
Stat Comput (2012) 22:1–16
DOI 10.1007/s11222-010-9201-4

Efficient Monte Carlo simulation via the generalized splitting
method

Zdravko I. Botev · Dirk P. Kroese

Received: 25 May 2009 / Accepted: 29 August 2010 / Published online: 16 September 2010
© Springer Science+Business Media, LLC 2010

Abstract We describe a new Monte Carlo algorithm for
the consistent and unbiased estimation of multidimensional
integrals and the efficient sampling from multidimensional
densities. The algorithm is inspired by the classical splitting
method and can be applied to general static simulation mod-
els. We provide examples from rare-event probability esti-
mation, counting, and sampling, demonstrating that the pro-
posed method can outperform existing Markov chain sam-
pling methods in terms of convergence speed and accuracy.

Keywords Splitting method · RESTART · MCMC ·
Rare-event probability estimation · Level-crossing ·
Convergence diagnostic · Importance sampling · Boolean
Satisfiability problem · Fixed effort · Fixed splitting ·
Sequential Monte Carlo · Combinatorial counting

1 Introduction

One of the first Monte Carlo techniques for rare-event prob-
ability estimation is the splitting method, proposed by Kahn
and Harris (1951). In the splitting technique, sample paths
of a Markov process are split into multiple copies at vari-
ous stages of the simulation, with the objective of generating
more occurrences of the rare event. The rare event is repre-
sented as the intersection of a nested sequence of events,
and the probability of the rare event is thus the product of

Z.I. Botev (�)
Department of Computer Science and Operations Research,
University of Montreal, Quebec 6128, Canada
e-mail: botev@maths.uq.edu.au

D.P. Kroese
School of Mathematic and Physics, The University of
Queensland, Brisbane 4072, Australia

conditional probabilities, each of which can be estimated
much more accurately than the rare-event probability itself.
Applications of the splitting method in this Markovian set-
ting arise in particle transmission (Kahn and Harris 1951),
queueing systems (Garvels 2000; Garvels and Kroese 1998;
Garvels et al. 2002), and reliability (L’Ecuyer et al. 2006).
The splitting method has remained popular in the physics
and statistics community and has gradually evolved over
the past two decades (Glasserman et al. 1996, 1998; Villén-
Altamirano and Villén-Altamirano 1991, 1994, 1999), to be-
come an effective simulation technique for dynamic simu-
lation models. More recent improvements include theoreti-
cal results about the optimal selection of the splitting levels
(Cérou and Guyader 2007; Lagnoux-Renaudie 2006, 2008;
Garvels 2000) and the use of quasi Monte Carlo estimators
(L’Ecuyer et al. 2007).

The aim of this paper is to introduce a new algorithm,
called the Generalized Splitting (GS) algorithm, which ex-
tends the applicability of the splitting method to both static
(that is, time-independent) and non-Markovian models. The
GS algorithm has its roots in an adaptive population Monte
Carlo method described in Botev (2007, 2008), Cérou et al.
(2009) that uses the product rule of probability to estimate
rare-event probabilities. In contrast to the specific Markov
setting of the classical splitting method, the GS method
involves the following general framework (Rubinstein and
Kroese 2004): let � be the expected performance of a sto-
chastic system, of the form

� = Ef [H(X)] =
∫

f (x)H(x)μ(dx), (1)

where H is a real-valued function, X is a random vector, and
f the density of X with respect to some base measure μ.
A special case of (1) is obtained when H(x) = I {S(x) ≥ γ },
where S is a function and γ a parameter large enough such

mailto:botev@maths.uq.edu.au

2 Stat Comput (2012) 22:1–16

that

� = �(γ) = Ef [I {S(X) ≥ γ }] = Pf (S(X) ≥ γ) (2)

is very small, so that �(γ) is a rare-event probability (Rubin-
stein and Kroese 2004, 2007). Another special case of (1) is
obtained when H(x) = e−S(x)/γ , which arises frequently in
statistical mechanics in the estimation of the so-called parti-
tion function (Robert and Casella 2004).

Using the GS algorithm, we construct unbiased estima-
tors for rare-event probabilities of the form (2)—and, in gen-
eral, multidimensional integrals of the form (1). In addition,
the method provides unbiased estimates for the variances
of the estimators. The GS method tackles these static non-
Markovian problems by artificially constructing a Markov
chain using, for example, Gibbs or Hit-and-Run moves, and
then applying the splitting idea to the Markov process in-
duced by these moves.

The GS algorithm has the following advantages over ex-
isting MCMC algorithms for estimating (1). First, the GS al-
gorithm provides an unbiased estimator �̂ for � in (1) without
the need for a burn-in period. In other words, it is not nec-
essary that the Markov chain constructed by the algorithm
reach stationarity in order to obtain unbiased and consis-
tent estimates for �. However, a well mixing chain reduces
the variance and the simulation effort. Second, unlike most
MCMC algorithms, the GS algorithm provides a consistent
and unbiased estimate of the mean square error of �̂. Third,
problems associated with selecting appropriate starting val-
ues for the Markov chain in the GS algorithm are strongly
mitigated. Finally, while the stationarity of the chain con-
structed by the GS algorithm is not essential for the estima-
tion of � within the GS framework, testing the hypothesis
that the chain has reached stationarity is easy and computa-
tionally inexpensive. These properties allow for substantial
computational savings over traditional MCMC algorithms.

Many Sequential Monte Carlo (SMC) methods (Johansen
et al. 2006; Del Moral et al. 2006) can be viewed as classi-
cal splitting algorithms for rare-event simulation, and vice-
versa. For example, the fixed effort (FE) splitting first pro-
posed in Garvels (2000), Garvels and Kroese (1998) is a
special case of the SMC method in Johansen et al. (2006)
with fixed number of particles at each iteration. It follows
that all splitting procedures can be significantly enriched by
the numerous SMC theoretical results in Del Moral (2004).
However, for the static case presented in this paper we
have the following essential differences from the fixed ef-
fort splitting in Garvels (2000), Garvels and Kroese (1998),
Del Moral (2004). All SMC methods use a bootstrap re-
sampling step to replicate the same point in a population
numerous times. This typically decreases the diversity of
the Monte Carlo population. In contrast, there is no ap-
parent bootstrap resampling step in the proposed GS al-
gorithm. As a result, the performance of the GS estima-
tor is improved due to the increased diversity in the Monte

Carlo population, and the unbiasedness property in Propo-
sition 3.1 is not a consequence of similar results in the
SMC (Del Moral et al. 2006) or the splitting (Garvels 2000;
Garvels and Kroese 1998) literature. In addition, the formu-
lation of the splitting method as a SMC method does not
give a concrete implementable algorithm (Del Moral 2004)
in the rare-event simulation setting. The SMC framework
(Del Moral et al. 2006) does not provide guidance as to how
to construct the sequence of importance sampling densities.
The GS algorithm described in this paper addresses these is-
sues by selecting the sequence of intermediate distributions
adaptively, and makes the connections between SMC and
the fixed effort splitting methods more transparent.

The rest of the paper is organized as follows. In Sect. 2
we review the classical splitting method. In Sect. 3 we ex-
plain how to obtain unbiased estimates of (2) using the
GS methodology. We apply the method to the satisfiability
(SAT) counting problem—a combinatorial counting prob-
lem. We prove the unbiasedness property of the GS algo-
rithm and explain the differences between the classical split-
ting method and the GS method. In Sect. 5 we show how
SMC (or the equivalent fixed effort splitting) method com-
pares with the GS approach. In Sect. 6 we extend the ap-
plicability of the algorithm to the more general problem of
estimating (1). In the last Sect. 7 we show how the algorithm
can be used for sampling from multidimensional densities
for which the standard MCMC methods perform poorly. Fi-
nally, we give possible directions for future research.

2 Classical splitting for dynamic simulation

A basic description of the classical splitting method is as
follows. Consider a Markov process X = {Xu, u ≥ 0} with
state space X ⊆ R

n, and let S(·) be a real-valued measur-
able function on X, referred to as the importance function.
Assume for definiteness that S(X0) = 0. For any thresh-
old or level γ > 0, let Uγ denote the first time that the
process S = {S(Xu), u ≥ 0} hits the set [γ,∞); and let U0

denote the first time after 0 that S hits the set (−∞,0].
We assume that Uγ and U0 are well-defined finite stopping
times with respect to the history of X. Then, one is inter-
ested in the probability, �, of the event Eγ = {Uγ < U0};
that is, the probability that S up-crosses level γ before
it down-crosses level 0. Note that � depends on the ini-
tial distribution of X. The splitting method (Garvels and
Kroese 1998; Glasserman et al. 1996) is based on the ob-
servation that if γ2 > γ1, then Eγ2 ⊂ Eγ1 . Therefore, we
have by the product rule of probability that � = c1 c2, with
c1 = P(Eγ1) and c2 = P(Eγ2 |Eγ1). In many cases, esti-
mation of c1c2 by estimating c1 and c2 separately is more
efficient than the direct Crude Monte Carlo (CMC) esti-
mation of �. Moreover, the same arguments may be used

Stat Comput (2012) 22:1–16 3

when the interval [0, γ] is subdivided into multiple subinter-
vals [γ0, γ1), [γ1, γ2), . . . , [γT −1, γ], where 0 = γ0 < γ1 <

· · · < γT = γ . Again, let Eγt denote the event that the
process S reaches level γt before down-crossing level 0.
Since Eγ0,Eγ1 , . . . ,EγT

is a nested sequence of events, de-
noting ct = P(Eγt |Eγt−1), we obtain � = ∏T

t=1 ct .
The estimation of each ct is performed in the follow-

ing way. At stage t = 1 we start N0 × s1 (a fixed number)
of independent copies of X and simulate the correspond-
ing process S(X). Each copy of X is run until S(X) ei-
ther hits the set (−∞,0] or up-crosses the level γ1; that is,
each copy is run for a time period equal to min{Uγ1,U0}.
The number s1 is an integer referred to as the splitting fac-
tor at stage t = 1. Define I 1

j to be the indicator that the
j -th copy of S(X) hits the set [γ1,∞) before (−∞,0],
j = 1, . . . ,N0 × s1, and let N1 be the total number of copies
that up-cross γ1; that is,

N1 =
N0×s1∑
j=1

I 1
j .

