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Abstract We introduce a Bayesian extension of the latent
block model for model-based block clustering of data ma-
trices. Our approach considers a block model where block
parameters may be integrated out. The result is a posterior
defined over the number of clusters in rows and columns
and cluster memberships. The number of row and column
clusters need not be known in advance as these are sampled
along with cluster memberhips using Markov chain Monte
Carlo. This differs from existing work on latent block mod-
els, where the number of clusters is assumed known or is
chosen using some information criteria. We analyze both
simulated and real data to validate the technique.

Keywords Block clustering · Latent block model ·
Bayesian model choice · Collapsed model

1 Introduction

Many data sets arise as a result of a number of features or
variables being observed for a collection of objects. As ex-
amples, shoppers and the items which they do or do not buy;
whether a document contains specific words or not; the ex-
pression levels of a gene under a series of conditions in a
DNA experiment. Such data will be recorded in a matrix,
say, with rows indexing objects and columns indexing fea-
tures or variables. Often interest will focus on clustering
rows and further, clustering the features which distinguish
these row clusters. We refer to this task as block clustering
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although it is also known as block modelling, biclustering,
co-clustering and two-mode clustering.

One of the first approaches to block clustering was sug-
gested by Hartigan (1972) and since then, many have been
proposed. Much recent work in block clustering and related
areas has been either on the analysis of microarray data (Tib-
shirani et al. 1999; Cheng and Church 2000; Getz et al.
2000; Lazzeroni and Owen 2002; Kluger et al. 2003) or
document classification (Hofmann 2001; Blei et al. 2003;
Griffiths and Steyvers 2004). Approaches vary in whether
they allow clusters to overlap or not. In our case, the prob-
lem can be thought of as permuting the rows and columns
of the data matrix to make a “chessboard” of blocks of data
having similar value.

While many approaches to document classification are
model-based i.e. a parametric underlying model is assumed
when clustering data, this is often not the case in microarray
analysis. Some exceptions are Lazzeroni and Owen (2002)
who assume a Gaussian error model for gene expression
with additive effects for gene and condition clusters and
Sheng et al. (2003) who assume a multinomial model for
expression level in a discretized microarray. It is common
to use two-way hierarchical clustering for this data or other
partitioning methods (for example Getz et al. 2000). One
drawback of these methods is the lack of probabilistic jus-
tification as noted by Wit and McClure (2004) (Chapter 7,
page 171). A model-based approach allows explicit mod-
elling of noise in the data. This can be an advantage in data,
such as microarrays, which is particularly prone to noise,
incorporating uncertainty in cluster membership.

In this paper we consider an extension of the latent block
model (LBM) approach of Govaert and Nadif (2008). The
LBM was developed as an intuitive extension of the finite
mixture model used in model-based clustering (Fraley and
Raftery 2002) to allow for clustering of objects and features.
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We propose a Bayesian LBM. This has been considered pre-
viously by van Dijk et al. (2009). In their approach the num-
ber of clusters in objects and features is assumed known and
Gibbs sampling is used to find clusterings. They choose the
number of clusters using an information criterion based on
maximum likelihood.

We show that it is possible to sample the number of clus-
ters and the cluster membership jointly using simple Markov
chain Monte Carlo (MCMC) on a collapsed model, so that
uncertainty in the number of clusters is naturally incorpo-
rated as part of our Bayesian LBM. The collapsed model
is obtained by integrating out block parameters analytically.
This is possible using standard prior assumptions. There is
no need to resort to a trans-dimensional sampler, such as the
reversible jump sampler of Green (1995). Our idea extends
the allocation sampler of Nobile and Fearnside (2007) to two
directions, with slight modifications. We discuss differences
and similarities of our approach to block clustering with
those which are most comparable qualitatively. The sampler
is applied to both simulated and real datasets to gauge per-
formance.

The remainder of the paper is organized as follows.
Section 2 reviews the LBM and introduces the collapsed
Bayesian LBM. Section 3 gives the MCMC sampler which
we use. The differences between our sampler and reversible
jump samplers are also discussed. Label switching is men-
tioned and the section concludes with approaches to summa-
rize the output of the sampler. Section 4 applies the approach
to simulated data. In Sect. 5 we analyze voting records data
from the U.S. congress and compare this to a maximum like-
lihood analysis. In Sect. 6 we discuss the analysis of mi-
croarray data, and use our sampler to analyze data from a
yeast microarray experiment. The paper concludes with a
discussion.

2 Models

The data is Y = (yij ), an n × m matrix. It is assumed rows
and columns may be reordered so that the matrix can be rep-
resented as K × G blocks with data in blocks modelled by
the same density, where K and G are the number of row
and column clusters respectively. This could be imagined as
a “chessboard” effect, with K − 1 divisions in the direction
of the rows and G − 1 in the direction of the columns. The
parameters of the data density are conditional on the block
and θkg denotes the parameters for block (k, g), with � de-
noting the collection of these. We now give a review of the
LBM of Govaert and Nadif (2008).

2.1 Latent block models

Conditional on K and G, let U be a latent space indexing
the set of all possible clusterings of rows and columns. Then

the distribution of the data Y can be written

p(Y |K,G,�,φ) =
∑

u∈U
p(u|K,G,φ)p(Y |K,G,u,�)

where φ are parameters for the distribution of u. Here u is a
multinomial random variable taking values over each possi-
ble allocation of rows and columns to clusters. In this regard,
suppose these allocations are indexed 1, . . . ,KnGm; then

u|K,G,φ ∼ Multinomial(φ1, . . . , φKnGm)

with
∑KnGm

l=1 φl = 1. Govaert and Nadif (2008) make the as-
sumption that row and column clusterings are independent a
priori, so that p(u|K,G,φ) = p(z|K,ω)p(w|G,ρ) where
zi = k if row i is in cluster k and wj = g if column j is in
cluster g. The probability of a row belonging to cluster k is
ωk and ρg denotes the probability that a column belongs to
cluster g. The LBM is then

p(Y |K,G,�,ω,ρ)

=
∑

(z,w)∈Z ×W
p(z|K,ω)p(w|G,ρ)p(Y |K,G, z,w,�)

(1)

where Z and W denote the latent spaces of all row and
column clusterings respectively. When constructing the data
likelihood given the latent allocations, we make the assump-
tion of local independence. That is, within a block, data are
independent. This gives data likelihood conditional on z,w,

p(Y |K,G, z,w,�) =
K∏

k=1

G∏

g=1

∏

i:zi=k

∏

j :wj =g

p(yij |θkg).

