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Abstract We extend the family of multivariate generalized
linear mixed models to include random effects that are gen-
erated by smooth densities. We consider two such families
of densities, the so-called semi-nonparametric (SNP) and
smooth nonparametric (SMNP) densities. Maximum likeli-
hood estimation, under either the SNP or the SMNP den-
sities, is carried out using a Monte Carlo EM algorithm.
This algorithm uses rejection sampling and automatically in-
creases the MC sample size as it approaches convergence. In
a simulation study we investigate the performance of these
two densities in capturing the true underlying shape of the
random effects distribution. We also examine the implica-
tions of misspecification of the random effects distribution
on the estimation of the fixed effects and their standard er-
rors. The impact of the assumed random effects density on
the estimation of the random effects themselves is investi-
gated in a simulation study and also in an application to a
real data set.

Keywords Longitudinal data · Mixed models ·
Multinomial responses · Random effects ·
Semi-nonparametric densities · Smooth nonparametric
densities

1 Introduction

Generalized linear mixed models (GLMMs) provide a very
general framework for the analysis of clustered data (Bres-
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low and Clayton 1993). This kind of data occur in many
areas of research including clinical trials, where subjects
are measured over time, and the educational research area,
where measurements are obtained on children of the same
classroom. In each case, observations on the same cluster
tend to be correlated and the GLMMs take this correlation
into account by including random effects in the linear pre-
dictor of the model. Usually, the random effects are assumed
to follow a specific parametric family of distributions, such
as the multivariate normal, although, unlike in linear mixed
models, this assumption does not provide much of a mathe-
matical convenience in the class of GLMMs as the random
effects enter the model in a nonlinear way.

Our focus here is on regression models for multinomial
responses. Multinomial random effects models have previ-
ously been treated as special cases of multivariate general-
ized linear mixed models (MGLMMs) (Tutz and Hennevogl
1996; Hartzel et al. 2001). We also adopt this general ap-
proach as it provides unified fitting and inferential proce-
dures for a broad class of models. Model specification and
model fitting procedures, described in Sects. 2 and 3, are
for a general MGLMM and we only make specific assump-
tions about the model form for simulation and application,
described in Sects. 4 and 5 respectively.

In mixed effects models the main interest is inference
about the vector of fixed effects. Variance components are
also of interest as they provide information about the intr-
aclass correlation and, also, the degree of heterogeneity of
a population. The overly restrictive normality assumption,
however, does not allow the capturing of features such as
multimodality and skewness which, if present, may provide
additional information about the form of heterogeneity of
a population and suggest failure to measure important ex-
planatory factors.

Furthermore, misspecification of the random effects dis-
tribution can have harmful effects on the estimation of
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the model parameters. Indeed, Neuhaus et al. (1992) in
a logistic-normal regression analysis, remarked that under
misspecification of the random effects distribution, the es-
timates of the model parameters, including the ones in the
mean structure, typically are asymptotically biased. They
also pointed out, however, that the magnitude of this bias
is usually small. In a more extensive study, also on mixed
effects logistic regression models, Heagerty and Kurland
(2001) considered several misspecification scenarios and
found high bias in the fixed effects estimates when fitting
simple random intercept models when, in reality, the distrib-
ution of the random effects depends on explanatory variables
and when there are autoregressive random effects. These au-
thors also reported small relative bias when fitting Gaussian
random intercept models when, in reality, the random inter-
cepts have a skewed distribution. Under this scenario, high
relative bias was observed only when the true distribution of
the random effects was highly skewed with large between
cluster heterogeneity. Related is the work of Chen et al.
(2002), who reported low relative bias in the fixed effects es-
timates, under misspecification of the random effects distrib-
ution. Moreover, Agresti et al. (2004) reported a serious drop
in efficiency in the estimation of the fixed parameters from
assuming a normal random intercepts model when the true
distribution was a two-point mixture with large variance.
This situation can arise in practice when subjects vary con-
siderably according to an unmeasured binary factor. More
recently, Litière et al. (2008) also showed that in the pres-
ence of misspecification, the mean parameters could be sub-
ject to considerable bias, especially when there is large be-
tween cluster heterogeneity.

In addition, the assumption about the distribution of the
random effects is a very important factor in the estimation
of the random effects themselves. As was shown by Verbeke
and Lesaffre (1996), under a normality assumption, the re-
sulting empirical Bayes estimates of the random effects can
have a symmetric, unimodal distribution even if they arise
from a bimodal population. Thus, there has been consider-
able interest in methods that avoid the normality assumption.

Nonparametric (NP) maximum likelihood estimation and
the resulting discrete estimate of the random effects distri-
bution (Laird 1978; Lindsay 1983) is not always satisfac-
tory, especially when the random effects distribution is of
primary interest, as it is more likely to be continuous than
discrete. Another drawback of this approach is the extend of
data required in order to estimate the NP mixing distribution
precisely (Carroll and Hall 1988). Nonetheless, the NP ap-
proach yields fairly efficient estimates of the effects of the
explanatory variables and it has been used extensively by
statisticians. For instance, Aitkin (1999) used this approach
in the context of generalized linear models and Hartzel et al.
(2001) for modeling correlated multinomial responses. Gen-
eral fitting algorithms have been provided by Laird (1978),

Lindsay (1983), Follmann and Lambert (1989) and Lesper-
ance and Kalbfleisch (1992).

In addition to the NP approach, here we utilize flexible
random effects densities that avoid the restrictive normality
assumption but allow some degree of smoothness in the es-
timate of the random effects distribution, unlike the NP ap-
proach. Proposals for flexible random effects distributions
include that of Gallant and Nychka (1987) who provided a
representation of densities that belong to a class of smooth
densities. In their representation, the normal density is mul-
tiplied by the square of an infinite series expansion. Sev-
eral authors have approximated these smooth densities using
truncated series expansions, treating the number of terms in
the resulting polynomial as a tuning parameter. Specifically,
Davidian and Gallant (1993) used these semi-nonparametric
(SNP) densities in the context of nonlinear models, Zhang
and Davidian (2001) in the context of linear models, and
again, more recently, Chen et al. (2002) in the family of
generalized linear models. We describe these flexible SNP
densities in Sect. 2.1.

Magder and Zeger (1996) proposed smooth nonparamet-
ric (SMNP) random effects densities which they represented
by arbitrary mixtures of Gaussians constraining the mini-
mum variance (for the univariate case) of the mixture com-
ponents to be greater than or equal to some value h, which
they treated as a tuning parameter. The extension to the mul-
tivariate case constrains the determinants of the covariance
matrices of the components to be greater than or equal to
h. A related proposal is that of Verbeke and Lesaffre (1996)
who proposed to represent the density of random effects us-
ing a mixture of K Gaussians with common covariance ma-
trix. These proposals are described in Sect. 2.2. A related
approach, as it is also based on mixtures of Gaussians, is
that of Ghidey et al. (2004). This approach uses ideas from
the P-spline smoothing literature (Eilers and Marx 1996) in
order to obtain a smooth estimate of the random effects den-
sity. However, we do not further pursue this approach here.

