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Abstract Sparsely sampled diffusion processes, in this pa-
per interpreted as data sampled sparsely in time relative to
the time constant, is a challenging statistical problem. Most
approximations of the transition kernel are derived under the
assumption that data is frequently sampled and these ap-
proximations are often severely biased for sparsely sampled
data. Monte Carlo methods can be used for this problem as
the transition density can be estimated with arbitrary accu-
racy regardless of the sampling frequency, but this is compu-
tationally expensive or even prohibited unless effective vari-
ance reduction is applied.

The state of art variance reduction technique for dif-
fusion processes is the Durham-Gallant (modified) bridge
sampler. Their importance sampler is derived using a lin-
earized, Gaussian approximation of the dynamics, and have
proved successful for frequently sampled data. However, the
approximation is often not valid for sparsely sampled data.

We present a flexible, alternative derivation of the modi-
fied bridge sampler for multivariate, discretely observed dif-
fusion models and modify it by taking uncertainty into ac-
count. The resulting sampler can be viewed as a combina-
tion of the basic sampler and the Durham-Gallant sampler,
using the sampler that is most appropriate for the given prob-
lem, while still being computationally efficient. Our sampler
is providing effective variance reduction for frequently and
sparsely sampled data.
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Diffusion processes, or Brownian motion driven stochastic
differential equations is a class of stochastic processes de-
fined as the solution to the stochastic differential equation
defined on the space X

dXt = f (t,Xt )dt + g(t,Xt )dWt , (1)

where the drift f (t,Xt ) and diffusion g(t,Xt ) are known
functions that are assumed to be sufficiently regular (Lip-
schitz, bounded growth) for existence and uniqueness, cf.
Øksendal (2000). Diffusion processes are the natural exten-
sion of ordinary differential equations and are being used
for a variety of applications, including finance, see e.g. He-
ston (1993), Lindström (2010), biology, see Philipsen et al.
(2010), hydrology, see Jonsdottir et al. (2006) and engineer-
ing, see Madsen and Holst (1995).

Estimating parameters when data is frequently sampled is
comparably easy. It is well known that non-parametric meth-
ods such as realized volatility and variations thereof, see e.g.
Andersen et al. (2003), can be used to estimate quantities re-
lated to the diffusion term. These estimates can later be used
to estimate parameters in the drift term, see Phillips and Yu
(2009).

Another approach is to approximate the diffusion pro-
cess with a discrete model, using e.g. the Euler-Maruyama
scheme, to obtain approximations of Maximum Likelihood
estimates. The estimates generated from this approximation
are known as Discrete Maximum Likelihood (DML) esti-
mates. We will throughout the paper assume that the time
distance between two consecutive observations is significant
relative to the time constant of the system. This makes ap-
proximations such as the DML inaccurate, often leading to
bias and inefficiency.

There exist a large number of methods for improving the
DML, see Hurn et al. (2007). The purpose of these is to find
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alternative approximations that are unbiased or at least less
biased. These include series expansions, numerical solution
of the Fokker-Planck equation and Monte Carlo methods.

Series expansions of the transition kernel for univari-
ate diffusions was introduced in Aït-Sahalia (2002) and ex-
tended to multivariate diffusions in Aït-Sahalia (2008). The
class of processes for which the transition density can be
expanded is rather large but does have some restrictions, es-
pecially for multivariate models. The performance is often
excellent for densely sampled data but can be quite poor for
sparsely sampled data, as the leading error term is a power
function of the sampling distance.

Numerical approximation of the solution to the Fokker-
Planck equation was studied in Lo (1988) and improved by
Lindström (2007). This approach works for practically any
sampling distance and is often very accurate for univari-
ate models, cf. Lindström (2007). However, generalizing the
methodology to multivariate diffusions is still an open re-
search problem due to the curse of dimensionality.