As |Z × W | = KnGm, it is not feasible to calculate (1).
We now review a way to fit this model using a method based
on Expectation-Maximization (EM) (Dempster et al. 1977)
due to Govaert and Nadif (2008).

2.1.1 Estimation using BEM2

Here we outline the BEM2 algorithm of Govaert and Nadif
(2008) which we will compare our approach with later
(Sect. 5). Let the random variables rik = I{zi = k} and
cjg = I{wj = g}. Then

ri ∼ Multinomial(ω1, . . . ,ωK)

cj ∼ Multinomial(ρ1, . . . , ρG).

The complete (or classification) log-likelihood associated
with the LBM (1) is
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L(r, c,ω,ρ,�)

=
n∑

i=1

K∑

k=1

rik logωk +
m∑

j=1

G∑

g=1

cjg logρg

+
n∑

i=1

m∑

j=1

K∑

k=1

G∑

g=1

rikcjg logp(yij |θkg). (2)

The E step using this log-likelihood directly is intractable
due to the dependence structure among the rows and
columns. Govaert and Nadif (2008) suggest a variational ap-
proximation to the joint distribution of the latent r, c which
leaves r and c independent. Then using the interpretation
of EM due to Neal and Hinton (1998) this leads to a new
“fuzzy” criterion for block clustering

G(s, t,ω,ρ,�)

= L(s, t,ω,ρ,�) −
n∑

i=1

K∑

k=1

sik log sik

−
m∑

j=1

G∑

g=1

tjg log tjg

which can be alternately maximized with respect to s, t and
ω,ρ,� where sik = Pr(zi = k) and tjg = Pr(wj = g).

The possible ways in which this criterion may be al-
ternately maximized determines different algorithms. The
BEM2 algorithm maximizes it as follows.

1. Initialize the unknowns s, t,ω,ρ,� at some sensible
value.

2. Maximize G with respect to s,ω and � keeping t and ρ

fixed.
3. Maximize G with respect to t,ρ and � keeping s and ω

fixed.
4. Iterate steps 2-3 until convergence.

It is noted that each sweep of BEM2 has two maximiza-
tions of �. This maximization procedure is reported to
have outperformed the other schemes considered in Gov-
aert and Nadif (2008), so we use it here to compare with our
Bayesian approach.

2.1.2 Choosing K and G when using BEM2

In (1), it is assumed that K and G are known. The number
of clusters assumed can have a considerable effect on the
output of clustering algorithms. Usually, many runs, each
with a different number of clusters, are necessary. These are
then compared to find the best clustering, either based on
some information criterion or visual inspection of plots.

Since the LBM is defined in terms of the latent allocation
vectors z and w, it is not clear how one could use a stan-
dard information criterion (e.g. BIC, Schwarz 1978) here

to choose the number of components best supported by the
data. One approach may be to use the maximized complete
log-likelihood treating the row and column allocations as
unknown parameters, L(r̂, ĉ, ω̂, ρ̂, �̂). van Dijk et al. (2009)
have used this approach for LBMs when using AIC-3 (Boz-
dogan 1994) to choose K and G. In this case the number
of parameters to be estimated is n(K − 1) + m(G − 1) +
dKG + (K − 1) + (G − 1) where d is the dimension of any
θkg . A separate model estimation is required for each K and
G combination over a grid of plausible models. Adopting
this type of approach crucially involves replacing the max-
imum log likelihood with a maximized complete log like-
lihood and also the issue of selection of a particular infor-
mation criterion, and could therefore be criticized for both
reasons.

The Bayesian LBM we propose seeks to incorporate un-
certainty in K and G into the model. This is so that the clus-
tering task is also one of cluster model determination. The
model determination task and the allocation task are dealt
with simultaneously through a fully Bayesian approach.
This has analogy with some other block clustering strate-
gies, which undertake greedy searches to find new row and
column clusters. See for example Hartigan (2000). An ad-
vantage here is that the search has a probabilistic justifica-
tion based on a posterior distribution for K and G. In the
next section we introduce the Bayesian LBM which is at the
core of the clustering procedures we discuss.

2.2 Bayesian latent block models

The Bayesian LBM is formed by taking prior densities on
K , G, �, ω and ρ . Let π(·) denote prior and posterior den-
sities. Then we may write down the posterior of the number
of clusters and latent cluster allocations from Bayes’ theo-
rem

π(K,G, z,w,ω,ρ,�|Y)

∝ p(z|K,ω)p(w|G,ρ)p(Y |K,G, z,w,�)

× π(�|K,G)π(ω|K)π(ρ|G)π(K)π(G). (3)

Adopting a conjugate prior for ω, ρ and each θkg al-
lows one to integrate these from the posterior analytically.
We call this collapsing. Doing this allows us to obtain the
marginal posterior π(K,G, z,w|Y). Samples can be gener-
ated from this posterior using the MCMC sampler of Sect. 3.
This is similar to the general approach of Nobile and Fearn-
side (2007). The idea of collapsing has been used by Sheng
et al. (2003) in the analysis of a discretized microarray and
by Griffiths and Steyvers (2004) in latent Dirichlet analysis
for document classification. It would be possible to estimate
this model without integrating out parameters by using re-
versible jump MCMC (RJMCMC) (Green 1995). We dis-
cuss this further in Sect. 3.2.
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We choose a standard conjugate prior for each of the
parameters to be integrated out. For example, ω ∼
Dirichlet(α, . . . , α) and ρ ∼ Dirichlet(β, . . . , β) a priori.
For the examples considered in this paper, we take the non-
informative values α = 1, β = 1. The prior on θkg will de-
pend on the distribution assumed for the data. For the most
widely used models, a standard conjugate prior will be avail-
able. The θkg are assumed independent a priori. This leads
to the posterior

π(K,G, z,w|Y)

∝ π(K)π(G)

{αK}∏K

k=1 
{nk + α}

{α}K
{n + αK}

× 
{βG}∏G
g=1 
{mg + β}


{β}G
{m + βG}
K∏

k=1

G∏

g=1

Mkg, (4)

where

Mkg =
∫

π(θkg)
∏

i:zi=k

∏

j :wj =g

p(yij |θkg)dθkg,

where nk is the number of rows in cluster k and mg is the
number of columns in cluster g. An outline of the calculation
of the posterior is given in Appendix A.