An unbiased estimate for c1 is ĉ1 := N1
N0×s1

. For every real-
ization of S(X) which up-crosses γ1, we store in memory
the corresponding state Xτ at the time τ of crossing. Such
a state is referred to as the entrance state (Garvels 2000).
In the next stage, t = 2, we start s2 new independent copies
of the chain X from each of the N1 entrance states, giv-
ing a total of N1 × s2 new chains. Again, if we let I 2

j indi-
cate whether the j -th copy of X (starting from an entrance
state at level γ1) hits the set [γ2,∞) before (−∞,0], then
ĉ2 := N2

N1×s2
, where N2 = ∑N1×s2

j=1 I 2
j , is an unbiased esti-

mate of c2, see Garvels (2000). This process is repeated
for each subsequent t = 3, . . . , T , such that Nt−1 × st is
the simulation effort at stage t , and Nt is the number of
entrance states at stage t . The indicators {I t

j } at stage t

are usually dependent, and hence the success probabilities
{P(I t

j = 1)} depend on the entrance state from which a copy
of the chain X is started. It is well known (Garvels 2000;
Glasserman et al. 1996) that despite this dependence, the es-
timator

�̂ =
T∏

t=1

ĉt = NT

N0

T∏
t=1

s−1
t

is unbiased.
The idea of the splitting method is illustrated in Fig. 1,

where three level sets {x : S(x) = γt }, t = 0,1,2 are plot-
ted. Here three independent paths of the process S(X) are
started from level γ0 = 0, two of these paths die out by
down-crossing level 0, one of the paths up-crosses level γ1.
Three new independent copies of the chain are started from
the entrance state at level γ1 (encircled on the graph), two of
these copies down-cross 0, but one copy up-crosses level γ2.
Figure 2 shows a typical realization of a two-dimensional

Fig. 1 Typical evolution of the process S(X)

Fig. 2 Typical evolution of the splitting algorithm for a two-
dimensional Markov process {(X(1)

u ,X
(2)
u), u ≥ 0}

Markov process {(X(1)
u ,X

(2)
u), u ≥ 0} that corresponds to the

scenario described on Fig. 1.
For a given importance function S, the efficiency of the

splitting method depends crucially on the number of lev-
els T , the choice of the intermediate levels γ1, . . . , γT −1,
and the splitting factors s1, . . . , sT . Ideally one would select
the levels so that the conditional probabilities {ct } are not too
small and easily estimated via CMC. Assuming that the cost
of running the Markov process is independent of t , the total
simulation effort is a random variable with expected value

T∑
t=1

stE[Nt−1] = N0

T∑
t=1

st �(γt−1)

t−1∏
j=1

sj

= N0

T∑
t=1

st

t−1∏
j=1

cj sj

= N0

T∑
t=1

1

ct

t∏
j=1

cj sj . (3)

An inappropriate choice of the splitting factors may lead
to an exponential growth of the simulation effort. For ex-
ample, if cj sj = a > 1 for all j , then N0

∑T
t=1

1
ct

at grows

4 Stat Comput (2012) 22:1–16

exponentially in T . This is referred to as an explosion in
the splitting literature (Glasserman et al. 1998). Alterna-
tively, if cj sj = a < 1 for all j , then E[NT] = N0 aT decays
exponentially and with high probability NT (and hence �̂)
will be 0, making the algorithm inefficient. It is thus desir-
able that cj sj = 1 for all j , that is, the splitting is at criti-
cal value (Glasserman et al. 1998). In practice, one obtains
rough estimates {�j } of {cj } via a pilot run and then initial-
izes from each entrance state j = 1, . . . ,Nt , at every stage t ,
st = �−1

t paths. In case 1/�j is not an integer, one can gen-
erate a Bernoulli random variable with success probability
�−1

j − ��−1
j � and then add it to ��−1

j � to obtain a random
integer-valued splitting factor Sj with expected value 1/�j .
This version of the splitting algorithm is called the Fixed
Splitting (FS) implementation, because at every stage t one
generates a fixed expected number of copies �−1

t from each
entrance state. An alternative to the FS implementation is
the Fixed Effort (FE) implementation, where the simulation
effort is fixed to N at each stage, instead of the number of
copies (Garvels 2000). The estimator then is

�̂FE =
T∏

t=1

Nt

N
.

The FE implementation prevents explosions in the number
of total Markov chain copies, but has the disadvantage that
it is more difficult to analyze the variance of �̂FE (Garvels
2000; Garvels and Kroese 1998).

3 Splitting for static rare-event probability estimation

We now explain how one can obtain unbiased estimates of
the rare-event probability (2) using the splitting idea de-
scribed in the previous section. First, choose the importance
function S and partition the interval (−∞, γ] using interme-
diate levels −∞ = γ0 ≤ γ1 ≤ · · · ≤ γT −1 ≤ γT = γ . Note
that, unlike in the classical splitting, γ0 = −∞. We assume
that the sequence of levels is chosen such that the condi-
tional probabilities Pf (S(X) ≥ γt |S(X) ≥ γt−1) = ct , t =
1, . . . , T , are not rare-event probabilities, and that we have
rough estimates {�t } of {ct } available. These estimates can-
not usually be determined on-line, but we later explain how
we can construct the sequence {γt , �t }Tt=1 using the adap-
tive pilot algorithm described in Botev (2008). Without loss
of generality, we assume that generating random variables
from f is easy.

Algorithm 3.1 (GS algorithm for estimating � =
Pf (S(X) ≥ γ)) Given a sequence {γt , �t }Tt=1 and a sample
size N , execute the following steps.

1. Initialization. Set t = 1 and N0 = �1� N
�1

� (which ensures
that N0/�1 is an integer). Generate

X1, . . . ,XN0/�1 ∼iid f (x)

and denote X0 = {X1, . . . ,XN0/�1}. Let X1 = {X1,

. . . ,XN1} be the largest subset of elements in X0 for
which S(X) ≥ γ1 (points X1 and X2 on Fig. 3), and let
N1 be the size of X1. If N1 = 0, go to Step 4.

2. Markov chain sampling. For each Xi in Xt = {X1,

. . . ,XNt }, sample independently:

Yij ∼ κt (y |Yi,j−1), Yi,0 = Xi , j = 1, . . . , St i ,

(4)

where

St i −
⌊

1

�t+1

⌋
∼iid Ber

(
1

�t+1
−

⌊
1

�t+1

⌋)
, i = 1, . . . ,Nt .

Here κt (y |Yi,j−1) is a Markov transition density with
stationary pdf

ft (y) = f (y)I {S(y) ≥ γt }
�(γt)

.

Each St i is a splitting factor equal to � 1
�t+1

� plus
a Bernoulli random variable with success probability

1
�t+1

− � 1
�t+1

�. Reset

Xt ≡ {Y1,1,Y1,2, . . . ,Y1,St,1, . . . ,YNt ,1,YNt ,2, . . . ,

YNt ,St,Nt
},

where Xt contains |Xt | = ∑Nt

i=1 St i elements and
E[|Xt | |Nt] = Nt

�t+1
. For example, on Fig. 3 we have

X1 = {Xij , i = 1,2; j = 1, . . . ,10} and |X1| = 20.
3. Updating. Let Xt+1 = {X1, . . . ,XNt+1} be the largest

subset of elements in Xt for which S(X) ≥ γt+1. Here,
Nt+1 is the random number of vectors in Xt for which
S(X) ≥ γt+1 (for example, X2 = {X1,j , j = 2,6,7} and
N2 = 3 on Fig. 3). Reset the level counter t := t + 1.

4. Stopping condition. If t = T or Nt = 0, set Nt+1 =
Nt+2 = · · · = NT = 0 and go to Step 5; otherwise, repeat
from Step 2.

5. Final estimator. Deliver the unbiased estimate of the
rare-event probability:

�̂ = NT

N0

T∏
t=1

�t , (5)

and the unbiased estimate of the variance:

̂Var(�̂) =
∏T

t=1 �2
t

N0(N0 − �1)

N0/�1∑
i=1

(
Oi − �1

N0
NT

)2

, (6)

Stat Comput (2012) 22:1–16 5

Fig. 3 Typical evolution of the GS algorithm in a two dimensional
state space

where Oi denotes the number of points in XT that share a
common history with the i-th point from the initial pop-
ulation X0 and are above γT = γ at the final t = T stage.
For example, on Fig. 3 we have O1 = 11 and Oi = 0
for i = 2, . . . ,10, since only points X1,2,k, k = 3, . . . ,10
and X1,6,k, k = 7,8,10 are above γ3 threshold and they
are all part of a branch that has X1 at its root.