In this paper, we extend the class of MGLMMs to in-
clude flexible random effects densities, such as the SNP
and SMNP densities. A unified and automated Monte Carlo
EM algorithm for fitting MGLMMs with either the SNP or
SMNP mixing densities is presented. We also compare the
two flexible densities in terms of their performance in cap-
turing the true underlying shape of the random effects dis-
tribution, in terms of prediction accuracy of the random ef-
fects, and in estimating the vector of regression parameters
and the corresponding standard errors. An application to a
real data set, in which using flexible random effects densities
allows the capturing of complex features of the underlying
distribution, stresses the importance of these densities.

The remainder of this paper is arranged as follows. In
Sect. 2 we introduce the family of MGLMMs and the SNP,
SMNP and NP densities for the random effects. In Sect. 3
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an algorithm for fitting MGLMMs with random effects that
have either the SNP or the SMNP density is presented. Sec-
tion 4 presents a simulation study while Sect. 5 presents an
application to a real data set. The paper concludes with a
brief discussion.

2 Model specification

Let yij denote the j th k-dimensional response vector for
cluster i, j = 1, . . . , ni , i = 1, . . . ,m. Conditionally on the
cluster specific random effect ui (q × 1), the responses yij ,
j = 1, . . . , ni , are assumed to be independent with densities
that belong to the multivariate exponential family (Fahrmeir
and Tutz 2001, Chap. 3)

f (yij |ui;β, φ)=exp

{
wij

φ
[yT

ij θ ij − b(θ ij )]+c(yij ;φ,wij )

}
,

where the conditional mean μc
ij = E(yij |ui ) = ∂b(θ ij )/∂θ ij

is related to the linear predictor ηij = Xijβ + Zij ui through
the link function g(μc

ij ) = ηij . Further, β is a p-vector of
fixed effects, Xij and Zij are k × p and k × q matrices of
covariates associated with the (i, j)th response, where the
columns of Zij are usually a subset of those of Xij . More-
over, wij is a known weight, c() is a known function and
φ is a dispersion parameter. For the multinomial probability
mass function, which is our main focus here, φ = 1 and it
will thus be dropped in the remainder of this paper.

The random effects ui , i = 1, . . . ,m, are assumed to be
independently and identically distributed. We now describe
the SNP and SMNP densities for the random effects. These
densities will be denoted by gK,q(ui |θ) where θ is a vector
of parameters, K is a tuning parameter that controls the flex-
ibility of the random effects density and q is the dimension
of ui .

2.1 Semi-nonparametric (SNP) densities

Let Z be a random vector with a density that belongs to a
class of smooth densities. Gallant and Nychka (1987) pro-
vided a characterization of such a class and a representation
of the corresponding densities using an infinite series expan-
sion. Using truncated series expansions, in order to approx-
imate densities in this class, the standard SNP density of a
q-dimensional vector Z has the representation

hK,q(z) ∝ {PK,q(z)}2φq(z) =
⎧⎨
⎩

K∑
|λ|=0

aλzλ

⎫⎬
⎭

2

φq(z), (1)

where λ = (λ1, . . . , λq) is a vector of nonnegative integers,
|λ| = ∑q

r=1 λr , zλ = ∏q

r=1 z
λr
r and φq(.) is the probabil-

ity density function (pdf) of a Nq(0, I) vector. The trun-
cation parameter K controls the flexibility of the shape of

hK,q(.). For instance, by setting K = 1, the resulting density
can have up to two modes, while K = 2 allows up to three
modes. Skewed and also distributions with fatter or thinner
tails than the normal distribution can also be incorporated. It
is worth noting that the normal distribution is a special case
of hK,q(.) with K = 0.

An example that nicely illustrates PK,q(.) is the case
where q = 2 and K = 2. Under this specification, P2,2(z) =
a00 + a10z1 + a01z2 + a11z1z2 + a20z

2
1 + a02z

2
2.

The constraint
∫

hK,q(z)dz = 1, is imposed by suitable
choice of the coefficients aλ. Zhang and Davidian (2001)
and Chen et al. (2002) treat the problem of normalizing (1)
by imposing E[{PK,q(V)}2] = 1, where V ∼ Nq(0, I), and
they show how this can be achieved for general K and q .

The resulting normalized density of vector Z does not
have a mean of zero, a usual assumption in random effects
models. The transformation u = R{Z−γ }, where γ = E(Z)

and R is a lower triangular matrix, sets the mean to zero and,
also, allows for more flexibility in the covariance matrix of
the random effects. Thus, with θ1 = (ψT ,RT

d )T , where ψ

includes the parameters in γ and in the coefficients aλ, and
Rd includes the parameters in matrix R, the density of the
random effects can be expressed as

gK,q(u; θ1) = {PK,q(R−1u + γ )}2φq(u;−Rγ ,RRT ), (2)

where, for V ∼ Nq(0, I) we require E{PK,q(V)}2 = 1, and
φq(.;μ,�) is the pdf of a Nq(μ,�) vector.

We consider the example where q = 1 and K = 2. In this
case, P2,1(z) = a0 + a1z + a2z

2, and a reparametrization
that ensures that the corresponding h2,1 integrates to one,
is a0 + a2 = cos(ψ1), a1 = sin(ψ1) cos(ψ2) and

√
2a2 =

sin(ψ1) sin(ψ2), where, for all r , ψr ∈ (−π/2,π/2]. The
corresponding normalized density of a mean-zero variable
u is

g2,1(u;ψ1,ψ2, σ ) = {a0 + a1(γ + u/σ) + a2(γ + u/σ)2}2

× φ1(u;−γ σ,σ 2), (3)

where γ =2 sin(ψ1) cos(ψ2){cos(ψ1)+
√

2 sin(ψ1) sin(ψ2)}.
2.2 Smooth nonparametric (SMNP) densities

The smooth nonparametric (SMNP) densities are defined in
terms of mixtures of Gaussian distributions. Two classes of
SMNP distributions for the random effects ui have been pro-
posed by Magder and Zeger (1996) and Verbeke and Lesaf-
fre (1996).

First we describe the class of densities proposed by
Magder and Zeger (1996). Using these authors’ own no-
tation, let 	h,q be the class of q-variate distributions that
can be expressed as mixtures of Gaussians with covariance
matrices that have determinants greater than or equal to h.
An elegant proof, which partly relies on the results of Laird
(1978) and Lindsay (1983) on the discreetness and support
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size of nonparametric mixing distributions, shows that the
likelihood is maximized over 	h,q by a mixture of Gaussians
that has at most m components (m is the number of clusters)
where each component has a covariance matrix with deter-
minant exactly equal to h.

