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Abstract Hidden Markov random field models provide an
appealing representation of images and other spatial prob-
lems. The drawback is that inference is not straightforward
for these models as the normalisation constant for the likeli-
hood is generally intractable except for very small obser-
vation sets. Variational methods are an emerging tool for
Bayesian inference and they have already been success-
fully applied in other contexts. Focusing on the particular
case of a hidden Potts model with Gaussian noise, we show
how variational Bayesian methods can be applied to hidden
Markov random field inference. To tackle the obstacle of
the intractable normalising constant for the likelihood, we
explore alternative estimation approaches for incorporation
into the variational Bayes algorithm. We consider a pseudo-
likelihood approach as well as the more recent reduced de-
pendence approximation of the normalisation constant. To
illustrate the effectiveness of these approaches we present
empirical results from the analysis of simulated datasets. We
also analyse a real dataset and compare results with those
of previous analyses as well as those obtained from the re-
cently developed auxiliary variable MCMC method and the
recursive MCMC method. Our results show that the varia-
tional Bayesian analyses can be carried out much faster than
the MCMC analyses and produce good estimates of model
parameters. We also found that the reduced dependence ap-
proximation of the normalisation constant outperformed the
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1 Introduction

Markov random fields (MRFs) are spatial models whose
spatial locations or sites generally follow some sort of lat-
tice structure. In a discrete Markov random field, the ob-
servation at each of these sites belongs to one of K , say,
possible states. Each site on the lattice has a set of neigh-
bouring sites and the attractiveness of such models lies in
the fact that the conditional probability at each site is depen-
dent only upon the values of its neighbours. This structure
is useful in a variety of research areas where there is an in-
terest in representing the spatial association between data.
Some examples are medical imaging, environmental statis-
tics and genetics. Usually in practical applications it is not
clear to which state a given observation belongs, and in some
cases even the number of states is unknown. In this setting,
the hidden Markov random field (HMRF) representation is
an appropriate one.

HMRFs have been used in various areas where interest
lies in modelling spatial dependency between regions or ob-
jects which are geographically close to one another or which
are related in some other way. Image analysis is an important
application area for HMRFs, the work by Geman and Ge-
man (1984) and Besag (1986) having been influential in this.
Recent application areas include micro-array data analysis
(Gottardo et al. 2006), brain imaging (Smith and Fahrmeir
2007), disease mapping (Green and Richardson 2002) and
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agricultural field experiments (Besag and Higdon 1999).
The Ising model for representing binary lattice data and its
generalisation to categorical data, the Potts model, are two
well-known and widely applied examples of an MRF-type
model. These models originated in statistical physics but
have been useful in many other modelling areas. This paper
focuses on Bayesian inference in the case where the hidden
data are represented by the Ising/Potts HMRF model.

A difficulty with HMRF models, and hence the hidden
Ising and Potts models, is that the normalising constant as-
sociated with the likelihood is generally intractable. This
of course presents a problem in Bayesian inference as the
computation of the likelihood is integral to the approach.
A very recent development for Markov chain Monte Carlo
(MCMC) algorithms for analysing distributions such as
HMRFs with intractable normalising constants is presented
in Møller et al. (2006). Møller et al. (2006) avoid the prob-
lem of estimating the normalising constant altogether by de-
veloping an auxiliary variable MCMC scheme in which the
troublesome constant is cancelled out. This work is devel-
oped further by Murray et al. (2006). This method produces
accurate results but the drawback is that the computing time
involved can be considerable.

Many modern applications involve large data sets. There-
fore, methods of analysis that are computationally efficient
as well as accurate are very valuable. Approximate meth-
ods can often provide a time efficient solution to inference
problems with only a small reduction in accuracy. In this
paper we show how variational approximations, or varia-
tional Bayes, can be used to carry out Bayesian inference
for estimating the parameters of a hidden Ising/Potts model.
We use the auxiliary variable MCMC approach as a refer-
ence method with which we compare our results. Variational
methods are non-simulation based and computationally ef-
ficient and their usefulness has already been demonstrated
in other scenarios such as mixture model analysis (McGrory
and Titterington 2007; Corduneanu and Bishop 2001; Attias
1999) and hidden Markov chain analysis (McGrory and Tit-
terington 2008; MacKay 1997).