In Step 2 of Algorithm 3.1 a move from X to Y (using
the transition density κt (y |x)) can, for example, consist of
drawing Y from the conditional pdf

Yi ∼ ft (yi |Y1, . . . , Yi−1,Xi+1, . . . ,Xn), i = 1, . . . , n,

as in the Gibbs sampling method (Rubinstein and Kroese
2007). The transition density is then

κt (y |x) =
n∏

i=1

ft (yi |y1, . . . , yi−1, xi+1, . . . , xn). (7)

Alternatively, a move from X to Y may consist of a Hit-and-
Run move (Chen et al. 2000):

1. Generate a uniformly distributed point on the surface of
the n-dimensional hyper-sphere:

d =
(

Z1

‖Z‖ , . . . ,
Zn

‖Z‖
)T

, Z ∼ N(0; I).

Here ‖z‖2 def= z2
1 + · · · + z2

n.
2. Given the current state X, generate � from the density:

q(λ |X,d)
def= f (X + λd)∫ ∞

−∞ f (X + ud)du
.

3. The new state of the chain is:

Y =
{

X + �d, if S(X + �d) ≥ γt ,

X, otherwise.

We illustrate Algorithm 3.1 on a typical problem of the
form (2) with three levels (T = 3). Figure 3 depicts the
GS recipe as applied to a particular two-dimensional rare-
event simulation problem. The three level sets {x : S(x) =
γt }, t = 1,2,3 are plotted as nested curves and the entrance
states at each stage are encircled. We assume that the {γt }
are given and that �t = 1/10 for all t ; that is, the splitting
factors are st = �−1

t = 10 for all t . Initially, at stage t = 1,
we generate N0/�1 = 10 independent points from the den-
sity f (x). We denote the points X1, . . . ,X10. Two of these
points, namely X1 and X2, are such that both S(X1) and
S(X2) are above the γ1 threshold. Points X1 and X2 are thus
the entrance states for the next stage of the algorithm, and
N1 = ∑10

j=1 I {S(Xj) ≥ γ1} = 2. In stage t = 2 we start in-
dependent Markov chains from each of the entrance states
X1 and X2. The only requirement is that each Markov chain
has a stationary distribution equal to the conditional distrib-
ution of X given that S(X) ≥ γ1, where X ∼ f . The length,
or the number of steps, of both chains is equal to s2 = 10.
Thus, the simulation effort for t = 2 is N1 ×s2 = 20. In other
words, in stage t = 2 we generate

Xi,j ∼ κ1(x |Xi,j−1), j = 1, . . . ,10, i = 1,2,

where Xi,0 = Xi , and κ1(· | ·) is a Markov transition density
with stationary pdf f1 given by (t = 1)

ft (x) = f (x)I {S(x) ≥ γt }
�(γt)

. (8)

Figure 3 depicts the Markov chains as branches sprout-
ing from points X1 and X2. Note that these branches are
drawn thicker than branches generated at stage t = 3. None
of the points on the X2 branch have a value S above γ2.
Points X1,2,X1,6,X1,7 from the X1 branch (encircled) make
it above the γ2 threshold. These three points will be the en-
trance states for stage t = 3 of the algorithm. Thus,

N2 =
10∑

j=1

(
I {S(X1,j) ≥ γ2} + I {S(X2,j) ≥ γ2}

) = 3.

In the final stage we start three independent Markov chains
with stationary density f2 from each of the entrance states
X1,2,X1,6,X1,7. The length of each chain is s3 = 10. Thus,
the simulation effort for stage t = 3 is 3 × 10 = 30, and we
generate

X1,j,k ∼ κ2(x |X1,j,k−1), k = 1, . . . ,10, j = 2,6,7,

6 Stat Comput (2012) 22:1–16

Fig. 4 Typical evolution of S(X) corresponding to the scenario in
Fig. 3

where X1,j,0 = X1,j , and κ2(· | ·) is a Markov transition
density with stationary density f2 defined in (8). Figure 3
shows that the points that up-cross level γ3 are X1,2,k , k =
3, . . . ,10 and X1,6,k , k = 7,8,10. Thus, in the last stage
T = 3 we have NT = 11. Finally, an estimator of �(γ3) is

�̂(γT) = NT

N0

T∏
t=1

s−1
t ,

and this gives the estimate 11×10−3. Proposition 3.1 shows
that such an estimator is unbiased. Figure 4 shows the behav-
ior of the importance function process S(X) for every chain
starting from the entrance states X1,X2 and X1,2,X1,6,X1,7

(encircled). Here Si,j,k = S(Xi,j,k) and time is measured
in terms of the number of Markov chain moves. Note that
the Markov chain paths generated at stage t = 2 are drawn
thicker. The three chains starting from X1,2,X1,6,X1,7 are
all dependent, because they share a common history, namely,
the branch with root at X1. These three chains, however, are
conditionally independent given the branch with root at X1.

Example 3.1 (SAT Counting Problem) There are many dif-
ferent mathematical formulations of the Boolean Satisfia-
bility problem (SAT) problem (Gu et al. 1996). Here we
use a formulation which is convenient for the problems
from the SATLIB website www.satlib.org. Let x =
(x1, . . . , xn)

′, xi ∈ {0,1} denote a truth assignment. Let A =
(Aij) denote a m × n clause matrix, that is, all elements of
A belong to the set {−1,0,1}. Define b = (b1, . . . , bm)′ to
be the vector with entries bi = 1 − ∑n

j=1 I {Aij = −1}. In
the standard SAT problem one is interested in finding a truth
assignment x for which Ax ≥ b. In the SAT counting prob-
lem, one is interested in finding the total number of truth as-
signments x for which Ax ≥ b. The SAT counting problem
is considered more complex than the SAT problem (Rubin-
stein and Kroese 2007; Welsh 1993), and in fact the SAT
counting problem is known to be an #P complete problem.

Table 1 The sequence of levels and splitting factors used in Algo-
rithm 3.1 for instance uf75-01

t γt �t

1 285 0.4750

2 289 0.4996

3 292 0.4429

4 294 0.4912

5 296 0.4369

6 298 0.3829

7 300 0.3277

8 302 0.2676

9 303 0.4982

10 304 0.4505

11 305 0.4359

12 306 0.4239

13 307 0.3990

14 308 0.3669

15 309 0.3658

16 310 0.3166

t γt �t

17 311 0.3072

18 312 0.3104

19 313 0.2722

20 314 0.2253

21 315 0.2235

22 316 0.2071

23 317 0.1892

24 318 0.1722

25 319 0.1363

26 320 0.1413

27 321 0.1237

28 322 0.0953

29 323 0.0742

30 324 0.0415

31 325 0.0115

Here we aim to find the total number of solutions of the SAT
problem, that is, we wish to estimate the size of the set

X∗ =
{

x :
m∑

i=1

I

{ n∑
j=1

Aijxj ≥ bi

}
≥ m

}
.

To estimate |X∗| we consider the problem of estimating the
probability

� = P(S(X) ≥ m),

{Xj } ∼iid Ber(1/2), (9)

S(x) =
m∑

i=1

I

{ n∑
j=1

Aijxj ≥ bi

}
,

via Algorithm 3.1. Thus, each row of A represents a clause
and S(x) is the number of clauses that are satisfied. The size
of the set is then estimated from the relation |X∗| = � × 2n.
As a numerical example, consider the uf75-01 problem
from the SATLIB website with m = 325 and n = 75. We
applied Algorithm 3.1 with N = 104 and the splitting factors
and levels given in Table 1, giving a total simulation effort of
about 2.8×106 samples (the expected value is given by (3)),
including the pilot run.

The Markov transition density κt in Step 2 of Algo-
rithm 3.1 is given by (7) and the stationary pdf is

ft (x) = 1

2n�(γt)
I

{ m∑
i=1

I

{ n∑
j=1

Aijxj ≥ bi

}
≥ γt

}
,

xj ∈ {0,1}.

Stat Comput (2012) 22:1–16 7

In other words, a move from x to y using the density κt (y |x)

is equivalent to the following Gibbs sampling procedure.

1. Given a state x such that S(x) ≥ γt , generate Y1 ∼
ft (y1 |x2, . . . , xn);

2. For each k = 2, . . . , n − 1, generate Yk ∼ ft (yk |Y1, . . . ,

Yk−1, xk+1, . . . , xn);
3. Finally, generate Yn ∼ ft (yn |Y1, . . . , Yn−1).

Note that one can write the conditional density of Yk as

ft (yk |Y1, . . . , Yk−1, xk+1, . . . , xn)

=
{

pk, yk = 1,

1 − pk, yk = 0,

where pk = I {s+
k ≥γt }

I {s+
k ≥γt }+I {s−

k ≥γt } with s−
k = S(Y1, . . . , Yk−1,

0, xk+1, . . . , xn), s+
k = S(Y1, . . . , Yk−1,1, xk+1, . . . , xn).

With the above setup, we obtain ̂|X∗| = 2.31 × 103 with
estimated relative error of 5.8%. Total enumeration of all
possible truth assignments for which Ax ≥ b would require
the equivalent of a simulation effort of size 275 ≈ 3.7 × 1022

and is hence impracticable. To achieve the same relative
error using CMC would require a sample size of approxi-
mately N = 4.8 × 1021. Thus, we see that with a minimal
amount of additional work the GS algorithm has reduced
the simulation effort by a factor of approximately 1015. Note
that a better choice for the importance function S may allow
for all conditional probabilities ct = P(S(X) > γt |S(X) >

γt−1) to be more or less equal, thus giving a superior esti-
mate. However the optimal choice of the importance func-
tion in splitting is still an unresolved problem (Garvels 2000;
L’Ecuyer et al. 2007).

We can put a deterministic lower bound on |X∗|. The
population XT at the final iteration of Algorithm 3.1 is ap-
proximately uniformly distributed over the set X∗ and as a
result can be used to find some of the distinct solutions of the
SAT problem. We ran Algorithm 3.1 10 times with N = 104

and were able to find 2258 distinct solutions amongst the
10 final populations generated at iteration T . Thus, we con-
clude that |X∗| ≥ 2258.