Verbeke and Lesaffre (1996) proposed a similar model.
They assumed that the random effects arise from a mixture
of K Gaussians with a common covariance matrix. We will
denote this class of distributions by 	K,q . In practice K is
unknown but in light of the discussion of the previous para-
graph, it is easily seen that the likelihood is maximized by
a mixture of at most m Gaussians with common covariance
matrix.

For random intercept models, where the random effects
are univariate, the family 	h,1 includes those distributions
that can be expressed as mixtures of Gaussians that have
common pre-specified variance h, while the family 	K,1 in-
cludes those distributions that can be expressed as mixtures
of Gaussians that have components with common, but oth-
erwise unspecified, variance. This is the main reason why
in this paper, for the purposes of simulation and data analy-
sis, we consider distributions in 	K,q only. It is worth men-
tioning, however, that for models with multivariate random
effects, 	K,q requires a common covariance matrix in the
components of the mixture, while 	h,q requires the compo-
nents to have covariance matrices with common determinant
h, but not necessarily common covariance matrix.

With θ2 representing the model parameters, the densities
in 	K,q can be expressed as

gK,q(ui; θ2) =
K∑

g=1

pgNq(μg,�), (4)

where
∑K

g=1 pg = 1. We set μK = ∑K−1
g=1 pgμg/

(
∑K−1

g=1 pg − 1) in order to satisfy the constraint E(ui ) = 0.

Thus, there are K − 1 independent means, μ = (μT
1 , . . . ,

μT
K−1)

T , and K − 1 independent probabilities p = (p1, . . . ,

pK−1)
T . Letting �d be the vector of parameters in ma-

trix �, we have that θ2 = (μT ,�T
d ,pT )T .

2.3 Nonparametric densities

The nonparametric approach uses arbitrary random ef-
fects, that is, it does not make any assumptions about
the form of the distribution of the random effects. The
resulting discrete estimate (Laird 1978; Lindsay 1983)
of the random effect distribution is represented by K

mass points, m1, . . . ,mK , and the corresponding probabil-
ities, π1, . . . , πK , where

∑K
i=1 πi = 1. In order to satisfy

the constraint that E(ui ) = 0, we set mK = ∑K−1
i=1 πimi/

(
∑K−1

i=1 πi − 1). Fitting algorithms have been described by
Laird (1978), Lindsay (1983), Follmann and Lambert (1989)
and Lesperance and Kalbfleisch (1992). Also, for the special
case of multinomial responses, Hartzel et al. (2001) pro-

vided a model fitting procedure. Thus, no more details will
be provided here.

3 Model fitting

3.1 Log-likelihood, EM algorithm and an MC
approximation of the E-step

A Monte Carlo EM (MCEM) algorithm that can be used for
fitting MGLMMs with either semi or smooth nonparametric
random effects is now described. First let δT = (βT , θT ),
where θ is either θ1 = (ψT ,RT

d )T of the SNP density or
θ2 = (μT ,�T

d ,pT )T of the SMNP density. The marginal
log-likelihood, l(δ|y), where y = {yi : i = 1, . . . ,m}, can be
written as

l(δ|y) = logf (y|δ)
= log

{
m∏

i=1

∫
. . .

∫
f (yi |ui;β)gK,q(ui; θ)dui

}
. (5)

Since no further evaluation of (5) is possible, we max-
imize l(δ|y) by employing the EM algorithm of Dempster
et al. (1977). This algorithm uses (y,u) = {(yi ,ui ) : i =
1, . . . ,m} as the complete data and it maximizes l(δ|y) indi-
rectly, by iteratively maximizing

Q(δ|δ(r)) = E{logf (y,u)|y, δ(r)}
=

m∑
i=1

∫
. . .

∫
{logf (yi |ui;β) + loggK,q(ui |θ)}

× h(ui |yi; δ(r))dui , (6)

where δ(r) is the current value of the vector parameter and
h(ui |yi; δ(r)) is the conditional distribution of the miss-
ing data given the observed data and current estimates. Let
δ(r+1) = φ(δ(r)) be the vector parameter that maximizes
Q(δ|δ(r)). Under regularity conditions, at convergence δ̂ =
φ(δ̂) maximizes both the complete and the observed data
likelihoods.

However, the E-step of (6) cannot be evaluated analyti-
cally as the normalizing constant of density h(u|y; δ(r)) is
the marginal likelihood function. The MCEM algorithm of
Booth and Hobert (1999) overcomes this difficulty by re-
placing Q(δ|δ(r)) with a Monte Carlo (MC) approximation.
Given random samples ui1, . . . ,uiM from h(ui |yi; δ(r)), i =
1, . . . ,m, an approximation to Q(δ|δ(r)) is given by

QM(δ|δ(r)) = QM(β) + QM(θ)

= M−1
M∑
l=1

m∑
i=1

ni∑
j=1

logf (yij |uil;β)

+ M−1
M∑
l=1

m∑
i=1

loggK,q(uil |θ), (7)

where QM(β) and QM(θ) have the obvious definitions.
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The method of Booth and Hobert (1999) uses indepen-
dent samples in order to construct the approximation QM .
As these authors discuss, a significant advantage of inde-
pendent over dependent samples that arise from Markov
chains (see McCulloch 1997 and for other fitting algorithms
therein), is the simplicity in resolving each MCEM step into
the true EM step and the MC error which, in turn, allows us
to automatically increase the MC sample size, M , as the al-
gorithm approaches convergence. Indeed, as was also noted
by Wei and Tanner (1990), it would be very wasteful to start
the algorithm with a large M as the estimates at the begin-
ning of the algorithm might be far from the true maximum
likelihood (ML) estimates. On the other hand, it is sensible
to increase M when the algorithm approaches convergence
as this will free the ML estimates from MC error. As it was
shown by Booth and Hobert (1999), ad hoc methods for in-
creasing the MC sample size are not as efficient as methods
that separate the true EM step from the MC error. We thus
adopt the automated MCEM algorithm of Booth and Hobert
(1999), as was also done by Hartzel et al. (2001) and Chen
et al. (2002).

3.2 Rejection sampling

The random samples ui1, . . . ,uiM from h(ui |yi; δ(r)), i =
1, . . . ,m, are generated using a rejection sampling algo-
rithm (Geweke 1996) in which the marginal distribution
gK,q(ui |θ (r)), such as (2) and (4), is used as the candidate.
Specifically, suppose that it is easy to generate random sam-
ples from gK,q(ui |θ (r)). Then, the following algorithm can
be used to generate a sample from h(ui |yi; δ(r)):

1. Generate s from gK,q(ui |θ (r)) and w1 from uniform
(0,1).

2. If w1 ≤ f (yi |s;β(r))/ζi , where ζi = supui
f (yi |ui;β(r)),

accept s as a sample from density h(ui |yi; δ(r)). Other-
wise return to 1.