Calculation of the posterior distribution of model para-
meters given observed data is a key objective in Bayesian
analysis. This is not always straightforward as in many sit-
uations posterior distributions are intractable as is the case
with HMRF models. The variational Bayes method provides
a way of approximating such posteriors through the intro-
duction of a simpler approximating function that is chosen
to minimise the Kullback-Leibler divergence between the
true and approximating function. However, as we have al-
ready mentioned, a difficulty which arises in the analysis
of the hidden Potts model and other HMRF models, and
hence in the variational Bayes scheme, is that the normal-
isation constant associated with the likelihood is usually in-
tractable. This presents an obstacle for inference and conse-
quently the investigation of normalising constant estimation

techniques is an area of active research. Approaches include
approximate methods such as thermodynamic integration, or
path sampling (Gelman and Meng 1998; Pettitt et al. 2003).
Reeves and Pettitt (2004) present an exact recursive method
which enables calculation of the normalising constant for
small lattices and this is extended in Friel et al. (2008) for
application to larger lattices through an approximate method
called the Reduced Dependence Approximation or RDA.

In our variational Bayes scheme we employ the RDA
method of Friel et al. (2008) to estimate the normalising
constant and compare results with those obtained by tak-
ing a pseudo-likelihood approach (Besag 1974, 1975, 1986)
at the relevant point in the variational algorithm. Although
the pseudo-likelihood may be a crude approximation, it is
simplistic and can be computed quickly. For this reason we
considered it an option worth exploring. In our analysis of
the soil phosphate dataset, discussed in Sect. 5.2, we also
compare our results with those obtained using the auxiliary
variable MCMC approach of Møller et al. (2006) and the
recursive method of Reeves and Pettitt (2004).

In Sect. 2 we outline the fundamental principles of the
variational Bayes approach. In Sect. 3 we describe the Ising
and Potts models and discuss some methods for approxi-
mating the intractable normalising constant of the associated
likelihood. In Sect. 4 we show how variational Bayes can be
used to infer the parameters of a hidden Potts model in con-
junction with the normalising constant approximations. Re-
sults of our analyses of synthetic and real data are presented
in Sect. 5 with conclusions given in Sect. 6.

2 The variational Bayes approach

Suppose we have a missing data model with parameters θ

and latent variables z. Calculation of the posterior distribu-
tion of the parameters θ , given the observed data y, is central
to carrying out a Bayesian analysis. However, in many prac-
tical situations, posterior distributions cannot be computed
exactly. In these situations, the variational Bayes method
provides a means of approximating the intractable posterior.
This is done by introducing a variational function q(θ, z) as
an approximation to the joint posterior p(θ, z|y) from which
the required posterior over the parameters can be found. To
find an approximating function that is as close as possible
to the true posterior, q(θ, z) is chosen to be the minimiser
of the Kullback-Leibler (KL) divergence between q(θ, z)

and the joint posterior p(θ, z|y). The idea behind this is that
minimising this KL divergence is the same as finding a rig-
orous lower bound on the log marginal likelihood. To see
this, note that, by Jensen’s inequality, the log-likelihood can
be lower bounded in the following way.

logp(y) = log
∫ ∑

{z}
p(y, z, θ)dθ
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= log
∫ ∑

{z}
q(θ, z)

p(y, z, θ)

q(θ, z)
dθ

≥
∫ ∑

{z}
q(θ, z) log

p(y, z, θ)

q(θ, z)
dθ. (1)

Since the difference between the two sides of the inequal-
ity (1) is given by the KL divergence,

