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Abstract Model selection is a general paradigm which in-
cludes many statistical problems. One of the most fruitful
and popular approaches to carry it out is the minimization
of a penalized criterion. Birgé and Massart (Probab. Theory
Relat. Fields 138:33–73, 2006) have proposed a promising
data-driven method to calibrate such criteria whose penalties
are known up to a multiplicative factor: the “slope heuris-
tics”. Theoretical works validate this heuristic method in
some situations and several papers report a promising prac-
tical behavior in various frameworks. The purpose of this
work is twofold. First, an introduction to the slope heuristics
and an overview of the theoretical and practical results about
it are presented. Second, we focus on the practical difficul-
ties occurring for applying the slope heuristics. A new prac-
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tical approach is carried out and compared to the standard di-
mension jump method. All the practical solutions discussed
in this paper in different frameworks are implemented and
brought together in a Matlab graphical user interface called
CAPUSHE. Supplemental Materials containing further infor-
mation and an additional application, the CAPUSHE package
and the datasets presented in this paper, are available on the
journal Web site.
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1 Introduction

In this paper, we focus on the so-called slope heuristics pro-
posed by Birgé and Massart (2001, 2006) for model selec-
tion via penalization. The purpose of this paper is twofold.
First an overview of the theoretical and practical works on
the slope heuristics is given. Second we propose a new prac-
tical solution for its implementation and compare it with the
other available solutions.

To introduce the problematic of the slope heuristics, let
us consider a familiar example in statistics: the Gaussian ho-
moscedastic least squares regression with fixed design. Sup-
pose that one observes X1, . . . ,Xn with

∀i ∈ {1, . . . , n}, Xi = s(ui) + εi,

where s ∈ L2([0,1]), 0 ≤ u1 ≤ · · · ≤ un ≤ 1 is a fixed de-
sign and the regression errors εi are i.i.d. with centered
Gaussian distribution of variance σ 2. The regression func-
tion s may be estimated by considering piecewise constant
functions on [0,1]. Each partition of [0,1] provides a set
of such histogram functions. In particular, let Sm be the
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set of histograms defined on the regular partition of [0,1]
into m intervals. Any such function subspace of L2([0,1])
is called a model. A natural estimator ŝm of s is obtained
by minimizing the least squares empirical contrast γn : t ∈
L2([0,1]) �→ 1

n

∑n
i=1(Xi − t (ui))

2 over Sm. Let M be a
finite set of integers m. The aim is to minimize the risk
over the collection (ŝm)m∈M based on the data, where the
risk of ŝm is R(ŝm) = E[‖s − ŝm‖2]. Due to overfitting this
choice cannot be done by only minimizing γn(ŝm) since an
optimistic bias for the evaluation of the risk would be intro-
duced. Thus a model is selected by minimizing a penalized
criterion m ∈ M �→ γn(ŝm) + pen(m). The more the model
involves parameters, the larger the bias for the risk estima-
tion. A popular solution is then to define the penalty function
proportional to the model dimension: pen(m) = κm. More-
over it is natural to allow the model collection to increase
with n: this is a typical non asymptotic situation (see the in-
troduction of Massart 2007). In this context the multiplica-
tive constant κ is a priori unknown and has to be calibrated.

This problem actually occurs in many model selection
frameworks: since many non asymptotic theoretical results
provide penalties known up to a multiplicative constant. To
answer this question, Birgé and Massart (2001, 2006) have
proposed the slope heuristics method.1 From a theoretical
point of view, the principle of the slope heuristics is in-
troduced and proved for the first time in Birgé and Mas-
sart (2006) in the context of Gaussian homoscedastic least
squares regression with fixed design. They show that there
exists a minimal penalty, namely such that the dimension
and the risk of models selected with lighter penalties be-
come very large. Moreover, they prove that considering a
penalty equal to twice this minimal penalty allows to se-
lect a model close to the oracle model in terms of risk (see
Sect. 2 for a reminder about the definition of the oracle).
This rule of thumb is the main statement of the slope heuris-
tics. Birgé and Massart (2006) then propose to estimate the
minimal penalty in a data-driven manner and to deduce an
optimal penalty from this estimate. This enables to over-
come the difficulty that some constants needed to design
the penalty are unknown. In the framework they consider,
the penalty shape they derive is proportional to the model
dimension when the model family is not too large and in-
volves an additional logarithmic term when the model fam-
ily is huge. Arlot and Massart (2009) extend these results to
the heteroscedastic regression with random design frame-
work without Gaussian assumption. They have to restrict
the considered models to histograms but conjecture that this
is only due to technical reasons and that the heuristics re-
mains valid in other least squares regression frameworks.

1The slope heuristics takes its name from a slope estimation. In our
introduction regression example, the method requires the estimation of
the slope of m �→ γn(ŝm) (see below).

They consider the case of reasonably rich model families
(namely the number of models grows as a power of n) and
derive penalties depending on the dimension. In a density
estimation framework, Lerasle (2009c) validates the slope
heuristics and proves oracle inequalities for both indepen-
dent (Lerasle 2009b) and mixing data (Lerasle 2009a). Some
theoretical results by Verzelen (2009) partially validate the
slope heuristics in a Gaussian Markov random field frame-
work. Moreover the conjecture that the slope heuristics may
be valid in a wider range of model selection frameworks
is supported by the results of several encouraging applica-
tions: estimation of oil reserves (Lepez 2002); change-point
detection in a Gaussian least squares framework (Lebarbier
2005); selection of the number of non-zero mean compo-
nents in a Gaussian framework with application to genomics
(Villers 2007); simultaneous variable selection and cluster-
ing in a Gaussian mixture models setting with applications
to the study of oil production through curve clustering and
to genomics (Maugis and Michel 2010); selection of the
suitable neighborhood in a Gaussian Markov random field
framework (Verzelen 2009); estimation of the number of in-
terior knots in a B-spline regression model (Denis and Moli-
nari 2009); choice of a simplicial complex in the computa-
tional geometry field (Caillerie and Michel 2009) and simu-
lations in both the frameworks of Gaussian mixture models
likelihood and model-based clustering (Baudry 2009). This
enumeration illustrates that the slope heuristics brings so-
lution to real needs and the good results reported in those
simulated and real data experiments contribute to confirm
its usefulness. This is enthusiastic evidence on how fruitful
are these efforts to fill the gap between the theory of non
asymptotic model selection and the practical applications.