Finally, we note that significant variance reduction can be
achieved when the GS algorithm is combined with the Cross
Entropy method (Botev 2009). Table 2 shows the estimates
with their respective relative error obtained using the com-
bined GS importance sampling estimator described in Botev
(2008, 2009). The SAT instances are from Hoos and Stützle
(2000).

Concerning the properties of the estimator (5) and its
variance, we have the following result.

Proposition 3.1 (Unbiasedness of the GS estimator) The es-
timator in (5) is an unbiased estimator of �, and (6) is an
unbiased estimator of Var(�̂).

Table 2 Twelve SAT counting problems with the current best esti-
mate obtained via the combined GS importance sampling estimator
described in Botev (2009)

Case number SAT Instance ̂|X∗| Relative error

1 uf75-01 2258.28 0.03%

2 uf75-02 4590.02 0.07%

3 uf250-01 3.38 × 1011 4.4%

4 RTI_k3_n100_m429_0 20943.79 0.01%

5 RTI_k3_n100_m429_1 24541.70 0.02%

6 RTI_k3_n100_m429_2 3.9989 0.01%

7 RTI_k3_n100_m429_3 376.016 0.01%

8 RTI_k3_n100_m429_4 4286.28 0.3%

9 RTI_k3_n100_m429_5 7621.11 0.7%

10 RTI_k3_n100_m429_6 2210.20 0.01%

11 RTI_k3_n100_m429_7 1869.64 0.3%

12 RTI_k3_n100_m429_8 1832.29 0.01%

Proof Using the notation of Fig. 3, we can write

NT =
∑

p

T∏
t=1

I {S(Xp1,...,pt) ≥ γt },

where p = (p1, . . . , pT), and in the sum above p1 ranges
over 1, . . . ,N0/�1 and pt , t ≥ 2, ranges over 1, . . . ,

St−1,pt−1 . In addition, Xp1 ∼ f (·), independently for all p1,
and for t ≥ 2 we have Xp1,...,pt ∼ κt−1(· |Xp1,...,pt−1) with
Xp1,...,pt−1,0 = Xp1,...,pt−1 .

Since the splitting factors {St,pt } are independent of
{Xp1,Xp1p2 , . . . ,Xp}, we can write

E[NT | {St,pt }] =
∑

p

E

T∏
t=1

I {S(Xp1,...,pt) ≥ γt }.

The expectation under the multiple summation is

∫
· · ·

∫
f (xp1)I{S(xp1)≥γ1}

×
T∏

t=2

pt∏
l=1

κt−1(xp1,...,pt−1,l |xp1,...,pt−1,l−1)

× I {S(xp1,...,pt) ≥ γt } dxp1dxp1,...,pt ,

which by integrating in the order defined by dxp1dxp1,...,pt

and each time applying the invariance property

∫
f (x)I {S(x) ≥ γt }κt (y |x) dx

= f (y)I {S(y) ≥ γt }, for all t, (10)

8 Stat Comput (2012) 22:1–16

yields � = �(γT) = ∫
f (x)I {S(x) ≥ γT }dx. Therefore

E[NT] = E[E[NT | {St,pt }]] = �E

[∑
p

1

]
= �

N0∏T
t=1 �t

,

and the estimator (5) is unbiased. To derive the variance
of (5), observe that by definition

Op1 = I {S(Xp1) ≥ γ1}
∑

p2,...,pT

T∏
t=2

I {S(Xp1,...,pt) ≥ γt }.

Since the {Xp1} are independent and NT = ∑
p1

Op1 , we

have Var(NT) = N0
�1

Var(Op1), from which (6) follows. �

Whatever the mixing speed of the Markov chains, the es-
timator �̂ is unbiased. However, that does not mean that the
mixing of the chain is irrelevant. In the extreme case of no
mixing at all, that is, when the chain does not move in the
sample space, the estimator �̂ reduces to the unbiased Crude
Monte Carlo estimator of the rare-event probability �.

4 An adaptive generalized splitting algorithm

We now describe the algorithm which we use as a pilot run
to estimate the splitting factors {�t } and the levels {γt }. It is
the earliest version of the GS algorithm (Botev 2008), and
we will refer to it as the ADAM algorithm, which stands
for ADAptive Multilevel splitting algorithm. For example,
Table 1 is created using Algorithm 4.1 with N = 1000, � =
0.5, and the Markov transition density in Example 3.1.

Algorithm 4.1 (ADAM Algorithm) Given the sample size
N and the parameters � ∈ (0,1) and γ , execute the follow-
ing steps.

1. Initialization. Set the counter t = 1.
(a) Generate X1, . . . ,XN ∼ f (x) and denote X0 =

{X1, . . . ,XN }.
(b) Let

γ̃t = argmin
γ∈{S1,...,SN }

{
1

N

N∑
i=1

I {S(Xi) ≥ γ } ≤ �

}
,

Xi ∈ Xt−1. (11)

That is, γ̃t is the smallest value from amongst S(X1),

. . . , S(XN) such that 1
N

∑N
i=1 I {S(Xi) ≥ γ̃t } ≤ �.

Set γt = min{γ, γ̃t }. Let Xt = {X1, . . . ,XNt } be the
largest subset of elements in Xt−1 for which S(X) ≥
γt . Let Nt = |Xt |. Then, �t = Nt

N
is an approxima-

tion of the probability ct = Pf (S(X) ≥ γt |S(X) ≥
γt−1), γ0 = −∞.

2. Markov chain sampling. Identical to Step 2 of Algo-
rithm 3.1, except that in (4) the splitting factors are gen-
erated in a different way, namely,

St i =
⌊

N

Nt

⌋
+ Bi, i = 1, . . . ,Nt .

Here each B1, . . . ,BNt are Ber(1/2) random variables
conditional on

∑Nt

i=1 Bi = N mod Nt . More precisely,
(B1, . . . ,BNt) is a binary vector with joint pdf

P(B1 = b1, . . . ,BNt = bNt)

= (Nt − r)! r!
Nt ! I {b1 + · · · + bNt = r},

bi ∈ {0,1},
where r = N mod Nt . As a consequence of the different
generation of the splitting factors, after resetting

Xt ≡ {Y11,Y12, . . . ,Y1,St1 , . . . ,YNt 1,YNt 2, . . . ,

YNt ,StNt
},

the set Xt contains exactly N elements.
3. Updating and Estimation. Reset the counter t := t + 1

and proceed exactly as in part (b) of Step 1.
4. Stopping condition. If γt = γ , set T = t and go to Step 5;

otherwise, repeat from Step 2.
5. Final estimates. Deliver the estimated levels γ1, . . . , γT ,

the splitting factors �1, . . . , �T , and the (biased) estimate
of the rare-event probability:

�̂ADAM =
T∏

t=1

�t =
∏T

t=1 Nt

NT
. (12)

The main differences between the ADAM algorithm and
the GS algorithm are the following. First, the difference in
Step 2 of the ADAM algorithm is that the splitting factors
are generated in a way that fixes the simulation effort at each
stage to be N , similar to the fixed effort splitting in Garvels
and Kroese (1998). Second, as seen from (11), the levels {γt }
are determined online using the random populations {Xt }.
As a consequence of these differences, the estimator �̂ADAM

is not unbiased and the algorithm does not provide a simple
estimate for the variance of �̂ADAM.

The ADAM algorithm can be used as a stand-alone al-
gorithm in the sense that it can provide an estimate of �

without the need for any preliminary simulation. For many
medium scale problems we could not detect any substantive
difference in the numerical performance of Algorithm 4.1
(ADAM) versus Algorithm 3.1 (GS). For example, for the
cost of 3.1 million samples (N = 105, � = 0.5) Algo-
rithm 4.1 gave an estimate of ̂|X∗| = 2.26 × 103 with es-
timated relative error of 3%. However, for large scale prob-
lems we detected some bias in the estimates provided by Al-
gorithm 4.1, and the estimated relative error (from repeated

Stat Comput (2012) 22:1–16 9

independent runs of ADAM) seemed to underestimate the
true relative error. We thus recommend using the GS algo-
rithm (with ADAM used for the pilot run) instead of using
ADAM by itself, because the GS algorithm gives provably
unbiased estimates for � and the variance of �̂. We refer to
Cérou et al. (2009) for some results and discussion about the
asymptotic bias.

5 Fixed effort generalized splitting

Recall that the GS algorithm is a generalization of the clas-
sical Fixed Splitting (FS) algorithm described in the intro-
duction and presented in Garvels and Kroese (1998). It is
possible to develop a generalized version of the FE split-
ting method, so that the possibility of population explosions
does not exist. Since the FE splitting in Garvels and Kroese
(1998) can be interpreted as a particular SMC algorithm (Jo-
hansen et al. 2006) (with systematic resampling), the follow-
ing algorithm can also be interpreted as an SMC algorithm.

Algorithm 5.1 (Fixed Effort Generalized Splitting) Given a
sequence {γt }Tt=1 and sample size N , execute the following
steps.

1. Initialization. Set the counter t = 1.
(a) Generate X1, . . . ,XN ∼iid f (x) and let X0 =

{X1, . . . ,XN }.
(b) Let Xt = {X1, . . . ,XNt } be the largest subset of el-

ements in Xt−1 for which S(X) ≥ γt , where Nt =
|Xt |. If Nt = 0, go to Step 4.

