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Abstract Model-based clustering typically involves the de-
velopment of a family of mixture models and the imposition
of these models upon data. The best member of the family
is then chosen using some criterion and the associated pa-
rameter estimates lead to predicted group memberships, or
clusterings. This paper describes the extension of the mix-
tures of multivariate #-factor analyzers model to include con-
straints on the degrees of freedom, the factor loadings, and
the error variance matrices. The result is a family of six mix-
ture models, including parsimonious models. Parameter es-
timates for this family of models are derived using an alter-
nating expectation-conditional maximization algorithm and
convergence is determined based on Aitken’s acceleration.
Model selection is carried out using the Bayesian informa-
tion criterion (BIC) and the integrated completed likelihood
(ICL). This novel family of mixture models is then applied
to simulated and real data where clustering performance
meets or exceeds that of established model-based cluster-
ing methods. The simulation studies include a comparison
of the BIC and the ICL as model selection techniques for
this novel family of models. Application to simulated data
with larger dimensionality is also explored.
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1 Introduction

1.1 Model-based clustering

Finite mixture models assume that data are collected from a
finite collection of sub-populations and that the data within
each sub-population can be modeled using some statistical
model (cf. Sect. 1.2). The growing popularity of the use of
mixture models for clustering is due, at least in part, to its
intuitive appeal. Fraley and Raftery (2002) traced the use of
finite mixture models for clustering back to the 1960s and
70s, citing the work of Wolfe (1963, 1970), Day (1969), and
Binder (1978), amongst others.

The potential of such approaches became more and more
apparent in subsequent decades. The provision of an exhaus-
tive list of important work over the past three decades is
not feasible here. However, the following works, amongst
many others, would form part of such a list: McLach-
lan (1982), McLachlan and Basford (1988), Banfield and
Raftery (1993), Celeux and Govaert (1995), Dasgupta and
Raftery (1998), McLachlan and Peel (2000b), Fraley and
Raftery (2002), Raftery and Dean (2006), McLachlan et al.
(2007), McNicholas and Murphy (2008), and Gormley and
Murphy (2008).

Nowadays, the term ‘model-based clustering’ is particu-
larly common when a family of mixture models is fitted to
data (see Sects. 2.1 and 2.3.2, for examples) and the best
model is selected using some criterion, often the Bayesian
information criterion (BIC Schwarz 1978). In this paper, the
mixtures of multivariate ¢-factor analyzers (MM?FA) model
(McLachlan et al. 2007) is developed into a family of six
mixture models.
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1.2 Finite mixture models
1.2.1 General framework

A random vector X is said to arise from a (parametric) finite
mixture distribution if its density has the form

G
f) =) mepe(x|0y),

g=1

where 7, € [0, 1], such that Zgzl g = 1, are called mixing
proportions and the pg(x | 0) are referred to as component
densities. Comprehensive reviews of finite mixture models
are given by McLachlan and Peel (2000a) and Friihwirth-
Schnatter (2006).

1.2.2 Gaussian mixture models

Gaussian mixture models have received the bulk of the at-
tention in the mixture modeling literature due to their math-
ematical tractability. The model density can be written

G
F) =) mep(x| pg. Ty). (1)

g=1

where ¢ (x | g, X ) is the density of a multivariate Gaussian
distribution with mean p, and covariance matrix X,. For
more information on Gaussian mixture models and their use
in clustering and dimensionality reduction see Celeux and
Govaert (1995), Fraley and Raftery (2002), McLachlan and
Peel (2000b), Raftery and Dean (2006) and McNicholas and
Murphy (2008, 2010).

1.2.3 Mixtures of multivariate t-distributions

Mixtures of multivariate ¢-distributions have received con-
siderably less attention to date. The model density for mix-
tures of multivariate 7-distributions has the form

G
F) =) g filx| g Ty vy). )

g=1

where 7, are the mixing proportions and
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is the density of a p-dimensional multivariate z-distribution
with mean Ko covariance matrix X, and degrees of free-
dom v, where §(x, Ro | Xg)=(x— ;Lg)’Zgl(x— 799 is the
Mahalanobis distance between x and p,. Parameter estima-
tion can be carried out using the expectation-maximization
algorithm, as described by McLachlan and Peel (1998).
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Table 1 The covariance structure, and related nomenclature, of each
member of the MM?FA family of models

Model Ag=A Y, =v,l, Vg =1V

CCC Constrained Constrained Constrained
CCU Constrained Constrained Unconstrained
ucc Unconstrained Constrained Constrained
UCu Unconstrained Constrained Unconstrained
uucC Unconstrained Unconstrained Constrained
uuu Unconstrained Unconstrained Unconstrained

2 Model-based clustering techniques
2.1 MCLUST

Some model-based clustering techniques are available within
the R computing environment (R Development Core Team
2009). The most famous such package, mclust (Fraley
and Raftery 2003; Fraley and Raftery 2006), uses a fam-
ily of Gaussian mixture models with an eigen-decomposed
covariance structure (Banfield and Raftery 1993; Celeux
and Govaert 1995; Fraley and Raftery 1998, 2002). Specifi-
cally, the component covariance matrix is parameterized by
Y, = AngAgD;,, where 4, is a constant, D, is the ma-
trix of eigenvectors and A, is the diagonal matrix with en-
tries proportional to the eigenvalues of X .. The family of
MCLUST models is developed by imposing, or not, various
combinations of the following constraints: A, = A, Dy =D,
Ag=A,A=1I, and D =1,. The MCLUST family of mod-
els is summarized in Fraley and Raftery (2006, Table 1).
The MCLUST models with non-diagonal covariance struc-
ture have the property that the number of covariance para-
meters is quadratic in data dimensionality. Therefore, the
mclust software is not well suited to the analysis of very
high-dimensional data.