In practice, the main issue is to determine the mini-
mal penalty. To this aim, it is assumed in this paper that a
complexity measure of the models is given. This complex-
ity measure, depending on the framework, is typically the
model dimension or the number of free parameters in para-
metric frameworks. For instance in the regression example
detailed before, the complexity is exactly the number of in-
tervals in the partition. The most studied and applied ap-
proach to determine the minimal penalty is the so-called di-
mension jump.2 It consists of considering the complexity of
the selected model as a function of the multiplicative con-
stant κ in the penalty. Then increasing the constant value
from 0, a non increasing and piecewise function is obtained.
The minimal penalty is calibrated with the constant corre-
sponding to the greatest jump of complexity or to the first
jump after which the selected complexity is smaller than
a chosen threshold. The choice of the threshold (or of the

2This method is based on a “complexity jump” but in the first studied
frameworks, the complexity was actually the model dimension.
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most complex models involved) is delicate and may be deci-
sive for the final model selection. Another approach is based
on the expectation that a linear relation exists between the
penalty shape and the contrast value for the most complex
models. The method called data-driven slope estimation in
this paper consists of estimating the slope of this linear part
for calibrating the minimal penalty. A new strategy based
on graphical methods to apply this second approach is pro-
posed in order to answer practical difficulties. It notably has
the advantage to validate whether the slope heuristics can be
applied. The dimension jump and the data-driven slope esti-
mation approaches, presented in this paper, are implemented
in a Matlab graphical user interface called CAPUSHE (CAl-
ibrating Penalty Using Slope HEuristics). Hopefully it will
contribute to a better understanding and a wider use of the
slope heuristics.

In Sect. 2, principles for the contrast minimization and
model selection paradigm are reviewed, and the theoretical
basis of the slope heuristics are presented. The dimension
jump approach is presented in Sect. 3. Section 4 is devoted
to the data-driven slope estimation approach and our strat-
egy. Finally, Sect. 5 illustrates the results obtained by those
approaches through the CAPUSHE package.

2 Contrast minimization and slope heuristics

Before discussing the calibration issue of model selection
via penalization, the estimation method by contrast mini-
mization is briefly recalled.

Let X = (X1, . . . ,Xn), Xi ∈ R
d , be an i.i.d. sample from

an unknown probability distribution. The quantity of inter-
est, denoted as s, is related to the unknown sample distri-
bution and belongs to a set S . The method is based on the
existence of a contrast function γ : S × R

d → R fulfilling
the fundamental property that

s = argmin
t∈S

EX[γ (t,X)],

where the expectation is taken with respect to X distributed
as the sample (the minimum is expected to be uniquely
reached). The associated loss function, which enables us to
evaluate each element of S , is defined by:

∀t ∈ S, l(s, t) = EX[γ (t,X)] − EX[γ (s,X)].
Let us define the empirical contrast:

∀t ∈ S, γn(t) = 1

n

n∑

i=1

γ (t,Xi).

Let S be a model, namely a subset of S . A minimizer of the
empirical contrast over the model S is then considered and

denoted as ŝ. Indeed it is expected that ŝ is a sensible estima-
tor of s since, under reasonable conditions, γn(t) converges
to E[γ (t,X)]. The quality of such an estimator can be mea-
sured by its risk R(ŝ) = EX[l(s, ŝ)].

For instance, in the density estimation framework, the
popular maximum likelihood and least squares estimators
are both minimum contrast estimators. Suppose that the
sample has a density s with respect to a measure μ. Let t de-
note another density with respect to the same measure. Then
the contrast γ (t, x) = − ln[t (x)] is the maximum likelihood
contrast. The corresponding loss function is the Kullback-
Leibler divergence defined by KL(s, t) = ∫

s ln( s
t
)dμ. If

s is supposed to be in L2(μ) then the contrast γ (t, x) =
‖t‖2 − 2t (x), where ‖ · ‖ denotes the norm in L2(μ), is
the least squares contrast. The corresponding loss function
is then given by l(s, t) = ‖s − t‖2. Other examples of con-
trasts for regression, classification and Gaussian white noise
can be found in the book of Massart (2007).

2.1 Model selection via penalization

A countable collection of models (Sm)m∈M with the corre-
sponding estimators collection (ŝm)m∈M is now considered.
An important question is how to choose the “best” estimator
among this collection? Let Sm̂ be the model selected by a
given model selection procedure. The selected estimator is
then ŝm̂, where both ŝm (for any m) and m̂ are built from the
same sample X. Such a procedure may be evaluated from
either an asymptotic or a non asymptotic point of view.

The ideal model Sm∗ for a given n and a given dataset is
such that

m∗ ∈ argmin
m∈M

l(s, ŝm). (1)

However the corresponding estimator ŝm∗ , called the oracle,
depends on the unknown sample distribution. Nevertheless,
this oracle is a benchmark while building a model selection
procedure.

