + ‖z‖2)−
d+p

2

for some constant p > 0.

Assumption 2 The target density π satisfies either of the
following assumptions.

(i) The density π is bounded and supported on a bounded
set: there exists a constant m < ∞ such that π(x) = 0
for all ‖x‖ ≥ m.

(ii) The density π is positive everywhere in R
d and con-

tinuously differentiable. The tails of π are super-
exponentially decaying and have regular contours, that
is, respectively

lim‖x‖→∞
x

‖x‖ · ∇ logπ(x) = −∞ and

lim sup
‖x‖→∞

x

‖x‖ · ∇π(x)

‖∇π(x)‖ < 0.

Remark 6 Assumption 2 ensures the geometric ergodicity
of the RWM algorithm under fairly general settings; Jarner
and Hansen (2000) discuss the limitations of (ii) and give
several examples.

Before stating the theorem, consider the following con-
ditions on the adaptation step size sequence (ηn)n≥1 and on
the stability of the process (Sn)n≥1.

Assumption 3 The adaptation step sizes ηn ∈ [0,1] are
non-increasing and satisfy

∑∞
n=1 n−1ηn < ∞.

Assumption 4 There exist random variables 0 ≤ A ≤ B ≤
∞ such that all the eigenvalues λ

(i)
n of the random matrices

SnS
T
n are almost surely bounded by A ≤ λ

(i)
n ≤ B , for all

n = 1,2, . . . and all i = 1, . . . , d .

Theorem 6 Suppose Assumptions 1–4 hold and denote
Ω0 := {A > 0, B < ∞}. Suppose also that the function
f : R

d → R satisfies for some p ∈ [0,1)

sup
x∈Rd :π(x)>0

|f (x)|π−p(x) < ∞.

Then, for almost every ω ∈ Ω0, the strong law of large num-
bers (8) holds.

The proof follows by existing results in the literature; the
details are given in Appendix B.

The convergence of the adaptation can be established as
well in case π is elliptically symmetric.

Theorem 7 If the conditions of Theorem 3(ii) and Theo-
rem 6 hold and additionally

∑∞
n=1 ηn = ∞, then SnS

T
n →

S∗ST∗ for almost every ω ∈ Ω0.

The proof follows by Theorem 5 and results in the litera-
ture; see Appendix B.
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Remark 7 Assumptions 1–3 are common when verifying
the ergodicity of an adaptive MCMC algorithm. Assump-
tion 4 on stability is natural but it can be difficult to check
with P(A > 0, B < ∞) = 1 in practice. The empirical evi-
dence supports this hypothesis under a very general setting;
see also Remark 5 in Sect. 3. Similar stability results have
been established only for few adaptive MCMC algorithms,
including the AM and the ASM algorithms (Saksman and
Vihola 2010; Vihola 2011a, 2011b). The precise stability
analysis is beyond the scope of this paper. Instead, the sta-
bility can be enforced as described below.

Let 0 < a ≤ b < ∞ be some constants so that the eigen-
values of s1s

T
1 are within [a, b]. Then, replace the step (R3)

in the RAM algorithm with the following:

(R3’) compute the lower-diagonal matrix Ŝn with positive
diagonal so that ŜnŜ

T
n equals the right hand side of

(1). If the eigenvalues of ŜnŜ
T
n are within [a, b], then

set Sn = Ŝn, otherwise set Sn = Sn−1.

While this modification ensures stability, it may change the
stable points of the algorithm and the conclusion of The-
orem 7 may not hold. This could possibly be avoided, for
example, by considering an adaptive reprojections approach
(Andrieu et al. 2005; Andrieu and Moulines 2006), but we
do not pursue this here.

5 Experiments

The RAM algorithm was tested with three types of tar-
get distributions: heavy-tailed Student, Gaussian and a mix-
ture of Gaussians. The performance of RAM was compared
against the seminal adaptive Metropolis (AM) algorithm
(Haario et al. 2001) and an adaptive scaling within adap-
tive Metropolis (ASWAM) algorithms (Andrieu and Thoms
2008; Atchadé and Fort 2010). Especially the comparison
against ASWAM is of interest, since it attains a given accep-
tance rate like the RAM algorithm.