2.2 The variable selection technique

When clustering, it is often the case that some of the
variables are unhelpful. The variable selection technique
(Raftery and Dean 2006) was introduced to perform both
data reduction and clustering. Variable selection involves
repeated application of MCLUST to subsets of the vari-
able space. Different models are compared using approx-
imate Bayes factors (Kass and Raftery 1995). The tech-
nique is supported by the clustvarsel package (Dean
and Raftery 2006) for R. Examples are given by Raftery and
Dean (2006) to demonstrate that variable selection can give
better clustering performance than MCLUST. However, Mc-
Nicholas and Murphy (2008) show that variable selection
can result in inferior clustering performance when compared
to MCLUST. Furthermore, despite the fact that variable se-
lection does result in a reduced set of variables it is, by its na-
ture, not suitable for the analysis of high-dimensional data.
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2.3 Mixtures of factor analyzers

2.3.1 Mixtures of factor analyzers and mixtures of
probabilistic principal components analyzers

The factor analysis model assumes that a p-dimensional ran-
dom vector X can be modeled using a g-dimensional vector
of real-valued factors U, such that ¢ < p. Mathematically,
this can be expressed as X = u+ AU-+¢€, where Aisa p x g
matrix of factor loadings, U ~ N (0, I,;) is the vector of fac-
tors and € ~ N (0, ¥) with W = diag(y1, ¥, ..., ¥,). Note
that the probabilistic principal component analysis (PPCA)
model (Tipping and Bishop 1999b) is a special case of the
factor analysis model with isotropic covariance structure
¥ =1, where I, is the p-dimensional identity matrix.

The factor analysis model was extended to the mix-
tures of factor analyzers model by Ghahramani and Hin-
ton (1997). Under this model, the mixture model density
given in (1) is modified by parameterizing the Gaussian co-
variance matrix with the factor analysis covariance struc-
ture X, = AgA;, + W. Tipping and Bishop (1999a) used
a mixture of PPCAs model, where X, = AgA;, + Yol
and McLachlan and Peel (2000b) introduced the fully un-
constrained covariance structure for the mixtures of factor
analyzers model, namely X, = A gA;, + V.

2.3.2 Parsimonious Gaussian mixture models

McNicholas and Murphy (2005, 2008) further generalized
these models by allowing constraints across groups on
the A; and W, matrices as well as utilizing the isotropic
constraint. The result was a family of eight parsimo-
nious Gaussian mixture models (PGMMs), five of which
were novel. The models with constrained loading matri-
ces (Ag = A) present a particularly parsimonious covari-
ance structure, allowing for between pg — g(qg — 1)/2 + 1
and pqg — q(q — 1)/2 + Gp covariance parameters. Further-
more, all eight models have the property that the number
of covariance parameters is linear in p, making them much
more suitable for the analysis of high-dimensional data than
MCLUST. Extensive details of the implementation of this
family of mixture models, both in serial and in parallel, are
given by McNicholas et al. (2010).

2.4 Mixtures of multivariate ¢-factor analyzers

2.4.1 Mixtures of probabilistic principal t-component
analyzers

Zhao and Jiang (2006) introduced the mixtures of proba-
bilistic principal #-component analyzers (MPPtCA) model.
Similarly to the mixtures of PPCAs in the Gaussian case,
the mixture model density given in (2) is modified by para-
meterizing the component covariance matrix with the PPCA

covariance structure X, = AgA;, + V¥¢l,. Zhao and Jiang
(2006) used a mixed approach to parameter estimation,
which is discussed further in Sect. 3.2.4. The application for
which they used the MPPtCA model was image compres-
sion and their work did not contain any clustering applica-
tions.

2.4.2 Mixtures of multivariate t-factor analyzers

McLachlan et al. (2007) introduced the MM7FA model.
Here, the mixture model density given in (2) is modified
by parameterizing the covariance matrix with the most gen-
eral factor analysis covariance structure £, = A, A, + W,.
In contrast to the application of Zhao and Jiang (2006),
McLachlan et al. (2007) used the MM?FA model for clus-
tering. Details of model fitting are given in Sect. 3.2.2.

2.5 The GMMDR technique

Scrucca (2009) introduced a model-based clustering tech-
nique that combines Gaussian mixture models with dimen-
sionality reduction (GMMDR). Instead of imposing a struc-
ture with underlying latent variables, GMMDR looks for the
subspace of the data that contains the most relevant cluster-
ing information. The vectors that span this subspace are es-
timated through an eigen-decomposition of a kernel matrix.
Details of the methodology, visualization techniques, and
an efficient greedy search algorithm are given by Scrucca
(2009). The Italian wine data that were analyzed by Scrucca
(2009, Sect. 5.1) are also analyzed in Sect. 5.3.2 herein. The
results of these analyses are compared in Sect. 5.3.4.