KL(q|p) =
∫ ∑

{z}
q(θ, z) log

q(θ, z)

p(θ, z|y)
dθ,

it is evident that maximising the lower bound, (1), is equiva-
lent to minimising the KL divergence between the two quan-
tities. It is well known that the KL divergence is minimised
by taking q(θ, z) = p(θ, z|y), but, in order to make any
progress towards a solution, q(θ, z) must be computable.
Therefore, to simplify matters we assume that q(θ, z) fac-
torises over the parameters and latent values, leading to
the distributional form q(θ, z) = qθ (θ)qz(z). The variational
Bayes algorithm then proceeds to iteratively maximise (1)
with respect to qθ (θ) and qz(z). At each iteration the lower
bound is increased provided it is not already at a maximum.
As a result of this similarity with the expectation maximisa-
tion (EM) algorithm, the algorithm is sometimes referred to
as the variational Bayes expectation maximisation (VBEM)
algorithm. Another outcome is that, when variational Bayes
is applied to exponential-family models with the appropriate
conjugate priors selected, the variational posterior for the
model parameters will also belong to that conjugate fam-
ily (for more detail on this point see, for example, Beal and
Gharamani 2003 or McGrory 2005).

3 Hidden Markov random field modelling

Consider a grid or lattice with regularly spaced sites i =
1, . . . , n; in the context of image analysis, these sites cor-
respond to pixels. Each site belongs to one of K states. For
example, these states might correspond to pixel colour when
the lattice represents an image or, in a remote sensing prob-
lem, the states might correspond to land-use types. The true
states z = {z1, . . . , zn} are hidden and what we observe are
noisy observations y = {y1, . . . , yn}. The conditional proba-
bility at a given site depends only upon the values of neigh-
bouring sites. In a first-order neighbourhood, the neighbours
of a site are the sites above, below, to the left and to the right.
The notation δi denotes the sites that are the neighbours of
site i. We also use the notation i ∼ j to indicate that i and
j are neighbours of one another. It is possible to consider
higher-order neighbourhood systems but we do not do so in
this paper. Increasing the order of the neighbourhood con-
sidered increases the amount of information used to estimate

the true value of each pixel. This could improve the perfor-
mance of inference techniques in some cases but would also
increase computation time.

The Hammersley-Clifford Theorem identifies MRFs with
Gibbs distributions (see Besag 1974, 1975, for example).
This is a valuable result because it provides a straightfor-
ward way of specifying the distribution of a MRF. For this
reason MRFs are usually defined through their representa-
tions as Gibbs distributions. Two well-studied examples of
Gibbsian models that are often used to represent images are
the Ising model and its generalisation, the Potts model.

3.1 The Ising model and the Potts model

The idea of the Ising model translates in a natural way to the
binary image setting, representing the two colours present
by +/−1 and assuming that nearby pixels are likely to have
similar colour values. Suppose that the parameter of the
MRF is β and that the variables zi , which represent the state
or colour at a given pixel, take values in {−1,+1}. The Ising
model is of the form

p(z|β) = exp{β ∑
i∼j zizj }

G(β)
,

where G(β) is a normalising constant which is usually not
computable. The parameter β measures the strength of as-
sociation between neighbouring pixels. Large positive val-
ues of β encourage neighbouring pixels to be of the same
colour so that increasing β leads to bigger patches of like-
coloured pixels in the image. In 2 dimensions the Ising
model undergoes a continuous phase transition at the critical
value βc ≈ 0.44 and moves from a disordered to an ordered
phase. The development of ordering occurs gradually as β

increases above the critical value and, in our context, this
means that when β is sufficiently above the critical value,
the entire image will be made up of only one colour. For
this reason, values of β that are too large would not be of
interest here. This transition phenomenon is very important
in statistical physics where the Ising model has its origins
as a model for magnetic materials. For further detail see, for
example, Newman and Barkema (1999).

The natural extension of the Ising model to more than two
states is given by the Potts model. In the Potts model each
site can take more than two discrete values. For instance,
a K-state Potts model is one in which each site can take
values in states 1, . . . ,K . The variables z corresponding to
the states are K-vectors, zi = (zi1, . . . , ziK), the elements of
which take values in {0,1} such that zil = 1 if and only if the
observation at site i belongs to state l. Then

p(z|β) = exp{β ∑
i∼j δ(zi, zj )}
G(β)

, (2)
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and

δ(zi, zj ) = 1, if zi
T zj =

K∑
l=1

zilzjl = 1

= −1, otherwise, i.e. if zi
T zj =

K∑
l=1

zilzjl = 0.

We can write

δ(zi, zj ) = 2
K∑

l=1

zilzjl − 1.

For K = 2 states, the Potts model is equivalent to the
Ising model up to an additive constant.