From a non asymptotic point of view, the model collec-
tion M may depend on n, and the aim is to build a model
selection procedure such that the selected model Sm̂ is opti-
mal. More precisely, it fulfills an oracle inequality:

l(s, ŝm̂) ≤ Anl(s, ŝm∗) + ηn

with An as close to 1 as possible and ηn a remainder term
small with respect to l(s, ŝm). This inequality is expected
to hold either with high probability or in expected value,
or even, when such results are too difficult to be achieved,
under a weaker form:

EX[l(s, ŝm̂)] ≤ An inf
m∈M

EX[l(s, ŝm)] + ηn.
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Let us stress that even if there exists m0 such that s ∈ Sm0 ,
there is no reason that m∗ = m0, since m∗ has to take the
model complexity into account. The loss can be decomposed
into an approximation and an estimation parts

l(s, ŝm) = l(s, sm) − EX[γ (sm,X) − γ (ŝm,X)],
where sm, a minimizer of EX[γ (t,X)] over Sm, is one of
the best approximations of s in Sm. This illustrates that a
bias/variance trade-off has to be reached.

The main approaches to design such model selection pro-
cedures are hold-out and cross-validation procedures (see
Arlot and Celisse 2009), or penalized criteria. Nevertheless,
cross-validation procedures are time consuming and thus pe-
nalization is preferable in many cases. Penalization consists
of defining a proper penalty function pen : M −→ R

+ and
of selecting m̂ minimizing the associated penalized crite-
rion

∀m ∈ M, crit(m) = γn(ŝm) + pen(m). (2)

Choosing the penalty is tricky but obviously crucial. Some
well-known penalized criteria with fixed penalties such as
AIC (Akaike 1973) or BIC (Schwarz 1978) have been
widely studied (Burnham and Anderson 2002). The use
of these penalties is mainly motivated by asymptotic argu-
ments that may be wrong in a non asymptotic context. In
the regression framework, other famous penalized criteria
are Mallow’s Cp (Mallows 1973) and GCV (Craven and
Wahba 1978). Nevertheless, Mallow’s Cp depends on the
noise level σ 2 of the true regression model which is un-
known (if it does exist) and σ 2 is thus difficult to estimate.
Similarly, GCV depends on a tuning parameter which best
value is actually σ 2. The solution proposed by the GCV
method is to choose this tuning parameter from the data via
cross-validation, and once again an unknown parameter has
to be estimated.

More recent works based on concentration inequalities
have led to optimal penalties which are known up to a mul-
tiplicative constant κ . In this framework, the penalty shape
is then denoted as penshape(·) and an unknown constant κopt

exists such that

penopt : m ∈ M �→ κopt penshape(m) (3)

is an optimal penalty. Two different kinds of results usually
lead to such a penalty shape:

Deterministic penalty shapes Specific deterministic func-
tions m �→ penshape(m) can be used to define an opti-
mal penalty (see Massart 2007, for some examples of
such penalties). For instance, in a general maximum like-
lihood framework, Theorem 7.11 in Massart (2007) pro-
vides a solution to choose a penalty shape and insures
the existence of a constant κopt such that penopt(·) =

κopt penshape(·) follows an oracle inequality. The value of
κopt which can be derived from the theory is much too pes-
simistic and a reasonable value has to be guessed from the
data.

Resampling penalty shapes In a regression framework, Ar-
lot (2009) uses resampling to design the penalty corre-
sponding to each model and derives non asymptotic results
for the corresponding procedures. These penalties actually
have to be calibrated by a multiplicative constant. Lerasle
(2009b) provides analogous results in a density estimation
framework.

Remark 1 Note that such a situation where an optimal
penalty is known up to a multiplicative constant also arises
with usual asymptotic criteria. For example, Mallows’ Cp ,
known to be asymptotically optimal in a fixed design and
homoscedastic regression framework, relies on the penalty
2σ 2Dm

n
, where Dm is the dimension of the model Sm. The

variance being typically unknown, a value estimated from
the data can be plugged in the penalty. Another possibility
consists of considering 2Dm

n
as a penalty shape and of guess-

ing a good multiplicative constant from the data.

2.2 Slope heuristics

Recently, some efforts have been paid to overcome the dif-
ficulty of penalty calibration. Birgé and Massart (2006) pro-
pose a practical method based on theoretical and heuristic
ideas for defining efficient penalty functions from the data.
This so-called slope heuristics is validated in the frame-
work of Gaussian regression with a homoscedastic fixed de-
sign (Birgé and Massart 2006) and generalized in the het-
eroscedastic random-design case (Arlot and Massart 2009).
It has also been validated for least squares density estima-
tion (Lerasle 2009b) and has been partially validated for the
selection of a suitable neighborhood in a Gaussian Markov
random field framework (Verzelen 2009). Furthermore, its
practical validity has been illustrated in many other differ-
ent frameworks as cited in the introduction.

According to (1) and (2), to select the oracle model, the
penalty must be chosen as m ∈ M �→ l(s, ŝm) − γn(ŝm). Of
course, it is not possible in practice since s is unknown but
it may help for defining a penalty which fulfills an oracle
inequality. Such a penalty can be decomposed into

l(s, ŝm) − γn(ŝm)

= {
EX[γ (ŝm,X)] − EX[γ (sm,X)]}

+ {
EX[γ (sm,X)] − EX[γ (s,X)]}

+ {
γn(sm) − γn(ŝm)

}

− {
γn(sm) − γn(s)

} − γn(s). (4)
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Since −γn(s) does not depend on m, the ideal penalty can
be defined as

pen∗(m) = vm + v̂m + Δn(sm),

where vm = EX[γ (ŝm,X) − γ (sm,X)] is an “estimation er-
ror” term, v̂m = γn(sm)−γn(ŝm) is an empirical “estimation
error” term and

Δn(sm) = {
EX

[
γ (sm,X)

] − EX

[
γ (s,X)

]}

− {
γn(sm) − γn(s)

}

is the difference between a “bias” term and the associated
empirical “bias” term. Now the main idea is to estimate this
ideal penalty from the data so as to build an optimal penalty
function. For all m ∈ M,

l(s, ŝm) + γn(s) = γn(ŝm) + pen∗(m)

according to the expression of the ideal penalty (4). More-
over for any penalty function pen(·),
∀m ∈ M, γn(ŝm̂) + pen(m̂) ≤ γn(ŝm) + pen(m)

according to the definition of m̂ and (2). This leads to

l(s, ŝm̂) + [
pen(m̂) − pen∗(m̂)

]

≤ inf
m∈M

{
l(s, ŝm) + [

pen(m) − pen∗(m)
]}

.

