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Abstract Variable selection is one of the main problems
faced by data mining and machine learning techniques.
These techniques are often, more or less explicitly, based
on some measure of variable importance. This paper con-
siders Total Decrease in Node Impurity (TDNI) measures,
a popular class of variable importance measures defined in
the field of decision trees and tree-based ensemble meth-
ods, like Random Forests and Gradient Boosting Machines.
In spite of their wide use, some measures of this class are
known to be biased and some correction strategies have been
proposed. The aim of this paper is twofold. Firstly, to in-
vestigate the source and the characteristics of bias in TDNI
measures using the notions of informative and uninforma-
tive splits. Secondly, a bias-correction algorithm, recently
proposed for the Gini measure in the context of classifica-
tion, is extended to the entire class of TDNI measures and
its performance is investigated in the regression framework
using simulated and real data.

Keywords Impurity measures · Ensemble learning ·
Variable importance

1 Introduction

In the last decades, with the proliferation of large datasets,
the problem of variable selection has gained increasing at-
tention in the field of data analysis. Given a large set of
observed covariates that describe the phenomenon being
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studied, the researcher often needs to identify the subset of
informative (predictive) variables and to set uninformative
(noisy) variables apart. A preliminary variable selection is
a fundamental and crucial step in model building, whatever
the approach to model the phenomenon might be.

Many of the variable selection methods are directly or
indirectly based on the assumption that, given the set X =
{X1, . . . ,Xp} of potential predictors for a response variable
Y , an importance or relevance μi can be defined for each co-
variate Xi in terms of prediction/explanation of Y , and this
measure can be evaluated from data using some variable im-
portance estimator ̂VIi . The notion of importance has been
widely investigated in philosophical, AI, machine learning
and statistical literatures. Several attempts have been pro-
posed to formalize and quantify this notion. See Bell and
Wang (2000) for a brief overview of the current lines of re-
search and van der Laan (2005) for a novel approach. In
the present paper, following Pearl (1988), we start by iden-
tifying unimportance with conditional independence of ran-
dom variables and importance with the negation of unimpor-
tance.

This paper focuses on measures of variable importance
developed in the area of tree-based ensemble methods. De-
cision trees model data by partitioning the feature space into
a set of disjoint rectangles and then fitting a simple model
(e.g. a constant) to each one. Classification and Regression
Trees (CART) were introduced by Breiman, Friedman, Ol-
shen and Stone in 1984 and are a milestone in this field.
Since then, a great development has been proposed in sev-
eral disciplines (Murthy 2004). One of the main problems of
tree predictors is model instability, defined as the existence
of many different models, distant in terms of form and inter-
pretation, that have about the same training or test set error
(Breiman 1996, 2001b).

mailto:zuk@eco.unibs.it


394 Stat Comput (2010) 20: 393–407

Ensemble learning is a class of methods developed for
reducing model instability and improving the accuracy of a
predictor through the aggregation of several similar predic-
tors. Each ensemble member is constructed by a different
function of the input covariates. Ensemble prediction is ob-
tained by the linear combination of the predictions of ensem-
ble members. Ensembles can be built using different predic-
tion methods, i.e. using different base learners as ensemble
members. An interesting proposal uses CART as base learn-
ers. Typically, such aggregation neutralizes the effects of
tree instability and reaches greater accuracy by reducing ei-
ther the bias or the variance of a single classifier (Bühlmann
and Yu 2002). Popular examples of tree-based ensembles are
Random Forests (RF, Breiman 2001a) and Gradient Boost-
ing Machine (GBM, Friedman 2001).

The first approach to variable importance (VI, hence-
forth) measurement in tree-based predictors dates back to
the cited book of Breiman et al. (1984), where an interesting
and effective notion of variable importance was proposed.
The importance μi of a covariate Xi is defined as the total
decrease of heterogeneity of the response variable Y given
by the knowledge of X = {X1, . . . ,Xp} when the feature
space is partitioned recursively. The VI measure originated
by this notion is obtained by summing up all the decreases
of the heterogeneity index in the nodes of the tree. This
class of measures is called Total Decrease in Node Impu-
rity (TDNI henceforth) and, with few changes, is used in
many tree-based ensemble methods (see e.g. Breiman 2002;
Friedman 2001). It is also available in many softwares
for data mining, like the randomForest package in R
(Breiman et al. 2006), the gbm package in R (Ridgeway
2007), the boost Stata command (Schonlau 2005), the
MART package in R (Friedman 2002).

In spite of their wide use, some TDNI measures are
known to be biased. Breiman et al. (1984) noted that they
tend to favor covariates having more values (i.e. less miss-
ing values, more categories or distinct numerical values) and
thus offering more splits. White and Liu (1994), Kononenko
(1995) and Dobra and Gehrke (2001) investigated in greater
detail the nature of bias and elucidate the relation between
bias and the number of values of covariates. Strobl (2005),
Strobl et al. (2007a) and Sandri and Zuccolotto (2008) fo-
cused attention on the bias of the Gini variable importance
measure (hereafter Gini TDNI), a measure frequently used
in classification trees and based on the adoption of the Gini
gain as a splitting criterion of tree nodes.

Several methods have been proposed in the last decade
to eliminate bias from the Gini TDNI. Loh and Shih (1997)
and Kim and Loh (2001) proposed modifying the algorithm
for the construction of classification trees in order to avoid
selection bias. The authors showed that bias can be elimi-
nated by separating variable selection from split point selec-
tion at each node. In the work of Strobl (2005), an unbiased

estimation of the Gini TDNI was found in Conditional Ran-
dom Forests, a new class of RF developed by Hothorn et al.
(2006). Strobl et al. (2007a) derived the exact distribution of
the maximally selected Gini gain by means of a combina-
torial approach and the resulting p-value is suggested as an
unbiased split selection criterion in recursive partitioning al-
gorithms. The heuristic correction strategy proposed by San-
dri and Zuccolotto (2008) is based on the introduction of a
set of random pseudocovariates in the X matrix. The authors
showed that the algorithm can efficiently remove bias from
Gini TDNI in RF and GBM.