When gK,q(ui |θ (r)) is the SMNP that appears in (4),
Step 1 of the above algorithm can be achieved by simply:
(a) generating w2 from uniform (0,1) and (b) generating s
from Nq(μξ ,�), where ξ is the smallest positive integer

such that w2 ≤ ∑ξ
i=1 p

(r)
i .

When gK,q(ui |θ (r)) is the SNP that appears in (2), the
algorithm proposed by Chen et al. (2002) can be used. Their
development, which for the sake of completeness we de-
scribe briefly here, takes advantage of the developments of
Gallant and Tauchen (1992). Specifically, if we can gen-
erate a random sample sh from normalized hK,q(x|θ (r))

in (1), then a sample from density (2) can be obtained
as sg = R(r)(sh − γ (r)). Generating from hK,q(x|θ (r)) is
done using an accept-reject algorithm which requires find-
ing an integrable function bK,q(x|θ (r)) that satisfies 0 ≤

hK,q(x|θ (r)) ≤ bK,q(x|θ (r)) for all x. Gallant and Tauchen
(1992) proposed using the following function

bK,q(x|θ (r)) = {P ∗
K,q(|x|)}2φq(x)

=
⎧⎨
⎩

K∑
|λ|=0

|a(r)
λ ||x|λ

⎫⎬
⎭

2

φq(x),

where |a(r)
λ | denotes the absolute value of coefficient a

(r)
λ

and |x|λ = ∏q

i=1 |xi |λi . By expanding {P ∗
K,q}2 and restrict-

ing the support of bK,q(x|θ (r)) (which is symmetric around
zero) to {x : xr > 0, r = 1, . . . , q}, we observe that bK,q can
be written as a weighted sum of products of q density func-
tions of χ random variables, where a χ density function is
obtained as the density of the square root of a χ2 random
variable. After normalizing the weights, this sum can be in-
terpreted as a mixture distribution of independent compo-
nents, each of them consisting of q independent χ random
variables, with weights w

(r)
t , where t indexes the compo-

nents of the mixture. The algorithm of Monahan (1987) can
be used to generate a random sample from a χ distribution.

Thus, generating a sample from hK,q(x|θ (r)) can be
achieved by the following algorithm: (a) generate w3 from
uniform(0,1) and determine ν: the smallest positive integer
such that w3 ≤ ∑ν

t=1 w
(r)
t , for some arbitrary put predeter-

mined ordering of the components of the dominating func-
tion, (b) generate a sample vi from each of the χ distribu-
tions that appear in component ν, i = 1, . . . , q , (c) Change
the sign of vi with probability 50% and assign the result
to the ith element of the q-vector s, i = 1, . . . , q and (d)
generate w4 from uniform(0,1) and accept s as a sample
from hK,q(x|θ (r)) if w4 ≤ hK,q(x|θ (r))/bK,q(x|θ (r)); other-
wise return to (a).

3.3 Maximization step

Returning now to (7), maximizing QM(β) is equivalent to
maximizing the log-likelihood of an MGLM with indepen-
dent observations and an offset term, Zij ui , in the linear
predictors. Thus, a Fisher scoring algorithm can be used for
maximizing with respect to the regression parameters. The
score function and Fisher information matrix take the fol-
lowing form (Fahrmeir and Kaufmann 1985)
∑
ij l

XT
ij DT

ij lS
−1
ij l {yij − μij l} and

∑
ij l

XT
ij DT

ij lS
−1
ij l Dij lXij ,

where μij l ≡ μij l(β
(r)) = h(η

(r)
ij l ) = h(Xijβ

(r) + Zij uil)

and suppressing the dependence on β(r), Dij l = ∂h(s)/∂s
evaluated at s = η

(r)
ij l and Sij l is the covariance matrix of yij .
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Maximization of QM(θ) depends on the choice of the
random effects density. For the SNP density, we maxi-
mize QM(θ1), θ1 = (ψT ,RT

d )T , using an implementation
of the Nelder-Mead algorithm in C++ (library ASA047). For
the SMNP density, maximization QM(θ2), θ2 = (μT ,�T

d ,

pT )T , is achieved by an EM algorithm for fitting mixtures
of Gaussians to independent data, as follows:

First notice that QM(θ2) = M−1 ∑
i,l loggK,q(uil |θ2)

is the log-likelihood of independent uil , i = 1, . . . ,m, l =
1, . . . ,M . We regard {uil : i = 1, . . . ,m, l = 1, . . . ,M} as
the observed and {Gil : i = 1, . . . ,m, l = 1, . . . ,M} as the
missing data, where Gil = g, g = 1 . . . ,K , denotes the event
that uil comes from the gth component of (4). It is then clear
that maximization of QM(θ2) with respect to θ2 is equiva-
lent to maximizing

QM,2(θ2|θ (r)
2 )

= QM,2(μ,�,p) + QM,2(p)

= 1

M

∑
gli

π(Gil = g|uil; θ (r)
2 )

× {logf (uil |Gil = g) + logP(Gil = g)}, (8)

where f (uil |Gil = g) denotes the Nq(μg,�) density and

π(Gil = g|uil; θ (r)
2 ) is the posterior probability that uil

arises from the gth component of the mixture. Notice that
since μK = ∑K−1

i=1 piμi/(
∑K−1

i=1 pi − 1), as discussed after
(4), the parameters (μ,�) and p do not separate in QM,2.
Even so, given the representation in (8), finding the maxi-
mum likelihood estimate of θ2 is a straightforward iterative
procedure.

3.4 The MCEM algorithm

The MC sample size M is automatically increased as the al-
gorithm approaches convergence. Using Taylor series meth-
ods along with the central limit theorem, Booth and Hobert
(1999) showed that after the (r + 1)th iteration, δ(r+1),
the maximizer of (7), is approximately normally distributed
around the maximizer of (6), δ

(r+1)
Q say. These authors also

provided an estimator of the corresponding covariance ma-
trix. Thus, if convergence cannot be declared at the end of
the (r + 1)th iteration, an approximate 100(1 − α)% con-
fidence ellipsoid for δ

(r+1)
Q is constructed and it is used to

infer whether or not the MCEM algorithm is close to con-
vergence. If the previous observed maximizer, δ(r), lies in
this confidence ellipsoid, then we may conclude that con-
vergence cannot be declared due mostly to the MC error
and thus M should be increased; otherwise M is not in-
creased. In the simulation studies and the data analysis we
performed, we set the initial value for M = 100, α = 25%
and each time δ(r) was in the confidence region of δ

(r+1)
Q ,

we increased M by 33%.

When fitting the SNP and SMNP models, we start by
setting K = 0, that is, by fitting the normal random effects
model. Starting values for the regression coefficients of this
model are taken to be the estimates from the NP model
(Laird 1978; Lesperance and Kalbfleisch 1992) with the
largest number of mass points, while the covariance matrix
of the random effects is taken to be a diagonal matrix with
elements the variances implied by the NP random effects
model. For the SNP model, the extra parameters that result
by increasing K are given a starting value of zero. For the
SMNP model, when K = d > 1, the estimated masses and
mass points of the NP model with d mass points are taken to
be the starting values for the probabilities and means of the
components.