There are several parameters that are fixed throughout
the experiments. The adaptation step size sequence was set
to ηn = n−2/3 for the AM and the ASWAM algorithms.
For the RAM approach, the weight sequence was modified
slightly so that ηn = min{1, d · n−2/3}. The extra factor was
added to compensate the expected growth or shrinkage of
the eigenvalues being of the order d−1; see the proof of The-
orem 3. The target mean acceptance rate was α∗ = 0.234. In
all the experiments, the Student proposal distribution of the

form q(z) = (1 + ‖z‖2)− d+1
2 was used. Such a heavy-tailed

proposal was employed in order to have good convergence
properties in case of heavy-tailed target densities (Jarner and
Roberts 2007).

All the tests were performed using the publicly available
Grapham software (Vihola 2010); the latest version of the
software includes an implementation of the RAM algorithm.

5.1 Multivariate Student distribution

The first example is a bivariate Student distribution with n =
1 degrees of freedom and the following location and pseudo-
covariance matrix

μ =
[

1
2

]
and Σ =

[
0.2 0.1
0.1 0.8

]
,

respectively. That is, the target density π(x) ∝ (1 +
xT Σ−1x)−3/2. Clearly, π has no second moments and
thereby the empirical covariance estimate used by AM and
ASWAM is deemed to be unstable in this example.

Figure 2 shows the results for one hundred runs of the
algorithms. The grey area indicates the interval between the
10% and the 90% percentiles, and the black line shows the
median. The top row shows the logarithm of the first diag-
onal element of the matrix Sn. The AM covariance grows
without an upper bound as expected. When the scale adap-
tation is added, the ASWAM approach manages to keep the
factor Sn = θnLn within certain bounds, but there is a con-
siderable variation that does not seem to vanish. This is due
to the fact that Ln, the Cholesky factor of Cov(X1, . . . ,Xn),
grows without an upper bound but at the same time the
scaling factor θn decays to keep the acceptance rate around
the desired 23.4%. The RAM algorithm seems to converge
nicely to a limiting value.

Such undesired behaviour of the AM and the ASWAM
algorithms may also have an effect on the validity of their
simulation. Indeed, let us consider the 90% highest proba-
bility density (HPD) set of the target, that is, the set A :=
{x ∈ R

2 : (x − μ)T Σ−1(x − μ)T > 99}. Figure 2 (bottom)
shows the percentage of Xn outside the 90% HPD computed
after a 100,000 sample burn-in period. The AM algorithm
tends to overestimate the ratio slightly, with more variation
than the ASWAM and the RAM approaches. The estimate
produced by the ASWAM algorithm has approximately the
same variation as RAM, but there is a tendency to underes-
timate the ratio. The RAM estimates are centred around the
true value.

To check how the RAM algorithm copes with higher di-
mensions, let us follow Roberts and Rosenthal (2009) and
consider a matrix Σ = MMT , where M ∈ R

d×d is ran-
domly generated with i.i.d. standard Gaussian elements.
Such a matrix Σ is used as the pseudo-covariance of

a Student distribution, so that π(x) ∝ (1 + xT Σ−1x)− d+1
2 .

Roberts and Rosenthal (2001) showed that in the case
of Gaussian target and proposal distributions, one can
measure the ‘suboptimality’ by the factor b :=
d(

∑d
i=1 λ−2

i )(
∑d

i=1 λ−1
i )−2 where λi are the eigenvalues

of the matrix (SnS
T
n )1/2Σ−1/2. The factor equals one if

the matrices are proportional to each other, and is larger
otherwise. While the factor may not have the same inter-
pretation in the present setting involving Student distribu-
tions, it serves as a good measure of mismatch between
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Fig. 2 Bivariate Student
example: logarithm of the first
diagonal component of the
matrix Sn (top) and the
proportion of Xn in the set A

after 100,000 burn-in iterations
(bottom)

Fig. 3 Suboptimality factor b

over one million iterations of the
RAM algorithm with a different
dimensional Student target

SnS
T
n and Σ . Figure 3 shows the factor b in increasing di-

mensions each based on 100 runs of the RAM algorithm.
The convergence of SnS

T
n → Σ is slower in higher di-

mensions, but the algorithm seems to find a fairly good
approximation already with a moderate number of sam-
ples.

5.2 Gaussian distribution

The multivariate Gaussian target π(x) = N (0,Σ) serves as
a baseline comparison for the algorithms, as they should
converge to the same matrix factor1 SnS

T
n → θ∗Σ .