The priors for the number of clusters, π(K) and π(G) are
taken to be truncated Poisson(1) over the ranges 1, . . . ,Kmax

and 1, . . . ,Gmax. Examples of Poisson priors being adopted
for the number of components include Phillips and Smith
(1996) and Stephens (2000). The use of a truncated
Poisson(1) prior has been justified in Nobile (2005). We
did experiment with a uniform prior on the number of clus-
ters. However, we found that this gave unnecessary empty
clusters in some situations.

We now give the Mkg for two useful data models which
we will use in examples later.

2.2.1 Bernoulli model for binary data

Assume that Pr(yij = 1|zi = k,wj = g) = θkg . We take a
Beta(γ, δ) prior on θkg . Then

Mkg = 
{γ + δ}

{γ }
{δ}



{
skg + γ

}



{
nkmg − skg + δ

}


{nkmg + γ + δ}
where skg are the block sufficient statistics given by skg =∑

i:zi=k

∑
j :wj =g yij . Further detail on the calculation is

given in Appendix B.

2.2.2 Gaussian model for continuous data

Assume yij |zi = k,wj = g ∼ N(μkg, σ
2
kg). Take the priors

μkg ∼ N(ξ, τ 2σ 2
kg) and σ 2

kg ∼ IG(δ/2, γ /2) where IG(a, b)

is the Inverse-Gamma distribution: p(x) = ba


(a)
x−(a+1) ×

exp{−b/x}. Then

Mkg = γ δ/2 
{(nkmg + δ)/2}
πnkmg/2
{δ/2}(nkmgτ 2 + 1)1/2

×
(

sskg − τ 2(skg + ξ/τ 2)2

nkmgτ 2 + 1
+ ξ2

τ 2
+ γ

)−(nkmg+δ)/2

where skg = ∑
i:zi=k

∑
j :wj =g yij and sskg =

∑
i:zi=k

∑
j :wj =g y2

ij . Further details on calculating Mkg are
given in Appendix B.

3 MCMC sampling of clusterings

The sampler which we propose consists of four different
moves. The first is just a standard Gibbs update for the
row/column label. The second proposes to reallocate collec-
tions of rows and columns. The final two moves propose to
add or remove clusters. We describe the moves for rows, but
they apply to columns analogously. When running the algo-
rithm, the moves are each applied to the rows and columns
in a single sweep. Since the LBM will be invariant to cluster
labellings, we will encounter the label switching problem.
We outline how to deal with this as well as discussing how
to summarize the output from the sampler.

3.1 MCMC moves

3.1.1 Gibbs sampling to update the allocation of one row

Suppose row i is currently in cluster k. We then sample its
new allocation, z̃i from the distribution

p(z̃i = k′|Y,K,G, z−i ,w)

∝ nk′ + α

nk − 1 + α

G∏

g=1

M
(+i)

k′g M
(−i)
kg

Mk′gMkg

, k′ �= k (5)

and p(z̃i = k|Y,K,G, z−i ,w) ∝ 1 where M
(−i)
kg and M

(+i)

k′g
are obtained respectively by removing row i from cluster k

and adding it to cluster k′ within column cluster g. The total
computational effort required for the Gibbs sweep on rows
and columns is O((n + m)KG) which may be prohibitive
for large K , G, n or m. It is possible to move one row and
column between clusters using a Metropolis-Hastings move.
This could be alternated with a Gibbs update to reduce com-
putational overhead or some mixture of the two moves could
be used.
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3.1.2 Move to update the allocation of more than one row

This move is similar to move M3 in Nobile and Fearnside
(2007). Its role is to move more than one row at a time.
The way in which new row allocations are proposed should
isolate clusters more quickly than just performing one row
Gibbs updates. The procedure is as follows. Choose two row
clusters k and k′ at random. Let S be the index set of rows
currently belonging to clusters k and k′. The members of S

are randomly reordered. Imagining clusters k and k′ to be
empty initially and S to be full, we sequentially take each
row from S and allocate it to k or k′. This allocation is
done using the probability that the current clusters k or k′
generated that row conditioning on rows that have already
been reallocated to k or k′. For row i in S these probabil-
ities are denoted by p

(i)
k and p

(i)

k′ with p
(i)
k + p

(i)

k′ = 1. To
write down the proposal probability of this move we use
M̄kg, g = 1, . . . ,G to represent the integrated likelihood of
the members placed in cluster k before member i has been
processed. Similarly n̄k represents the number of rows in
cluster k before i has been processed. Then using similar no-
tation to the Gibbs move it can be shown (see Appendix A.2,
Nobile and Fearnside 2007) that

p
(i)

k′

p
(i)
k

= n̄k′ + α

n̄k + α

G∏

g=1

M̄
(+i)

k′g M̄kg

M̄k′gM̄
(+i)
kg

.

Using p
(i)
k + p

(i)

k′ = 1, the above can be solved for p
(i)

k′ .
The proposed allocation of row i, z̃i may then be sampled.
Once the quantities n̄k′ , n̄k, M̄k′g and M̄kg have been up-
dated based on z̃i , the next row in S can be dealt with.

When all members of S have been processed the proposal
probability of moving from z to z̃ is

1

K(K − 1)

∏

i∈S

p
(i)

z̃i
.

For the reverse move the proposal probability is

1

K(K − 1)

∏

i∈S

p(i)
zi

.

The new allocation z̃ is then accepted with probability
min(1,A) where

A = 
{ñk + α}
{ñk′ + α}

{nk + α}
{nk′ + α}

G∏

g=1

M̃k′gM̃kg

Mk′gMkg

×
∏

i∈S

p
(i)
zi

p
(i)

z̃i

and ñk, ñk′ , M̃k′g, M̃kg are the proposed cluster sizes and in-
tegrated block likelihoods when all the members of S have
been processed.