In summary, the MCEM algorithm for fitting the SNP or
SMNP models, for a fixed value of K , starts by setting start-
ing values δ(0) and selecting a starting MC sample size M .
Iteration (r + 1) consists of generating samples of random
effects from h(ui |yi; δ(r)), i = 1, . . . ,m, finding the maxi-
mizer δ(r+1) of QM(δ|δ(r)), given in (7), and either stopping
if convergence is achieved or considering increasing the MC
sample size. Our rule for stopping the fitting algorithm is
that the maximum absolute change in the parameters from
successive iterations is less than ε, where we set ε = 0.002
for our data analysis application and ε = 0.005 for our sim-
ulation studies.

To find the optimal value of K for each model, we used
the Akaike’s information criterion. For fixed K , AIC(K) =
−l(δ̂;y) + dim(δ̂|K), where dim(δ̂|K) is the dimension of
vector δ̂. As the log-likelihood l(δ̂;y) cannot be evaluated
analytically, we use the MC method of Chen et al. (2002)
in order to find an approximate value for it. Specifically,
given random samples uil , i = 1, . . . ,m, l = 1, . . . ,M , from
gK,q(uil; θ̂) the log-likelihood is approximated by l(δ̂;y) ≈∑m

i=1 log{M−1 ∑M
l=1 f (yij |uil; β̂)}.

At convergence, in addition to the log-likelihood, we
calculate the standard errors of the estimates by invert-
ing the observed information matrix of all estimated pa-
rameters. We calculate the information matrices as I1 =
−∑m

i=1 ∂2l(δ̂;yi )/∂δ∂δT but, due to MC error, it was not
always positive definite. This problem has also been re-
ported by Chen et al. (2002) and, in our experience, is
more pronounced for the SNP than the SMNP densities. We
thus also use the method proposed by Chen et al. (2002),
I2 = ∑m

i=1{∂l(δ̂;yi )/∂δ}{∂l(δ̂;yi )/∂δT }.

4 A simulation study

A simulation study is carried out in order to evaluate the
performance of the SNP and SMNP densities in a case of
an ordinal response with three categories. We consider two
values for the number of clusters m, namely m = 250 and
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m = 75, corresponding to large and moderate sample size.
The number of observations per cluster is ni = 5 for all
i. Data is generated in a two stage process, the first step
of which consists of generating univariate random effects
ui, i = 1, . . . ,m, from a distribution G. For all choices of
G that we consider, the implied variance of the random ef-
fects is fixed to var(ui) = 4. Specific choices of G include
(a) discrete distribution with probabilities equally split be-
tween two mass points, (b) centered at zero and scaled χ2

distribution with df = 5: (χ2
5 −5)/

√
(10/4), and (c) normal

distribution.
The ordinal data is generated by a random-effects pro-

portional odds model. This model describes the ordinal re-
sponses in the three categories in terms of two cumulative
probabilities that are related to linear predictor through a
logit link. In proportional odds models, the effects of covari-
ates are assumed to be equal across the logits of cumulative
probabilities and only the intercepts are specific to these log-
its. Specifically, given random effects ui, i = 1, . . . ,m, each
of the two components of the linear predictor, r = 1,2, for
each time point j = 1, . . . ,5, is generated according to

ηijr = θr + β1Di + β2Tj + ui,

where Di = 1 if i < m/2 and Di = 0 otherwise, that is,
Di is a treatment indicator and β1 = 0.75 is the treatment
effect. Further, Tj is the j th element of (−0.2,−0.1,0.0,

0.1,0.2)T , that is, Tj is a time varying covariate and its ef-
fect is β2 = 2.0. The two intercepts are set to θ1 = −1.0 and
θ2 = 1.0. With these specifications, we can obtain values for
ηij = (ηij1, ηij2)

T for all i and j . Based on ηij , the response
vector yij is then obtained as a realization of a multinomial
variable with cell probabilities obtained as the solution to

log

(
πij1

1 − πij1

)
= ηij1 and

log

(
πij1 + πij2

1 − πij1 − πij2

)
= ηij2.

We simulate 200 data sets for each combination of random
effects distribution and sample size m and fit the random-

effects proportional odds models, with correct mean struc-
ture, and the SNP and SMNP densities with K = 2, in which
case both densities have three parameters. The SNP den-
sity for K = 2 is given in (3), while the SMNP density
is g2,1(u|p,μ,σ ) = pφ(u;μ,σ 2) + (1 − p)φ(u;pμ/(p −
1), σ 2). We also fit the models with normal and NP densities
for the random effects, but our main focus is on the flexible
densities.

The performance of each of these models in capturing
the characteristic features of the true underlying random ef-
fects distribution is evaluated by calculating the integrated
squared error (ISE) between the estimated and true cumu-
lative distribution functions, given by

∫ {Ĝ(u) − G(u)}2du,
where Ĝ is obtained by replacing the parameters of G with
parameter estimates. Bias in estimates of the regression pa-
rameters is summarized by reporting the relative bias: for
any parameter ϑ , with a corresponding estimate ϑ̂ , relative
bias is calculated as RB(ϑ̂) = 100 ∗ (ϑ̂ − ϑ)/ϑ . We inves-
tigate the impact of the assumed random effects distribution
on the standard errors (SEs) by reporting the ratio of the
SEs under all considered models to the SE under the normal
model: R1{SE(ϑ̂)}. We also report the ratio of the estimated
random effects standard deviation (SD) to the true SD:
R2{ŜD(ui)} = ŜD(ui)/2. Finally, the prediction accuracy of
the random effects is examined by calculating the average
prediction error: PE(G) = m−1 ∑m

i=1(ui − ûG
i )2, where ûG

i

is the empirical Bayes estimate of ui , i = 1, . . . ,m, for the
random effects distribution G.