3 Extending the MM¢FA model
3.1 The models

In the MMrFA and MPPrCA models, the degrees of free-
dom for each component v, can be estimated from the data
within the maximum likelihood framework (see Sect. 3.2.2).
Herein, the MM7FA and MPPsCA models are extended by
imposing combinations of the constraints: vy = v, ¥, =
Yel, and Ay = A. The result is a family of six mixture mod-
els, which are described in Table 1. Hereafter, these six mod-
els will be collectively referred to as the MM¢FA family of
models. Note that, like the PGMM models, all six of the
MM?FA models have the property that the number of co-
variance parameters is linear in p.

The notion of constraining the degrees of freedom may
seem an unnecessary one since the parsimony gained will be
relatively small unless G is very large, which is not common
in clustering applications. In practice, however, the models
with constrained degrees of freedom can give better cluster-
ing performance than the unconstrained models. Examples
of this phenomenon are given in Sect. 5.
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3.2 Parameter estimation

3.2.1 The alternating expectation-conditional
maximization algorithm

The expectation-maximization (EM) algorithm (Dempster
et al. 1977) is an iterative technique for finding maximum
likelihood estimates when data is incomplete. Furthermore,
problems are often framed as incomplete-data problems in
order to achieve efficient solutions using the EM algorithm.
In the expectation step (E-step), the expected value of the
complete-data log-likelihood, Q say, is computed. Then in
the maximization step (M-step), Q is maximized with re-
spect to the model parameters. Note that the complete-data
is the missing data plus the observed data.

The expectation-conditional maximization (ECM) algo-
rithm (Meng and Rubin 1993) sees the replacement of
the M-step by a number of conditional maximization steps
that are more computationally efficient. The alternating
expectation-conditional maximization (AECM) algorithm
(Meng and van Dyk 1997) is an extension of the ECM al-
gorithm that permits different specification of the complete-
data at each stage. Extensive details on the EM algorithm
and variants are given by McLachlan and Krishnan (2008).

3.2.2 The AECM algorithm for the MMt FA family

Proceeding as outlined by McLachlan et al. (2007), the mul-
tivariate 7-distribution can be characterized by introducing
a random variable W;, ~ gamma(v,/2, vg/2). This means
that all six members of the family will have three types of
missing data: these wj,, the latent factors u;, and the z;g,
where z;, = 1 if observation i is in component g and z;; =0
otherwise. Therefore, the AECM algorithm is appropriate.

For the MMtFA model, McLachlan et al. (2007) deduce
that the distribution of observation x; in component g, con-
ditional on the missing data, is given by

Xi [ g, wig, Zig =1 ~ N (g + Agujg, Wy /wig).

At the first stage of the AECM algorithm, when estimat-
ing 7g, g and vg, the missing data consist of the w;, and
the z;,. At the second stage of the algorithm, when estimat-
ing A, and W,, the missing data are the w;,, w;, and z;g.
For an observed random sample xi, ..., X;,, the complete-
data log-likelihood for the MM¢FA model is given by

G n
(@)= ziglogaig,
g=1i=I

where

aig =gy (W) | vg/2,vg/2) P (Wi | 0,1, /wig)
x ¢ (X | Ke + Aguig» ‘I’g/wig)a
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where y(-) is the gamma density (cf. McLachlan et al.
2007, (29)). In order to compute the expected value of the
complete-data log-likelihood, the conditional expectations
of terms like Z;;W;;U;, and Z,-gW,-gUigU;g are needed.
McLachlan et al. (2007) give the conditional expectations
of these terms as

E[ZigWigUig | Xi, wigl = wigB o (Xi — Kg),
E[ZigWigUig Ui, | Xi, wigl =1, — By Ay
+wigBy (Xi — g (Xi — Ry)' Bl

where B, = A;,(AgA’g + \Ilg)’l. These results, which are
very similar to those derived in the Gaussian case, arise from
theory around the expected value of sufficient statistics for
the exponential family. In fact, much of the mathematics re-
lating to the MM?tFA model is analogous to the Gaussian
case. McLachlan and Peel (2000a) give extensive details in
the Gaussian case, and McLachlan et al. (2007) provide ex-
pansive details in the case of the multivariate ¢-distribution.

E-step
At each E-step, the indicator variables z;, and the weights
w; are updated by their conditional expected values

2 ”gft(x|ﬂga2g’vg)

ig = ’
Z}?:] T[/’lfl‘(x | My, Ehv Uh)

and

. Vgt p

Wig = £

Vg + (i fg | Zg)
respectively, where & (x;, R | X¢) is the Mahalanobis dis-

tance between x; and p,,.

CM-step 1
On the first CM-step, the mixing proportions 7, and com-
ponent means g, are updated by

A

D i1 ZigWigXi

~n A~ A~
> i1 ZigWig

respectively, where ng = Y7, Zi,. The estimates for the v,
do not exist in closed form but estimates can be found by
setting

ﬁnew ﬁnew aold +p
1— & 1 & 8

1 A R Do 4 p
+n—22ig(10gwig _wig)_10g< £ )

Teo=— and jf1,=
8=, g

equal to zero and solving for f)?"’, where \32,‘“ is the previous

estimate of vg and ¢(-) is the digamma function.
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CM-Step 2

On the second CM-step, the factor loadings Ag and the
diagonal error variance matrix W, are updated by JA\‘;W =
Sgﬁ;,@g_l and \ilngew = diag{S; — [\g/}gsg}, respectively,
where

1l . . . .
Sg = 71_ Zzigwig(xi - [,l,g)(X,' - Mg)/i
8

i=1

and @, =1, — [9gf\g + Bgsgﬁ;. The notational conve-
nience of ®, was employed by McNicholas and Murphy
(2005, 2008) and it is interesting to note that @, = I, if
S, =X,.