Monte Carlo methods such as Simulated Maximum Like-
lihood (SML) was introduced in Pedersen (1995a, 1995b)
and dramatically improved by Durham and Gallant (2002).
It uses Monte Carlo simulation and integration to approxi-
mate the transition kernel. The efficient sampler in Durham
and Gallant (2002) was extended to multivariate models in
Golightly and Wilkinson (2006) and partially observed mul-
tivariate models (with additive Gaussian noise) in Golightly
and Wilkinson (2008). Simulated Maximum Likelihood es-
timators are often biased, and this can be eliminated by us-
ing exact simulation or multi-level approximations. Exact
simulation uses rejection sampling to generate exact draws
from a class of diffusion processes, see Beskos et al. (2006,
2009). The efficiency of the method is related to the accep-
tance probabilities for the draws which may be very small
for sparsely sampled data.

Series expansions and PDE-methods will not be efficient
for sparsely sampled, high-dimensional models which is
why we focus on simulation based techniques in this pa-
per. These methods should in theory be able to handle high-
dimensional, infrequently sampled data, but this has not
been the case for many practical problems. In fact, it was
shown by Fearnhead (2008) that the state of art Durham-
Gallant sampler is less efficient than the naive sampler for
sparsely sampled data. The inefficiency of the Durham-
Gallant sampler can be traced to the poor approximation of
the transition kernel. It is known, see Glasserman (2003),
that importance sampling can increase the variance of the
estimate if the proposal density is badly chosen.

Sparse sampling of diffusions is therefore associated with
two related problems, as the comparably powerful drift term
not only decreases the efficiency of the Durham-Gallant
sampler but also leads to more bias. The bias can be com-
pensated by additional computational efforts. It was shown

in Stramer and Yan (2007) how to balance the bias and
the variance to achieve optimal results for bridge samplers,
and they find that finer discretization must be balanced with
larger Monte Carlo samples for optimal convergence. The
complexity is even worse for the naive sampler. Some robust
variance reduction method (e.g. a bridge sampler) is there-
fore needed to prevent additional computational demands.

MCMC algorithms for diffusions should update blocks
rather than single components, as the latter was shown to
cause the mixing to break down, cf. Eraker (2001) and Ele-
rian et al. (2001) for random block sampling. Bridge sam-
plers are useful for generating these blocks, making this pa-
per applicable not only to discretely observed models, but to
models where MCMC techniques are needed.

This paper is organized as follows. Section 1 introduces
the simulated maximum likelihood method, including the
Durham-Gallant framework while Sect. 2 introduces a regu-
larization that makes the bridge sampler more robust against
sparsely sampled data. Different samplers are compared in
Sects. 3 and 4 concludes the paper.

1 Simulated maximum likelihood

The Simulated Maximum Likelihood (SML) method was in-
troduced in Pedersen (1995b), and uses Monte Carlo simu-
lations to decrease bias.

Assume that data is sampled (not necessarily equidistant)
at time points t1, . . . , tN . The idea is to introduce a partition
tn = τ0 < τ1 < · · · < τM−1 < τM = tn+1 and to use the law
of total probability and the Markov property to obtain

p(xtn+1 |xtn ) =
∫

p(xτM
,xτM−1, . . . ,xτ1 |xτ0)dxτ1:τM−1

=
∫ M∏

m=1

p(xm|xm−1)dxτ1:τM−1

= E[p(xτM
|xτM−1)|xτ0 ]

≈ 1

K

K∑
k=1

p(xτM
|ξτM−1,k) (2)

where ξτM−1,k are random variables drawn from ξτM−1,k ∼
p(xτM−1 |xτ0)dxτM−1 . The third line provides a Monte Carlo
estimate of the transition probability density.

This approximation is easy to implement but is often
computationally inefficient, cf. Durham and Gallant (2002).
More efficient samplers such as the Durham-Gallant sam-
pler have now replaced the Pedersen sampler as the pre-
ferred approximation.

1.1 Durham-Gallant sampler

The Durham-Gallant sampler, Durham and Gallant (2002),
is derived by treating the approximation of the transition
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density as a Monte Carlo estimate of an expectation. Vari-
ance is reduced by applying a near optimal importance sam-
pler based on the linearized dynamics

p(xtn+1 |xtn )

=
∫

p(xτM
|xτM−1)

∏M−1
m=1 p(xm|xm−1)

q(xτ1:τM−1)

× q(xτ1:τM−1)dxτ1:τM−1 . (3)

We present an alternative derivation of the near optimal
importance sampler, cf. Durham and Gallant (2002) for uni-
variate models and Golightly and Wilkinson (2006) for mul-
tivariate models that will be general enough for the exten-
sion we are presenting in Sect. 2.