The algorithms were tested in different dimensions, for
one thousand covariance matrices randomly generated as de-
scribed in Sect. 5.1. The algorithms were always started in
‘steady state’ so that X1 ∼ N(0,Σ). The algorithms were
run half a million iterations: 100,000 burn-in and 400,000 to
estimate the proportions of the samples Xn in the 10%, 25%,
50%, 75% and 90% HPD of the distribution. Table 1 shows
the overall root mean square error. For dimension two, the
results are comparable. Surprisingly, when the dimension in-
creases the RAM approach provides more accurate results
than the AM and the AMS algorithms.

1For the AM algorithm, the constant θ∗ is slightly different, but ap-
proximately equal in higher dimensions.

One possible explanation is that in order to approximate
the sample covariance, the covariance adaptation in AM and
ASWAM should be done using the weight sequence ηn =
n−1 as this corresponds almost exactly to the usual sample
covariance estimator. This setting was tried also; the results
appear also in Table 1. It seems that using such a sequence
will indeed imply better results, when starting from s1 ≡ I

or s1 ≡ 10−4 ·I . However, when the initial factor s1 = 104 ·I
was ‘too large’, this approach failed. This is probably due to
the fact that in this case the eigenvalues of the covariance
estimate can decay only slowly, at the speed n−1.

Another explanation for the unsatisfactory performance
of the AM and ASWAM approaches is that in the experi-
ments the adaptation was started right away, not after a burn-
in phase run with a fixed proposal covariance as suggested
in the original work (Haario et al. 2001). It is expected that
the AM and the ASWAM algorithms would perform better
by a suitable fixed proposal burn-in and perhaps with yet
another step size sequences. In any case, this experiment
demonstrates one strength of the RAM adaptation mecha-
nism, namely that it does not require such a burn-in period.

5.3 Mixture of separate Gaussians

The last example concerns a mixture of two Gaussians dis-
tributions in R

d with mean vectors m1 := [4,0, . . . ,0]T and
m2 := −m1 and with a common diagonal covariance matrix
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Table 1 Errors in Gaussian quantiles in different dimensions. The step sizes ηn = n−1 were used for covariance estimation for AM† and ASWAM†

s1 ≡ I s1 ≡ 10−4 · I s1 ≡ 104 · I
d 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

AM 0.21 0.33 1.25 6.83 33.87 0.20 0.33 1.26 6.79 35.73 0.21 0.33 1.24 6.83 32.49

ASWAM 0.22 0.32 1.23 6.67 33.78 0.21 0.34 1.25 6.67 35.77 0.21 0.33 1.23 6.63 32.11

AM† 0.21 0.27 0.41 0.70 1.70 0.20 0.28 0.39 0.55 2.90 6.22 27.54 53.21 57.69 58.20

ASWAM† 0.22 0.36 0.37 0.53 1.05 0.22 0.28 0.37 0.53 3.03 0.88 1.94 3.17 5.34 8.48

RAM 0.21 0.27 0.37 0.52 1.03 0.22 0.27 0.38 0.62 2.51 0.22 0.28 0.45 0.75 1.61

Table 2 Errors of the
expectations of the first and the
other coordinates in the mixture
example

X(1) X(2), . . . ,X(d)

d 2 4 8 16 32 2 4 8 16 32

AM 0.04 0.05 0.08 1.69 3.87 0.08 0.11 0.15 0.19 0.27

ASWAM 0.04 0.06 0.10 1.82 3.86 0.08 0.11 0.14 0.18 0.27

RAM 0.07 0.21 0.66 1.34 1.77 0.05 0.08 0.11 0.16 0.29

Σ := diag(1,100, . . . ,100). In such a case, the mixing will
be especially problematic with respect to the first coordinate.

Table 2 shows the root mean square error of the expec-
tation of the first coordinate X(1) and the overall error for
the rest X(2), . . . ,X(d). The errors in the first coordinate for
the RAM are significantly higher than for the AM and the
ASWAM for dimensions 2, 4 and 8. The estimates from
all the algorithms are already quite unreliable in dimension
16. For the latter coordinates, the RAM approach seems to
provide better estimates. Observe also that when comparing
ASWAM with AM, the results are also worse in the first co-
ordinate and better in the rest, like in the RAM approach.
This indicates that the true optimal acceptance rate is here
probably slightly less than the enforced 23.4%.