3.2 The hidden Potts model

This paper focuses on the case where our data are modelled
by a K-state hidden Potts model with independent Gaussian
noise. The joint probability distribution of y, z and θ is

p(y, z, θ) =
{

n∏
i=1

p(yi |zi, φ)

}
p(z|β)

{
K∏

l=1

p(φl)

}
p(β),

where θ = (φ,β). Here φ = (φ1, . . . , φK) where the φl’s are
parameters within the lth noise model and

p(y, z, θ) =
[

n∏
i=1

K∏
l=1

{p(yi |φl)}zil

]
p(z|β)

×
{

K∏
l=1

p(φl)

}
p(β). (3)

We assume that the lth noise model is N(μl, τ
−1
l ), with

mean μl and where τl is the precision (τ−1
l = σ 2

l ) so that
φl = (μl, τl).

3.3 Approximating the normalising constant

The normalising constant, also referred to as the partition
function, for the likelihood of a HMRF cannot be evalu-
ated exactly unless the observation set is very small. In this
paper we consider two approaches to dealing with the is-
sue of approximating the normalising constant of the hidden
Potts/Ising model within the variational framework. The first
of these is the reduced dependence approximation (RDA)
to the normalising constant and the second is the pseudo-
likelihood approach.

The reduced dependence approximation

The RDA (Friel et al. 2008) extends the recursion method
for normalising constant calculation, presented in Reeves

and Pettitt (2004), to problems involving larger lattices. This
results in an approximation to the true normalising constant.
The recursive method (Reeves and Pettitt 2004) enables ex-
act computation of the normalising constant for an unnor-
malised joint likelihood that can be expressed as a product of
factors. As factorisation of the joint likelihood is applicable
to any discrete Markov random field, the recursion method is
suitable for these models. However, it is only feasible when
the lattice size is not too large, that is up to approximately 20
rows, with computing time increasing proportionally with
the number of columns.

The recursion method can be used to compute the nor-
malising constant for the unnormalised likelihood, ϕ(z|β),
of a HMRF as follows. Here ϕ(z|β) can be expressed in a
factorised form as

ϕ(z|β) = ϕ1(z1, z2, . . . , zr+1|β)ϕ2(z2, z3, . . . , zr+2|β) · · ·
× ϕs(zs, zs+1, . . . , zn|β),

where r < n and s = n − r . This is referred to as a lag-r
model. Here r determines the degree of complexity or de-
pendence of the model after optimal indexing of the z’s so as
to make r as small as possible. Note that the exact grouping
of the terms of the HMRF in the factorisation is not unique
nor is it of consequence. For an example of a possible fac-
torisation for a HMRF model see Reeves and Pettitt (2004).
As a result of the above factorisation, the normalising con-
stant, G(β) = ∑

{z1,...,zn} ϕ(z|β), can be expressed as

G(β) =
∑

zs+1...zn

∑
zs

ϕs(zs, zs+1, . . . , zn|β)

×
∑
zs−1

ϕs−1(zs−1, zs, . . . , zn−1|β) · · ·

×
∑
z1

ϕ1(z1, z2, . . . , zr+1|β).

This expression can then be evaluated through forward re-
cursion with a computation time significantly less than that
of a straightforward summation over all possible realisations
of the (z1, . . . , zn). Note that, when r = 1, the recursion
method corresponds to the well-known forward-backward
algorithm for hidden Markov models and so the recursion
method is a generalisation of this result to a lattice. See
Reeves and Pettitt (2004) for further detail on the recursive
method. See also Jordan (2004) for an alternative perspec-
tive on this approach.

The RDA provides a means of extending this approach
to larger lattice sizes. It finds a close approximation to the
true normalising constant through the relaxation of certain
dependencies within the model. This involves approximat-
ing p(z|β) so that it can be expressed as a product of factors
that are defined on sublattices. The normalising constants of
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these sublattices can then be computed using the recursive
method described above allowing us to obtain an approxi-
mation to the true normalising constant as follows. We de-
note the vector of states in row ρ by rρ and we denote by u′,
say, a number of rows which is smaller than the actual num-
ber of rows, u in the lattice. Then, making use of the Markov
property and an approximation, we can approximate p(z|β)

as

p(z|β) = p(ru−u′+1, . . . , ru|β)

u−u′∏
ρ=1

p(rρ |rρ+1, β)

= p(ru−u′+1, . . . , ru|β)

u−u′∏
ρ=1

p(r1, . . . , rρ |rρ+1, β)

p(r1, . . . , rρ−1|rρ,β)

≈ p(ru−u′+1, . . . , ru|β)

u−u′∏
ρ=1

p(rp−u′, . . . , rρ |β)

p(rp−u′, . . . , rρ−1|β)
.