Thus it is relevant to look for a penalty close to the ideal
penalty for any m to derive an oracle inequality. To this aim,
the slope heuristics relies on the two following points [SH1]
and [SH2].

[SH1] Minimal penalty If the chosen penalty function is
pen(m) = v̂m, the penalized criterion is crit(m) = γn(ŝm) +
v̂m = γn(sm), which concentrates around its expectation
EX[γ (sm,X)] for large n. Hence, this procedure selects a
model minimizing the bias. The variance is not taken into
account: such a criterion has high probability of selecting a
too complex model. If the chosen penalty is pen(m) = κv̂m,
the criterion can be written as crit(m) = (1 − κ)γn(ŝm) +
κγn(sm). Therefore two cases occur:

• if κ < 1 then the criterion decreases as the complexity
increases (the two terms being decreasing): the selected
model is for sure one of the most complex ones,

• if κ > 1, for the most complex models, the criterion in-
creases with the complexity since these models almost
have the same bias, and thus they are ruled out.

This suggests that penmin(m) = v̂m is a minimal penalty,
namely that lighter penalties give rise to a selection of
the most complex models, whereas higher penalties should
select models with “reasonable” complexity. This phe-
nomenon corresponds to the first point of the slope heuris-
tics.

[SH2] Ideal penalty: twice minimal penalty The first point
of the slope heuristics is to assume that vm ≈ v̂m. One rea-
son to believe in such an assumption is that v̂m is the em-
pirical counterpart of vm. Since it is expected that the fluc-
tuations of Δn(sm) around its zero expectation can be con-
trolled through concentration results, the ideal penalty may
be approximated as:

pen∗(m) ≈ vm + v̂m ≈ 2v̂m.

Hence the ideal penalty is about twice the minimal penalty,
which is the second point of the slope heuristics.

In practice, this heuristics is useful when an optimal
penalty penopt(·) = κopt penshape(·) is known up to a mul-
tiplicative factor. Note that the slope heuristics is derived
by considering the ideal penalty, whereas it is applied
to a particular penalty shape chosen by the user. Thus,
it is not necessarily guaranteed that the ideal penalty it-
self is of the shape κ∗ penshape(·). This is a further as-
sumption that a given optimal penalty fulfills the same
properties as the ideal penalty, namely that half this op-
timal penalty is a minimal penalty. This relies on the as-
sumption that the chosen penalty shape is fine enough
so that the derived optimal penalty is close to the ideal
penalty. Thus the keystone of the slope heuristics is that
κopt

2 penshape(m) is a good estimate of v̂m and provides a
minimal penalty.

For the two application methods of the slope heuristics
presented in Sects. 3 and 4, it is assumed that a complex-
ity measure Cm of the models is given. As it has already
been explained before, this complexity measure is typically
the model dimension or the number of free parameters in
parametric frameworks, as in the regression example in the
Introduction Section. Generally speaking, the penalty shape
can be written as a function of Cm. When its definition is
not obvious a priori, the complexity measure can be chosen
as the penalty shape itself (as in Caillerie and Michel 2009).
The penalty shape can also be guessed itself from the data,
for example with resampling penalties. Table 1 in the Sup-
plemental Materials gives the expression of the complexities
Cm and the penalty shapes penshape for a large list of model
selection works.

For the two methods to apply the slope heuristics pre-
sented in Sects. 3 and 4, it is required that:

(C1) The empirical contrast γn(ŝm) decreases with the com-
plexity Cm.

(C2) The penalty shape penshape(·) increases with the com-
plexity Cm.

The two methods differ by the way the minimal penalty in-
volved in point [SH1] is estimated. The first one is the so-
called dimension jump method introduced in Birgé and Mas-
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Fig. 1 Representation of the nonincreasing and piecewise constant function κ �→ Cm(κ)

sart (2006). The second one consists of directly estimating
the “slope” κopt in a data-driven fashion.

Remark 2 Besides numerical issues while computing ŝm,
condition (C1) is satisfied for instance with nested models
along which the complexity increases.

3 Dimension jump

3.1 Principle

The so-called dimension jump is a method for penalty cal-
ibration which takes advantage of [SH1] and [SH2] to effi-
ciently determine the unknown penalty constant κopt in (3).
Let m(κ) be the model selected by the penalized crite-
rion m �→ γn(ŝm) + κ penshape(m). Under (C1) and (C2),
κ �→ Cm(κ) is a nonincreasing and piecewise constant func-
tion. According to the minimal penalty definition, it is
expected that the selected model m(κ) has a large com-
plexity when κ penshape(·) < penmin(·) and a reasonably
large complexity if κ penshape(·) > penmin(·). Thus, κ �→
Cm(κ) should present an abrupt jump around a value κ̂ (see

Fig. 1). The penalty κ̂ penshape(·) is then expected to be
close to the minimal penalty and according to [SH2], the
penalty 2κ̂ penshape(·) is expected to be an optimal penalty
(κopt ≈ 2κ̂).