3.2.3 Constraining the degrees of freedom parameter

The degrees of freedom parameter v, is effectively a shape
parameter. The UUC and UCC models are the MM¢FA (or
UUU) and the MPPtCA (or UCU) models, respectively,
with the constraint that v, = v.

In order to find the maximum likelihood estimate for v,
the relevant complete-data log-likelihood function is

n

L (v) = Zizig[K —logT (;) + glog (g)

i=1g=1
v
+t3 (log wig — wig) ]

where K is constant with respect to v. Upon differentiating
the expected value of /.(v) with respect to v, it can be deter-
mined that the update for v is found by setting the equation

]’)new ‘A)new ﬁold + p
11— 1
o(3)re(5) e (57)

2
G n Aold

R R R Vo 4
Zz,-g(log Wig — Wig) — log< > p)
i=1

fold

equal to zero and solving for D™, where D
estimate of v.

1
+ =
n
g=1

is the previous

3.2.4 Estimates under the isotropic constraint

As mentioned in Sect. 2.4.1, Zhao and Jiang (2006) imposed
the isotropic constraint W, = v,I, in an image compres-
sion application. In their parameter estimation, a “special
AECM” algorithm was used and v, was numerically ap-
proximated using the method of Shoham (2002). Herein, the
AECM algorithm is used, as outlined in Sect. 3.2.2, and the
estimates for the degrees of freedom are updated as detailed
in Sects. 3.2.2 and 3.2.3. When the isotropic constraint is
imposed, the update for g@g is given by

A new A

L1
l/f;f = ;tr{Sg — Ag ﬂgSg}.

Note that this is identical to the update in the Gaussian case
except that here the weights w;, come in.

3.2.5 Estimates under the constrained loading matrix

Imposing the constraint A, = A gives the largest reduction
in the number of free parameters. The relevant complete-
data log-likelihood, with the isotropic constraint also im-
posed, is

n G )
M=K =335 s
8

i=1g=1

2
_‘Lg _Auig ” s

where K is constant with respect to A. The expected value
of this complete-data log-likelihood is

G
OA) =K +g§ 2"72 [2tr{/§gsgA} — tr{(agA/A}].

Differentiating Q(A) with respect to A, and solving the
equation that results from setting the resulting score func-
tion equal to zero, results in the update
-1
n
8
g:l 8

G G

A new l’lg ~/
AT =1 &—sgﬂg

g:l 8

Of course, by constraining Ag = A the updates for v/, are

effected. In an analogous fashion to the derivation of Anew, it
can be shown that

A~ A new

1 A new A 2~ new
w;eW:;tr{Sg—zA BSe+A Og(A ).

These updates for A" and Y™ are similar to updates for
one of the PGMM models.

3.3 Mixture model selection and performance
3.3.1 The Bayesian information criterion

The BIC is a commonly used method for model selection
in model-based clustering applications involving a family
of mixture models (Fraley and Raftery 2002; McNicholas
and Murphy 2008, 2010). The use of the BIC in mixture
model selection was proposed by Dasgupta and Raftery
(1998), based on an approximation to Bayes factors (Kass
and Raftery 1995).
For a model with parameters ®, the BIC is given by

BIC = 2I(x, ®) — mlogn,

where [(x, <i>) is the maximized log-likelihood, ® is the
maximum likelihood estimate of @, m is the number of free
parameters in the model and 7 is the number of observations.
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Leroux (1992) and Keribin (2000) present theoretical re-
sults that, under certain regulatory conditions, support the
use of the BIC for the estimation of the number of com-
ponents in a mixture model. Furthermore, Lopes and West
(2004) report the results of a simulation study that shows
that the BIC is very effective at selecting the number of fac-
tors in a factor analysis model.

3.3.2 The integrated completed likelihood

One issue with using the BIC in model-based clustering ap-
plications is that a mixture component (group) is not neces-
sarily the same as a true cluster. In an attempt to focus model
selection on clusters rather than mixture components, Bier-
nacki et al. (2000) introduced the integrated completed like-
lihood (ICL). The ICL, or the approximate ICL to be precise,
is just the BIC penalized for estimated mean entropy and it
is given by

n G
ICL ~ BIC + Z ZMAP{Q,-g} 10g Zig,
i=1g=1

where MAP({Z;,} is the maximum a posteriori classification
given Z;g, that is

1 ifmaxg{z;} occurs at component g,

MAP{Zjg} = {0 otherwise.

Note that the MAP classification is used to give the predicted
classifications (clusterings) in the analyses in Sect. 5.

The estimated mean entropy is a measure of the uncer-
tainty in the classification of observation i into component g
and so the ICL should be less likely, compared to the BIC, to
split one cluster into two mixture components. Comparisons
of the BIC and the ICL in model selection for the family of
models introduced herein are given in Sect. 5.