It is well known that the optimal importance sampler is
proportional to the integrand multiplied with the integrator,
here given by

qOpt (xτM−1:τ1) ∝ p(xτM
|xτM−1)

M−1∏
m=1

p(xτm |xτm−1). (4)

It is straightforward to show that the optimal importance
sampler is given by

q(xτM−1:τ1) ∝
M−1∏
m=1

p(xτm |xτM
,xτm−1). (5)

The distribution of the sampler can be found using Bayes’
theorem in logarithmic form, leading to

logp(xτm |xτM
,xτm−1) ∝ logp(xτM

|xτm) + logp(xτm |xτm−1).

(6)

Assuming that these transition densities are Gaussian and
approximating the dynamics as

p(xτm |xτm−1) = φ(xτm;a,P), (7)

p(xτM
|xτm) = φ(xτM

;xτm + b,Q), (8)

where φ(x,μ,�) is the density of a multivariate Gaussian
random variable with mean μ and covariance � makes it
possible to compute the mean and covariance for the result-
ing Gaussian distribution.

The Durham-Gallant paper uses several discretization
schemes to approximate the transition densities, and the
most commonly used approximation is the (non-Markovian)
Euler-Maruyama approximation

a = xτm−1 + f (τm−1,xτm−1)(τm − τm−1) (9)

b = f (τm−1,xτm−1)(τM − τm) (10)

P = g(τm−1,xτm−1)g(τm−1,xτm−1)
T (τm − τm−1) (11)

Q = g(τm−1,xτm−1)g(τm−1,xτm−1)
T (τM − τm) (12)

It is possible to compute the near-optimal importance
sampler using (7) and (8). This is done by matching
terms in (6), resulting in Gaussian distribution for
p(xτm |xτM

,xτm−1) = φ(xτm;μ,�) with parameters

μ = a + K0t (xτM
− a − b), (13)

� = (P−1 + Q−1)−1 = (I − K0)P, (14)

where K0 = P(P + Q)−1. The matrix K0 (sometimes known
as the Kalman gain in the system identification community)
is balancing the prior information with the information ob-
tained from xτM

.
Using the transition kernels specified by (9)–(12) leads to

the well known modified Brownian Bridge sampler

μ = xτm−1 + xτM
− xτm−1

τM − τm−1
(τm − τm−1), (15)

� = τM − τm

τM − τm−1
g(τm−1,xτm−1)g(τm−1,xτm−1)

T

× (τm − τm−1), (16)

see Durham and Gallant (2002).

1.2 Fearnhead sampler

It was suggested in Fearnhead (2008) to replace the standard
approximation of the transition density for a geometrically
mixing, ergodic diffusion processes with a combination of
the Euler-Maruyama approximation and the stationary dis-
tribution, π weighted according to the mixing rate ρ. The
approximation is then given by a mixture of the naive dy-
namics and the stationary distribution

p̂(xτM
|xτm) = exp(−ρ(τM − τm))pEuler (xτM

|xτm)

+ (1 − exp(−ρ(τM − τm)))π(xτM
). (17)

Inserting this approximation into (6) leads to

qF (xτm) ∝ (exp(−ρ(τM − τm))pEuler (xτM
|xτm)

+ (1 − exp(−ρ(τM − τm)))π(xτM
))

× pEuler (xτm |xτm−1) (18)

where the first term is proportional to the Durham-Gallant
sampler and the second term is proportional to the naive dy-
namics. Simplifying this expression further results in sam-
pler of the form

qF (xτm)

∝ exp(−ρ(τM − τm))qDG(xτm)

+ B(1 − exp(−ρ(τM − τm)))pEuler (xτm |xτm−1), (19)
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where qDG is the Durham-Gallant sampler, pEuler the naive
(Euler-Maruyama) dynamics, ρ is the mixing coefficient and
B is assumed to be constant. This sampler was shown to
work well for a one-dimensional model (CIR) in Fearnhead
(2008), and we refer to it as the Fearnhead sampler.