As a matter of fact, the choice of complexity mea-
sure is crucial for this method (see Sect. 3 in the Sup-
plemental Materials for an application coming from Cail-
lerie and Michel (2009) which illustrates this). If sev-
eral complexity measures seem relevant for the user, they
can all be tested to find the one that shows the clearest
jump.

3.2 The dimension jump method in practice

In order to apply the dimension jump method, the following
steps have to be proceeded:

1. Compute, for all κ > 0,

m(κ) ∈ argmin
m∈M

{
γn(ŝm) + κ penshape(m)

}
;

2. Find κ̂ such that Cm(κ) is large if κ < κ̂ and has a “rea-
sonable” order otherwise;

3. Select m̂ = m(2κ̂).
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For the first step, the algorithm proposed by Arlot and
Massart (2009) is implemented in our graphical interface
CAPUSHE. This algorithm makes this first step computation-
ally tractable since it only requires at most card(M) − 1
steps, and actually probably much less. This provides the lo-
cation of jumps, namely an increasing sequence (κi)0≤i≤imax

with κ0 = 0, κimax = +∞, the number of jumps (imax − 1) ∈
{0, . . . , card(M)−1}, and the associated selected model se-
quence (mi)0≤i<imax where mi = m(κ) for all κ in [κi, κi+1)

and for all i < imax.
For the second step, two different strategies are available

in CAPUSHE:

Maximal jump
This first method is the most popular. It consists
of choosing the constant κ̂dj corresponding to the
greatest jump of complexity: κ̂dj = κidj , with idj ∈
argmax0≤i<imax−1{Cmi

− Cmi+1}. If several values of κ

reach the maximum value, Lebarbier (2005) suggests to
choose the largest κ in order to select the less complex
model.

Threshold complexity
The second method, proposed by Arlot and Massart
(2009), consists of choosing a threshold complexity Cthresh

such that complexities smaller than Cthresh are reasonable
but larger ones are not. Then the chosen constant κ̂ thresh is
the smallest value of κ for which the corresponding penalty
selects a complexity smaller than Cthresh:

κ̂ thresh = inf{κ > 0 : Cm(κ) ≤ Cthresh}.
In the regression framework, these authors suggest to
choose Cthresh of order n

logn
or n

(logn)2 .

Those alternative methods are not equivalent. Arlot and
Massart (2009) expect that they should yield the same se-
lection as the dimension jump is clear or as there are sev-
eral dimension jumps close to each other, but might not
otherwise. They report simulations according to which it
could happen quite seldom. When the selected models dif-
fer, they recommend that the user looks at the graphic him-
self.

4 Data-driven slope estimation method

4.1 Principle

This alternative method consists of directly estimating the
constant κopt by the “slope” of the expected linear rela-
tion of −γn(ŝm) with respect to the penalty shape values
penshape(m). Currently, this second method is less employed
than the dimension jump procedure. This might be due to

difficulties related to its implementation: Lebarbier (2005)
partly presents this method and discusses it, but chooses the
dimension jump approach notably because of the lack of sta-
bility she encountered while estimating the slope. It is also
presented and studied in Baudry et al. (2008) and Maugis
and Michel (2010). In this section, we propose solutions so
as to make possible and reliable the application of the slope
heuristics thanks to a stability study of the selected model.

We recall that the optimal penalty penopt(m) =
κopt penshape(m) is expected to be close to

2v̂m = 2[γn(sm) − γn(ŝm)]
= 2[γn(sm) − γn(s)] + 2[γn(s) − γn(ŝm)].

The empirical bias term γn(sm) − γn(s) gets stable for the
most complex models for which the approximation of the
target s cannot be appreciably improved. Hence the behav-
ior of κopt penshape(m) is known through −2γn(ŝm) for mod-
els of large complexities, and thus of large penalty shape
values according to (C2). Thus −γn(ŝm) is expected to be-
have linearly with respect to penshape(m) with a slope around
κopt

2 , as shown in the left graph of Fig. 2. Finally, if κ̂ de-
notes an estimation of the slope of the linear regression of
−γn(ŝm) on penshape(m), the optimal penalty is estimated by
2κ̂ penshape(·).

4.2 Practice of the data-driven slope estimation method

The main issue about this method is how to choose a sub-
set of points (penshape(m),−γn(ŝm)) corresponding to large
values of penshape(m) where the slope can be estimated. In
practice, it is usually chosen at sight. The method proposed
in this paper to answer this problem is based on the model
selection stabilization. More precisely, the slope is sequen-
tially estimated from the couples (penshape(m),−γn(ŝm))

where the couple with the smallest penalty shape value is
removed at each step. An area where the slope estimation
is stable has to be observed according to Sect. 4.1. The
slope estimation in this area corresponds to an estimation
of κopt/2 and thus the same model is selected. Denoting
P = {penshape(m), m ∈ M}, the corresponding algorithm
is:

Step 1 If several models in the collection have the same
penalty shape value, only the model having the smallest
contrast value γn(ŝm) is kept according to (2). To make
easier the reading of this algorithm, the model indexation
is not modified.

Step 2 For any p ∈ P , the slope κ̂(p) of the linear re-
gression on the couples of points {(penshape(m),−γn(ŝm));
penshape(m) ≥ p} is computed using a robust regression
method.
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Fig. 2 An example of the CAPUSHE results. The left graph represents
−γn(ŝm) with respect to penshape(m) to check the linear behavior as-
sumption. The top-right (resp. bottom-right) graph gives the estimated
slope (resp. the selected model) as a function of the number of couples
(penshape(m),−γn(ŝm)) used for the linear regression. The last plateau

for which the length Nı̂ is greater than pct
∑I

l=1 Nl is detected and the
corresponding model m̂(pı̂ ) is selected. The “Corresponding slope in-
terval” given bottom right is the interval [pı̂,pı̂+1) leading to select
m̂(pı̂ )

Step 3 For any p ∈ P , the model fulfilling the following

condition is selected:

m̂(p) = argmin
m∈M

{γn(ŝm) + 2κ̂(p)penshape(m)}.