3.1.3 Moves to split or combine clusters

To add a cluster we first randomly propose a cluster, k, to
“split”. The new cluster will be labelled K + 1 if the current
number of clusters is K . In the same way as the move to
reallocate more than one row (Sect. 3.1.2), the probability
of a row proposed as being in cluster k or K + 1 is given
by the conditional probability it was generated by that clus-
ter, the rows being processed sequentially. Clearly the order
in which rows are processed is important. Thus for the split
and combine moves we place an ordering on the members
of cluster k, that is, the order in which the members are ar-
ranged in cluster k is important. As well as taking members
out from cluster k and placing them in cluster K + 1, this
is important when we place all members back into cluster k

in the combine move. It is possible to propose a label swap
of K + 1 with any other label selected at random (itself in-
cluded), say k′. This then would split cluster k into clusters
k and some {1, . . . ,K + 1}\k.

Let S denote the index set of rows currently belonging to
cluster k. We choose a split move with probability pK

s . For
the split move, the denominator in the proposal ratio will be

p(z → z̃) = pK
s

1

K(K + 1)

1

nk!
∏

i∈S

p
(i)

z̃i

where the second term accounts for selecting the cluster to
split, and then the cluster to swap labels with, the third term
accounts for the number of ways in which members may be
arranged (processed), and the fourth term is the product of
conditional probabilities (see Sect. 3.1.2).

For the combine move, two clusters are selected at ran-
dom, say k and k′ from the K + 1 available. Then all mem-
bers of cluster k′ are proposed to be placed back in k. Thus
the numerator in the proposal probability for the split move
is

p(z̃ → z) = (
1 − pK+1

s
) 1

K(K + 1)

1

nk!
where the first term is the probability of proposing a com-
bine move, the second accounts for the clusters selected, and
the third accounts for the number of ways in which the mem-
bers of cluster k may be arranged.

The acceptance probability for the split move is then
min(1,A) where

A = π(K + 1)

π(K)


{n + αK}

{n + α(K + 1)}

× 
{α(K + 1)}

{α}
{αK}


{ñk + α}
{ñk′ + α}

{nk + α}

×
G∏

g=1

M̃kgM̃k′g
Mkg

× 1 − pK+1
s

pK
s

(∏

i∈S

p
(i)

z̃i

)−1
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and ñk, ñk′ , M̃kg, M̃k′g give the proposed sizes and inte-
grated block likelihoods of the proposed clusters.

The acceptance probability for the combine move is
min(1,A−1). These moves are similar to the “split and com-
bine” moves discussed by Richardson and Green (1997).
Our experiments showed that they gave satisfactory mixing
and higher acceptance rates than proposing empty clusters.

3.2 Form of reversible jump sampler

As noted, the moves discussed in the previous section re-
semble moves used in the RJMCMC sampler of Richardson
and Green (1997) and other RJ samplers for related classi-
fication problems (for example Robert et al. 2000). The dif-
ference with our sampler is that the space we sample from
is of fixed dimension. This is due to collapsing. Perform-
ing an equivalent RJ analysis to that presented here would
be challenging for LBMs. This would mean extending the
Gibbs sampler of van Dijk et al. (2009) to include vari-
able dimension moves for splitting or combining clusters.
The construction of proposal densities for variable dimen-
sional moves in RJ samplers can be crucial to their perfor-
mance. Work has been done in this area (Brooks et al. 2003;
Green 2003), but for many applications construction of pro-
posals is case specific. The reason for entertaining a RJ anal-
ysis here is that we are not only concerned with finding a
cluster allocation for a specified LBM. We are also inter-
ested in exploring different cluster models, and so the task
also becomes one of model determination as discussed in
Sect. 2.1.2.

Consider splitting a row cluster k into k and k′ in a typ-
ical RJ approach. This is more difficult than the component
splitting case in Richardson and Green (1997), since split-
ting each row cluster gives rise to d(G + 1) new parameters
where d is the dimension of any θkg . Finding a proposal that
will mix well may require lots of trial and error, especially
if d > 1 or G is even moderately large. Moreover, computa-
tional time would increase dramatically with respect to the
collapsed LBM in these situations.

Using a collapsed model, is, in a sense, a form of variance
reduction for this model. We reduce variability in sampling
of allocations, by integrating out ω,ρ and �. This should
give better sampling of the high probability clusterings of
the data, since uncertainty due to parameter values has van-
ished.

3.3 Label switching

The joint posterior of cluster models and allocations or la-
bels (4) is invariant to label switching, that is, the labels
are not identifiable. If there is one labelling 1, . . . ,K of the
rows, then any permutation of this, say, σ(1), . . . , σ (K),

gives exactly the same information about clustering rela-
tionships. The posterior on row labels has K! indistinguish-
able modes. Generally as the Markov chain progresses, we
will observe switches between these equivalent modes; the
well known label switching phenomenon. In our case la-
bel switching can occur for row and column labels indepen-
dently. There are many approaches for dealing with the la-
bel switching problem (Stephens 2000; Celeux et al. 2000).
The approach we adopt here is due to Nobile and Fearnside
(2007). It is ideal for our purposes since it does not involve
loss functions based on sampled model parameters (which
are no longer in our model). It just requires the samples of z
and w.

We now outline the procedure we use to deal with label
switching. Some more details are given in Appendix C. We
post-process row and column allocation vectors separately.
The re-labelled data can then be used to compute posterior
probability of cluster memberships and other quantities of
interest. To post process the label vectors z1, z2, . . . output
from MCMC we begin by arranging these in order of in-
creasing number of non-empty components. This gives the
ordering z(1), z(2), . . . , where for s < t , z(s) uses either the
same number of components as z(t) in total, or less. For
example, with K = 4, z(s) = (3,3,2,2,2,1) would come
before z(t) = (4,4,3,3,1,2). Suppose we have processed
and re-labelled the vectors z(t) up to time T − 1, and there
are KT −1 non-empty components in z(T −1). Compute a cost
matrix with general element

C(k1, k2) =
T −1∑

t=1

n∑

i=1

I
{
z
(t)
i �= k1, z

(T )
i = k2

}
.