2 A regularized sampler

A limitation with the Durham-Gallant sampler is that it pro-
vides very poor approximations when the dynamics of the
model is dominated by the drift term. This can be seen from
the modified bridge sampler

xτm = xτm−1 + xτM
− xτm−1

τM − τm−1
(τm − τm−1) + �1/2zm+1, (20)

where �1/2 is the Cholesky decomposition of � and z is a
standard normal random vector. The sampler is independent
of the drift which often is problematic for sparsely sampled
and/or high-dimensional models.

Example 1 We use the well-known chaotic Lorenz 63 model
as a test model, see Lorenz (1963). The stochastic version of
the Lorenz 63 model, see Bengtsson et al. (2003) is given by
⎛
⎜⎜⎝

dX
(1)
t

dX
(2)
t

dX
(3)
t

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

s(X
(2)
t − X

(1)
t )

rX
(1)
t − X

(2)
t − X

(1)
t X

(3)
t

X
(1)
t X

(2)
t − bX

(3)
t

⎞
⎟⎟⎠dt

+ σ

⎛
⎜⎜⎝

dW
(1)
t

dW
(2)
t

dW
(3)
t

⎞
⎟⎟⎠ (21)

Commonly used parameters for this model are s = 10, r =
28, b = 8/3 and σ = 2, see e.g. Bengtsson et al. (2003).

The expected path computed for the deterministic system
and the Durham-Gallant sampler is presented in Fig. 1. It can
be seen that the sampler ignores the dynamics of the model,
and generates paths far from the actual realization. This re-
sults in a poor approximation of the expectation, i.e. (2).

The limitation of the Durham-Gallant sampler is that it
approximates the dynamics for all time horizons with a sim-
ple Euler-Maruyama discretization. It is well known that the
Euler-Maruyama scheme is a weak order 1.0 scheme, mean-
ing that the bias is proportional to the time interval used. In
other words: the bias in the approximation is substantial for
longer time horizons, and it is likely that the bias is causing
most of the problem.

It is well-known that, cf. Geweke (1989), Koopman et al.
(2009) that it is worse to have an importance density that is
too light-tailed than to have a too heavy-tailed density. We

Fig. 1 (Color online) A deterministic trajectory in the Lorenz model
(blue solid line) and the expected path generated from Durham-Gallant
sampler (red dashed line). The initial point is displayed by the circle
and the end point by a pentagon

will use this insight to suggest a modification of the sampler
that will simultaneously eliminate most of the path genera-
tion problem.

The solution is found by studying the conditional mean
squared error (MSE), i.e. the sum of the variance and
squared bias. It is known for the Euler scheme that the vari-
ance and bias are given by

Var(xt+	t |xt ) ≈ g(t,xt )g(t,xt )
T 	t (22)

Bias(xt+	t |xt ) ≈ c	t (23)

where c is some column vector that we may or may not be
able to compute. The MSE is therefore given by

MSE(xt+	t |xt ) = g(t,xt )g(t,xt )
T 	t + ccT (	t)2. (24)

A first suggestion is to replace the conditional variances
(in (7) and (8)) with the conditional MSE.

P̃ = P + ccT (τm − τm−1)
2 (25)

Q̃ = Q + ccT (τM − τm)2 (26)

This does not work well for large values of ccT , as it can be
shown that the resulting conditional variance � can take any
value between the Durham-Gallant conditional variance and
infinity.

The naive sampler is sufficiently heavy tailed and we
found that it was more robust to use

P̂ = P (27)

Q̂ = Q + ccT (τM − τm)2 (28)

This suggestion will embed the Pedersen sampler (c = ∞)
and the Durham-Gallant sampler (c = 0) as special cases of
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our sampler. It will also prevent the sampler from breaking
down if c is badly misspecified.

Higher order bias terms can also be included leading to

P̄ = P (29)

Q̄ = Q + γ2(τM − τm)2 + γ4(τM − τm)4 (30)

where γ2 and γ4 are suitable matrices.
We refer to these modifications as 1st ((27) and (28)) and

2nd ((29) and (30)) order regularized covariances. The cor-
responding samplers will be referred to as 1st and 2nd order
regularized Durham-Gallant samplers.

A convenient property with our derivation of the sampler
is that these modifications can be used in (13) and (14) to
compute the conditional mean and covariance after replac-
ing Q with Q̂ or Q̄.