3.3.3 Rand and adjusted Rand indices

Although the data analysis examples of Sect. 5 are con-
ducted as clustering examples, the true classifications are ac-
tually known for these data. In these examples, the adjusted
Rand index (Hubert and Arabie 1985) is used to measure
class agreement. The Rand (1971) index can be expressed
as

number of agreements

number of agreements + number of disagreements’

where the number of agreements and the number of dis-
agreements are based on pairwise comparisons. The Rand
index is calculated on the interval [0, 1], where ‘0’ indicates
no pairwise agreements between the MAP classification and
true group membership and ‘1’ indicates perfect agreement.

@ Springer

One criticism of the Rand index is that its expected value
is greater than 0, making smaller values of the Rand index
difficult to interpret.

The adjusted Rand index corrects the Rand index for
chance by accounting for the fact that classification per-
formed randomly would probably correctly classify some
cases. The adjusted Rand index has an expected value of 0
under random classification and perfect classification would
result in a value of 1.

4 Computational issues
4.1 Initialization

Before running the AECM algorithms for the MM¢FA fam-
ily of models, the Z;, must be initialized. One option is to
initialize the Z;, randomly, however this opens the algorithm
up to possible failure due to bad starting values. Another
option, one that the mclust package utilizes, is to use an
agglomerative hierarchical clustering procedure. This latter
option is used in the analyses herein for which n > p.

The covariance matrices must also be initialized. Follow-
ing McNicholas and Murphy (2008), an eigen-decomposi-
tion of the sample covariance matrix is used to get S, =
PngPgTI, where D, is the diagonal matrix of eigenvalues.
The A ¢ are initialized by A ¢ = dgP,, where d, is a vector
comprising the square roots of the diagonal elements of D,.
The \ilg are then initialized as \ilg = diag{S,; — f\gf\;} and
the degrees of freedom are each initialized at 50.

4.2 Estimating the degrees of freedom

Code for all of the analyses herein was written in R and a
numerical search for the estimates of the degrees of free-
dom was carried out using the uniroot command in the
stats package. The uniroot command is based on the
Fortran subroutine zeroin described by Brent (1973). The
lgamma function was used to facilitate efficient calculation
of the log-likelihood in the log scale. Note that the range
of values for D, was restricted to a maximum of 200 in
order to facilitate faster convergence. An analysis of sim-
ulated data, given in Sect. 5.1.1, shows that this upper limit
of 200 does not appear to hamper recovery of an underly-
ing Gaussian structure—further evidence is provided in an
analysis of higher dimensional data in Sect. 5.1.3.

4.3 Convergence of AECM algorithms
Aitken’s acceleration is used to estimate the asymptotic

maximum of the log-likelihood at each iteration. Based on
this estimate, a decision can be made on whether or not an
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AECM algorithm has converged. Aitken’s acceleration at it-
eration k is given by

D)

) _ .
16— jG=1)

a

where (KD 1®) and 16— are the log-likelihood values
from iterations k + 1, k and k — 1, respectively. Then an
asymptotic estimate of the log-likelihood at iteration k + 1
is given by

1
(k+1) _ 7(k) (k+1) _ (k)
10 =10 4 @4 —1®)

1—
(Bohning et al. 1994). Lindsay (1995) suggests that the
algorithm can be stopped when lgf;,H) —1*&+D < ¢ and
McNicholas et al. (2010) modify this slightly and stop the
algorithm when IS — 1® < ¢ This modified version has
the advantage that it is necessarily at least as strict as the lack
of progress, [ **t1) — %) < ¢ which is used by mclust. The
criterion given by McNicholas et al. (2010) is used for the
analysis herein, with € = 0.05.

4.4 The Woodbury identity

One computational advantage of the MMrFA family of
models—the fact that the number of covariance parameters
is linear in p—has already been mentioned. However, these
models, along with the PGMMs, have another significant ad-
vantage that is particularly important in applications involv-
ing high-dimensional data. When running the AECM algo-
rithm for these models, it is advantageous to make use of the
Woodbury identity (Woodbury 1950) to avoid inverting any
non-diagonal p x p matrices.

Given an n x n matrix A, an n x k matrix U, a k x k
matrix C and a k x n matrix V, the Woodbury identity states
that

A+ucy)'=A"t—A lucCc T + VATl ivaTl
Now, setting U=A,V=A, A=WV and C =1, gives
(W +AA) T =0 WA+ ATTA)TIA

and although the left hand side of this equation involves in-
version of a p X p matrix, the right hand side leaves only
diagonal and g x g matrices to be inverted. This presents a
major computational advantage, especially when p is large
and ¢ < p. A useful identity for the determinant of the co-
variance matrix follows from this, namely that

AN +W| = |W|/|I, — A(AA + W)~ Al

These formulae for (¥ + AA’)~! and |[AA’ + W¥| are used
by McLachlan and Peel (2000a) for the mixtures of factor
analyzers model, and by McNicholas and Murphy (2008)
for the PGMMs.