2. Markov chain sampling. For each Xi in Xt = {X1,

. . . ,XNt }, sample independently:

Yi,j ∼ κt (y |Xi), j = 1, . . . , St i , (13)

where St i = � N
Nt

� + Bi , i = 1, . . . ,Nt , and κt (y |Xi) is
a Markov transition density with stationary pdf ft (y) =
f (y)I {S(y)≥γt }

�(γt)
, and each Bi is a Ber(1/2) random variable

conditional on
∑Nt

i=1 Bi = N mod Nt . Reset

Xt = {Y1,1,Y1,2, . . . ,Y1,St 1 , . . . ,YNt ,1,YNt ,2, . . . ,

YNt ,St Nt
},

where Xt contains |Xt | = ∑Nt

i=1 St i = N elements.
3. Updating. Reset the counter t = t + 1 and proceed ex-

actly as in part (b) of Step 1.
4. Stopping condition. If t = T or Nt = 0, set Nt+1 =

Nt+2 = · · · = NT = 0 and go to Step 5; otherwise, repeat
from Step 2.

5. Final estimator. Deliver the unbiased estimate �̂FE =
1

NT

∏T
t=1 Nt .

We call Algorithm 5.1 the Fixed Effort Generalized Split-
ting (FE-GS) algorithm to distinguish it from the GS Algo-
rithm 3.1. The main difference between the FE-GS and GS
algorithms is in Step 4, and in particular (13) and (4). In
FE-GS the {St i} in (13) depend on the random variable Nt .
Thus, the possibility of explosion is avoided by making the
splitting dependent on the history of the process. The simu-
lation effort at each stage t is fixed to be

∑Nt

i=1 St i = N . Fur-
thermore, the {Yi,j } are sampled by restarting the Markov
transition density κt from the same point Xi . In contrast, in
the GS algorithm the {St i} in (4) are completely indepen-
dent of {Nt } and the past performance of the algorithm. In
addition, each Yi,j is generated from κt (y |Yi,j−1) instead
of κt (y |Xi), thus decreasing the dependence between, say,
Yi,1 and Yi,Nt , and giving a more reliable estimate in Step 5.
Another advantage of the GS algorithm is the availability of
an estimate of the relative error from a single simulation run.
To estimate Var(�̂FE) we have to run the FE-GS algorithm a
number of times independently.

Similar to classical FE splitting, the FE-GS estimator is
unbiased. For a simple proof see Botev (2009) and for a
proof in the more general SMC setting see Johansen et al.
(2006).

Example 5.1 (Numerical Comparison Between GS and
FE-GS) Consider estimating the probability �(n) =
P(

∑n
i=1 Xi ≥ n), X1, . . . ,Xn ∼iid Ber(1/2). We compare

the performance of the FE-GS and GS algorithms on this
simple problem using the same simulation effort for both
algorithms, and the levels and splitting factors {γt , �t } de-
termined from a single common run of ADAM with � = 0.1
and Ñ = 104. Table 3 shows the results of the simulation
experiment. The first column shows the simulation effort
used for 10 independent runs of the FE-GS method (so that
each run incurs 1/10 of the total simulation effort). The GS

Table 3 Comparison between GS (fixed splitting) and FE-GS (fixed
effort) implementations. The relative error of �̂(n) is given in the brack-
ets

Total n �̂(n)
√

Var(�̂(n))/Var(�̂FE(n))

simulation

effort

106 20 9.6 × 10−7 (3%) 0.26

106 30 9.1 × 10−10 (2%) 0.20

106 40 9.1 × 10−13 (3%) 0.02

106 50 9.1 × 10−13 (3%) 0.02

106 50 9.4 × 10−16 (4%) 0.03

106 60 9.3 × 10−19 (4%) FE-GS fails

106 70 8.9 × 10−22 (5%) FE-GS fails

107 80 8.5 × 10−25 (2%) FE-GS fails

107 90 8.2 × 10−28 (2%) FE-GS fails

107 100 7.7 × 10−31 (2%) FE-GS fails

10 Stat Comput (2012) 22:1–16

Table 4 Comparative performance between the FE-GS and the GS algorithms on the SAT counting problem. The instances are the same as in
Table 2

Case 1 2 3 4 5 6 7 8 9 10 11 12

√
Var(�̂)√

Var(�̂FE)
0.53 0.13 0.10 0.15 0.29 0.05 0.28 0.04 0.26 0.23 0.62 0.42

method uses a slightly smaller (random) simulation effort.
The third column shows the GS estimate �̂(n) with the esti-
mated relative error. The last column shows the ratio of the
relative error between �̂(n) (GS estimator) and �̂FE(n) (FE-
GS estimator). The variance of �̂FE(n) is estimated from the
ten independent runs. A value of 0.1 means that for the same
simulation effort the GS estimator �̂(n) gives a relative er-
ror which is 10% of the relative error of the FE-GS estimator
�̂FE(n). The table suggests that the variance of the FE-GS es-
timator can be as much as 5000 times the variance of the GS
estimator. More importantly, the FE-GS yields an infinite
relative error for n ≥ 60, because the population of points
becomes extinct before reaching the final level (γT = n). In-
creasing the simulation effort to 107 did not help the FE-GS
algorithm.

As another numerical example we consider the SAT
counting instances from Table 2. In all cases the simula-
tion effort for both the FE-GS and GS is kept the same
and such that N = 105 for the GS algorithm and with
{γt , �t } determined by the ADAM algorithm with � = 0.1
and Ñ = 104. The second row of Table 4 shows the ra-
tio (Var(�̂)

/
Var(�̂FE))1/2. It can be seen that the GS algo-

rithm performs significantly better than the FE-GS algo-
rithm.

As mentioned in the introduction, the GS algorithm per-
forms better than the FE-GS algorithm, because there is no
apparent bootstrap resampling step in the GS algorithm. In
summary, we recommend using the ADAM or GS algo-
rithms, instead of the FE-GS algorithm.

6 Estimation of integrals of the form Ep[H(Z)]

In the last section we show how one can estimate rare-event
probabilities of the form (2) using either the ADAM or GS.
In this section we extend the applicability of these algo-
rithms to the more general problem of estimating integrals of
the form (1). To this end we rewrite (1) using the following
notation:

Z = Ep[H(Z)] =
∫

p(z)H(z)dz, (14)

so that now the aim is to estimate Z . We show that the GS al-
gorithm provides an unbiased estimate of Z . First, note that
Ep[H(Z)] = 2Ep[H(Z)I{H(Z)>0}] − Ep[|H(Z)|], so that

without loss of generality we can consider estimating (14)
for H(z) ≥ 0. Second, let p̃(z) be a proposal density from
which it is easy to sample and which dominates p(z)H(z)
in the sense that

p(z)H(z) ≤ ea γ+b p̃(z), for all z ∈ R
n, (15)

for some γ ≥ (ln(Z) − b)/a, where a > 0 and b ∈ R are
fixed arbitrary constants. Note that the constant ea γ+b is
an upper bound on Z . Typically we have ea γ+b � Z or
γ � (ln(Z)− b)/a and in many cases it is natural to choose
p̃ ≡ p.

Algorithm 6.1 (Estimation of Z)

1. Inputs. Suppose we are given a proposal p̃(z), parame-
ters γ, a, b such that (15) holds, and algorithm A. Here A
denotes either the GS, or the ADAM algorithm.

2. Estimation of �. Use algorithm A to estimate

�(γ) = Ef [I {S(X) ≥ γ }] =
∫

f (x)I {S(x) ≥ γ }dx,

(16)

where the vector x = (z, u)′ ∈ R
n × [0,1] augments z

with the variable u ∈ [0,1], the value S(x) is given
by S(x) = 1

a
ln(

p(z)H(z)
u p̃(z)) − b

a
, and the density f (x) by

f (x) = p̃(z) × I {0 ≤ u ≤ 1}, x ∈ R
n+1 .

3. Estimation of Z . An estimate of Z in (14) is: Ẑ =
ea γ+b �̂(γ).

The following proposition shows that the estimate Ẑ is
unbiased if A is the GS algorithm.

Proposition 6.1 (Relation between � and Z) The pdf

p(z)H(z)
Z (17)

is the marginal density of fT (x) = 1
�(γT)

f (x)I {S(x) ≥ γT }
(recall that γT = γ), and Z = ea γ+b�(γ).

Proof Note that u is an auxiliary variable similar to the one
used in the Accept-Reject method for random variable gen-
eration (Robert and Casella 2004). From (15) it follows that
(with x = (z, u)′ so that xn+1 = u):

Stat Comput (2012) 22:1–16 11

∫
R

fT (x) dxn+1

=
∫

R

p̃(z)I {0 ≤ u ≤ 1}
�(γ)

I

×
{

1

a
ln

(
p(z)H(z)

up̃(z)

)
− b

a
≥ γ

}
du

= p̃(z)
�(γ)

∫ 1

0
I

{
u ≤ p(z)H(z)

eaγ+bp̃(z)

}
du

= p(z)H(z)
�(γ)ea γ+b

,

because p(z)H(z)
eaγ+bp̃(z)

≤ 1 for all z by (15). Since Z is the
normalizing constant of p(z)H(z), we conclude that Z =
ea γ+b�(γ). �

Example 6.1 (Two Humps Function) Consider the prob-
lem of estimating without bias the normalizing constant
Z = Z(λ) of the pdf proportional to

h(z) = exp

(
−z2

1 + z2
2 + (z1z2)

2 − 2λz1z2

2

)
, z ∈ R

2,

for some parameter λ ∈ R, say λ = 12. The density
h(z)/Z(12) is plotted on the left panel of Fig. 6. This is

a problem of the form (14) with p(z) = 1
2π

exp(− z2
1+z2

2
2)

and H(z) = 2π exp(− (z1z2)
2−2λz1z2

2). Let p̃(z) = p(z),

a = 1
2 , b = λ2

2 + ln(2π), and A be the GS algorithm in
Step 1 of Algorithm 6.1. Then, (16) can be written as
�(γ) = Pf (−(Z1Z2 −λ)2 − 2 ln(U) ≥ γ), where the vector
x = (z, u)′ is augmented such that

f (x) = 1

2π
exp

(
−z2

1 + z2
2

2

)
× I {0 < u < 1},

and the level γ = 0 is such that (15) holds. To apply the GS
algorithm for the estimation of (16), we need to specify the
transition pdf κt with stationary density

ft (x) = f (x)I {−(z1z2 − λ)2 − 2 ln(u) ≥ γt }
�(γt)

.