We obtain an increasing sequence of change-points

(pi)1≤i≤I+1 such that

∀1 ≤ i ≤ I − 1, ∀p ∈ P ,

{
m̂(p) = m̂(pi) ⇐⇒ p ∈ [pi,pi+1),

m̂(p) = m̂(pI ) ⇐⇒ p ∈ [pI ,pI+1].

We observe a “plateau” sequence and compute the plateau

sizes (Ni)1≤i≤I defined by

∀1 ≤ i ≤ I − 1,

Ni = card{[pi,pi+1) ∩ P } and

NI = card{[pI ,pI+1] ∩ P }.
Step 4 The model m̂(pı̂) such that

ı̂ = max

{

i ∈ {1, . . . , I }; Ni > pct
I∑

l=1

Nl

}

is selected (see hereafter for the choice of the pct value).
We also return the interval of slope values [pı̂,pı̂+1[ and
the proportion Nı̂/

∑I
l=1 Nl . Graphically, this corresponds

to selecting the “most to the right” plateau whose length
is greater than the threshold (see the bottom-right graph in
Fig. 2).

This algorithm requires to tune the parameter pct at
Step 4 in order to determine which plateau corresponds to
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Fig. 3 Comparison of the model selection method using robust regression and classical linear regression with CAPUSHE. See the description of
the right graphs of Fig. 2 for more details

a stabilization of the model selection. By default, pct is set
to 15% in CAPUSHE. This choice may be reconsidered ac-
cording to the application at hand, and particularly to the
size of M and to whether it is expected that many too
complex models have been involved in the study. However,
the pct deeply impacts the model selection only in situa-
tions for which no linear behavior can be observed (see the
Transcriptome dataset example in Sect. 5.1.2). On the con-
trary, it is expected that the method is not much sensitive to
pct in favorable situations (see the “Bubbles” experiment in
Sect. 5.1.1). Remark that whatever the choice at this step,
the reported actual proportion Nı̂/

∑I−1
l=1 Nl measures the

stability of the method: the higher this value the more con-
fidently the method can be applied. Moreover, the graph of
p ∈ P �→ m̂(p) (bottom-right in Fig. 2) enables to evaluate
whether the choice of the good plateau is obvious or not,
namely there is a plateau clearly larger than the others to the
right of this graph.

Remark 3 For the successive slope estimations in Step 2,
a robust regression with the bisquare weighting function
(Huber 1981) is advised in order to attenuate the influence
of possible estimation errors of the sequence (ŝm)m∈M. As
shown on Fig. 3, with the robust regression, the successive

estimations of the slopes are more stable and the length of
the selected plateau is larger than with classical regression.

This method is based on a linear relation between
−γn(ŝm) and penshape(m) for the largest values of the
penalty shape. Non evidence of such linear relation should
warn the user that the slope heuristics should probably not be
applied. It should then be verified that complex enough mod-
els have been involved in the study and the penalty shape
should be questioned. To help the user to validate the lin-
ear behavior assumption, some graphical tools are proposed
in CAPUSHE. In particular, the use of the “Validation Step”
option is illustrated in Sect. 5.1.2.

5 Applications

This section illustrates how the slope heuristics can be pro-
ceeded using the Matlab interface CAPUSHE. The practical
difficulties encountered and the differences between the di-
mension jump and our data-driven slope estimation method
are highlighted on simulated and real datasets.
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Fig. 4 Graphical output obtained by the data-driven slope estimation method for the Bubbles experiment with Mmax = 50

5.1 Number of Gaussian mixture components

In the model-based clustering framework, assessing the
number of components of Gaussian mixtures is a crucial
question. In this framework, Sm is the set of Gaussian mix-
tures with m components:

Sm =

⎧
⎪⎪⎨

⎪⎪⎩

m∑

k=1

pkΦ(·|μk,Σk);
pk ∈ [0,1]

/ m∑

k=1

pk = 1

μk ∈ R
d, Σk ∈ D+

⎫
⎪⎪⎬

⎪⎪⎭

,

where Φ(·|μ,Σ) corresponds to the density of the
d-dimensional Gaussian distribution with mean vector
μ ∈ R

d and covariance matrix Σ belonging to a subset D+
of d × d positive definite matrices. The maximum likeli-
hood estimators ŝm are computed with the EM algorithm
using MIXMOD software (Biernacki et al. 2006) or MCLUST

(Fraley and Raftery 2003) for instance. Following Maugis
and Michel (2009), we consider a penalized loglikelihood
criterion with a penalty proportional to penshape(m) = Dm,

the number of free parameters for a mixture with m com-
ponents. Note that this last quantity Dm is a natural com-
plexity measure of Sm. In practice, the maximum num-
ber of components Mmax of the mixture models has to
be chosen first. The model collection is then restricted to
(Sm)1≤m≤Mmax .