2.1 A heuristic algorithm for finding ccT , γ2 and γ4

It was shown in Stramer and Yan (2007) that it is computa-
tionally expensive to reduce bias, and it is therefore likely
that τm − τm−1 is chosen such that the variance dominates
the squared bias but some bias remains. We therefore claim
as a first approximation that the size of the squared bias is a
fraction α of the size of the variance. A pragmatic approach
that would ensure that the MSE is a positive definite matrix
is to approximate the MSE by

MSE(xτm |xτm−1) ≈ (1 + α)P = P + ccT
Heur(τm − τm−1)

2,

(31)

where α ∈ [0.01, 1] have proved successful in our simula-
tions. Large values of α would adjust for the fact that the bias
often is non-linear, and may grow faster than a linear term
for longer time horizons (the bias is approximately linear
only for short time horizons). Solving equation (31) yields

ccT
Heur = α

P

(τm − τm−1)2
. (32)

Similar heuristics can be used to find reasonable values
for γ2 and γ4 by choosing γ2 as ccT

Heur (using α = 0.01)
and γ4 such that the first bias term dominates the second for
a short time span τm − τm−1, i.e. solving γ4(τm − τm−1)

4 =
εγ2(τm − τm−1)

2 for some small constant ε. This ensures
that the first and second order MSE and the covariance are
similar for short time horizons.

The primary effects caused by this heuristic choice is that
the Kalman gain, K0, is decreased

K̂0 = P̂(P̂ + Q̂)−1 = P(P + Q̂)−1 (33)

K̄0 = P̄(P̄ + Q̄)−1 = P(P + Q̄)−1 (34)

It can be seen that both K̄0 ≤ K0 and K̂0 ≤ K0, meaning
that less importance is given to the information provided by
the forthcoming observation when τM − τm is large com-
pared to τm − τm−1. Remembering from (11) and (12) that
the matrix Q can be written as Q = τM−τm

τm−τm−1
P makes the

proof straightforward

K̂0 = P(P + Q + ccT
Heur(τM − τm)2)−1

= P

(
P + τM − τm

τm − τm−1
P

+ α
P

(τm − τm−1)2
(τM − τm)2

)−1

= I
τm − τm−1

τm − τm−1 + τM − τm + α
(τM−τm)2

τm−τm−1

. (35)

Choosing α close to zero leads to a sampler that is similar
to the Durham-Gallant sampler while a large α would result
in a sampler similar to the Pedersen sampler as the Kalman
gain would tend to zero, meaning that no information ob-
tained from the forthcoming observation is used.

The regularized sampler shrinks the variance of the
Bridge less than the Durham-Gallant sampler would shrink
it, cf. (14) which often is a good thing, cf. Geweke (1989).
Having too light tails on the importance density may lead
to slower than

√
N convergence, cf. Koopman et al. (2009)

while having too heavy tails only leads to inefficiency.

2.1.1 Explicit form of the sampler

It is possible to compute the explicit expression for the
proposed sampler under certain conditions. We present
the results for the 1st order regularized Durham-Gallant
sampler as the results for the 2nd order sampler regular-
ized Durham-Gallant sampler are similar. Assuming that
an Euler-Maruyama discretization is being used (as for the
modified Brownian Bridge sampler, and that the heuristic
choice of ccT

Heur is used) leads to

P̂ = g(·)g(·)T (τm − τm−1) (36)

Q̂ = g(·)g(·)T
(

τM − τm + α
(τM − τm)2

τm − τm−1

)
, (37)

resulting in the following equation for the Kalman gain

K̂0 = I
τm − τm−1

τM − τm−1 + α
(τM−τm)2

τm−τm−1

(38)

It is obvious that the Kalman gain is an invertible matrix for
any value of α.