The aim of this paper is twofold. Firstly, to investigate
the source and the characteristics of bias in TDNI measures
by the introduction of the notions of informative and un-
informative splits, showing its connections with the level of
covariates’ measurement and with the number of uninforma-
tive splits. Secondly, to generalize and extend the domain of
applicability of the correction algorithm of Sandri and Zuc-
colotto (2008) to the class of TDNI measures, evaluating its
performance on simulated and real data in regression prob-
lems when the residual sum of squares is used as splitting
criterion for the tree nodes.

The paper is organized as follows. In Sect. 2 we define
the class of TDNI measures and the corresponding estima-
tors for single trees and tree-based ensembles. In Sect. 3 we
define the crucial notion of informative and uninformative
splits and show that uninformative splits are the main source
of bias for TDNI measures. Section 4 investigates the rela-
tionship existing between bias of TDNI measures and the
level of covariates’ measurement from a theoretical point
of view and by means of some simulation experiments. In
Sect. 5 the bias-correction strategy for classification prob-
lems proposed by Sandri and Zuccolotto (2008) is recalled
and extended to the class of TDNI measures. The perfor-
mance of the method is tested on simulated (Sect. 5) and
real data (Sect. 6). Section 7 concludes.

2 Characterization of TDNI measures

Let (Y,X) : � → (DY ×DX1 × · · ·×DXp) ≡ D be a vector
random variable defined on a probability space (�, F ,P ),
where X = {X1, . . . ,Xp} is a set of covariates and Y a re-
sponse variable. A tree-structured binary recursive partition-
ing algorithm yields a hierarchical partition of the domain D
into J disjoint (hyper-)rectangles Rj ⊂ D, j = 1,2, . . . , J .
Each rectangle is generated in D by splitting a parent rec-
tangle into two parts by a binary split of the domain of a co-
variate Xi . Therefore, a rectangle can be described by the set
of covariates and splits used to generate it. If Y , X1 and X2

are three numerical real-valued random variables, a rectan-
gle could be for example given by Rj = {(y,x) ∈ R

3|x1 >

a ∩ b ≤ x2 ≤ c}), where a ∈ DX1 ⊆ R and b, c ∈ DX2 ⊆ R,
b < c.
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Consider a value s ∈ DXi
|Rj , where DXi

|Rj is the do-
main of Xi restricted to the rectangle Rj . The impurity re-
duction generated in the rectangle Rj by Xi at the cutpoint
s, is given by:

ds
ij = �HY (Xi,Rj )

= pj · {HY − (pjLHY |Xi≤s + pjRHY |Xi>s)}, (1)

where pj = P(Rj ), pjL = P(Xi ≤ s|Rj ) and pjR =
P(Xi > s|Rj ). HY ,HY |Xi≤s and HY |Xi>s are the hetero-
geneity indexes of Y in the j th rectangle and in the left
and right splits of Rj , respectively. Let dij be the maximum
heterogeneity reduction allowed by covariate Xi in the j th
rectangle, for all the possible cutpoints s ∈ DXi

|Rj

dij = max
s∈DXi

|Rj

ds
ij . (2)

The goal of partitioning algorithms is to maximally re-
duce the heterogeneity of Y within the rectangles. There-
fore, for each Rj , the splitting variable Xi and the cutpoint
s are those that maximize the impurity reduction in that sub-
set. In other words, the partitioning variable Xi satisfies in
Rj the condition dij > dhj for h = 1,2, . . . , p, h 	= i.

In this context, TDNI measures of variable importance
are based on the following notion of importance μi of a co-
variate Xi : μi is the total decrease of the heterogeneity index
HY attributable to Xi . In other words, μi is computed sum-
ming up all the decreases of heterogeneity dij obtained in
the rectangles generated using Xi as the splitting variable:

μi =
∑

j∈J

dij · Iij , (3)

where Iij is the indicator function which equals 1 if the ith
variable is used to split Rj and 0 otherwise.

Several impurity/heterogeneity indexes H have been pro-
posed for the case of a categorical Y : the Pearson’s chi-
squared statistic, the Gini criterion, the entropy criterion, the
families of splitting criteria of Shih (1999), etc. When Y is
numerical, the most popular measure H is variance.

In the following example we show how, according to (3),
the importance μi can be calculated using the joint proba-
bility distribution of (Y,X). The data generating process de-
scribed in this example will be used to produce the dataset
of Example 2 in Sect. 3 and of Simulation (4) and (5) in
Sect. 4.

Example 1 (Calculation of variable importance) Consider
the variable (Y,X) = {Y,X1,X2,X3}, where X1 and X2

are two binary 0/1 independent covariates, Y is a continu-
ous standard normal response variable generated by the fol-
lowing data generating process (see Fig. 1(a)): P(X1 = 0)

= P(X2 = 0) = 1/2, (Y |X1 = 0) ∼ N(−1/2,3/4),

(Y |X1 = 1) ∼ N(1/2,3/4), (Y |X2 = 0) ∼ N(−1/3,8/9),
(Y |X2 = 1) ∼ N(1/3,8/9), (Y |X1 = 0 ∩ X2 = 0) =
(Y |X1 = 0 ∩ X2 = 1) ∼ N(−1/2,3/4), (Y |X1 = 1 ∩ X2

= 0) ∼ N(0,1/2), (Y |X1 = 1 ∩ X2 = 1) ∼ N(1,1/2).
Consider the following three cases for the uninformative

variable X3:

Case A: a binary 0/1 covariate independent on X1 and X2;
Case B: a continuous standard normal covariate indepen-

dent on X1 and X2;
Case C: a continuous covariate, normally distributed condi-

tionally to X1: (X3|X1 = 0) ∼ N(0,1) and
(X3|X1 = 1) ∼ N(1,1).