5.1.1 Bubbles experiment

This simulated dataset (plotted in Fig. 1 of the Online Re-
source file Supp.pdf) is composed of n = 1000 observations
in R

3. It consists of an equiprobable mixture of three large
“bubble” groups centered at ν1 = (0,0,0), ν2 = (6,0,0)

and ν3 = (0,6,0) respectively. Each bubble group j is sim-
ulated from a mixture of seven components according to the
following density distribution:

x ∈ R
3 �→ 0.4Φ(x|μ1 + νj , I3)

+
7∑

k=2

0.1Φ(x|μk + νj ,0.1I3)
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Fig. 5 Graphical output obtained by the dimension jump method for the Bubbles experiment with Mmax = 50

with μ1 = (0,0,0), μ2 = (0,0,1.5), μ3 = (0,1.5,0),
μ4 = (1.5,0,0), μ5 = (0,0,−1.5), μ6 = (0,−1.5,0) and
μ7 = (−1.5,0,0). Thus the distribution of this dataset is ac-
tually a 21-component Gaussian mixture. The reader is re-
ferred to Baudry (2009 , Chap. 5) for more details. A model
collection (Sm)1≤m≤Mmax of spherical Gaussian mixtures
is considered with covariance matrices Σk = λkI3 with
λk ∈ R

�+.
The outputs of CAPUSHE are explained with this sim-

ulated example. Figure 4 gives the graphical outputs ob-
tained by the data-driven slope estimation method for the
model collection with Mmax = 50. In this example, the
linear behavior for the most complex models is clearly
observed. Using the robust regression, the true Gaus-
sian mixture with 21 components is selected in 89.6% of
the successive slope estimations. The choice of a multi-
plicative constant 2κ in the penalized criterion with κ ∈
[1.1783 × 10−3;2.611 × 10−3] leads to select m̂ = 21.
There is no ambiguity for the result with the dimension
jump since the maximal complexity jump is really clear (see
Fig. 5).

In order to compare the two slope heuristics methods with
the classical criteria BIC and AIC, an experiment is con-
ducted with 100 simulations of the Bubbles dataset. Model
collections with Mmax = 40 and Mmax = 50 are successively

considered. For the data-driven slope estimation method,
different values of pct have been tried: 5%, 10%, 15% and
20%. As expected in this example where the slope heuris-
tics can obviously be applied, all values of pct yield sim-
ilar results (with corresponding risks ratios ranging from
1.02 to 1.06). The results for the default value 15% are re-
ported. Table 1 gives the number of times a model is se-
lected by each criterion over the 100 simulations. It also
provides the ratio between the risk of the selected esti-
mator and the oracle risk. For each simulation, the ora-
cle model is defined as the model which estimator mini-
mizes the Kullback-Leibler divergence to the true distribu-
tion.

Mostly, the oracle is close to the true distribution. As
usual in a mixture framework, AIC obviously underpenal-
izes the model complexity. BIC mostly recovers the true
number of components which is not surprising according to
Keribin (2000): in this experiment the true distribution be-
longs to the model collection and n is quite large. For the
model collection with Mmax = 50, the dimension jump ap-
proach yields the same selection as the data-driven slope es-
timation approach, but in 10% of the datasets. As compared
to the oracle risk, the slope heuristics applied with the data-
driven slope estimation approach gives the best risk results
(ratio close to 1), closely followed by BIC. The dimension
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Table 1 Number of times a model m is selected among the 100 simulations by AIC, BIC, the data-driven slope estimation method (DDSE) and
the dimension jump method (DJ). The last column is the ratio between the risk of the selected estimator by each method and the oracle risk

Selected number Mmax 3 4 15–18 19 20 21 22 23 24 25 26 ≥35 Risk

of components m̂ ratio

Oracle 40, 50 1 76 15 3 3 2 1

AIC 40, 50 100 2.59

BIC 40, 50 3 6 23 57 9 1 1 1.17

DDSE 50 3 7 60 18 7 3 2 1.06

DDSE 40 1 3 7 61 18 4 4 2 1.08

DJ 50 10 2 3 6 54 19 1 3 2 1.94

DJ 40 40 2 2 3 43 7 2 1 4.15

Fig. 6 Graphical output obtained by the dimension jump method for the Bubbles experiment with Mmax = 40

jump method has a larger risk because it sometimes selects
small models.

When Mmax = 40, the results illustrate a difficulty which
can be encountered while applying the dimension jump.
This approach selects 40 times the model m̂ = 3 in the sim-
ulation study, which is a poor result. The reason of this dif-
ficulty is illustrated in Fig. 6: there seemingly occurs a di-
mension jump for the most complex models, but it occurs
in several steps. Therefore the largest of those “sub-jumps”
is still smaller than the jump leading to select m̂ = 3, which

is quite large because of the data structure. This shows the
sensibility of the dimension jump approach to the choice of
the most complex models involved in the study. The data-
driven slope estimation results are only worsened a little if
Mmax = 40 instead of Mmax = 50.

5.1.2 Transcriptome dataset

The following transcriptome dataset was studied by Maugis
et al. (2009). It consists of 1020 genes of Arabidopsis
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Fig. 7 Selection with the data-driven slope estimation method when Mmax = 20 for the transcriptome dataset study (top). On the bottom plot, the
Validation option is used with three points corresponding to m ∈ {40,50,60} in order to graphically test whether the linear area is reached or not

thaliana described in 20 experiments. We consider a col-
lection of Gaussian mixtures where the covariance matri-
ces are assumed to be equal: ∀k ∈ {1, . . . ,m},Σk = Σ . In
practice, the choice of Mmax is crucial since the linear be-
havior of the contrast can be observed for the most com-
plex models. If we consider Mmax = 20 in this example,
the linear part is not observed and the selection with the
data-driven slope estimation method is not satisfying be-
cause there is no long and clear plateau (see the top of
Fig. 7). In order to find a trade-off between the global es-
timation time and the observation of the linear area, the op-
tion “Validation Step” is proposed. This option allows us
to graphically test whether the considered model collection
is large enough for applying the data-driven slope estima-
tion method. The slope, estimated on the subset of cou-
ples {(penshape(m),−γn(ŝm)); m ∈ {1, . . . ,Mmax}}, is plot-
ted and the user can graphically test whether other such cou-
ples for more complex models are in this linear regression
line or not. For our transcriptome data example, the points
corresponding to mixtures with 40, 50 and 60 components
are tested in the bottom of Fig. 7. Those three points are be-

low and away from the estimated linear line, showing that
the choice Mmax = 20 is not large enough. For Mmax = 60,
the linear area is then clearly observed and the data-driven
slope estimation method can be correctly applied according
to the graphical outputs given in Fig. 2.