Then the more z(T ) disagrees with the vectors already pro-
cessed, the higher this cost will be (see Appendix C). The
square assignment algorithm of Carpaneto and Toth (1980)
returns the permutation σ(·) of the labels in z(T ) which mini-
mizes the total cost

∑KT −1
k=1 C(k,σ (k)). We then relabel z(T )

by permuting the labels according to σ(·). This approach
will become computationally more expensive as the number
of clusters K increases (each call to the square assignment
algorithm is at worst O(K4) for each MCMC iterate).

3.4 Summarizing MCMC output

Having sampled both the number of clusters and cluster
memberships, it will be of interest to give a summary of
the sampling. As different (K,G) cluster models are struc-
turally different, it is not possible to give an “average” of
cluster membership. We suggest two summaries.

3.4.1 Using the modal cluster model

The first summary focuses on using the modal, or most vis-
ited model from the MCMC output. It takes the series of
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(K,G) visited models and chooses the pair which appear
most often. Call this pair (K̂, Ĝ). Suppose this pair has oc-
curred N times in the post burn-in sample. We extract the
N pairs of label vectors z and w corresponding to these oc-
currences. We then post process these label vectors using
the procedure to undo label switching outlined in the pre-
vious section. This will be necessary to compute posterior
distributions of row and column cluster membership. After
computing the posterior distributions of row membership,
row i has distribution (qi1, . . . , qiK̂

) where qik is the esti-
mated posterior probability row i belongs to cluster k in the
(K̂, Ĝ) cluster model. For the summary we assign i to clus-
ter arg maxk qik . The columns are given the same treatment.

3.4.2 Using the MAP

Since we are sampling from the fixed dimensional posterior
π(K,G, z,w|Y), the maximum a posteriori (MAP) clus-
ter model and cluster membership (K,G, z,w)MAP is also a
useful summary of the MCMC output. The MAP gives the
visited (K,G, z,w) having highest probability a posteriori
from the samples obtained.

4 Simulation experiment

To see how the sampler discriminates between different
cluster models, it was run on some simulated data. We gen-

erated three 200 × 200 binary matrices with 4 and 4, 2 and 5
and 1 and 4 row and column clusters respectively. In each
case, the block parameter θkg was drawn uniformly from
[0,1]. The blocks were then generated using Bernoulli(θkg)

random variates. This is shown in the left of Fig. 1. Clus-
ters were made less distinguishable by transforming the gen-
erated θkg to the intervals [0.2,0.8] and [0.3,0.7] using

θ
[a,b]
kg = a + θkg(b − a) and generating two further matrices.

The rows and columns of the resulting matrices were then
randomly reordered, disguising the data structure. The chain
was run for 1000 burn-in iterations and a further 16 000 it-
erations on each data set. We assumed a Beta(1,1) prior for
θkg in all cases. The priors for ω and ρ are as in Sect. 2.2.

We looked at two performance diagnostics of the sam-
pler. The first was the posterior model probability (PMP)
of the model used to generate the data and the second was
the integrated autocorrelation time (IAT) of sampled clus-
ter models. Computing the PMP just amounts to count-
ing the number of times the model in question was vis-
ited and dividing by the total number of samples. For the
IAT we identify cluster models (K,G) by a model index
R = 1, . . . ,KmaxGmax. Then we estimate the quantity τ =
1 + 2

∑∞
t=1 ρR(t), where ρR(t) is the autocorrelation of the

series of post burn-in samples R1,R2, . . . at lag t . The series
here refers to the cluster models sampled from the posterior
(4). Lower values of the IAT indicate better mixing and bet-
ter performance of the MCMC sampler. The IAT can thus be

Fig. 1 Simulated data with
decreasing distinguishability
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used as a measure of efficiency for MCMC algorithms. See
for example Liu (2004, Chapter 5) and Roberts (1996).

The results are shown in Table 1. The θkg column is coded
A for θkg ∼ Uniform[0,1], B for transformation to [0.2,0.8]
and C for [0.3,0.7]. As the noise in the data increases, the
ability to identify the model which generated the data de-

Table 1 Results of simulation experiment. The PMP gives the poste-
rior model probability of the generating model. τ̂ is the estimated IAT

(K,G) θkg PMP τ̂

(4,4) A 0.9550 8.79

B 0.9463 10.57

C 0.9014 17.43

(2,5) A 0.9343 4.55

B 0.8886 9.79

C 0.8369 13.66

(1,4) A 0.8035 7.86

B 0.3000 8.97

C 0.1494 4.61

creases. This is to be expected. The estimated IAT indicates
that we get less efficient sampling as the noise increases,
with the exception of the (1,4) cluster model. This is a par-
ticularly challenging situation, since two of the clusters are
very similar (see Fig. 1). The transformed θ11, θ13 were for
[0.2,0.8] : 0.288,0.320 and for [0.3,0.7] : 0.36,0.38. The
fact that these two clusters are practically indistinguishable
would make the sampler choose a (1,3) model as the best
model after scrambling of the data. In fact the most visited
model in both these cases had 1 row cluster and 3 column
clusters (62.37% and 82.66% of the posterior probability).
In this situation, the best cluster model was not the same
as the generating model. This is an artifact of the simulation
process but shows that a sensible clustering can be achieved.

5 Congressional voting in US senate

We apply the sampler to the UCI Congressional Voting
data assuming the Bernoulli model of Sect. 2.2.1. The data
records whether 435 members of the 98th congress (267

Fig. 2 (Color online) Voting
data. Color key: white = “nay”,
black = “yay”. Left panel: Raw
data. Right panels: summary
cluster membership from the
modal 7 row and 12 column
cluster model and the cluster
membership obtained from
BEM2. Row clusters are
numbered 1–7, top–bottom.
Column clusters are numbered
left–right. The red lines divide
clusters of congressmen, and the
blue lines divide the issue
clusters
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Table 2 Distribution of cluster models for voting data