Variable importances can be calculated in the three cases
A, B and C. Since Y is continuous, we can adopt variance as
heterogeneity index and (1) can be expressed as:

ds
ij = �σ 2

Y (Xi,Rj )

= pj · {σ 2
Y − (pjLσ 2

Y |Xi≤s + pjRσ 2
Y |Xi>s)}, (4)

where σ 2
Y , σ 2

Y |Xi≤s and σ 2
Y |Xi>s are the variances of Y in the

j th rectangle and in the left and right splits, respectively.
Cases A and B. The calculation of variable importance is

the same in the two cases, because Y is stochastically inde-
pendent on X3. The different levels of measurement of X3

in the two cases do not influence variable importance. When
the whole sample space is considered (i.e. R1 = D), X1 is
the most effective variable in reducing the heterogeneity of
Y by means of a binary split because d11 = p1 ·1/4 = 1/4 >

d21 = p1 · 1/9 = 1/9 > d31 = 0. The sample space is then
partitioned according to X1. The sample space conditioned
to X1 = 1 (R3), can be further partitioned by X2 since d23 =
p3 · 1/4 = P(X1 = 1) · 1/4 = 1/8 > d33 = 0. The sample
space conditioned to (X1 = 1) ∩ (X2 = 0) (R4) cannot be
further partitioned because d34 = 0. The same is true in the
sample space conditioned to (X1 = 1) ∩ (X2 = 1) (R5).
Similarly, no further partitioning is possible in the sample
space conditioned to X1 = 0 (R2) because d22 = d32 = 0.
Hence, the VIs of the three covariates are μ1 = d11 = 1/4,
μ2 = d23 = 1/8, μ3 = 0.

Case C. In this case X3 is no longer independent on Y ,
due to the relationship existing between X3 and X1. Here
X3 is independent on Y , conditionally to X1. Now we show
that the VIs of the three covariates are the same as case
A and B, because in R1 = DX1 remains the most effective
variable in reducing the heterogeneity of Y by means of a bi-
nary split. This can be proved as follows. Let s be a cutpoint
for X3 in R1 and let P(X1 = 0|X3 ≤ s) = p and P(X1 = 0|
X3 > s) = q . The distributions of Y , conditionally on X3

lower and greater than s, are mixtures of normal variables,
that is f (Y |X3 ≤ s)=pf (Y |X1 = 0)+ (1 − p)f (Y |X1 = 1)

and f (Y |X3 > s)=qf (Y |X1 = 0) + (1 − q)f (Y |X1 = 1),
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where f (Y |X ∈ A) is the density function of y given that
X ∈ A. It is easy to show that

σ 2
Y |X3≤s = 3/4 + p(1 − p) > σ 2

Y |X1=0 = σ 2
Y |X1=1 = 3/4,

σ 2
Y |X3>s = 3/4 + q(1 − q) > σ 2

Y |X1=0 = σ 2
Y |X1=1 = 3/4.

It follows that, for all s,

σ 2
Y − (P (X1 = 0)σ 2

Y |X1=0 + P(X1 = 1)σ 2
Y |X1=1)

> σ 2
Y − (P (X3 ≤ s)σ 2

Y |X3≤s + P(X3 > s)σ 2
Y |X3>s),

thus d11 > d31. When the sample space is partitioned ac-
cording to X1, X3 is independent on Y in the two generated
rectangles, so the domain partition is the same as in case A
and B, as well as the resulting VI measures μ1, μ2 and μ3.

We now consider the case of a tree t built using a sample
with size N . The impurity reduction d̂ij at node j attribut-
able to covariate Xi with cutpoint s can be estimated by:

d̂s
ij = �̂HY (Xi)

= nj

N

{

ĤY −
(

njL

nj

ĤY |Xi≤s + njR

nj

ĤY |Xi>s

)}

(5)

where ĤY , ĤY |Xi≤s and ĤY |Xi>s are the estimated hetero-
geneities of Y in the j th rectangle and in the left and right
splits, respectively. nj , njL, njR are the sample sizes in
node j and in the left and right splits. Similarly, dij is es-
timated by:

d̂ij = max
s∈Sij

d̂s
ij , (6)

where Sij is the set of available cutpoints of variable Xi at
node j .

The covariate Xi is selected at node j as splitting variable
if d̂ij > d̂hj for all h = 1, . . . , p, h 	= i. The estimate of the
TDNI importance μi using a tree t is given by the sum of
the estimated impurity reductions attributable to covariate
Xi over the set J of nonterminal nodes of the tree (Breiman
et al. 1984), that is:

̂VIi (t) =
∑

j∈J

d̂ij · Iij . (7)

In the regression case we can use the sample variance σ̂ 2

as an estimator of the heterogeneity of node and splits.
Hence, (5) becomes:

d̂s
ij = ̂�σ 2

Y (Xi)

= nj

N

{

σ̂ 2
Y −

(

njL

nj

σ̂ 2
Y |Xi≤s + njR

nj

σ̂ 2
Y |Xi>s

)}

(8)

= nj

N

{

DEVtotal(j)

nj

− DEVwithin(jL, jR)

nj

}

= 1

N
DEVbetween(jL, jR), (9)

where DEVwithin and DEVbetween are the within-node and
the between-node deviance, respectively. From (9) one can
derive that, in the regression case, the TDNI measure (7) of
a covariate Xi is equal to the total amount of DEVbetween

imputable to that covariate in the tree.
For tree-based ensembles the VI measure is given by the

average of ̂VIi over the set of T trees:

̂VIi = 1

T

T
∑

t=1

̂VIi (t). (10)

The VI measure (10) has been proposed by Breiman
(2002) in Random Forests and is called ‘Measure 4’ (M4),
because the last of a set of four importance measures. With
minor modifications, Friedman (2001) proposed an ‘influ-
ence of input variables’ for GBM, with d̂2

ij in place of d̂ij

and ̂VIi rescaled by assigning a value of 100 to the most
influential covariate.

3 Bias in TDNI measures

A crucial point for the analysis that follows is the notion
of informative and uninformative splits. Suppose that D has
been recursively partitioned into J rectangles {Rj }j=1,2,...,J .
If Xi and Y are stochastically independent, they continue to
be independent in each Rj . On the contrary, if some associa-
tion between Xi and Y exists, Xi and Y could be dependent
or conditionally independent in a given Rj . In other words,
when predicting Y , uninformative covariates (i.e. stochas-
tically independent on Y ) always remain uninformative, in
each subset of the sample space. Informative (i.e. somehow
associated with Y ) covariates can continue to be informative
or can become uninformative in Rj .