Remark that with Mmax = 20 the model selected through
the data-driven slope estimation varies considerably with the
choice of pct. This is apparent from the top of Fig. 7 (see
bottom-right graph). It is obvious from Fig. 2 that the results
are much more stable and reliable with Mmax = 60: a large
spectrum of pct leads to selecting the same model, at least
for values of pct larger than 2/60.

5.2 Change-point detection

Change-point detection is studied in Lebarbier (2005) with
a model selection point of view. This section gets back on a
simulation given in Lebarbier (2005) to illustrate the slope
heuristics with CAPUSHE in this context.

Let us consider the fixed design regression model

Xi = s(ui) + εi (5)
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Fig. 8 Data-driven slope estimation method (top) and dimension jump (bottom) for the change-point detection problem. The two methods select
the same model |m̂| = 6

where the Xi ’s are observed at regular points ui = i
n

, i =
1, . . . , n. The errors εi are assumed to be i.i.d. centered ran-
dom variables with variance σ 2. Let M be the set of all
the partitions of the grid {u1, . . . , un}. The model Sm corre-
sponding to the partition m = {Ik}1≤k≤|m| is defined by

Sm =
⎧
⎨

⎩

|m|∑

k=1

βk1Ik
; (βk)1≤k≤|m| ∈ R

|m|
⎫
⎬

⎭
.

A natural measure of the model complexity is the dimen-
sion Dm = |m|, namely the partition size. For each model,
a least squares estimator of s can be defined by minimizing
the contrast: γ (t, (x,u)) = (x − t (u))2 over Sm. The aim
is to determine the best estimator for the �2 risk. Lebarbier
(2005) shows that a convenient penalty shape for this prob-
lem is

penshape(m) = Dm

n

(

2.5 + ln
n

Dm

)

.

Case (b) of the simulations proposed in Lebarbier (2005) is
considered (see Sect. 4.1.2 in Lebarbier 2005, for more de-
tails). A sample of 300 observations is simulated according
to (5), s being a piecewise constant function with six pieces

and σ = 1. Figure 8 shows the results for the two methods
on this sample. A long plateau corresponding to |m| = 6 can
be observed on the top graph. The greatest jump also leads
to the selection of this model on the bottom graph. Note that
on this example, one could think that for the dimension jump
method, the greatest jump is actually between |m| = 12 and
|m| = 22. By aggregating the sequence of small and close
jumps in this interval, this would yield a different model se-
lection. As for the Bubbles experiment, the data-driven slope
estimation method gives a clearer answer to the model selec-
tion problem.

6 Discussion

The slope heuristics is a promising approach for calibrat-
ing penalized criteria in model selection contexts. The avail-
able theoretical and practical justifications for its use in var-
ious frameworks increasing, this paper aims at providing an
overview of those theoretical and experimental results.

Although efforts have been paid to fill the gap between
the theoretical results on the slope heuristics and its applica-
tion, the dimension jump method and the data-driven slope
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estimation method are not totally justified. Regarding the di-
mension jump, the theory does not say if the dimension jump
occurs in one single jump or several successive jumps. Thus,
aggregating successive jumps could be an option for future
works. Concerning the data-driven slope estimation, note
that the linear relation between −γn(ŝm) and penshape(m)

for the largest values of the penalty shape is actually only
valid in expectation.

The encountered practical difficulties for applying this
heuristics are highlighted and different solutions are com-
pared. We also propose a new method based on data-driven
slope estimation which is implemented in the Matlab graph-
ical interface CAPUSHE. Thanks to this graphical tool, it
is possible to check that the slope heuristics is valid for a
given penalty shape. Moreover it allows the user to compare
this method with the more popular dimension jump method.
The data-driven slope estimation is easier to calibrate: both
methods involve tuning parameters (choice of the method
and parameter to define a “plateau” for the data-driven slope
estimation; choice of the most complex involved model or
of the complexity threshold for the dimension jump), how-
ever the choice can be made on a more universal ground
in the case of the data-driven slope estimation (for exam-
ple as a percentage of the total number of involved mod-
els). The “Bubbles” experiment moreover illustrates that the
data-driven slope estimation may behave better than the di-
mension jump, notably as the estimation in complex models
is expensive. But this comparison study has to be continued
and deepened, both theoretically and practically.

CAPUSHE makes the slope heuristics easy to apply for
any statistician who would like to try it without having to
care much about the practical difficulties it involves. Hope-
fully it shall contribute to a more widespread use of the slope
heuristics. As it shall be more used, there will be an increas-
ing quantity of available material to pursue the study and
understanding of this approach. Moreover the package is a
convenient tool to directly cope with questions raised by the
slope heuristics study. It may be useful for example to com-
pare the two available strategies for the application of the
dimension jump: the maximal dimension jump versus the
threshold complexity.

The slope heuristics is being studied in new situations,
which may uncover new difficulties and solutions. For ex-
ample Arlot and Bach (2009) propose an oracle procedure to
select among linear estimators, where the minimal penalty
shape is different from the optimal penalty shape. By the
way, this is an instance of a situation where the minimal
penalty shape is not proportional to the model dimension.
Selecting the estimator based on twice the minimal penalty
leads to overpenalizing in this case. This suggests that fu-
ture versions of the package may have to involve new func-
tionalities: the current one does not enable to handle such a
situation.
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