A move from X to X∗ using the transition density κt (X∗ |X)

consists of the following (systematic) Gibbs sampling pro-
cedure.

Algorithm 6.2 (Transition density κt (X∗ |X))

1. Given a state X = (Z1,Z2,U)′ for which S(X) ≥ γt ,
generate Z∗

1 ∼ ft (z
∗
1 |Z2,U); that is, draw Z∗

1 from a
truncated standard normal density on the interval [I1, I2],
where I1 = min{λ−μ

Z2
,

λ+μ
Z2

}, I2 = max{λ−μ
Z2

,
λ+μ
Z2

}, and

μ = √−γt − 2 ln(U).

Table 5 Levels and splitting factors used to compute the normalizing
constant of h(z)

t 1 2 3 4 5 6

γt −117.91 −77.03 −44.78 −20.18 −4.40 0

�t 0.1 0.1 0.1 0.1 0.1 0.2853

2. Generate Z∗
2 ∼ ft (z

∗
2 |Z∗

1 ,U); that is, draw Z∗
2 from a

truncated standard normal density on the interval [I1, I2],
where I1 = min{λ−μ

Z∗
1

,
λ+μ
Z∗

1
}, I2 = max{λ−μ

Z∗
1

,
λ+μ
Z∗

1
}, and

μ = √−γt − 2 ln(U).
3. Generate U∗ ∼ ft (u |Z∗

1 ,Z∗
2), that is, draw a uniform

random variable U∗ on the interval [0,μ], where

μ = min

{
1, exp

(
−γt + (Z∗

1Z∗
2 − λ)2

2

)}
.

Output X∗ = [Z∗
1 ,Z∗

2 ,U∗].

To estimate � we apply the GS algorithm with N = 2000,
λ = 12, and the levels and splitting factors in Table 5.

We obtain �̂(γ) = 2.92 × 10−6 with estimated relative
error of 5%. Hence, in Step 3 of Algorithm 6.1 we obtain
Ẑ = �̂(γ) × ea γ+b = �̂(γ) × 2πeλ2/2 = 3.41 × 1026 with a
relative error of 5%. Note that Table 5 is computed using
the ADAM algorithm with � = 0.1, N = 2000 and using
the same transition density κt . The combined simulation ef-
fort of the GS algorithm and the ADAM algorithm is about
1.2×105 samples. In contrast, CMC estimation of Z via the
estimator 1

M

∑M
i=1 H(Zi), {Zi}iid ∼ p(z), M = 1.2 × 105

gives an estimate of 1.6 × 1026 with estimated relative error
of 60%.

For this two-dimensional example we are able to ver-
ify the simulation results using deterministic quadrature. An
approximate value Z(12) ≈ 3.5390 × 1026 is obtained us-
ing the deterministic recursive Simpson’s rule (Gander and
Gautschi 2000). The constant Z in the next example, how-
ever, cannot be easily computed using an alternative method
due to the high-dimensionality of the problem.

Example 6.2 (Rosenbrock function) Consider computing
the normalizing constant of the pdf proportional to

h(z) = exp(−λR(z)), zi ∈ [−2,2], i = 1, . . . , n,

where R(z) = ∑n−1
i=1 (100(zi+1 − z2

i)
2 + (zi − 1)2) is the

Rosenbrock function in R
n, (Rubinstein and Kroese 2004).

Again, the problem is of the form (14), with p(z) =
1/4n, z ∈ [−2,2]n and H(z) = 4nh(z). Let p̃(z) = p(z),
a = λ and b = ln(4n). Then, (16) can be written as �(γ) =
Pf (− ln(U)

λ
− R(Z) ≥ γ), where

f (x) =
∏n

i=1 I {−2 ≤ zi ≤ 2}
4n

×I {0 < u < 1}, x = (z, u)′,

12 Stat Comput (2012) 22:1–16

and γ = 0 is such that (15) is a tight bound. To estimate
� we apply the ADAM algorithm using a transition density
κt (x∗ |x) with stationary pdf

ft (x) = f (x)I {− ln(u)
λ

− R(z) ≥ γt }
�(γt)

.

A move from X = (Z,U)′ to X∗ = (Z∗,U∗)′ uses Gibbs
sampling as follows. Given a state X = (Z,U)′ such that
S(X) ≥ γt , we generate U∗ ∼ ft (u |Z). Then, for each
j = 1, . . . , n − 1 we generate Z∗

j ∼ ft (zj |U∗,Z∗
1 , . . . ,

Z∗
j−1,Zj+1, . . . ,Zn). The distribution of each Z∗

j is uni-
form on the set {[r1, r2] ∪ [r3, r4]} ∩ [−2,2], where r1 <

r2, r3 < r4 are the real roots of a certain quartic equa-
tion a1x

4 + a2x
3 + a3x

2 + a4x + a5 = 0. Depending on
the coefficients, the quartic equation has either 2 or 4 real
roots (r3 = r1 and r4 = r2). Finally, we generate Z∗

n ∼
ft (zn |U∗,Z∗

1 , . . . ,Z∗
n−1). The random variable Z∗

n has uni-
form distribution on the set [r1, r2] ∩ [−2,2], where r1 < r2

are the roots of a certain quadratic equation a1x
2 + a2x +

a3 = 0. For more details see Botev (2009).
As a numerical example, consider the case where λ = 104

and n = 10. We run the ADAM algorithm 400 indepen-
dent times with � = 0.5 and N = 103, and obtained �̂ =
9.7 × 10−36 with estimated relative error (using the data
from the 400 runs) of 7%. Therefore, Ẑ = �̂ × eaγ+b =
�̂× 410 ≈ 1.0 × 10−29 with relative error of 7%. Each run of
the ADAM algorithm took about 117 iterations (T = 117),
giving a total simulation effort of N ×400×T = 46.8×106

samples. For the same simulation effort the CMC estima-
tor 1

M

∑M
i=1 exp(−λR(Z)), M = 46.8×106, with {Zi} ∼iid

U[−2,2]10 gives an estimated relative error of 99.9%. To
achieve a relative error of 7% using CMC estimation would
require a simulation effort of approximately 2 × 1037 sam-
ples.

Remark 6.1 (Optimization of Rosenbrock function) Numer-
ical minimization of the Rosenbrock function R(z) is a
challenging minimization problem (Rubinstein and Kroese
2004). It is commonly used as a test case for a wide range
of numerical optimization routines. The function R(z) has a
global minimum of 0 at z = (1, . . . ,1)′. One way in which
R(z) could be minimized is to sample approximately from
the Boltzmann density e−λR(z)/Z, z ∈ [−2,2]n for a large
value of λ. In Example 6.2, as a consequence of estimating
the constant Z using Algorithm 6.1, we also obtain an es-
timate for the global minimizer of R(z). In particular, the
population XT = {X1, . . . ,XNT

} at the final iteration of the
ADAM algorithm is approximately distributed according to
the stationary density fT (x). Hence, Zi in Xi = (Zi ,Ui)

′ is
approximately distributed according to the marginal (Boltz-
mann density) p(z)H(z)/Z = e−λR(z)/Z , and we can use
Zi : i = argminj R(Zj) as an estimate for the global mini-
mizer of R(z). For the numerical example considered above

we obtain

Zi = (1.00, 0.99, 0.99, 0.99, 1.00, 1.00, 1.00, 1.00,

1.00, 1.00)′

with R(Zi) ≈ 5 × 10−5. The result is close to the true min-
imizer (1, . . . ,1)′. We obtain similar results for n = 100.
This example illustrates how we can use Algorithm 6.1
(with A set to be ADAM) as an optimization algorithm. This
is similar to the simulated annealing algorithm (Liu 2001;
Rubinstein and Kroese 2007), in which the MH sampler is
used to approximately sample from the Boltzmann density
and minimize the function R(z). For more optimization ex-
amples see Botev (2009).

7 MCMC sampling

In this section we consider using the GS Algorithm 3.1 as an
alternative to standard Markov chain Monte Carlo sampling
from multidimensional pdfs of the form:

ft (x) = f (x) I{S(x)≥γt }
�(γt)

. (18)

Note that since (17) can be viewed as a marginal den-
sity of (18) for t = T , sampling from (17) can be achieved
by sampling from (18). We show that the population XT

in the final stage of the GS algorithm can be treated as a
sample from the multidimensional pdf (18) even in cases
where standard Markov chain Monte Carlo algorithms are
impractical due to poor mixing. In addition, we also pro-
vide a convergence diagnostic which tests the hypothesis
that the population XT is drawn from the target pdf (18).
Deciding when a Markov chain has converged is an impor-
tant problem in applications of Markov chain Monte Carlo.
Many methods for diagnosing convergence have been pro-
posed, ranging from simple graphical methods to compu-
tationally intensive hypothesis tests (Brooks et al. 1997;
Brooks and Roberts 1998). See also Del Moral et al. (2006)
for a similar SMC approach to diagnosing convergence of
MCMC algorithms.