Let us now suppose to grow a tree using a sample of N

units and suppose that, within a given node, there is at least
one covariate having some association with Y . The node will
be split by using the best covariate, that is the covariate that
maximizes the heterogeneity reduction d̂ij . Hence, because
the heterogeneity reductions of informative covariates will
be typically greater than the heterogeneity reductions of the
uninformative ones, an informative covariate will be chosen
as splitting variable. We define this circumstance as an in-
formative split. When within a node there are no informative
covariates, only uninformative covariates and/or informative
covariates which became uninformative can be chosen as
splitting covariate. This is the case of an uninformative split.
We can formalize the following definition.
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Definition 1 (Informative and uninformative splits) Given a
tree t grown from a sample, the split of a node j made by co-
variate Xi (i.e. d̂ij > d̂hj , ∀h = 1,2, . . . , p, h 	= i) is called
uninformative if dij = 0 and informative otherwise. An un-
informatively split node is a node where an uninformative
split occurs.

In informative splits, the heterogeneity reduction d̂ij of
the splitting covariate is a direct consequence of its impor-
tance. Differently, in an uninformative split, d̂ij is a product
of chance. Therefore, when calculating the TDNI measure
̂VIi (t) of covariate Xi by (7), it is of fundamental impor-
tance to distinguish between impurity reductions attributable
to informative splits and impurity reductions generated by
uninformative splits. In other words, ̂VIi (t) can be expressed
as the sum of two components:

̂VIi (t) =
∑

j∈JI

d̂ij · Iij +
∑

j∈JU

d̂ij · Iij = μ̂i(t) + εi(t), (11)

where JI and JU , JI ∪ JU = J , are the set of nodes charac-
terized by informative and uninformative splits, respectively.
μ̂i(t) is the part of the VI measure attributable to informa-
tive splits and directly related to the ‘true’ importance of Xi .

On the contrary, the term εi(t) is a noisy component associ-
ated with the selection of Xi within uninformative splits and
is a source of bias for ̂VIi (t).

Example 2 (Informative and uninformative splits) Consider
the sample of 16 units given in Table 1 and generated by
the process of Example 1, Case A. Suppose to fit a fully-
grown regression tree to these data. Applying (5), in the root
node the impurity reductions associated to the three covari-
ates are: d̂11 = 0.266, d̂21 = 0.214, d̂31 = 0.001. Hence, X1

is the best splitting variable at the root node and the split
is informative because d11 	= 0 (and d11 > d21 > d31). In
node 2 (X1 = 0), d̂22 = 0.053 and d̂32 = 0.041. X2 is used
as splitting variable. This is a uninformative split because
d22 = 0 (and d32 = 0). In node 3 (X1 = 1), d̂23 = 0.180
and d̂33 = 0.004. The splitting variable is X2 and the split
is informative since d23 	= 0 (and d23 > d33). In nodes 4,
5, 6 and 7 the impurity reductions attributable to X3 are
d̂34 = 0.031 and d̂35 = 0.012, d̂36 = 0.006, d̂37 = 0.028.
The splits are all uninformative. Nodes 8 through 15 are leaf
nodes. The resulting regression tree is shown in Fig. 1(b).
Uninformative splits have been marked by thick lines. The
estimated VIs of the three covariates are: ̂VI1 = μ̂1 = 0.266,

Table 1 Sample data of Example 2

1 2 3 4 5 6 7 8

X1 0 0 0 0 0 0 0 0

X2 0 0 0 0 1 1 1 1

X3 0 1 0 1 1 0 0 1

Y −1.894 −1.129 −0.581 0.069 −0.346 −0.878 −0.023 0.311

9 10 11 12 13 14 15 16

X1 1 1 1 1 1 1 1 1

X2 1 1 1 1 0 0 0 0

X3 0 1 0 0 0 0 0 1

Y 0.497 0.495 2.301 1.003 0.756 −1.505 0.104 0.137

Fig. 1 Data generating process
of Example 1(a) and the
regression tree grown from the
sample data of Example 2(b).
Uninformative splits are marked
by thick boxes
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̂VI2 = μ̂2 + ε2 = 0.180 + 0.053 = 0.233 and ̂VI3 = ε3 =
0.031 + 0.012 + 0.006 + 0.028 = 0.077.

Two remarks are worth pointing out. Firstly, the sample
data used to grow the tree are also used to calculate TDNI
measures. In other words, TDNI are a class of in-sample
measures of variable importance. This is the crucial differ-
ence between TDNI measures and the mean decrease in pre-
diction accuracy, a popular permutation-based VI measure.
This measure is defined in RF as follows: for each tree, the
algorithm randomly rearranges the values of the ith variable
for the out-of-bag set (i.e. the subset of the bootstrap sample
not used in the construction of the tree), puts this permuted
set down the tree, and gets new predictions from the forest.
The importance of the ith variable is defined as the differ-
ence between the original out-of-bag error rate and the out-
of-bag error rate for the randomly permuted ith covariate.
Hence, mean decrease in accuracy is fundamentally an out-
of-sample VI measure, in contrast to the in-sample character
of TDNI measures.

Secondly, the notion of informative and uninformative
splits is intimately related to the notion of overfitting. It
is well known that an overfitted model shows a high in-
sample accuracy, but does not validate, that is, does not
provide accurate predictions for out-of-sample observations.
Base learners of RF are fully-grown trees. They have a
serious risk of overfitting (Berk 2006). When building a
CART, the model starts learning the underlying structure of
data and typically the first splits of the tree are informative
splits. Subsequently, after an adequate number of informa-
tive splits, informative variables become uninformative, un-
informative splits take place and the model learns the fine
structure of data that is generated by noise. In other words,
overfitting and uninformative splits of tree-based models are
synonymous.

The in-sample character of TDNI measures and the ef-
fects of overfitting can lead to a seemingly paradox. Con-
sider the case where only one covariate X is available, X

and Y are continuous, a sample of N units has been ob-
served and d̂ij as defined in (8) is used. In a fully grown
tree the importance of X is equal to the variance of Y , no
matter what relationship between X and Y exists. Consider
the two limiting cases: the deterministic case Y = f (X) and
the null case (i.e. Y and X are stochastically independent).
The importance (7) of X is the same in the two cases, but
in the first case the (maximal) tree contains only informative
splits and ̂VI = μ̂, while in the second case only uninforma-
tive splits are present and ̂VI = ε. This problem vanishes if
the mean decrease in prediction accuracy is used instead of
TDNI measures or if one avoids uninformative splits when
building the tree.