Table 2 Classification table for the best mclust model on the third
data set that was generated to assess the ability of the MM¢FA family
to recover an underlying Gaussian structure

1 2 3 4 5 6
A 30 20

B 2 23

C 46 24

5 Data analyses
5.1 Simulated data
5.1.1 Recovering a Gaussian structure

In order to determine whether the MM¢FA family can re-
cover underlying mixtures of multivariate Gaussian distri-
butions, and whether it can do so given the upper bound
placed on the v, (cf. Sect. 4.2), three data sets were sim-
ulated. These data, which were generated using the rnorm
command in R, had G = 3 components and p = 6 variables.
Three data sets were generated with differing covariances.
The clustering performance of the MM¢FA family of mod-
els was then compared to that of MCLUST.

In the first simulation, both techniques underestimated
the number of components, choosing G = 2 component
models, and had identical adjusted Rand indices (0.67). In
the second simulation, both methods clustered the data per-
fectly. In the third simulation, the results were very differ-
ent. From the MMtFA family, the best model according to
both the BIC (—1039.9) and ICL (—1040.0) was the UUC
model with ¢ = 2 factors, G = 3 components and » = 200.
This model clustered the data perfectly. Running mclust
on the same data resulted in a G = 6 component model with
an adjusted Rand index of 0.59. The classification table for
this mclust model is given in Table 2. From Table 2 it is
apparent that the best mclust model has split each of the
three true clusters (A, B, and C) across two components.

In this small simulation study, an upper limit of 200 for
the estimated degrees of freedom did not seem to hamper the
performance of the MM¢FA family of models in the recov-
ery of underlying Gaussian components. In fact, the MMzFA
family of models performed at least as well as MCLUST on
all three simulated data sets. Furthermore, on the third data
set one of the four new models (UUC) was selected and it re-
turned much better clustering performance than MCLUST.

5.1.2 Comparing the BIC and the ICL
Three-dimensional Gaussian data sets were simulated in

order to investigate differencies between the model selec-
tion performance of the BIC and the ICL. Two simulations

@ Springer



368

Stat Comput (2011) 21:361-373

Fig.1 Sample plots of the

simulated data in the X-shaped

case (left) and the 8-shaped case

(right) ®

are presented: one where the two groups intersect (the ‘X-
shaped’ case) and one where they simply overlap (the ‘8-
shaped’ case). In each of these two cases, 100 data sets were
simulated with n = 200 observations divided equally among
two groups. An example of each case is given in Fig. 1.

In the first study, the X-shaped case, the BIC outper-
formed the ICL as a model selection criterion for the
MM¢FA family. The BIC correctly chose a G = 2 group
model on 98 out of 100 runs (selecting the UCC model on
90 runs), whereas the ICL selected a model with the correct
number of components on 78 runs. The mclust software,
which uses the BIC for model selection, performed better
than the MM¢FA family with the ICL criterion but over-
estimated the number of components more often than the
MMrFA family with the BIC. The performance of all three
techniques in the X-shaped case is summarized in Table 3.

Summary results for the 8-shaped simulations are given
in Table 4. The MM¢FA family with the BIC chose two-
component models on 96 of the 100 runs (the CCC model
was selected on 96 runs). MCLUST also chose the correct
number of groups on 96 runs. However, the MM¢FA family
with the ICL criterion chose a G = 1 group model on 55 of
the 100 runs.

In both of these simulation studies, the BIC outperformed
the ICL in selecting the number of groups for the MM¢FA
family. Over all 200 runs, the ICL incorrectly estimated the
number of components on 77 occasions and, in fact, un-
derestimated the number of components on 76 of these 77
occasions. In these simulation studies, data were simulated
from a three-dimensional Gaussian distribution — simulated
data with higher dimensionality (p = 500) are analyzed in
Sect. 5.1.3.

Table 3 Summary of the number of groups selected by each method
for the X-shaped simulations

5.1.3 High-dimensional data

Given the size of many modern data sets, it is important for
the MM¢FA family of models to be effective in the analysis
of high-dimensional data. Of particular interest is the ability
of the models to analyze high-dimensional data even when
the sample size n is small. A simulation study is presented in
this section to demonstrate the ability of the MM¢FA family
to deal with data sets of this nature. This simulation study
also lends further support to the claim that the upper limit of
200 that was imposed on the D, does not impair the recovery
of an underlying Gaussian distribution.

One-hundred data sets were generated for G =2 groups
from a multivariate Gaussian distribution with a factor
analysis covariance structure for each component (X, =
AgA(’g + W), where g = 1, p =500 and n = 50. Again, the
observations were divided equally amongst the two groups.
Since p > n, the agglomerative hierarchical initialization
procedure from the mclust package could not be used.
Instead, the Z;, were initialized using k-means clustering.
The initialization of Ay was difficult because the eigen-
decomposition of the 500 x 500 sample covariance matrix
could not be computed reliably.