The example shows how the RAM approach finds the
‘local shape’ of the distribution. In fact, it is quite easy to
see what happens if the means of the mixture components
would be made further and further apart: there would be
a stable point of the RAM algorithm that would approach
the common covariance of the mixture components. Such
a behaviour of the RAM approach is certainly a weakness
in certain settings, as this example, but it can be also ad-
vantageous. Notice also that even such a simple multimodal
setting poses a challenge for the random walk based ap-
proaches.

6 Discussion

A new robust adaptive Metropolis (RAM) algorithm was
presented. The algorithm attains a given acceptance proba-
bility, and at the same time finds an estimate of the shape of
the target distribution. The algorithm can cope with targets
having arbitrarily heavy tails unlike the AM and ASWAM

algorithms based on the covariance estimate. The RAM al-
gorithm has some obvious limitations. It is not suitable for
strongly multi-modal targets, but this is the case for any ran-
dom walk based approach. For sufficiently regular targets, it
seems to work well and the experiments indicate that RAM
is competitive with the AM and ASWAM algorithms also in
case of light-tailed targets having second moments.

There are several interesting directions of further re-
search that were not covered in the present work. The RAM
algorithm can be used also within Gibbs sampling, that is,
when updating a block of coordinate variables at a time in-
stead of the whole vector. This approach is often very use-
ful especially when the target distribution π consists of a
product of conditional densities, which is often the case with
Bayesian hierarchical models. In such a setting, the compu-
tational cost of evaluating the ratio π(y)/π(x) after updat-
ing one coordinate block can be significantly less than the
full evaluation of π(y). It would also be worth investigat-
ing the effect of different adaptation step sizes, perhaps even
adaptive ones as suggested by Andrieu and Thoms (2008).

Regarding theoretical questions, the existence and unique-
ness of the fixed points of the approach could be verified in
a more general setting; the present work only covers ellip-
tically symmetric and product type target densities, which
are too restrictive in practice. The experiments indicate the
overall stability of the RAM algorithm; see also Remark 5.
However, proving the stability of RAM without prior bounds
is directly related to the more general open question on the
stability of adaptive MCMC algorithms, or even more gener-
ally to the stability of stochastic approximation. Having the
stability and more general conditions on the fixed points,
one could also prove the convergence of Sn in a more gen-
eral setting.
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Appendix A: Regularity of directional mean acceptance
probability

Proposition 2 Let π and q be probability densities on R
d

and on (0,∞), respectively, and let v ∈ R
d be a unit vector.

The function g : (0,∞) → (0,∞) defined by

g(θ) :=
∫ ∞

0

∫
Rd

min {π(x),π(x + rθv)}dxq(r)dr

is continuous, limθ→∞ g(θ) = 0 and limθ→0+ g(θ) = 1.

Proof Suppose first that π is a continuous probability den-
sity on R

d . Then, write

g(θ) =
∫ ∞

0

∫
A

min

{
1,

π(x + rθv)

π(x)

}
π(x)dxq(r)dr

where A := {x ∈ R
d : π(x) > 0} stands for the support

of π . Let (θn)n≥1 ⊂ (0,∞) be any sequence and define
fθ (x, r) := min{1,

π(x+rθv)
π(x)

}. Clearly, whenever θn con-
verges to some θ , then fθn(x, r) → fθ (x, r) pointwise on
A × (0,∞) by the continuity of π . Since |fn(x, r)| ≤ 1,
the dominated convergence theorem yields that |g(θn) −
g(θ)| → 0, establishing the continuity. For any sequence
θn → 0+ one clearly has fθn(x, r) → 1, and for any se-
quence θn → ∞ one obtains fθn(x, r) → 0, establishing the
claim.

Let us then proceed to the general case. Let ε > 0 be ar-
bitrary. We shall show that there exists a continuous proba-
bility density π̃ on R

d such that
∫

Rd

|π̃ (x) − π(x)|dx < ε.

Having such π̃ , one can bound the difference
∣∣∣∣g(θ) −

∫ ∞

0

∫
A

min

{
1,

π̂(x + rθv)

π̂(x)

}
π̂(x)dxq(r)dr

∣∣∣∣
≤

∫
Rd

|π(x) − π̃ (x)|dx < ε.