For clarity of presentation we explain how to sample
from (18) in a separate algorithm, in which the transition
density is reversible.

Algorithm 7.1 (Splitting Sampler) Given a sequence
{γt , �t }Tt=1, set st = ��−1

t+1� for all t < T and execute the
following steps.

1. Initialize. Set the counter t = 1. Keep generating X ∼
f (x), until S(X) ≥ γ1. Let X1 = X be the output. Note
that X1 has density f1(x) = f (x) I{S(x)≥γ1}/c1.

Stat Comput (2012) 22:1–16 13

2. Markov chain sampling. Generate

Yj ∼iid κt (y |Xt), j = 1, . . . , st , (19)

where κt (y |Xt) is a reversible Markov transition
density with stationary pdf ft (y). Let Nt+1 =∑st

j=1 I{S(Yj)≥γt+1} . If Nt+1 = 0, repeat from Step 1;
otherwise, continue with Step 3.

3. Updating. Let Xt+1 be a uniformly sampled point from
the set of points {Y1, . . . ,Yst } such that S(Xt+1) ≥ γt+1.
The pdf of Xt+1 is thus given by the conditional density

I{S(xt+1)≥γt+1} κt (xt+1 |Xt)

ct+1(Xt)
, (20)

where ct+1(y) = ∫
I{S(x)≥γt+1} κt (x |y)dx is the proba-

bility that a move of the Markov chain starting in state
y has a performance above γt+1. Note that an unbi-
ased estimate of ct+1(Xt) is ĉt+1(Xt) = Nt+1

st
, so that

E[̂ct+1(Xt) |Xt] = ct+1(Xt). Reset the counter t = t + 1.
4. Final Output. If t = T , output {̂ct+1(Xt)}T −1

t=1 and
(X1, . . . ,XT); otherwise, repeat from Step 2.

A diagnostic test is based on the following result.

Proposition 7.1 (Sufficient Condition for Stationarity) If∑T −1
t=1 ln ct+1(xt) is a constant for every (x1, . . . ,xT) such

that S(xt) ≥ γt , t = 1 . . . , T − 1, then the final state XT of
Algorithm 7.1 has the pdf

fT (x) = I{S(x)≥γ }f (x)

�(γ)
.

In other words, if
∑T −1

t=1 ln ct+1(xt) does not depend on
(x1, . . . ,xT), then the Markov chain of Algorithm 7.1 is in
stationarity.

Proof First, the joint pdf of (X1, . . . ,XT) is:

f̂T (x1, . . . ,xT)

= f (x1) I{S(x1)≥γ1}
c1

T −1∏
t=1

I{S(xt+1)≥γt+1} κt (xt+1 |xt)

ct+1(xt)
.

Using the reversibility of the transition densities {κt }, we can
write the joint pdf as

f̂T (x1, . . . ,xT) = f (xT) I{S(xT)≥γT }
c1

T −1∏
t=1

κt (xt |xt+1)

ct+1(xt)
.

(21)

Ideally, we would like the joint pdf in (21) to be identical
to the target:

fT (x1, . . . ,xT) = f (xT) I{S(xT)≥γT }
�

T −1∏
t=1

κt (xt |xt+1), (22)

because then xT has the desired marginal density fT (x). We
can measure how close the sampling density f̂T (x1, . . . ,xT)

is from the target density fT (x1, . . . ,xT) using any dis-
tance measure from the Csisár’s φ-divergence family of
measures (Botev and Kroese 2009; Rubinstein and Kroese
2007). A convenient member of Csisár’s family of mea-
sures is the χ2 goodness of fit divergence defined as

D(p → q) = 1
2

∫ (p(x)−q(x))2

p(x)
dx = − 1

2 + 1
2E

q2(X)

p2(X)
, for any

given pair of pdfs p and q . Thus, we can measure the close-
ness between the sampling pdf (21) and the target pdf (22)

via D(f̂T → fT) = − 1
2 + 1

2Ef̂T

∏T −1
t=1

c2
t+1(X

t)

c2
t+1

. Hence, after

rearranging, we have

2
�2

c2
1

D(f̂T → fT) = Ef̂T

T −1∏
t=1

ct+1(Xt) − �2

c2
1

= Varf̂T

(
T −1∏
t=1

ct+1(Xt)

)
,

where we have used the fact that Ef̂T

∏T −1
t=1 ct+1(Xt) =

�/c1. It follows that the distance between (21) and (22) is
zero if and only if Varf̂T

∏T −1
t=1 ct+1(Xt) = 0. In other words,

if
∏T −1

t=1 ct+1(Xt) (or
∑T −1

t=1 ln ct+1(Xt)) is a constant, then
the pdfs (21) and (22) are identical and XT has the desired
marginal pdf. �

Algorithm 7.2 uses an ANOVA to test if∑T −1
t=1 ln ct+1(Xt) is a constant.

Algorithm 7.2 (χ2 diagnostic test for stationarity with re-
spect to fT (x))

1. Let (X1
1, . . . ,XT

1), . . . , (X1
M, . . . ,XT

M) ∼ f̂T (x1, . . . ,xT)

be a population from the sampling density (21) obtained
via Algorithm 7.1, and let C be the M × (T − 1) matrix
of estimates:

C =

⎡
⎢⎢⎢⎣

ln ĉ2(X1
1) ln ĉ3(X2

1) · · · ln ĉT (XT −1
1)

ln ĉ2(X1
2) ln ĉ3(X2

2) · · · ln ĉT (XT −1
2)

...
... · · · ...

ln ĉ2(X1
M) ln ĉ3(X2

M) · · · ln ĉT (XT −1
M)

⎤
⎥⎥⎥⎦ ,

where the i-th row depends on (X1
i ,X2

i , . . . ,XT
i).

2. Compute the following statistics:

14 Stat Comput (2012) 22:1–16

Fig. 5 The empirical
distribution of Z conditional on
S(X) ≥ γt for t = 0,1,3,6,
respectively

row means: C̄i • = 1

T − 1

T −1∑
j=1

Cij ,

column means: C̄•j = 1

M

M∑
i=1

Cij

overall mean: C̄ = 1

T − 1

T −1∑
j=1

C̄•j ,

“row effect” sum of squares: SSTR =
M∑
i=1

(C̄i • − C̄)2

“within row” variance:

SSE = 1

(M − 1)(T − 1)2

T −1∑
j=1

M∑
i=1

(Cij − C̄•j)2.

3. Under the hypothesis that
∑T −1

t=1 ln(ct+1(Xt)) is a con-
stant, and assuming an approximately normal distribution
for {C̄i •, C̄•j }, the test statistic T = SSTR

SSE has the χ2 dis-
tribution with M −1 degrees of freedom. The p-value (of
a χ2 test to diagnose convergence of the Markov chains,
see Gelman and Rubin 1992) is 1−�(T), where � is the
cdf of the χ2 distribution with M −1 degrees of freedom.

If the chain in Algorithm 7.1 samples according to the
target, then the sums across each row of matrix C should be
roughly the same. The two-way analysis-of-variance test in
Algorithm 7.2 simply tests for row effects in matrix C. Each
column of C represents a different level, while each row of
C represents a given factor. We caution that most diagnos-
tics frequently successfully detect undesirable Markov chain

behavior (slow mixing or lack of stationarity), but they can
never be used to demonstrate in any meaningful way that the
Markov chain accurately samples from the target pdf.

Example 7.1 (Comparison with Gibbs Sampler) To illus-
trate the performance of the splitting sampler, we con-
sider the problem of sampling from the pdf in Exam-
ple 6.1. We run Algorithm 6.1 with exactly the same setup
as in Example 6.1, except that the three steps in Algo-
rithm 6.2 are executed in a random order, resulting in
random Gibbs sampling, as opposed to systematic Gibbs
sampling. The random Gibbs sampling ensures that the
transition density κt (X∗ |X) is reversible. Figure 5 shows
the empirical distribution of Z at levels (γ0, γ1, γ3, γ6) =
(−∞,−117.91,−44.78,0). The γ0 = −∞ case shows the
sample from the proposal p(z), and the γ6 case shows 2030
points approximately distributed from the target density
given in the left panel of Fig. 6. Notice how the two dis-
tinct modes emerge gradually. The p-value in Step 3 of Al-
gorithm 7.2 is 0.1, thus failing to detect transient behavior
and supporting the hypothesis that the chain samples ac-
cording to the target. In addition, the proportion of points
in each mode at the final stage is roughly equal to a half,
namely, 1009 points belong to the upper right mode and
1021 points belong to the lower left mode. Note that the
standard Gibbs sampler applied to h(z) = exp(−(z2

1 + z2
2 +

(z1z2)
2 − 2λz1z2)/2), λ = 12 fails. In particular, starting

from (0,0) we iterate the following steps 109 times.

• Given (Z1,Z2), generate Z∗
1 ∼ N(λZ2

1+Z2
2
, 1

Z2
2+1

).

• Given Z∗
1 , generate Z∗

2 ∼ N(
λZ∗

1
1+(Z∗

1)2 , 1
(Z∗

1)2+1
). Update

(Z1,Z2) = (Z∗
1 ,Z∗

2).