(4)

The marginal probabilities in (4) can be approximated as

p(rp−u′, . . . , rρ |β) ≈ ϕ(rp−u′, . . . , rρ |β)

G(u′+1)×v(β)
.

In the above, v is the number of columns in the lattice,
ϕ(rρ−u′ , . . . , rρ |β) represents the un-normalised distribu-
tion of the sub-lattice of dimension (u′ + 1) × v defined
on rows ρ − u′, . . . , ρ of the lattice and G(u′+1)×v(β) is
the corresponding normalising constant of the sub-lattice.
The above expression is an approximation because it ignores
some of the associations between rows within the lattice. See
Friel et al. (2008) for more detail on this point. Expressing
each of the marginal distributions in (4) similarly leads to
the approximation for the normalising constant

˜G(β) = (G(u′+1)×v(β))u−u′

(Gu′×v(β))u−u′−1
.

The normalising constants of these sub-lattices can be
computed exactly via the recursive method when u′ is cho-
sen to be reasonably small.

The pseudo-likelihood approach

This approach involves replacing the intractable likelihood,
at appropriate stages, by the pseudo-likelihood in the spirit
of Rydén and Titterington (1998). The pseudo-likelihood is
given by

pPL(z|β) =
n∏

i=1

p(zi |z−i , β) where z−i = {zj : j �= i}

=
n∏

i=1

p(zi |zδi
, β),

where zδi
denotes the z-values of the pixels which are neigh-

bours of pixel i. The normalising constants for the factors
of the pseudo-likelihood are computable and so the un-
obtainable quantity has been replaced by something more
amenable.

4 Variational Bayesian analysis of a hidden K-state
Potts model

We consider a K-state hidden Potts model with indepen-
dent Gaussian noise and joint probability distribution given
by (3) as described in Sect. 3.2.

Assigning the prior distributions

We assign independent Gaussian priors to the means
μ = (μ1, . . . ,μK), conditional on the precisions τ =
(τ1, . . . , τK), so that

p(μ|τ) =
K∏

l=1

N(μl;ml
(0), (λ

(0)
l τl)

−1).

The precisions are given independent Gamma prior distrib-
utions:

p(τ) =
K∏

l=1

Ga

(
τl; 1

2
γ

(0)
l ,

1

2
ξ

(0)
l

)
.

In the above, the {ml
(0)}, {λ(0)

l }, {γ (0)
l } and {ξ (0)

l } are cho-
sen hyperparameters and N(.; ., .) and Ga(.; ., .) denote the
Gaussian and Gamma probability density functions, respec-
tively.

4.1 Form of the variational posterior distributions
for the noise model parameters

We wish to maximise (1). We assume that

q(z, θ) = qz(z)

{
K∏

l=1

ql(φl)

}
qβ(β).

This results in an optimal ql(φl) of the form

ql(φl) ∝
n∏

i=1

{
p(yi |φl)

qil
}
p(φl), (5)

where qil = Ez(zil) = Pqz(ith data point belongs to state l).
(The expectations here and throughout are with respect
to the variational approximation.) See the Appendix for a
derivation of the above formula. This results in variational
posteriors of the form

q(μl |τl) = N(μl;ml, (λlτl)
−1),

q(τl) = Ga

(
τl; 1

2
λl,

1

2
ξl

)
,
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with hyperparameters given by

λl = λ
(0)
l +

n∑
i=1

qil,

γl = γ
(0)
l +

n∑
i=1

qil,

ml = λ
(0)
l m

(0)
l + ∑n

i=1 qilyi

λl

,

ξl = ξ
(0)
l +

n∑
i=1

qily
2
i + λ

(0)
l m

(0)
l

2 − λlm
2
l .