The MM¢FA family was run for ¢ = 1 factor and G =
1,2,3 components. Perfect classification was obtained on
all 100 runs, with the CCC model being selected every time.
Running mclust on these simulated data sets resulted in
very poor performance: G was overestimated on the vast
majority of runs. However, a comparison with MCLUST
is not entirely fair here because the data were simulated
from a Gaussian distribution with a factor analysis covari-

Table 4 Summary of the number of groups selected by each method
for the 8-shaped simulations

1 2 >3 1 2 3
MM:FA BIC 0 98 2 MM¢FA BIC 2 96
MMFA ICL 21 78 1 MM:FA ICL 55 45
MCLUST (BIC) 0 89 11 MCLUST (BIC) 1 96 3
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Table S Summary of the best within-model MM¢FAs for the wine data: that is, a summary of the best combination of G and g for each of the six

models in Table 1 when applied to the wine data

Model G q BIC ICL V1 13 3 Adj. rand Iterations
uuu 3 2 —5294.4 —5296.3 117.4 8.4 152.6 0.96 329
uucC 3 2 —5298.8 —5300.6 17.4 17.4 17.4 0.98 365
ucu 3 2 —5504.0 —5505.8 33.5 6.6 27.9 0.93 25
ucc 3 2 —5498.1 —5501.5 10.9 10.9 10.9 0.90 20
CCU 3 4 —5442.0 —5443.3 77.7 7.0 45.7 0.95 31
CCC 4 4 —5444.2 —5446.9 21.2 21.2 21.2 0.84 25

ance structure and, since n > p, the hierarchical initializa-
tion procedure was not available.

5.2 Real data

In addition to the simulated data analyses of Sect. 5.1, the
MMrFA family of models was applied to two real data
sets (Sects. 5.3 and 5.4). In Sect. 5.3, the models are ap-
plied to data on thirteen chemical and physical properties
of Italian wines. These data were previously analyzed by
McNicholas and Murphy (2008), who demonstrated that
mclust, clustvarsel and the PGMMs all gave quite
poor clustering performance (adjusted Rand indices < 0.8).
However, Scrucca (2009) used the GMMDR technique to
analyze the same data, resulting in an adjusted Rand index
of 0.85. In Sect. 5.4, the MMrFA family is applied to data
on flea beetles. The flea beetles data were chosen because
both mclust and clustvarsel give perfect clustering
on these data.

5.3 Italian wine data
5.3.1 The data

Forina et al. (1986) give twenty-eight chemical and physical
properties of three types of Italian wine (Barolo, Grignolino
and Barbera). A subset of thirteen of these variables (Ta-
ble 9, Appendix) is available as part of the gclus package
(Hurley 2004) for R.

5.3.2 The MMt FA family

All six models were fitted to the data for g =1, ...,5 fac-
tors and G = 1,...,5 components. The largest BIC result-
ing from all models was —5294.4 from the fully uncon-
strained model (UUU). The largest ICL, also from the UUU
model, was —5296.3. The second largest BIC and ICL val-
ues were from the UUC model (—5298.8 and —5300.6, re-
spectively). Both criteria show a notable decrease in value
for the other four models, suggesting that the isotropic con-
straint may not be appropriate for these data. All but one of

Table 6 Classification tables for the UUU and UUC models on the
wine data

uuu uucC
1 2 3 1 2 3
Barolo 58 1 58 1
Grignolino 1 70 71
Barbera 48 48

the models contained G = 3 components in the maximum
within-model BIC and ICL. A summary for all six models
is given in Table 5.

Classification tables for the UUU and the UUC mod-
els with G =3 and ¢ = 2 are given in Table 6: the ad-
justed Rand indices for these models are 0.96 and 0.98,
respectively. The estimates of the degrees of freedom for
the UUU model are vy = 117.4, v, = 8.4, and v3 = 152.6,
whereas D = 17.4 for the constrained model. In the case
of the UUU model, the differences in estimated degrees of
freedom across components are not trivial: it seems that
the multivariate Gaussian distribution may be suitable for
both the Barolo and Barbera wines, while the multivari-
ate ¢-distribution seems more appropriate for the Grignolino
wines. Furthermore, it is interesting to note that while the fit
of the UUU model may be better than that of the UUC model
(greater BIC and yet more free parameters, which reflects a
greater log-likelihood), the UUC model with b = 17.4 gave
slightly better clustering performance.

5.3.3 MCLUST, variable selection, PGMMs & GMMDR

McNicholas and Murphy (2008) analyzed the same data
using PGMMs, MCLUST and variable selection. The best
PGMM model had G = 4 components and the resulting
clustering had an adjusted Rand index of 0.79 (Table 10,
Appendix). McNicholas and Murphy (2008) also reported
that mclust selected a G = 8 component model, result-
ing in an adjusted Rand index of 0.48 (Table 11, Appendix),
and clustvarsel chose a three-group model, giving an
adjusted Rand index of 0.78 (Table 12, Appendix).
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Table 7 Model comparison for the wine data

Model Adjusted rand index
uuC 0.98
uuu 0.96
CCU 0.95
uCu 0.93
ucc 0.90
GMMDR 0.85
CCC 0.84
PGMMs 0.79
Variable Selection 0.78
MCLUST 0.48

Scrucca (2009) also analyzed these data using the GM-
MDR technique. The GMMDR model that was chosen had
G = 3 components and an adjusted Rand index of 0.85.
A classification table for this model is given in Table 13
(Appendix).

5.3.4 Discussion

When applied to the wine data, both the UUU and UUC
models give better clustering results than the techniques
mentioned in Sect. 5.3.3. In fact, the other four members of
the MM?FA family also clustered with greater accuracy than
mclust, clustvarsel and the PGMM family. Further-
more, all of the MM7FA models, except for the CCC model,
give better clustering performance than the GMMDR tech-
nique. Adjusted Rand indices for all of the models that were
applied to these data are given in Table 7.