It follows from (14) that the conditional covariance of the
sampler is given by
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Fig. 2 (Color online) A deterministic trajectory in the Lorenz model
(blue solid line) and the expected path generated from the Durham-
Gallant sampler (red dashed line) and the proposed sampler using
α = 0.1 (green dash-dotted line). The initial point is displayed by the

circle and the end point by a pentagon (left). Simulated paths from the
Pedersen sampler (blue lines), the Durham-Gallant sampler (red lines)
and the proposed sampler (green lines). The initial point is displayed
by the circle and the end point by a pentagon (right)

� = (I − K̂0)P = (I − K̂0K
−1
0 + K̂0K

−1
0 − K̂0K

−1
0 K0)P

= (I − K̂0K
−1
0 ) P︸︷︷︸

Pedersen

+ K̂0K
−1
0 (I − K0)P︸ ︷︷ ︸

Durham-Gallant

(39)

while the conditional mean is given by (13)

μ = a + K̂0(xτM
− a − b)

= (I − K̂0K
−1
0 )a + K̂0K

−1
0 a + K̂0K

−1
0 K0(xτM

− a − b)

= (I − K̂0K
−1
0 ) a︸︷︷︸

Pedersen

+ K̂0K
−1
0 (a + K0(xτM

− a − b))︸ ︷︷ ︸
Durham-Gallant

(40)

It can now be seen that the regularized sampler is a com-
bination of the Durham-Gallant sampler and the Pedersen
sampler, much like the Fearnhead sampler.

The Pedersen term is dominating when τM − τm 	 τm −
τm−1 and the Durham-Gallant term dominating when τM −
τm ≈ τm − τm−1. This can be seen from the ratio K̂0K

−1
0

that corresponds to the weight given to the Durham-Gallant
sampler

K̂0K
−1
0 = I

τm − τm−1

τM − τm−1 + α
(τM−τm)2

τm−τm−1

(
I

τm − τm−1

τM − τm−1

)−1

= I
τM − τm−1

τM − τm−1 + α
(τM−τm)2

τm−τm−1

(41)

which approaches the identity matrix as τm → τM .
This is an ideal structure for the sampler as the initially

dominating Pedersen sampler will generate trajectories into
the desired region (and resulting in low variability of the im-
portance sampling weights), while the Durham-Gallant that

dominates the sampler at the later stages will force the tra-
jectories to end close to xτM

. This is important as most tra-
jectories will contribute to the expectation, cf. (3).

The bridge type properties of the sampler is also impor-
tant from a theoretical perspective as the results in Stramer
and Yan (2007) are only valid for bridge-type samplers.
Samplers that are not bridge type samplers (such as the Ped-
ersen sampler) are having even slower convergence rates.

Example 2 The 1st order proposed sampler is applied to
the same Lorenz model as before, using α = 0.1, cf. (31).
The result is presented in Fig. 2(left). It can be seen that
the expected path of the proposed sampler is similar to the
actual path. Finally, we plot N = 20 different stochastic tra-
jectories simulated using the Pedersen sampler, the Durham-
Gallant sampler and the proposed 1st order sampler. The re-
sults are presented in Fig. 2(right).

It can be seen that the proposed sampler does a better job
at approximating the paths of the Lorenz system than the
standard Durham-Gallant sampler and that all the simulated
trajectories are closer to the end point (this is crucial for the
Monte Carlo approximation) than the trajectories drawn by
the Pedersen sampler. This indicates that the sampler is ro-
bust against sparsely sampled data.

3 Simulations

We compare the Pedersen sampler, see Pedersen (1995b),
the Durham-Gallant sampler, see Durham and Gallant
(2002), the Fearnhead sampler, see Fearnhead (2008) and
the two proposed samplers using the efficient sample size
(ESS). The efficient sample size (ESS) provides an estimate
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Fig. 3 Efficient sample size when using K = 1 000 particles for the samplers applied to the CIR model

of the effective number of samples in a Monte Carlo esti-
mate. A large ESS is therefore preferred to a lower ESS.
The ESS is defined for a weighted Monte Carlo sample

∑
wiδ(x − xi) (42)

as

ESS = (
∑

wi)
2∑

w2
i

. (43)

We compare three different models of increasing complex-
ity.