Pruning techniques are effective methods for controlling
overfitting in CART. The aim of pruning is to remove unin-

formative splits: in well-pruned trees the number of uninfor-
mative splits is minimized. Hence, bias of TDNI measures
is minimized, too. In the context of RF unpruned trees are
typically used as base learners because the RF prediction is
obtained averaging the predictions of the single trees and
this neutralizes the problem of overfitting. Pruning seems to
be unnecessary, but we know that this is only partially true.
There is no need of pruning for improving the accuracy of
prediction, but when we use RF for variable selection we
cannot forget that fully grown unpruned trees can generate a
substantial amount of bias in TDNI measures.

4 Level of bias and level of covariate measurement

In a tree grown from a sample of N units, each covariate
Xi can be used as splitting variable only in a finite number
of nodes. At node j , Xi is characterized by a finite number
npsij of possible binary splits which depends on the level of
measurement of the covariate. A nominal covariate with k

categories within a given node has npsij = 2k−1 − 1 possi-
ble splits, while an ordinal covariate with k categories has
npsij = k − 1 possible splits. A numerical (continuous) co-
variate with nj distinct values within node j can be viewed
as the limiting case of an ordinal covariate with as many cat-
egories as the number of sample units in the node. Thus, it
has npsij = nj − 1. Of course, npsij ≤ npsik for all parent
nodes k of a node j because each child node contains only
a subset of the original sample and each covariate in a node
has a number of distinct values (or categories) lower than or
equal to the number of its distinct values (or categories) in
the parent nodes.

Consider a node where all the covariates Xi are condi-
tionally independent on Y . By definition, only an uninfor-
mative split can take place in this node. All the binary par-
titions of all the covariates have the same probability of be-
ing the best one and the selection of the splitting variable
is only a product of chance. Therefore, the covariates with
the highest number npsij of possible splits are more likely
to be chosen as splitting variables. Recalling the decompo-
sition given in (11), the above considerations imply that the
expected values of the noisy component εi of the estimated
VIs are not equal but depend on the level of measurement of
covariates.

Let JU be the set of all the possible uninformatively split
nodes, that is the set of all the nodes where an uninformative
split occurs, for all the trees grown on all the possible N -size
samples. We have:

E(εi) = E

(

∑

j∈JU

d̂ij · Iij

)

=
∑

j∈J U

E((d̂ij · Iij ) · Ij ),

where Ij is the indicator function which equals 1 if the unin-
formatively split node j occurs in the tree t and 0 otherwise.
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Since the occurrence of a given node j depends only on for-
mer splits, Ij and d̂ij · Iij are independent and we can write:

E(εi) =
∑

j∈J U

E(d̂ij · Iij ) · E(Ij ) =
∑

j∈J U

E(d̂ij · Iij ) · qj ,

where qj is the probability of occurrence of node j in a tree.
Finally, applying the law of iterated expectation, we obtain:

E(εi) =
∑

j∈J U

E(d̂ij |Iij = 1) · pij · qj (12)

where pij is the probability of selecting covariate Xi at
node j . By definition, in uninformatively split nodes all
the covariates are independent on the response variable and
E(d̂ij |Iij = 1) = d̄j for all i = 1,2, . . . , p. On the contrary,
pij depends on the number npsij of possible splits of Xi at
node j :

pij = npsij
∑p

i=1 npsij

. (13)

Equation (12) proves two fundamental facts: (a) covariate
importances estimated by TDNI measures can show differ-
ent levels of bias according to different levels of measure-
ment of covariates and (b) the source of bias is very closely
connected to the selection mechanism of the splitting vari-
able in uninformatively split nodes.

In the following two subsections, using some simulation
experiments, we investigate these characteristics of bias in
further detail: its dependence on the number of uninforma-
tive splits and on the covariates’ level of measurement.

4.1 Simulation studies with a single regression tree

The main goal of the present study is to investigate the prob-
lem of bias in TDNI VI measures estimated by ensemble
methods with fully-grown trees as base learners, like RF.
Equations (10) and (11) show that bias in tree-based ensem-
bles can be expressed as an average of the bias originated in
base learners. Hence, it is convenient to start our investiga-
tion about the source and the characteristics of bias consid-
ering a single unpruned regression tree.

Two simulation studies are performed. We consider a
data generating process with 9 independent covariates: 1 bi-
nary variable (B), 4 ordinal variables (O4, O8, O16 and O32)
with 4, 8, 16 and 32 categories and 4 nominal variables (N4,
N8, N16 and N32) with 4, 8, 16 and 32 categories. The con-
tinuous outcome variable Y is independent on these covari-
ates (null case). The null case guarantees that only uninfor-
mative splits take place and estimated VIs are entirely dom-
inated by bias.

Simulation (1) In the first numerical experiment we in-
vestigate the relationship between bias and the number
of uninformative splits. We generate 100 random samples
with size N = 3000. For each sample, VIs are estimated
by a single unpruned tree varying the nodesize para-
meter (the minimum size of terminal nodes) in the set
{5,6,7,8,9,10,13,15,20,25,30,60}. The number of leaf
nodes of the trees together with the estimated VIs of the 9
covariates are collected in a dataset. For each covariate, we
estimate a quadratic regression model between number of
leaf nodes and VI.

Figure 2(a) shows the relationship existing between the
mean level of bias predicted by quadratic models and the
number of uninformative splits (R2 values ranges from
0.702 to 0.949, the lower value has been observed for the
binary variable and the higher for N32). These results sub-
stantially agree with the information contained in (12): bias
levels appear to be a non-decreasing function of the num-
ber of uninformative splits. The estimated functions show a
statistically significant concavity. This fact can be explained
considering (5) and (7): growing trees with increasing lev-
els of ramification generates nodes with a decreasing size nj

and d̂ij is directly proportional to the node sample size nj .
Hence, a progressive increase in the number of leaf nodes
produces in (7) the addition of terms that do not grow at the
same speed and increases of VI that are less than propor-
tional.