The fact that the UUC model gave better clustering per-
formance than the UUU model, despite smaller BIC and ICL
values, illustrates the fact that these criteria do not necessar-
ily choose the best classifier. Note also that the four isotropic
models (UCU, UCC, CCU and CCC) reach convergence in
under 35 iterations, whereas the other two models take over
300 iterations each (see Table 5). Given that an iteration
takes a similar amount of time for each model, this repre-
sents a vast difference when it comes to computation time.
However, this difference in the number of iterations to con-
vergence seems to be data-specific (cf. Sect. 5.4).

5.4 Flea beetles data

The flea beetles data were introduced by Lubischew (1962)
and are available within the GGobi software (Swayne et al.
2006). The data contain six measurement variables on 72
fleas and each flea is a member of one of three species:
concinna, heptapotamica, or heikertingeri. These variables
are described in Table 14 (Appendix). Runningmclust and
clustvarsel onthese dataleads to perfect classifications

@ Springer

in each case. As mentioned in Sect. 5.2, these data were cho-
sen because of this fact.

The MM¢FA family of models was fitted to these data for
q = 1,2,3 factors and G = 1,...,4 mixture components.
The best model according to both the BIC and the ICL was
the CCC model with ¢ =2 and G = 3. A summary of the
best combination of G and ¢g for each model is given in Ta-
ble 8. Each of the six MM?FA models gave perfect cluster-
ing for these data. Note that most of the models with the
isotropic constraint took more iterations to convergence for
these data than those without this constraint (see Table 8).
This suggests that relative computation times for the mem-
bers of the MM?FA family are indeed data-dependent.

6 Summary & future work

A family of mixture models was developed, based on the
MM?FA model, for model-based clustering. Four members
of this family are novel (UUC, UCC, CCU, and CCC), while
a fifth (UCU) was used for clustering for the first time and
was subject to different parameter estimation than was pre-
viously employed. Parameter estimation for the MMFA
family was carried out within the AECM algorithm frame-
work, and the BIC and the ICL were used for model se-
lection. This family of six models, which includes models
with constrained degrees of freedom and constrained load-
ing matrices, was then applied to real and simulated data. In
all of these analyses, excellent clustering performance was
achieved when compared with existing model-based cluster-
ing techniques.

The fact that the models with constrained degrees of free-
dom gave better clustering performance than those without
this constraint, on more than one occasion, is interesting.
One possible explanation of this phenomenon is that the es-
timate of the degrees of freedom is more reliable in the con-
strained case since it is based on more data, representing a
sort of averaging across groups.

Considering that the PGMM family consists of eight
members, there is scope for the development of a family of
sixteen MM?{FA models by imposing additional constraints
on the covariance structure. However, the benefit of such de-
velopment will be tied to ongoing work on the search for a
better model selection technique. With just the six models
used in this work, it was demonstrated that the BIC and ICL
do not necessarily choose the best classifier. One may there-
fore be loath to run a sixteen member family unless a more
effective model selection procedure were to become avail-
able.

While these models are very well suited to the analy-
sis of high-dimensional data, as described herein, such ap-
plications will be most effective under parallelization. The
message passing interface (MPI) would facilitate coarse-
grain parallelization of the MM¢FA family in an analogous
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fashion to the parallel implementation of the PGMM fam-
ily described by McNicholas et al. (2010). A hybrid paral-
lelization procedure incorporating OpenMP within this MPI
framework might provide even greater speed-up and will be
the subject of future work.

Finally, the MM¢FA family could be extended to the
model-based classification framework wherein some of the
observations have known group memberships while others
do not. This extension would come about in an analogous

fashion to that of the PGMM family, which has recently
(McNicholas 2010) been extended to the model-based clas-
sification framework.
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Appendix: Tables 8-14

Table 8 Summary of the best within-model MM?FAs for the flea beetles data: that is, a summary of the best combination of G and ¢ for each of

the six models in Table 1 when applied to the flea beetles data

Model G q BIC ICL D1 Dy V3 Adj. rand Iterations
uuu 3 1 -1017.9 -1017.9 200.0 189.4 162.7 1.0 73
uucC 3 1 -1009.2 -1009.2 200.0 - - 1.0 84
UCU 3 1 -1012.7 -1012.8 119.8 432 200.0 1.0 106
ucCcC 3 1 -1004.3 -1004.4 153.2 - - 1.0 163
CCU 3 2 -967.5 -967.5 200 59.5 90.4 1.0 52
CCC 3 2 -958.7 -058.8 200 - - 1.0 143

Table 9 The thirteen chemical and physical properties of the Italian
wines available in the gclus package

Alcohol Proline

Malic acid Ash

Hue Total phenols
Flavonoids Nonflavonoid phenols
Color intensity Alcalinity of ash
OD5g9/OD35 of diluted wines Proanthocyanins

Magnesium

Table 10 Classification table for the best PGMM model for the wine
data

1 2 3 4
Barolo 59
Grignolino 38 31 2
Barbera 48

Table 11 Classification table for the best mc1ust model for the wine
data

1 2 3 4 5 6 7 8
Barolo 40 18 1
Grignolino 21 22 27 1
Barbera 4 17 27
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