Columns

Rows 9 10 11 12 13 14 15 16

5 0.0000 0.0002 0.0013 0.0008 0.0005 0.0000 0.0002 0.0000

6 0.0001 0.0021 0.0401 0.1238 0.1491 0.0946 0.0348 0.0029

7 0.0001 0.0041 0.0543 0.1675 0.1614 0.0697 0.0188 0.0012

8 0.0000 0.0009 0.0101 0.0270 0.0191 0.0075 0.0029 0.0005

9 0.0000 0.0000 0.0010 0.0013 0.0013 0.0007 0.0001 0.0000

democrats, 168 republicans) voted “yay”, “nay”, abstained
or were absent in votes on 16 different key issues. Here
the members of congress are represented by rows, and the
issues are represented by columns. The data is available
from http://archive.ics.uci.edu/ml/datasets/Congressional+
Voting+Records and is shown in the left panel of Fig. 2.
The aim was to see whether the sampler could discover any
clustering by party and issue. For example, one may expect
that democrats voted differently to republicans on certain is-
sues. It was thought best to ignore absent and abstain votes.
Here, this is equivalent to treating these votes as a “nay”,
since our focus is on clustering rows and columns. The only
sample sizes entering into our calculations are the number of
rows and columns in each cluster. For the Bernoulli model,
the block sufficient statistic is the sum of the data. This is
not affected by a missing data point. We do point out how-
ever that missing data could be easily imputed by inclusion
of a Gibbs step to sample from the full conditional of any
missing point.

The sampler was run for 110 000 iterations with 10 000 as
a burn-in initialized at the no cluster model. To reduce cor-
relation in samples, we took every 10th sample after burn-
in. The move of Sect. 3.1.2 had a 16% acceptance rate for
rows and 51% for columns. The cluster split and combine
moves had about a 1.5% acceptance rate for rows and 8%
for columns. The run took just over an hour on a 2.5 GHz
processor.

Table 2 shows the distribution of the number of row and
column clusters. It can be seen that about 60% of the pos-
terior probability is placed on 6/7 row clusters and 12/13
column clusters. We extracted the samples with 7 row clus-
ters and 12 column clusters to construct an estimated clus-
tering following Section 3.4.1. The estimated clustering is
shown in the middle panel of Fig. 2. The red horizontal lines
here divide the clusters of congressmen, and the blue vertical
lines divide the issue clusters. When referencing Fig. 2 we
say that the congressman clusters (rows) are numbered 1 to
7 top-bottom, and the issue clusters (columns) are numbered
1 to 12 left-right.

Issues have only three non-singleton clusters. The first
contains “anti-satellite-test-ban”, “aid-to-nicaraguan-
contras” and “mx-missile” (column cluster 1). The second

Table 3 Party distribution over row clusters from collapsed sampling

Cluster Democrat Republican

1 (131) 8 123

2 (125) 125 0

3 (77) 71 6

4 (38) 37 1

5 (36) 3 33

6 (23) 21 2

7 (5) 2 3

Table 4 Party distribution over row clusters from BEM2 algorithm

Cluster Democrat Republican

1 (131) 8 123

2 (104) 104 0

3 (62) 61 1

4 (60) 50 10

5 (35) 5 30

6 (30) 26 4

7 (13) 13 0

contains “physician-fee-freeze” and “education-spending”
(column cluster 3) and the third has “handicapped-infants”
and “duty-free-exports” (column cluster 6). Row cluster
composition by party is shown in Table 3. The majority
democrat party roughly splits into four clusters, while the
republican party splits into two. The main discrepancy be-
tween the two large democrat clusters, 2 and 3, appear to
be the issues “religious-groups-in-schools” and “crime” in
issue clusters 9 and 12. Row cluster 6 which is also mainly
democrat appears to vote similarly to the republican cluster
1. Row clusters 4 (democrat) and 5 (republican) appear to
deviate from their core party vote.

We compared the results obtained from our algorithm
with those obtained from the BEM2 algorithm of Govaert
and Nadif (2008), reviewed in Sect. 2.1.1. The algorithm
was run using 7 row clusters and 12 column clusters. It
should be noted that BEM2 requires the number of row and
column clusters to be assumed known in advance. To obtain

http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
http://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
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an estimated clustering, we took the cluster with the maxi-
mum probability of membership. The composition by party
of the row clusters from BEM2 is shown in Table 4. Row
cluster 1 is similar in both, but there are some differences in
the other clusters. The BEM2 clustering only used 10 col-
umn clusters of the 12 available. The right panel of Fig. 2
shows the clustering from BEM2. For comparison purposes
with the collapsed LBM clustering, the columns have been
arranged in the same order. The collapsed LBM appears to
identify more small clusters, leading to a marginally more
homogeneous blocking of the data.

There is an advantage here over an EM approach to fit-
ting a cluster model in that the number of clusters need not
be assumed known in advance. Here, model uncertainty is
naturally inbuilt into the approach and it is dealt with au-
tomatically by the sampler. There is no user intervention to
choose the cluster model. User intervention is only in the
choice of prior hyperparameters and priors on the number of
clusters. In our experience, standard non informative priors
for the data model parameters, and the truncated Poisson(1)
prior on the number of clusters (as argued in Nobile 2005),
seem to perform well. The computations for the collapsed
LBM are also numerically stable if clusters empty out. In
our experimentation with EM algorithms this caused insta-
bility. Empty clusters could easily occur, say, if the chosen
cluster model is not well supported by the data.

6 Microarray experiments

A DNA microarray experiment records expression levels of
a large number of genes over a number of conditions or sam-
ples. The number of conditions or samples is usually less
than 100, while the number of genes could be in the thou-
sands. Discovering which genes behave similarly and under
which subgroups of conditions is the aim of analysis. One
way to do this is to group together genes with similar expres-
sion levels. Methods differ in whether they allow clusters to
overlap or not. Here we will not allow clusters to overlap
due to the form of the LBM.

Analyzing DNA experiments can be challenging, due
to the large row dimension and the general uncertainty in
how many clusters may be present in the data. We apply
our sampler to data from DNA experiments on the budding
yeast Saccharomyces Cerevisiae. The microarray contains
419 genes and records the expression level of these under
70 conditions. It was obtained from the R package bi-
clust (Kaiser et al. 2009). Expression levels lay between
−6 and +7. The aim is to see how much structure the sam-
pler can uncover, so the rows and columns of the microarray
were randomly reordered (Fig. 3(a)). In our application the
rows represent the genes and the columns represent the con-
ditions.