4.2 Optimisation of qz(z)

The optimal qz(z) (see Appendix) is

qz(z) ∝ exp

{
n∑

i=1

K∑
l=1

zilEφl
logp(yi |φl) + Eβ logp(z|β)

}
.

We are unable to compute the optimal qz(z) explicitly be-
cause of the complexity of p(z|β). The simplest proposal
is to assume a fully factorised form for qz(z), i.e. qz(z) =∏n

i=1 qzi
(zi). This gives

qzi
(zi) ∝ exp

{
K∑

l=1

zilEφl
logp(yi |φl)

+ EβEz−i
logpi(zi |β)

}
, (6)

where z−i represents all zj ’s except for zi . Here logpi(zi |β)

is the part of logp(z|β) that depends on zi . By the definition
of δ(zi, zj ), we can write

p(z|β) = exp{2β
∑

i∼j

∑K
l=1 zilzjl}

G∗(β)

where G∗(β) = G(β)eβ . Thus, EβEz−i
[logpi(zi |β)] is

given by

Eβ

{
2β

K∑
l=1

zil

∑
jεδi

Ezj
zjl

}
= 2Eβ(β)

K∑
l=1

zil

(∑
jεδi

qjl

)
.

Substituting the above expression into (6) gives

qzi
(zi) ∝ exp

{
K∑

l=1

zil(Eφl
logp(yi |φl) + 2Eβ(β)

∑
jεδi

qjl)

}
,

and therefore

qil ∝ exp

{
Eφl

[logp(yi |φl)] + 2Eβ(β)
∑
jεδi

qjl

}
,

l = 1, . . . ,K, (7)

normalised so that
∑K

l=1 qil = 1. We perform five iterations
of the calculation of the above equation to obtain a result. In
the above, apart from an additive constant,

Eφl
[logp(yi |φl)] = 1

2
Eφl

[log(τl)]

− 1

2
Eφl

(τl)(yi − ml)
2 − 1

2ξl

,

with expectations given by

Eφl
[log(τl)] = �

(
γl

2

)
− log

(
ξl

2

)
,

Eφl
(τl) = γl

ξl

,

where � is the digamma function.
Therefore, given the qil’s, the ql(φl)’s can be updated

through (5). Given Eβ(β), the qil’s can be calculated/updat-
ed through (7).

4.3 Optimisation of qβ(β)

The optimal qβ(β) (see Appendix) is

qβ(β) ∝ exp {Ez logp(z|β)}p(β). (8)

There is no conjugate set-up for the prior for β and so we use
a uniform prior, i.e. we set p(β) = constant over the range
of permitted values. The complexity of p(z|β) also prevents
us from calculating (8) explicitly. By the assumption of a
factorised form for qz(z),

Ez logp(z|β) = 2β
∑
i∼j

K∑
l=1

qilqjl − logG∗(β),

so that

qβ(β) ∝ exp{2β
∑

i∼j

∑K
l=1 qilqjl}p(β)

G∗(β)
.

In principle qβ(β) can be updated from the qil’s. However,
this is computationally infeasible because of the intractabil-
ity of the normalising constant and so we consider the two
aforementioned approaches to dealing with this problem.

The reduced dependence approximation

Using the RDA, the true normalising constant for the likeli-
hood is approximated by

˜G(β) = (G(u′+1)×v(β))u−u′

(Gu′×v(β))u−u′−1
,

giving

qRDA
β (β) ∝ exp{2β

∑
i∼j

∑K
l=1 qilqjl}p(β)e−β

˜G(β)
. (9)
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A pseudo-likelihood approach

Here we replace p(z|β) by

pPL(z|β) :=
n∏

i=1

p(zi |z−i , β) =
n∏

i=1

p(zi |zδi
, β),

where

p(zi |zδi
, β) = exp{2β

∑K
l=1 zil

∑
jεδi

zj l}∑
zi′ exp{2β

∑K
l=1 zi′l

∑
jεδi′ zjl}

= exp{2β
∑K

l=1 zil

∑
jεδi

zj l}∑K
l=1 exp{2β

∑
jεδi

zj l}
.