Table 1 displays the results for the case where the true
random effects distribution G is a two point discrete distrib-
ution which splits the masses equally between the two mass
points. With the mean constrained to be zero and the vari-
ance fixed to four, the only choice of mass points is m1 = −2
and m2 = 2. Some interesting issues emerge out of this ta-
ble. We first notice that average ISE under an SNP density
is about 70% of that under a normal density, for both values
of m. Also, average ISE under an SMNP density is about
55% of that under an SNP density, again for both values of
m. It is also obvious that ISE decreases for the SNP, SMNP
and NP densities as the number of clusters increases. This,
however, does not hold true for the normal model because

Table 1 Simulation Results:
Discrete uniform case. ISE:
integrated squared error; β1, β2:
effects of cluster-level and
within-cluster covariates; RB:
relative bias; R1: ratio of the SE
of the estimate to the SE under
the normal model, R2: ratio of
the estimated SD of the random
effects distribution to the true
one, PE: prediction error of the
random effects

Sample size m = 250 m = 75

Model Nor. SNP SMNP NP Nor. SNP SMNP NP

Mean ISE 0.191 0.123 0.059 0.063 0.196 0.134 0.086 0.115

RB(β̂1)(%) 2.07 4.73 2.13 −1.43 17.44 10.20 5.52 1.44

R1{SE(β̂1)} 1.00 0.68 0.46 0.45 1.00 0.72 0.46 0.44

RB(β̂2)(%) 2.42 4.32 3.02 0.77 8.13 10.06 8.39 5.70

R1{SE(β̂2)} 1.00 1.02 1.00 0.98 1.00 1.01 0.98 0.95

R2{ŜD(ui)} 1.19 1.13 1.04 0.99 1.20 1.16 1.05 1.01

PE(G) 0.914 0.364 0.196 0.170 1.017 0.480 0.270 0.244
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Fig. 1 True discrete distribution and plots of the estimated Normal,
SNP, SMNP and NP densities that correspond to (a) & (d) 95th per-
centile of ISE, (b) & (e) 50th percentile of ISE, and (c) & (f) 5th per-

centile of ISE. (a)–(c) correspond to m = 250 and (d)–(f) to m = 75.
ISE provided for the Normal, SNP, SMNP and NP densities respec-
tively

the normal estimated density is always unimodal and sym-
metric. In order to get an understanding of what the values
of ISE reported in Table 1 mean, we plot in Fig. 1 the es-
timated densities that correspond to the 95th, 50th and 5th
percentile of ISE, for both m = 250 and m = 75. The corre-
sponding values of ISE are provided in the legends of these
graphs. We can see that, at the 95th percentile of ISE, the
corresponding SNP density does not provide a bimodal es-
timate, as the SMNP density does. In fact, for both values
of m, the estimated SMNP density is bimodal for all simu-
lated datasets, while the estimated SNP density is bimodal
for 73% of the simulated datasets.

For m = 250, the estimated SMNP density always re-
sults in smaller ISE than the corresponding ISE of the SNP
density. For this value of m, AIC, described in Sect. 3.4, or
equivalently any other selection criterion, always selects the
model that assumes an SMNP density for the random effects
over the model that assumes an SNP density. For m = 75,
ISE of the estimated SNP density is smaller than that of
the SMNP density for only 7.5% of the simulated datasets.
However, when this happens, AIC selects the SMNP model

and in 2% of the simulated datasets it selects the SNP model
even though in those instances ISE of the SMNP model is
smaller than that of the SNP.

It is also interesting to observe that the fitted nonparamet-
ric densities result in an average ISE that is larger than the
average ISE of the SMNP densities. In fact, this happens for
51.5% and 78.5% of the simulated data sets with m = 250
and m = 75, respectively. Even though the nonparametric
model is the true model in this case, a great deal of data is
needed in order to obtain a precise estimate of the nonpara-
metric density.

Returning to Table 1, we further see that for the large
sample size case, bias in the estimation of the effect of clus-
ter varying covariate is negligible, under all considered mod-
els. However, for the moderate sample size case, the relative
bias can sometimes be quite high. For instance, under the
normal density, the relative bias is as high as 17.4%. It de-
creases, however, considerably under the SNP and SMNP
densities. The inefficient estimation under a normal model
is also evident in the third line of Table 1. First, notice that
there is little difference between the large and moderate sam-
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Fig. 2 Histograms of the
empirical Bayes estimates of the
random effects from all 200
simulations with m = 250 when
the true random effects are
discrete with equal masses at
m1 = −2 and m2 = 2 based on
(a) normal and (b) SMNP
random effects distributions

Table 2 Simulation Results:
Centered and scaled χ2

5
distribution case. ISE: integrated
squared error; β1, β2: effects of
cluster-level and within-cluster
covariates; RB: relative bias;
R1: ratio of the SE of the
estimate to the SE under the
normal model, R2: ratio of the
estimated SD of the random
effects distribution to the true
one, PE: prediction error of the
random effects. * Not calculated
as the NP density allows infinite
mass points

Sample size m = 250 m = 75

Model Nor. SNP SMNP NP Nor. SNP SMNP NP

Mean ISE 0.022 0.019 0.018 * 0.024 0.024 0.029 *

RB(β̂1)(%) −0.31 −2.89 −5.43 −0.04 −10.96 −7.72 −10.01 −5.85

R1{SE(β̂1)} 1.00 1.06 1.02 0.92 1.00 1.01 0.98 1.09

RB(β̂2)(%) 2.23 1.60 1.37 −1.11 −3.28 −3.54 −4.37 −2.40

R1{SE(β̂2)} 1.00 0.99 0.99 1.06 1.00 1.00 0.99 0.99

R2{ŜD(ui)} 1.00 1.03 0.94 * 0.99 1.01 0.93 *

PE(G) 1.384 1.318 1.418 * 1.382 1.425 1.467 *

ple size cases. We will thus describe only the large sample
size case. The SE of β̂1 under the normal model is, on aver-
age, 1.47 = 1/0.68 and 2.17 = 1/0.46 times larger than that
under the SNP and SMNP models respectively. In addition,
the SE under the SNP model is 1.48 times bigger than that
under the SMNP model. Generally speaking, for the clus-
ter varying covariate, the relative bias and SE are decreasing
as ISE decreases. For the time varying covariate, however,
estimation, both in terms of relative bias and SE, does not
depend on the assumption about the random effects distri-
bution: entries in the relative bias line, within each sample
size, are approximately equal for all random effects distribu-
tions, and entries in the SE ratio line is approximately equal
to one. Finally, estimation of the random effects SD is poor
under the normal and SNP models.

Concerning the prediction error (PE) of the random ef-
fects, we notice from the last row of Table 1 that PE under
an SNP density, for the case where m = 250, is about 40% of
the PE assuming a normal density. For m = 75, the ratio of
the PE under an SNP to that under a normal density is 47%.
Further, PE under an SMNP density is about 55% of that
under an SNP density, for both values of m. Finally, com-
paring the PEs for m = 250 to those obtained for m = 75,
it is clear that PE decreases as the number of independent
clusters increases under all assumed models for the random

effects densities. However, this decrease is slow even for the
true NP model.

Figure 2 displays the EB estimates of the random effects
obtained in all 200 simulations with m = 250. Although
both graphs are bimodal, it is clear that the estimates of the
random effects are driven by the estimated random effects
density. Under the SMNP density the separation between the
two modes is very clear (as the two modes are captured by
the SMNP density) but this separation is blurred for the re-
strictive normality assumption.