3.1 Cox-Ingersoll-Ross model

The first model we use to evaluate the proposed samplers is
the CIR model in Fearnhead (2008). The model is given by

dXt = (5 − Xt)dt + √
XtdWt. (44)

The Pedersen, Durham-Gallant, Fearnhead (using ρ = 1,
B = 1 as in Fearnhead 2008), 1st order Regularized Durham-
Gallant (using α = 0.1) and 2nd order Regularized Durham-
Gallant sampler (using α = 0.01, ε = 0.1) were used to
approximate the transition density. Data was generated by
sampling a long time series (T = 10 000) from the model,
ensuring that the approximation of p(xtn |xtn−1) is tested for
all relevant combinations of xtn and xtn−1 , cf. Durham and
Gallant (2002). The simulations used τm −τm−1 = 0.1 while
the sampling distance tn − tn−1 was varied from tn − tn−1 =
0.2 to tn − tn−1 = 32. All samplers used K = 1 000 parti-
cles.

The results, reported as mean and median of pair wise
efficient sample size for different sampling frequencies, are

presented in Fig. 3. Both proposed samplers are performing
similarly to the Fearnhead sampler and outperforming the
Durham-Gallant sampler for sparsely sampled data, with the
2nd order proposed sampler is consistently performing at the
top regardless of the sparsity of the data.

3.2 Double Well model

The double well model is a well known benchmark model
that switches between two modes. The model is given by

dXt = 4Xt(1 − X2
t )dt + dWt. (45)

Data was generated by sampling a time series (T = 50) from
the model, using τm − τm−1 = 0.01 while the sampling dis-
tance was varied from tn − tn−1 = 0.1 to tn − tn−1 = 1. The
samplers use the same parameters as for the CIR model, and
all samplers used K = 1 000 particles. The results, reported
as mean and median of pair wise efficient sample size for
different sampling frequencies, are presented in Fig. 4. The
difference is now pronounced, with the two proposed sam-
plers being the most efficient. The Fearnhead sampler is less
efficient and we suspect that this can be attributed to non-
optimal values for ρ and B .

3.3 Lorenz model

The Lorenz model is more complex than the scalar mod-
els previously studied. This is attributed to the fact that the
model is multivariate and that the deterministic version of
the model is chaotic, and nearly periodic, cf. Fig. 1. Data
was generated by sampling a time series (T = 10) from
the model, using τm − τm−1 = 0.005 to preserve numeri-
cal stability while the sampling distance was varied from
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Fig. 4 Efficient sample size when using K = 1 000 particles for the samplers applied to the double well model

Fig. 5 Efficient sample size when using K = 10 000 particles for the samplers applied to the stochastic Lorenz model

tn − tn−1 = 0.02 to tn − tn−1 = 1. The increased complex-
ity was balanced by an increased number of particles, using
K = 10 000 particles.

The samplers used the same parameters as for the CIR
and double well models expect for the Fearnhead model
where we experimented with the ρ parameter. We found
that increasing the ρ parameter to ρ = 10 gave the best re-
sults when data is sparsely sampled. It is non-trivial to find
a proper value for ρ as the model is nearly periodic, as this
would indicate that a small value for ρ would be appropri-
ate. However, the local properties of the model, examined
through local linearization, are very different for different
parts of the state space. This indicates that a large value for
ρ should be used, even if this goes beyond the theoretical
justification for the sampler.

The results, reported as mean and median of pair wise ef-
ficient sample size for different sampling frequencies, are
presented in Fig. 5. The Durham-Gallant sampler breaks
down when tn − tn−1 > 0.2, while the Fearnhead sampler
is comparable to the Pedersen sampler for sparsely sam-
pled data (using ρ = 1 resulted in a sampler similar to the
Durham-Gallant sampler). However, both the proposed sam-
plers do not degenerate, with the second order sampler being
most efficient.

4 Summary

We have introduced a regularization term in the derivation
of the Durham-Gallant sampler, leading to a sampler that is
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a combination of the Durham-Gallant sampler and the Ped-
ersen sampler. This makes the sampler more robust so that
it can be used for generally sampled (densely or sparsely
sampled), multivariate, discretely observed diffusion pro-
cesses.

The samplers depends on few (one or two) parameters
and we provide a heuristic methodology for choosing these,
making the samplers easier to apply than the Fearnhead sam-
pler. We have shown that the proposed samplers are almost
as efficient as the Durham-Gallant sampler for frequently
sampled data and far more efficient for sparsely sampled
data. It is more efficient (on all time scales) than the Ped-
ersen sampler for the problems we have examined and we
expect this to hold for a very large class of problems due to
the construction of the sampler.
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