Simulation (2) In this simulation we study the relationship
between bias and the number of categories in ordinal and
nominal covariates. We generate a set of 100 random sam-
ples with size N = 3000. For each sample, VIs are estimated
by a single unpruned tree with the nodesize parameter
fixed to 5. The estimated VIs of the 9 covariates are collected
in a dataset and the relationship between bias and number of
categories is analyzed estimating two quadratic regression
models: one for the set of nominal covariates and one for
ordinal covariates.

The mean levels of bias predicted by quadratic models
are plotted in Fig. 2(b) with respect to the logarithm of the
number of covariate categories (the value of R2 of the two
models is 0.997). According to (12) and (13), these curves
show that bias levels grow monotonically with the number
of categories. In addiction, nominal variables have higher
level of bias compared to ordinal variables because at each
node they allow a greater number of possible splits npsij

than ordinal variables with the same number of categories.

4.2 Simulation studies with a tree-based learning ensemble

In this subsection, we continue our investigation about the
characteristics of bias of TDNI measures taking into ac-
count tree-based ensembles. We present four numerical ex-
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Fig. 2 (a) Dependence of bias on the number of uninformative splits. (b) Dependence of bias on the level of covariate measurement (number of
categories of ordinal and nominal variables)

periments where VIs are estimated using RF. We devote spe-
cial attention to the effect of bias on the ranking of covariates
sorted by decreasing levels of estimated importance.

Simulation (3) A set of r = 100 samples with N = 250
observations are generated using the null-case mechanism
described in the previous subsection: 9 independent covari-
ates with different levels of measurement and a continuous
outcome variable independent on these covariates.

Simulation (4) In this experiment the data generating
process of Example 1 (case B) is used, with the addition
of 6 random independent variables having different levels of
measurement: a binary covariate (B), two ordinal (O6 and
O11) and two nominal (N6 and N11) covariates and 1 con-
tinuous covariate (C2). The covariates are all mutually inde-
pendent and only X1 and X2 are informative. We consider a
set of r = 100 samples with N = 400 observations.

Simulation (5) Here we consider the case of correlated
predictor variables. This simulation is similar to simula-
tion (4). The only difference relates the two continuous
covariates. X3 and C2 are normally distributed condition-
ally to X1 and B, respectively: (X3|X1 = 0) ∼ N(0,1),
(X3|X1 = 1) ∼ N(1,1) and (C2|B = 0) ∼ N(0,1),
(C2|B = 1) ∼ N(1,1).

Simulation (6) In the last simulation experiment we con-
sider the case of a regression problem with p > N . The sam-
ple size is N = 50 and the number of covariates is p = 200.

The covariates have been divided into 20 groups, each con-
sisting of 10 ordinal covariates with the following number
of categories: 2, 2, 3, 3, 4, 4, 6, 6, 8, 8. The first group
X1 = (X1,X2, . . . ,X10) contains mutually correlated co-
variates and X1, X3, X5, X7 and X9 are correlated to the
outcome. In the second group X2, covariates are mutually
independent and X11, X13, X15, X17 and X19 are correlated
to the outcome. The remaining 18 groups have 180 covari-
ates mutually independent and independent on outcome.

More specifically, r = 1000 repetitions have been gener-
ated by the following data generating process:

(1) N observations (y, xc
1, . . . , xc

p)′ are randomly drawn
from a multivariate (p + 1)-dimensional Gaussian distribu-
tion with mean vector μ = (0, . . . ,0)′ and covariance matrix

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 ρ′
YX1

ρ′
YX2

. . . ρ′
YX20

ρYX1 �X1 0 . . . 0
ρYX2 0 I . . . 0

...
...

...
. . .

...

ρYX20 0 0 . . . I

⎤

⎥

⎥

⎥

⎥

⎥

⎦

where ρYXi is the vector of 10 correlations between the co-
variates of the ith group and the outcome Y , ρYX1 = ρYX2 ≈
(0.31,0,0.28,0,0.26,0,0.26,0,0.25,0)′ and ρYX3 = · · · =
ρYX20 = (0, . . . ,0)′. The symbol 0 denotes a 10-dimensional
square matrix of zeros, I is the 10-dimensional identity ma-
trix, and the generic element of �X1 is given by sij =
0.4|i−j |.

(2) Each covariate generated at step (1) is transformed
into a categorical variable Xi , with a number ki of cat-
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Fig. 3 Box-plots of VIs for simulation (3): (a) biased (gray boxes) and bias-corrected (white boxes) VIs and (b) permutation importance estimated
by Conditional Random Forests

egories as given above. Categories are defined according
to quantiles of the normal distribution: Xi = k if Xi ∈
(q(k−1)/ki

, qk/ki
], k = 1,2, . . . , ki , where qh is the hth quan-

tile of a standard normal distribution.
The resulting data generating process has the following

features:

• Outcome Y is associated to covariates X1,X3,X5,

. . . ,X19 with constant correlation ratios η2
Y |Xi

= 0.05.
• Covariates X1,X2, . . . ,X10 are mutually associated with

Cramer’s ν indexes approximately given by νi,j ≈
0.4j−i−1 · νi,i+1, j > i + 1, where {νi,i+1}i=1,2,...,9 ≈
{0.26, 0.29, 0.23, 0.24, 0.20, 0.21, 0.17, 0.18, 0.15}.

• Covariates X11,X12, . . . ,X200 are mutually independent
and independent on covariates X1,X2, . . . ,X10.

The gray boxes of Figs. 3(a), 4(a) and 5(a) show the dis-
tribution of the uncorrected TDNI measures estimated by
means of RF for the three experiments (3), (4) and (5), re-
spectively. Random Forests are implemented in the ran-
domForest package (Liaw and Wiener 2002) of the R
language (R Development Core Team 2008). In the simu-
lation experiments of this section we have trained RFs with
ntree = 1000 regression trees, with mtry = 5 variables
randomly sampled as candidates at each split and with a
minimum size of terminal nodes nodesize= 5.

The results of simulation (3) substantially confirm what
was already observed in Fig. 2(b): higher numbers of co-
variate categories are generally associated to higher levels of
bias. A byproduct of this relationship is an artificial ranking
of covariates according to the number of categories, instead
of variable importance. In this simulation, covariates are

equally important because all uninformative but bias gener-
ates an erroneous ranking where the highest positions in the
ranking are achieved by variables with the highest number
of categories.