When the true random effects distribution is continuous,
as it is in the second scenario we consider, differences in
ISE, estimation of the unknown parameters and the accom-
panying SEs and, also, the PEs of the random effects, are
minimal. Table 2 displays the results for the case where the
random effects have a χ2

5 distribution centered at zero and
scaled to have SD equal to two. On average, within each
sample size considered, ISE is approximately equal among
the three densities considered. It is also clear that it de-
creases at a very slow rate as the sample size increases. The
behavior of the PEs is very similar: they are approximately
equal over the three densities considered and they decreases
at a very slow rate as the number of clusters increases.

Figure 3 displays the estimated densities that correspond
to the median value of ISE for m = 250 and m = 75. It is
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Fig. 3 True skewed density and
plots of the estimated densities
under the Normal, SNP and
SMNP models that correspond
to the 50th percentile of ISE for
(a) m = 250 and (b) m = 75.
ISE provided for the Normal,
SNP and SMNP densities
respectively

Table 3 Simulation Results:
Normal distribution case. ISE:
integrated squared error; β1, β2:
effects of cluster-level and
within-cluster covariates; RB:
relative bias; R1: ratio of the SE
of the estimate to the SE under
the normal model, R2: ratio of
the estimated SD of the random
effects distribution to the true
one, PE: prediction error of the
random effects. * Not calculated
as the NP density allows infinite
mass points

Sample size m = 250 m = 75

Model Nor. SNP SMNP NP Nor. SNP SMNP NP

Mean ISE 0.002 0.017 0.003 * 0.005 0.021 0.014 *

RB(β̂1)(%) 4.05 1.89 −3.92 1.41 −1.16 −2.63 −5.41 −3.35

R1{SE(β̂1)} 1.00 1.10 0.98 1.10 1.00 1.07 0.93 1.09

RB(β̂2)(%) −2.96 −3.82 2.04 2.04 −0.20 −0.62 5.33 −1.56

R1{SE(β̂2)} 1.00 1.00 1.18 1.14 1.00 0.99 1.01 1.01

R2{ŜD(ui)} 0.99 1.05 0.98 * 1.01 1.06 0.98 *

PE(G) 0.887 0.989 0.919 * 0.963 1.142 1.051 *

Fig. 4 True normal density and
plots of the estimated densities
under the Normal, SNP and
SMNP models that correspond
to the 50th percentile of ISE for
(a) m = 250 and (b) m = 75.
ISE provided for the Normal,
SNP and SMNP densities
respectively

clear that the SNP and SMNP densities with three parame-
ters cannot really capture a skewed distribution. This, how-
ever, is not necessarily bad news as one can approximate
distributions of any shape by increasing the number of para-
meters in the SNP and SMNP densities.

Table 2 makes obvious that the relative bias in the esti-
mation of both β1 and β2 is negligible for m = 250. Relative
bias is larger for m = 75, especially for the cluster varying
covariate, but results do not differ for the three densities con-
sidered. Furthermore, SEs and estimation of the SD of the
random effects is equally good for all densities considered.

In the third and final scenario that we consider, the true
random effects distribution is normal with variance equal to
four. Results are displayed in Table 3. Not surprisingly, av-
erage ISE, for both values of m, is smallest when fitting a
model that assumes a normal random effects distribution. On
average it is largest, again for both values of m, when fitting
an SNP density to the random effects. Figure 4 shows the
estimated densities that correspond to the median value of
ISE for m = 250 and m = 75. For some simulated datasets,
the two flexible densities ‘identify’ more complex than just
unimodal, symmetric densities. However, AIC selects the
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normal over the SNP (SMNP) model for 99% (97%) of the
simulated datasets, for the large sample size case. For the
moderate sample size case, these percentages are 88% and
92% for the SNP and SMNP densities respectively.

For both values of m, and for all models considered, rel-
ative bias in the estimation of the regression parameters is
negligible. In addition, SEs of parameter estimates are ap-
proximately equal for all models considered and, also, esti-
mation of the SD of the random effects does not differ by
much for each of the models fitted. Thus, our conclusion is
very similar to the one of Chen et al. (2002): the estima-
tion efficiency is not compromised when fitting more flexi-
ble than needed random effects densities.

For the PE, again, not surprisingly, we see that it is small-
est when fitting a model that assumes a normal random ef-
fects distribution, for both values of m. The differences be-
tween the PEs under SNP and SMNP densities are quite
small, with the SMNP density doing slightly better than the
SNP.

5 Application: NIMH schizophrenia data

We apply the methods described here to data from the Na-
tional Institute of Mental Health Schizophrenia Collabo-
rative Study. Specifically, the response variable of interest
measures ‘Severity of Illness’. Hedeker and Gibbons (2006)
provide a detailed description and also several analyses of
these data. Some of the important features of the study, as
described by Hedeker and Gibbons (2006), are as follows:

In this parallel group study, m1 = 329 patients were ran-
domly assigned to the anti-psychotic drug group and m2 =
108 patients to the placebo group. ‘Severity of Illness’ was
measured, at weeks j = 0,1, . . . ,6, on a four category or-
dered scale: 1. normal or borderline mentally ill, 2. mildly
or moderately ill, 3. markedly ill, and 4. severely or among
the most extremely ill. There are very few observations at
weeks 2,4 and 5 as the plan was for subjects to be measured
during weeks 0,1,3 and 6. Due to missing data, the total
number of observations on these subjects, over all weeks,
was N = 1603. In the placebo and drug group, 65% and
81% of the subjects completed the study.

As in Hedeker and Gibbons (2006), we model the log-
its of the cumulative probabilities, log[P(Yij ≤ r)/{1 −
P(Yij ≤ r)}]. In order to linearize the relationship between
time and the observed cumulative logits, time is expressed as
the square root of week. We thus have the following linear
predictor

ηijr = θr + β1Di + β2
√

j + β3Di

√
j + ui,

where θr is the r th intercept, r = 1,2,3, Di = 1 if the ith
subject was assigned to the drug group and Di = 0 other-
wise, β1 is the difference, on logit scale, between the two

groups at baseline, j = 0, . . . ,6 is the week, β2 is the ef-
fect of time on the logit of the placebo patients, and β3 is
the differential effect of time for the drug group relative to
the control group. Lastly, ui is the subject specific random
effect that allows a location shift to the latent distribution.
Hedeker and Gibbons (2006) assumed that ui ∼ N(0, σ 2

u ).
Here, in addition to the normal density for the random ef-
fects, we fit models assuming a NP density for these unob-
servable quantities and, also, SNP and SMNP densities. For
each of these families of densities we choose K according
to the AIC criterion described in Sect. 3.4.

Results are presented in Table 4. We first observe that
the estimates of the intercepts, θr , r = 1,2,3, under differ-
ent model assumptions, are quite different. This is not sur-
prising since, according to Neuhaus et al. (1992), the shape
of the mixing density is important in the estimation of the
intercepts. This sensitivity is also observable in the studies
by Heagerty and Kurland (2001) and Litière et al. (2008).
It is possible that it is due to the fact that these parameters
serve as locations of the distributions of the random effects,
but under each model, the random effects have a different
distribution.