Fig. 3 Yeast data. (a) Original microarray (b) MAP clustering from
sampler

We use the Gaussian model of Sect. 2.2.2 for expression
level. This model requires specification of four hyperparam-
eters. Two of these (γ and δ) are for the prior on the block
error variances and two are for the prior on the block means
(ξ and τ 2). We choose γ = δ = 0.02 and ξ = 0, τ 2 = 100.
This choice of γ and δ gives a proper density on the error
variance which is non-informative (see for example Spiegel-
halter et al. 1996). Similarly, choosing ξ = 0 is a reasonable
non-informative choice given the range of the data. Setting
τ 2 = 100 says that the prior information on a block mean
is equal to 1% of the information in the observed expression
level of one gene under one condition within that block. This
is also non-informative. The prior on the number of row and
column clusters was again taken to be truncated Poisson(1)

with Kmax = 200 and Gmax = 70.
The sampler was run for 220 000 iterations with 20 000

taken as burn-in. We stored every 20th iteration thereafter.
The run was time consuming, taking approximately 3 hours.
This said, the large gene dimension of such an array does
pose a challenge when searching for two way clusters. The
initial cluster model assumed had 1 row and column cluster
i.e. no cluster structure. Acceptance rates for the move of
Sect. 3.1.2 were 25% for rows and 18% for columns. Split
and combine acceptances were about 0.5% for rows and
about 25% each for columns. The low acceptance rates of
split and combine moves for rows would be expected since
finding clusters will be more difficult in a larger dimension.
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Table 5 Posterior distribution of cluster models for the microarray data

Columns

Rows 3 4 5 6 7 8 9 10 11 12 13

18 0.0000 0.0001 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19 0.0005 0.0002 0.0005 0.0001 0.0019 0.0044 0.0013 0.0011 0.0006 0.0000 0.0000

20 0.0005 0.0000 0.0002 0.0032 0.0110 0.0192 0.0121 0.0057 0.0012 0.0004 0.0000

21 0.0029 0.0027 0.0019 0.0023 0.0128 0.0147 0.0090 0.0028 0.0008 0.0003 0.0001

22 0.0076 0.0119 0.0074 0.0053 0.0109 0.0129 0.0085 0.0033 0.0007 0.0000 0.0001

23 0.0368 0.0409 0.0242 0.0094 0.0089 0.0041 0.0030 0.0015 0.0002 0.0000 0.0000

24 0.0643 0.0706 0.0420 0.0144 0.0073 0.0049 0.0023 0.0005 0.0002 0.0000 0.0000

25 0.1016 0.1198 0.0702 0.0272 0.0082 0.0018 0.0011 0.0003 0.0002 0.0000 0.0000

26 0.0373 0.0457 0.0228 0.0095 0.0020 0.0008 0.0003 0.0000 0.0000 0.0000 0.0000

27 0.0090 0.0109 0.0058 0.0021 0.0008 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

28 0.0008 0.0015 0.0010 0.0002 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Fig. 4 (Color online) Selection of row clusters from the MAP clus-
tering. Each plot corresponds to a different row cluster. Each profile
(black line) gives the gene expression level for over all conditions.

Conditions are arranged by condition cluster membership. The condi-
tion clusters are separated by the red dashed line
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Table 5 gives the PMP of the visited models from the
MCMC output. The model space visited by the sampler is
large. The modal model (25 row clusters and 4 column clus-
ters) gave a posterior probability of 11.98%. There is pos-
terior support for anything from 3 to 5 column clusters, for
23 to 26 row clusters (PMP > 0.02 in all cases). This is an
example with considerable model uncertainty and it may be
difficult to know the models to include using an informa-
tion criterion over a grid of possible models as discussed
in Sect. 2.1.2 and adopted by van Dijk et al. (2009). Our
approach has the obvious advantage of exploring the uncer-
tainty in the posterior model space and attaching a probabil-
ity to each model.

Instead of constructing a summary based on the modal
model, we took the MAP clustering here (shown in Fig. 3(b)).
The MAP had 26 row clusters and 4 column clusters. To
have a closer look at the row clusters, we plot a selection of
these in Fig. 4. The plots show the gene expression profiles
for genes in the same row cluster over conditions arranged
by condition cluster. It can be seen that in certain cases, there
is a clear clustering of genes with similar profiles. The gene
clusters shown are arranged by size (left–right, top–bottom).
Some of the larger clusters appear quite noisy, while some
follow a common trend closely. Auxiliary runs of the sam-
pler on the subsets of row clusters could be performed to try
and isolate further cluster structures.

7 Conclusion

We have considered a collapsed Bayesian extension of the
Latent Block Model of Govaert and Nadif (2008). We
showed how an MCMC sampler could be used to sam-
ple both the cluster model and the cluster memberships
when clustering a data matrix into blocks. The approach
was demonstrated on simulated data and two real data ex-
amples. The application to simulated data suggested that the
sampler’s performance deteriorates as clusters become less
distinguishable. We applied the sampler to Congressional
voting records from the U.S. senate. It was shown to per-
form well in isolating clusters of congressmen and “yay”,
“nay” votes in the data. In the second real data example,
we used the sampler for analysis of a DNA microarray ex-
periment. This demonstrated that there can be considerable
uncertainty in the number of clusters in certain situations.
Knowing even the range of possible models may be diffi-
cult. Results from the microarray experiment demonstrated
that clusters could be found by a search strategy with a prob-
abilistic basis using the collapsed LBM sampler. Overall,
the approach seems to be a robust way to block cluster a
data matrix. The user need only specify prior hyperparame-
ters and priors on the number of clusters. Code implement-
ing the sampler written in the C language is available at

www.ucd.ie/statdept/jwyse. This code can be eas-
ily modified to experiment with different priors on the num-
ber of clusters.
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Appendix A: Calculation of the posterior

Writing out all posterior terms longhand, assuming ω ∼
Dirichlet(α, . . . , α) and ρ ∼ Dirichlet(β, . . . , β) a priori
gives

π(K,G, z,w,ω,ρ,�|Y)

∝ π(K)π(G)

{αK}

{α}K


{βG}

{β}G

×
K∏

k=1

ω
nk

k

G∏

g=1

ρ
mg
g

K∏

k=1

G∏

g=1

∏

i:zi=k

∏

j :wj =g

p(yij |θkg)

×
K∏

k=1

G∏

g=1

π(θkg)

K∏

k=1

ωα−1
k

G∏

g=1

ρβ−1
g

= π(K)π(G)

{αK}

{α}K


{βG}

{β}G

K∏

k=1

ω
nk+α−1
k

G∏

g=1

ρ
mg+β−1
g

×
K∏

k=1

G∏

g=1

π(θkg)
∏

i:zi=k

∏

j :wj =g

p(yij |θkg).