The negative effects of VI bias on ranking are more ev-
ident in simulations (4) and (5), where only X1 and X2 are
informative. In these experiments the ranking of covariates
using uncorrected VIs is clearly wrong. Uninformative co-
variates X3, C2 and N11 are erroneously more important
than the true informative variable X2.

The average TDNI measures of simulation (6) estimated
using RF are visualized in Fig. 6(a). A great amount of bias
hides informative covariates. Their uncorrected importance
is less than the importance of many uninformative variables.
Bias strongly distort the ranking of variables.

All these results undoubtedly show that an effective
method for bias correction is necessary when using TDNI
measure of variable importance.

5 A bias-correction strategy

This Section starts with a brief recall of the bias-correction
strategy recently proposed by Sandri and Zuccolotto (2008).

Let X be the (N × p) matrix containing the N observed
values of the p covariates {X1, . . . ,Xp}. A set of matrices
{Zs}Ss=1 is generated by randomly permuting S times the N

rows of X. We call the columns of Z ‘pseudocovariates’.
Row permutation destroys the association existing between
the response variable Y and each pseudocovariate Zi . On the
contrary, the association between two pseudocovariates Zi
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Fig. 4 Box-plots of VIs for simulation (4): (a) biased (gray boxes) and bias-corrected (white boxes) VIs and (b) permutation importance estimated
by Conditional Random Forests

Fig. 5 Box-plots of VIs for simulation (5): (a) biased (gray boxes) and bias-corrected (white boxes) VIs and (b) permutation importance estimated
by Conditional Random Forests

and Zj is preserved, i.e. it is equal to the association existing
between Xi and Xj .

Horizontally concatenating matrices X and Zs generates
a set of (N × 2p) matrices X̃s ≡ [X, Zs], s = 1,2, . . . , S.
The augmented matrices X̃ are repeatedly used to predict Y

using an ensemble predictor and S importance measures are
then computed for each covariate Xi and for the correspond-

ing pseudocovariate Zi . Let ̂VIsXi
and ̂VIsZi

be the sth im-
portance measures of Xi and Zi , respectively. The adjusted
variable importance measure VIi is computed considering
the average of ̂VIsXi

− ̂VIsZi
differences, that is:

VIi = 1

S

S
∑

s=1

(̂VIsXi
− ̂VIsZi

). (14)
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Fig. 6 Bar-plots of mean VIs
for simulation (6): (a) biased
and (b) bias-corrected mean VIs
estimated by RF (black and gray
bars for informative and
uninformative variables,
respectively)

For more details about the algorithm and the principles
that support and guide the procedure, see Sandri and Zuc-
colotto (2008).

This method has been originally developed for classifi-
cation tree-based ensembles when the Gini gain is used as
splitting criterion, but it can be extended to the entire class
of TDNI measures.

In Sect. 3, we have shown that for this class of mea-
sures the decomposition of (11) holds. The proposed bias-
correction method is crucially based on this decomposition:
in the set JU of uninformatively-split nodes, each pseudoco-
variate Zi shares approximately the same properties (num-
ber of possible splits npsij , independence on Y ) of the corre-
sponding covariate Xi and consequently has approximately
the same probability pij of being selected as splitting vari-
able. Hence, the average importance of Zi calculated for S

random permutations is an approximation of the sum given
in (12): av[̂VIsZi

] ≈ E[εXi
]. In other words,

∑S
s=1

̂VIsZi
can

be used as an approximation of the bias affecting the impor-
tance of Xi .

A direct consequence of the generalization of the bias-
correction strategy to TDNI measures is the extension of its
domain of applicability to regression problems.

We investigate the effectiveness of the above bias-
correction algorithm in the 4 regression problems related
to the data generating processes described in Sect. 4.2.
The white boxes of Figs. 3(a), 4(a), 5(a) and 6(a) visual-
ize the distribution of the corrected VIs (ntree = 1000,
mtry = 3, nodesize = 5 and number of random permu-
tation S = 25). These experiments clearly show that bias-
correction using pseudocovariates has the power to reduce
bias, even when using a small number S of random permu-
tations. The technique generates right rankings of covari-
ates according to their importance and informative variables
can be correctly discriminated from uninformative ones. The
method shows good performances also when estimating VIs
of a large number of (mutually correlated, mutually inde-
pendent, informative and uninformative) variables using a
very limited number of sample units. All the uninformative
covariates correctly have a null mean importance and all the
mean VIs of informative variables are greater than zero.

The optimal number of variables randomly selected in
each node, i.e. the value of the parameter mtry that mini-
mizes the out of bag prediction error rate of the RF, is typ-
ically a function of the number of covariates of the dataset.
Extensive simulations (not reported here) show that, when
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Fig. 7 Plasma beta-carotene outcome: (a) biased and (b) bias-corrected TDNI importance estimated by RF and (c) permutation importance
estimated by Conditional Random Forests

adding the p pseudocovariates, it is not necessary to increase
mtry and the optimal value chosen for the original dataset
can still be used. This fact can be explained by consider-
ing that pseudocovariates are not additional potentially pre-
dictive variables but only ‘competitors’ of the original co-
variates. For each covariate, our method generates a ‘twin’
uninformative pseudocovariate that, only in uninformative
splits, participates in the competition for the best split, with
approximately the same probability of the selection of Xi .

For the sake of comparison, Figs. 3(b), 4(b) and 5(b)
show the distribution of the (unbiased) permutation mea-
sures computed by Conditional Random Forests (CRF). This
choice is motivated by two considerations: (a) the unified
framework for recursive partitioning used by CRF to grow
single trees strongly reduces the number of uninformative
splits and (b) permutation measures are not affected by the
kind of bias described in this paper. We have estimated
CRF using the cforest command of the party pack-
age for R, with the following settings: 1000 trees, 3 ran-
domly picked input variables in each node, minsplit= 5,
a quadratic test statistics and Bonferroni-adjusted p-values
(see Hothorn et al. 2006 and Strobl et al. 2007b). The re-
sults clearly show that these measures and the proposed
bias-corrected TDNI measures are qualitatively very simi-
lar. Hence, the two methods can be used alternatively when
one needs to calculate VIs.