It remains to verify that such a continuous probability den-
sity π̃ exists. Approximate π first by smooth non-negative
functions πn such that

∫
Rd |π(x) − πn(x)|dx → 0, and then

normalise them to probability densities π̃n(x) := cnπn(x).
Clearly, the constants cn := (

∫
Rd πn(z)dz)−1 → 1, and so∫

Rd |π(x)− π̃n(x)|dx ≤ ∫
Rd |π(x)−πn(x)|dx +|1 − cn| →

0. �

Appendix B: Proofs of convergence

Proof of Theorem 6 Let 0 < a ≤ b < ∞ be arbitrary con-
stants and denote by Sa,b ⊂ R

d×d the set of all lower trian-
gular matrices with positive diagonal, such that the eigen-
values of ssT are within [a, b]. Let Ps stand for the random
walk Metropolis kernel with a proposal density qs(z) :=
det(s)−1q(s−1z), that is, for any x ∈ R

d and any Borel set
A ⊂ R

d

Ps(x,A) := 1A(x)

(
1 −

∫
Rd

min

{
1,

π(y)

π(x)

}
qs(y − x)dy

)

+
∫

A

min

{
1,

π(y)

π(x)

}
qs(y − x)dy.

We shall use the notation Psf (x) := ∫
Rd f (y)Ps(x,dy) to

denote the integration of a function with respect to the kernel
Ps .

Let us check that the following assumptions are satisfied
by the RAM algorithm.

(A1) For all possible s ∈ Sa,b , the kernels Ps have a
unique invariant probability distribution π for which∫

Rd P (x,A)π(dx) = π(A) for any Borel set A ⊂ R
d .

(A2) There exist a Borel set C ⊂ R
d , a function V : R

d →
[1,∞), constants δ,λ ∈ (0,1) and b < ∞, and a prob-
ability measure ν concentrated on C such that

PsV (x) ≤ λV (x) + 1C(x)b and

Ps(x,A) ≥ 1C(x)δν(A)

for all possible x ∈ R
d , s ∈ Sa,b and all Borel sets

A ⊂ R
d .

(A3) For all n ≥ 1 and any r ∈ (0,1], there is a constant
c′ = c′(r) ≥ 1 such that for all s, s′ ∈ Sa,b ,

sup
x∈Rd

|Psf (x) − Ps′f (x)|
V r(x)

≤ c′|s − s′| sup
x∈Rd

|f (x)|
V r(x)

.

(A4) There is a constant c < ∞ such that for all n ≥ 1, s ∈
Sa,b , x ∈ R

d and u ∈ R
d the bound |H(s, x,u)| ≤ c

holds.

The uniqueness of the invariant distribution (A1) follows by
observing that the kernels Ps are irreducible, aperiodic and
reversible with respect to π (see, e.g. Nummelin 2002). The
simultaneous drift and minorisation condition (A2) was es-
tablished by Andrieu and Moulines (2006). The continuity
condition (A3) was established by Andrieu and Moulines
(2006) for Gaussian proposal distributions and was ex-
tended to cover the Student proposal in Vihola (2011b). The
bound (A4) is easy to verify.

Assumption 4 ensures that for any ε > 0 there exist con-
stants 0 < aε ≤ bε < ∞ such that all the eigenvalues of
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SnS
T
n stay within the interval [aε, bε] at least with proba-

bility P(Ω0) − ε. This is enough to ensure that the strong
law of large numbers holds by Andrieu and Moulines (2006,
Proposition 6). For details, see also Saksman and Vihola
(2010, Theorem 2) and Vihola (2011b, Theorem 20). �

Proof of Theorem 7 The proof follows by Andrieu et al.
(2004, Theorem 5) by using a similar technique as in
the proof of Theorem 6. Consider the Lyapunov function
wπ(R) defined in Theorem 5. It is straightforward to verify
items 1–4 of Andrieu et al. (2004, Condition 1) when we
take Θ to be the space of symmetric positive definite ma-
trices and consider SnS

T
n ∈ Θ . The compact sets are of the

form K = {ssT : s ∈ Saε,bε } with aε, bε as in the proof of
Theorem 6. Item 5 follows by invoking Saksman and Vihola
(2010, Proposition 6) with fθ ((x,u)) = H(θ, x,u). �
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