Furthermore, the estimate of the effect of the cluster vary-
ing covariate, β1, is more sensitive to the assumption about
the random effects distribution than the estimates of the ef-
fect of the time varying covariate, β2, and the effect of the
interaction term, β3, which is usually the parameter of main
interest. As far the estimation of β1 goes, the conjecture of
Chen et al. (2002), who reported similar results for a binary
response variable, is that it is more affected than the estima-
tion of β2 because it is a parameter that describes between
cluster variation and so do the random effects. On the other
hand, parameters that describe within cluster variation, such
as β2, are less affected. Estimation of the interaction term
also seems to be unaffected by the assumption about the ran-
dom effects distribution. These observations, about the sen-
sitivity in the estimation of β1 and the relative robustness
in the estimation of β2 and β3, concur with those of Hea-
gerty and Kurland (2001) on results reported when fitting a
logit model with normal random effects when, in reality, the
random effects have a skewed distribution.

Table 4 makes clear that the subject heterogeneity in the
intercepts is not adequately captured by the normal random
effects models. The estimated random effects variance is
smallest under the normal random effects assumption. This
is also evident in Fig. 5. The normal random effects model
does not capture the long left tail in the distribution of the
random intercepts.

Based on AIC, the SMNP 2 model is preferred, providing
evidence that the random effects distribution is non-normal.
The value of AIC does not change much among the normal
and SNP 2 models, although the estimated densities under
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Table 4 Results for the NIMH
schizophrenia study—severity
of illness. Columns refer to the
NP density with 4 mass points,
the normal density, the SNP
density with K = 2 and the
SNMP density with K = 2

NP 4 Normal SNP 2 SMNP 2

estimate (se) estimate (se) estimate (se) estimate (se)

θ1 −5.940 (0.336) −5.854 (0.343) −5.629 (0.325) −5.806 (0.339)

θ2 −2.938 (0.285) −2.822 (0.295) −2.729 (0.272) −2.818 (0.287)

θ3 −0.785 (0.258) −0.706 (0.270) −0.629 (0.246) −0.681 (0.262)

β1 −0.084 (0.288) 0.057 (0.311) −0.184 (0.264) −.069 (0.293)

β2 0.779 (0.120) 0.765 (0.120) 0.768 (0.122) 0.775 (0.120)

β3 1.210 (0.133) 1.206 (0.133) 1.175 (0.134) 1.207 (0.133)

Var(ui) 4.078 (0.498) 3.764 (0.495) 4.069 (0.570) 4.117 (0.572)

AIC 1703.45 1708.67 1707.84 1703.13

Fig. 5 Results for the NIMH schizophrenia study: estimated random
effects densities

these two models are quite different. A possible explana-
tion for this is that the SNP 2 model forces the correspond-
ing probability density function to become zero at a range
that seems to have nonzero probability according to all other
models. There is, however, a considerable drop in the AIC
value when considering the SNMP 2 model. We have also
fitted the SNP and SMNP models with K = 3 but AIC did
not suggest that these models provide a better fit than the
corresponding models with K = 2 and thus the results of
these models are not provided here.

The empirical Bayes (EB) estimates of the random ef-
fects are clearly driven by the estimated random effects den-
sity. This is evident in Figs. 6(a) and (b) which display the
EB estimates under the normal and SMNP 2 models. Fig-
ure 6(c) displays the differences between these two sets of
estimated random effects. Under the normality assumption,
the clusters with large negative EB estimates of the random
effects are missed. These clusters have relatively small prob-
ability of responding to a smaller category at all measure-
ment times. For instance, under the normal model, the min-
imum EB estimate of the random effects is û

(0)
i = −2.49.

Thus, under this model, at week 6, the end of the clini-
cal trial and usually the time point of main interest, the
minimum probabilities of responding at either of the first
two categories, for subjects that are on drug (Di = 1) and

placebo (Di = 0) are 39.2% and 3.1% respectively. Under
the SMNP 2 model, however, 10% of the EB estimates of
the random effects are less than û

(0.1)
i = −3 and 2.5% less

than û
(0.025)
i = −4.2. With ûi = −3, the probability of re-

sponding at either of the first two categories, at week 6,
for subjects that are on drug and placebo are 26.3% and
1.9% respectively. Setting ûi = −4.2 these probabilities be-
come 9.7% and 0.6%, much smaller than the probabilities
obtained under the normal model.

Although in our example big reductions in the estimated
probabilities of response in the first two categories happens
only for a small fraction of the subjects, it is, from a public
health point of view, important to be able to identify groups
of clusters that are at high risk or that are on treatment which
most likely will not be of any benefit to them.

6 Discussion

We have extended the family of multivariate generalized lin-
ear mixed models to include flexible random effects densi-
ties. Specifically, we have considered two such families of
densities, the semi-nonparametric (SNP) and smooth non-
parametric (SMNP) densities. We have proposed an algo-
rithm for fitting these models and we have examined their
performance through simulation studies and application to
real a dataset.

In a simulation study, reported by Agresti et al. (2004),
considerable loss of efficiency was observed from assum-
ing that the random intercepts have a normal distribution
when the true distribution is a two point mixture with large
variance. We have observed similar results in the simulation
studies we have conducted but, also, that the problem of mis-
specification, in this scenario, can be greatly alleviated by
the use of the SNP and SMNP densities.

Our simulation study and studies of other authors (Hea-
gerty and Kurland 2001; Chen et al. 2002), suggest that
when the distribution of a random intercept is misspecified,
there is more loss of efficiency in the estimation of the be-
tween than the within cluster covariate effects. In studies by
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Fig. 6 Results for the NIMH schizophrenia study: histogram of (a) the estimated random effects under the assumption of normal random effects,
(b) the estimated random effects under the SMNP 2 model, and (c) the differences between these estimates

Heagerty and Kurland (2001) and Litière et al. (2008) it was
further shown that when the distribution of a random within
cluster effects is misspecified, estimation of the correspond-
ing effect also suffers loss of efficiency. It is thus important
to evaluate the SNP and SMNP densities, in the family of
MGLMMs, when there are multivariate random effects. This
is one of our plans for future research.

Of course, in addition to the increased efficiency that is
gained by avoiding misspecification and the little price to
pay in the unlikely event that the parametric assumption
about normality of the random effects is satisfied, flexible
random effect densities may provide important information
about the nature of heterogeneity of a population. Such an
example has been provided in Sect. 5.

All our programs were written in C. We have found that
it is computationally expensive to fit these models. In partic-
ular, many times we could not declare convergence of our
automated algorithm due to the MC error, in which case
we would expect the algorithm to automatically increase the
sample size, but this often times did not happen. We feel,
however, that by simply reducing the significance level α

(described in Sect. 3.4) the algorithm can speed up.
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