Stat Comput (2012) 22:1–16 15

Fig. 6 Left panel: Plot of the
two-humps density. Right panel:
Empirical distribution of the
output of the standard Gibbs
sampler

The right panel of Fig. 6 shows that the standard Gibbs
sampler results in a chain which is trapped in one of the two
modes and fails to mix satisfactorily in 109 steps. Here the
chain of length 109 is thinned to have 103 points, that is,
we keep the 106-th, 2 × 106-th, 3 × 106-th, etc. points from
the original Markov chain sequence. Our numerical experi-
ence suggests that the performance of the Gibbs sampler is
affected by the starting value of the chain. In contrast, the
problem of selecting starting values for the chains within
the splitting sampler is strongly mitigated. Overall, the split-
ting sampler explores the support of the target density bet-
ter than the standard Gibbs sampler. For a comparison with
other samplers such as the equi-energy sampler (Kou et al.
2006), we refer to Botev (2009).

8 Conclusions and suggestions for future work

This paper presents a Generalized Splitting algorithm, that
extends the original splitting idea of Kahn and Harris to sta-
tic and non-Markovian simulation problems. Similar to the
original splitting method, the GS method induces a branch-
ing process by constructing an artificial Markov chain via
the Gibbs or Hit-and-Run samplers. Notable features of the
proposed approach are as follows.

First, the GS algorithm provides an unbiased and consis-
tent estimator of � in (1) without requiring that the Markov
chain constructed by the GS algorithm reaches stationarity.
It is not necessary that the chain is irreducible. In contrast,
standard MCMC algorithms provide a biased estimate of �

for any finite run time. In general, this bias can only be re-
duced by discarding observations during the initial transient
or burn-in phase of the MCMC algorithms. Thus, any infer-
ence is always based upon a portion of the sampler output.
In addition, the GS algorithm provides an unbiased estimate
of the mean square error of �̂. In contrast, standard MCMC
algorithms provide biased error estimates.

Second, the GS algorithm can be used to generate sam-
ples (approximately) according to a given multidimensional

pdf, for which standard MCMC methods fail, by signifi-
cantly improving the exploration of the multidimensional
pdf. In addition, the GS-sampler provides a computation-
ally inexpensive convergence diagnostic based on a χ2 test
statistic. In contrast, most of the existing convergence diag-
nostics (Brooks et al. 1997) are computationally intensive
and graphical in nature.

A possible direction for future research includes the clas-
sical problem in splitting: finding an optimal importance
function for a given rare-event estimation problem. That
is, we aim to estimate P(ht+1(X) ≥ γ |ht (X) ≥ γ) for an
optimal (in minimal variance sense) sequence of impor-
tance functions {ht }Tt=0, where hT (X) = S(X) and the events
{ht (X) ≥ γ } ⊆ {ht+1(X) ≥ γ } for all t . In this paper we
have only considered the quite arbitrary special case where
ht (X) = S(X)/at (that is, P(S(X) ≥ γt+1 |S(X) ≥ γt) with
γt = atγ) for some suitably chosen sequence {at }.

References

Botev, Z.I.: Three examples of a practical exact Markov chain
sampling. Postgraduate Seminar Paper, School of Mathematics
and Physics, The University of Queensland. http://espace.library.
uq.edu.au/view/UQ:130865 (2007)

Botev, Z.I.: An algorithm for rare-event probability estimation using
the product rule of probability theory. Technical report, School
of Mathematics and Physics, The University of Queensland.
http://espace.library.uq.edu.au/view/UQ:151299 (2008)

Botev, Z.I.: Splitting methods for efficient combinatorial counting
and rare-event probability estimation. Technical report, School
of Mathematics and Physics, The University of Queensland.
http://espace.library.uq.edu.au/view/UQ:178513 (2009)

Botev, Z.I., Kroese, D.P.: The generalized cross entropy method, with
applications to probability density estimation. Methodol. Comput.
Appl. Probab. (2009). doi:10.1007/s11009-009-9133-7

Brooks, S.P., Roberts, G.O.: Convergence assessment techniques for
Markov Chain Monte Carlo. Stat. Comput. 8, 319–335 (1998)

Brooks, S.P., Dellaportas, P., Roberts, G.O.: An approach to diagnos-
ing total variation convergence of MCMC algorithms. J. Comput.
Graph. Stat. 1, 251–265 (1997)

Cérou, F., Guyader, A.: Adaptive multilevel splitting for rare event
analysis. Stoch. Anal. Appl. 25, 417–443 (2007)

Cérou, F., Del Moral, P., Furon, T., Guyader, A.: Rare-event simulation
for a static distribution. INRIA-00350762 (2009)

http://espace.library.uq.edu.au/view/UQ:130865
http://espace.library.uq.edu.au/view/UQ:130865
http://espace.library.uq.edu.au/view/UQ:151299
http://espace.library.uq.edu.au/view/UQ:178513
http://dx.doi.org/10.1007/s11009-009-9133-7

16 Stat Comput (2012) 22:1–16

Chen, M.H., Shao, Q.M., Ibrahim, J.G.: Monte Carlo Methods in
Bayesian Computation. Springer, New York (2000)

Gander, W., Gautschi, W.: Adaptive quadrature—revisited. BIT Nu-
mer. Math. 40, 84–101 (2000)

Garvels, M.J.J.: The splitting method in rare event simulation. PhD
thesis, University of Twente, The Netherlands, October 2000

Garvels, M.J.J., Kroese, D.P.: A comparison of RESTART implemen-
tations. In: Proceedings of the 1998 Winter Simulation Confer-
ence, pp. 601–609. Washington, DC (1998)

Garvels, M.J.J., Kroese, D.P., van Ommeren, J.C.W.: On the impor-
tance function in splitting simulation. Eur. Trans. Telecommun.
13(4), 363–371 (2002)

Gelman, A., Rubin, D.: Inference from iterative simulation using mul-
tiple sequences (with discussion). Stat. Sci. 7, 457–511 (1992)

Glasserman, P., Heidelberger, P., Shahabuddin, P., Zajic, T.: A look
at multilevel splitting. In: Niederreiter, H. (ed.) Monte Carlo and
Quasi Monte Carlo Methods 1996. Lecture Notes in Statistics,
vol. 127, pp. 99–108. Springer, New York (1996)

Glasserman, P., Heidelberger, P., Shahabuddin, P., Zajic, T.: A large de-
viations perspective on the efficiency of multilevel splitting. IEEE
Trans. Autom. Control 43(12), 1666–1679 (1998)

Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the satis-
fiability (SAT) problem: a survey. In: Satisfiability Problem: The-
ory and Applications. DIMACS Series in Discrete Mathematics,
vol. 35. American Mathematical Society, Providence (1996)

Hoos, H.H., Stützle, T.: SATLIB: an online resource for research on
SAT. In: Gent, I.P., Maaren, H.V., Walsh, T. (eds.) SAT 2000,
pp. 283–292. IOS Press, The Netherlands (2000). www.satlib.org

Johansen, A.M., Del Moral, P., Doucet, A.: Sequential Monte Carlo
samplers for rare events. In: Proc. 6th International Workshop on
Rare Event Simulation (2006)

Kahn, H., Harris, T.E.: Estimation of Particle Transmission by Ran-
dom Sampling. National Bureau of Standards Applied Mathemat-
ics Series (1951)

Kou, S.C., Zhou, Q., Wong, W.H.: Equi-energy sampler with applica-
tions in statistical inference and statistical mechanics. Ann. Stat.
34, 1581–1619 (2006)

Lagnoux-Renaudie, A.: Rare event simulation. Probab. Eng. Inf. Sci.
20(1), 45–66 (2006)

Lagnoux-Renaudie, A.: Rare event simulation: effective splitting
model under cost constraint. In: Stochastic Processes and Their
Applications, pp. 1820–1851 (2008)

L’Ecuyer, P., Demers, V., Tuffin, B.: Splitting for rare-event simula-
tion. In: Proceedings of the 2006 Winter Simulation Conference,
pp. 137–148 (2006)

L’Ecuyer, P., Demers, V., Tuffin, B.: Rare events, splitting, and quasi-
Monte Carlo. ACM Trans. Model. Comput. Simul. 17(2), 1–44
(2007)

Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer,
New York (2001)

Del Moral, P.: Feynman-Kac Formulae: Genealogical and Interacting
Particle Systems with Applications. Springer, New York (2004)

Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers.
J. R. Stat. Soc. B 68(3), 411–436 (2006)

Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn.
Springer, New York (2004)

Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method. Springer,
New York (2004)

Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo
Method, 2nd edn. Wiley, New York (2007)

Villén-Altamirano, M., Villén-Altamirano, J.: RESTART: a method for
accelerating rare event simulations. In: Cohen, J.W., Pack, C.D.
(eds.) Proceedings of the 13th International Teletraffic Congress,
Queueing, Performance and Control in ATM, pp. 71–76 (1991)

Villén-Altamirano, M., Villén-Altamirano, J.: RESTART: a straight-
forward method for fast simulation of rare events. In: Tew, J.D.,
Manivannan, S., Sadowski, D.A., Seila, A.F. (eds.) Proceedings
of the 1994 Winter Simulation Conference, pp. 282–289 (1994)

Villén-Altamirano, M., Villén-Altamirano, J.: About the efficiency of
RESTART. In: Proceedings of the RESIM’99 Workshop, pp. 99–
128. University of Twente, The Netherlands (1999)

Welsh, D.J.A.: Complexity: Knots, Coloring and Counting. Cambridge
University Press, Cambridge (1993)

http://www.satlib.org

	Efficient Monte Carlo simulation via the generalized splitting method
	Abstract
	Introduction
	Classical splitting for dynamic simulation
	Splitting for static rare-event probability estimation
	An adaptive generalized splitting algorithm
	Fixed effort generalized splitting
	Estimation of integrals of the form Ep[H(Z)]
	MCMC sampling
	Conclusions and suggestions for future work
	References