In simulation study (5) the procedure is not able to com-
pletely remove the bias due to the association between X3

and X1. Bias in favor of X3 is still present. This effect can
also be observed when using the permutation measure calcu-
lated by CRF (see Fig. 5(b)). A new conditional permutation
scheme for the computation of VI in case of correlated pre-
dictor variables has been recently proposed by Strobl et al.
(2008).

6 Case study

The Plasma-Retinol dataset is available at the StatLib
Datasets Archive and contains 315 observations of 14 vari-
ables aiming at investigating the relationship between per-
sonal characteristics and dietary factors, and plasma concen-
trations of retinol, beta-carotene and other carotenoids. The
identification of determinants of low plasma concentration
of retinol and beta-carotene is important because observa-
tional studies have suggested that this circumstance might
be associated with increased risk of developing certain types
of cancer.

Previous studies showed that plasma retinol levels tend
to vary by age and sex, while the only dietary predic-
tor seems to be alcohol consumption. For plasma beta-
carotene, dietary intake, regular use of vitamins, and fiber in-
take are associated with higher plasma concentrations, while
Quetelet Index and cholesterol intake are associated with
lower plasma levels (Nierenberg et al. 1989).

We used the RF algorithm to predict BETAPLASMA and
RETPLASMA as a function of the 12 covariates described
in Table 2. The hyperparameters of the tree-based ensem-
bles are ntree = 3000, mtry = 4, nodesize = 5 and
a number of random permutations S = 300. We computed
biased ̂VIXi

(Figs. 7(a) and 8(a)) and bias-corrected impor-
tance measures VIXi

(Figs. 7(b) and 8(b)) for BETAPLASMA

and RETPLASMA, respectively. We set negative values of VI
to zero.

For BETAPLASMA the corrected measures allow to iden-
tify 5 mainly predictive covariates (FIBER, BETADIET, VI-
TUSE, QUETELET, ALCOHOL). Similarly, the most impor-
tant predictors of RETPLASMA seem to be ALCOHOL, SEX

and AGE. Our results largely confirm the findings of the
preceding analyses except for the importance of CHOLES-
TEROL and ALCOHOL in predicting BETAPLASMA.

The influence of bias correction on ranking by impor-
tance is apparent. On one side, it allows to discard predictors
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Table 2 Variables in the Plasma-Retinol dataset

Response variables

BETAPLASMA: Plasma beta-carotene (ng/ml)

RETPLASMA: Plasma Retinol (ng/ml)

Covariates

AGE: Age (years)

SEX: Sex (1 = Male, 2 = Female)

SMOKSTAT: Smoking status (1 = Never, 2 = Former, 3 = Current smoker)

QUETELET: Quetelet (weight/(height2))

VITUSE: Vitamin Use (1 = Yes, fairly often, 2 = Yes, not often, 3 = No)

CALORIES: Number of calories consumed per day

FAT: Grams of fat consumed per day

FIBER: Grams of fiber consumed per day

ALCOHOL: Number of alcoholic drinks consumed per week

CHOLESTEROL: Cholesterol consumed (mg per day)

BETADIET: Dietary beta-carotene consumed (mcg per day)

RETDIET: Dietary retinol consumed (mcg per day)

Fig. 8 Plasma retinol outcome: (a) biased and (b) bias-corrected TDNI importance estimated by RF and (c) permutation importance estimated by
Conditional Random Forests

whose importance is artificially amplified by bias. In fact,

on the basis of biased VIs, FAT and CALORIES seem infor-

mative covariates of BETAPLASMA, but after the removal

of bias their importance vanishes. On the other side, bias

correction can reveal informative predictors, hidden by bias

in VI of other predictors. In Fig. 8(a), SEX seems scarcely

influential on RETPLASMA, but the correction procedure

shows that this variable is one of the three most important

covariates.

Figures 7(c) and 8(c) show the permutation-based VIs

calculated using CRF. These estimates are very similar to

VIs obtained by the proposed algorithm.

7 Concluding remarks

It is well-known that the Gini VI measure, computed by
means of tree-based learning ensembles, is affected by dif-
ferent kinds of bias (Strobl 2005). The existence of bias in
VI is potentially dangerous especially in a variable selec-
tion perspective, since it can dramatically alter the ranking
of predictors.

The main source of bias for the class of TDNI variable
importance measures is intimately connected to the tree-
construction mechanism: covariates Xi with the same im-
portance in a node j can have different probabilities pij of
being selected as splitting variables. Using theoretical con-
siderations and simulation experiments, the present paper
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shows that the levels of this bias depend on the character-
istics of covariates, i.e. on their measurement levels. In ad-
diction, the analysis indicates that this kind of bias is gen-
erated by uninformative splits. These splits are binary parti-
tions of sample units that are completely driven by chance
where the association between response variable and covari-
ates have been entirely captured by earlier splits (the infor-
mative splits).

The heuristic bias-correction strategy of Sandri and Zuc-
colotto (2008) is based on the introduction of a set of
pseudocovariates in the original dataset, in the spirit of Wu
et al. (2007). Pseudocovariates are noise variables that are
independent on the response variable and have the same
correlation structure of the original covariates. Working
on simulated and real life regression problems,1 the paper
shows that pseudocovariates have the capacity to approxi-
mate the component of the estimated VI attributable to bias.
Hence, the proposed permutation method can reduce bias
due to different measurement levels of covariates and can
yield correct ranking of variables according to their impor-
tance.

Of course, the drawback of repeatedly generating pseudo-
covariates is an additional computational burden. This is a
problem common to all permutation-based procedures and it
cannot be ignored when the method is applied to large-scale
datasets. However, it is fundamental to take into account that
the use of the bias-correction method is necessary only when
covariates with different levels of measurement are present.
For example, genome-wide association studies typically col-
lect data about thousands to hundreds of thousands single
nucleotide polymorphisms that all have the same charac-
teristics (e.g. are all real-valued variables). In these cases
bias in TDNI measure does not affect covariates’ ranking
and therefore one can avoid to apply any correction. Any-
way, simulation experiments show that the number S of sets
{Zs} of pseudocovariates required for a satisfactory bias cor-
rection is often small and the extra computational effort is
generally moderate even in medium-size problems.
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