Integrating the left and right hand sides of the above with
respect to ω,ρ and � gives

π(K,G, z,w|Y)

∝ π(K)π(G)

{αK}∏K

k=1 
{nk + α}

{α}K
{n + αK}

× 
{βG}∏G
g=1 
{mg + β}


{β}G
{m + βG}
K∏

k=1

G∏

g=1

Mkg

where

Mkg =
∫

π(θkg)
∏

i:zi=k

∏

j :wj =g

p(yij |θkg)dθkg.
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Appendix B: Calculation of Mkg

B.1 Bernoulli model for binary data

Assume that Pr(yij = 1|zi = k,wj = g) = θkg . We take a
Beta(γ, δ) prior on θkg . Then

π(θkg)
∏

i:zi=k

∏

j :wj =g

p(yij |θkg)

= 
{γ + δ}

{γ }
{δ}θ

γ−1
kg

(
1 − θkg

)δ−1

×
∏

i:zi=k

∏

j :wj =g

θ
yij

kg

(
1 − θkg

)1−yij

= 
{γ + δ}

{γ }
{δ}θ

skg+γ−1
kg

(
1 − θkg

)nkmg−skg+δ−1
.

Integrating the left and right hand side of this with respect
to θkg gives

Mkg = 
{γ + δ}

{γ }
{δ}


{skg + γ }
{nkmg − skg + δ}

{nkmg + γ + δ} .

B.2 Gaussian model for continuous data

Assume yij |zi = k,wj = g ∼ N(μkg, σ
2
kg). Take the priors

μkg ∼ N(ξ, τ 2σ 2
kg) and σ 2

kg ∼ IG(δ/2, γ /2) where IG(a, b)

is the Inverse-Gamma distribution: p(x) = ba


(a)
x−(a+1) ×

exp{−b/x}. Then

π(μkg)π(σkg)
∏

i:zi=k

∏

j :wj =g

p(yij |μkg,σkg)

= (γ /2)δ/2


{δ/2} σ
−2(δ/2+1)
kg exp{−γ /2σ 2

kg}

× (2πτ 2σ 2
kg)

−1/2 exp{−(μkg − ξ)2/2τ 2σ 2
kg}

× (2πσ 2
kg)

−nkmg/2

× exp
{
−(sskg − 2μkgskg + nkmgμ

2
kg)/2σ 2

kg

}
.

Completing the square on μkg and integrating with respect
to it gives

(2π)−nkmg/2 (γ /2)δ/2


{δ/2} σ−2((nkmg+δ)/2+1)(nkmgτ
2 + 1)−1/2

× exp

{
− 1

2σ 2
kg

(
sskg − τ 2(skg + ξ/τ 2)2

nkmgτ 2 + 1
+ ξ2

τ 2
+ γ

)}
.

Finally, integrating with respect to σ 2
kg and tidying up gives

Mkg = γ δ/2 
{(nkmg + δ)/2}
πnkmg/2
{δ/2}(nkmgτ 2 + 1)1/2

×
(

sskg − τ 2(skg + ξ/τ 2)2

nkmgτ 2 + 1
+ ξ2

τ 2
+ γ

)−(nkmg+δ)/2

.

Appendix C: Cost matrix for undoing label switching

The cost matrix for processing the vector z(T ) is

C(k1, k2) =
T −1∑

t=1

n∑

i=1

I
{
z
(t)
i �= k1, z

(T )
i = k2

}
.

The more z(T ) disagrees with the vectors already processed,
the higher this cost will be. This is made clearer by rewriting
the general entry of the cost matrix:

C(k1, k2) =
T −1∑

t=1

n∑

i=1

(
1 − I

{
z
(t)
i = k1, z

(T )
i = k2

})

= n(T − 1) −
T −1∑

t=1

n∑

i=1

I
{
z
(t)
i = k1, z

(T )
i = k2

}

= n(T − 1) −
n∑

i=1

Ni(T − 1, k1)I{z(T )
i = k2}

(C.1)

where Ni(T − 1, k1) gives the number of processed samples
up to z(T −1) which have given label k1 to row i. For the sake
of discussion, consider processing a sample where no label
switching has occurred, K is fixed and there are no changes
in labels from one MCMC sample to the next. In this case
the costs will be

C(k, k) = n(T − 1) −
n∑

i=1

Ni(T − 1, k)I{z(T )
i = k}

= n(T − 1) − nk(T − 1)

= (n − nk)(T − 1)

and for k′ �= k

C(k, k′) = n(T − 1) −
n∑

i=1

Ni(T − 1, k)I{z(T )
i = k′}

= n(T − 1) − 0

= n(T − 1).

A cost of 0 could only be obtained when all rows have the
same label, that is, when there is no clustering. Of course
this discussion simplifies the problem somewhat. The key is
in finding a permutation of the labels to minimize all costs.
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This permutation is found by solving the square assignment
problem using the algorithm of Carpaneto and Toth (1980)
in our case. Carpaneto et al. (1988) give an extensive re-
view of the assignment problem and algorithms for its solu-
tion. Finally, we note that (C.1) can be exploited to give an
online post processing procedure. Define the K × n matrix
S(T −1) with general entry S

(T −1)
ki = ∑T −1

t=1 I{z(t)
i = k}. Then

we have C(k, k′) = n(T − 1) − ∑n
i=1 S

(T −1)
ki I (z

(T )
i = k′).

After calling the square assignment algorithm and permut-
ing the labels z(T ) according to its solution, we can update S,
using S

(T )
ki = S

(T −1)
ki + I{z(T )

i = k}.
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