Thus

pPL(z|β) =
n∏

i=1

exp{2β
∑K

l=1 zil

∑
jεδi

zj l}∑K
l=1 exp{2β

∑
jεδi

zj l}
.

If we replace p(z|β) by pPL(z|β), then the optimum
qβ(β) has the form

qPL
β (β) ∝ exp{Ez logpPL(z|β)}p(β), (10)

where

Ez logpPL(z|β)

= 2β

n∑
i=1

∑
j∈δi

K∑
l=1

qilqjl

−
n∑

i=1

Ezδi

⎡
⎣log

⎧⎨
⎩

K∑
l=1

exp

(
2β

∑
j∈δi

zj l

)⎫⎬
⎭

⎤
⎦ ,

and so we have

exp{Ez logpPL(z|β)}

= exp{2β
∑n

i=1
∑

j∈δi

∑K
l=1 qilqjl}

exp(
∑n

i=1 Ezδi
[log{∑K

l=1 exp(2β
∑

j∈δi
zj l)}])

. (11)

In principle this can be used in (10), but in the case of a first-
order hidden Markov random field, each Ezδi

in the denom-

inator contains K4 terms, making computation impractical.
Here we suggest tackling this obstacle by approximating

the denominator of (11) by

exp

[
n∑

i=1

[
log

{
K∑

l=1

exp

(
2β

∑
jεδi

qjl

)}]]

=
n∏

i=1

⎧⎨
⎩

K∑
l=1

exp

(
2β

∑
jεδi

qjl

)⎫⎬
⎭ ,

so that

qPL
β (β) ∝

n∏
i=1

exp{2β
∑

jεδi

∑K
l=1 qilqjl}p(β)

{∑K
l=1 exp(2β

∑
jεδi

qjl)}
. (12)

Note that the use of the pseudo-likelihood approximation
in addition to the approximation to the denominator of (11)
amounts to taking a mean field-like approach to approximat-
ing the likelihood of the HMRF.

Approximating the expected value of β

Calculation of Eβ(β) for use in (7) also requires us to nor-
malise (9) and (12). We have

qβ(β) = CQ(β),

where Q(β) equals the right-hand side of (9) or (12) for
the RDA and PL, respectively and C is a normalising con-
stant. We use numerical quadrature to approximate the nor-
malising constant and first moment for Q(β). The prior for
β was taken as being uniform on (0, 0.6) and so p(β) was
constant in the calculation. The prior for β allows values
slightly above the critical value for phase transition. Values
larger than 0.6 do not seem worthy of consideration as we
are interested in modelling images which of course comprise
more than one colour.

5 Results

5.1 Simulated images

Using simulated datasets we compared results obtained from
the variational analysis using a pseudo-likelihood approxi-
mation to those obtained from the variational analysis using
the reduced dependence approximation to the normalisation
constant. We considered two images of size 40 by 40 sim-
ulated from the Ising model with β equal to 0.3 and 0.4,
respectively. We added independent Gaussian noise to the
two images with means equal to 0 and standard deviations
of 0.6, 0.7, 1 and 1.25, respectively. We repeated the simula-
tion of each image and the subsequent analysis 20 times. The
results presented in Table 1 are an average of the estimates
obtained over the 20 simulations. To give a comparison of
our variational method with an alternative MCMC approach,
we compared results with those obtained using the auxiliary
variable MCMC method. Results from the MCMC analy-
sis are given in Table 2 and these are also an average of 20
replications. Note that the recursive method was unavailable
to us here as the lattice size is too large.

In our implementation, the hyperparameters m
(0)
1 and

m
(0)
2 were both chosen to be 0 and λ

(0)
1 and λ

(0)
2 were set
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Table 1 Estimation of
parameters in the simulation
study using the variational
Bayes scheme: averages from
20 replications

True distribution Variational post. Variational post.

means using PL means using RDA 10

β̂ μ̂1 σ̂1 β̂ μ̂1 σ̂1 β̂ μ̂1 σ̂1

μ̂2 σ̂2 μ̂2 σ̂2 μ̂2 σ̂2

0.30 −1.00 0.60 0.315 −0.998 0.598 0.300 −0.999 0.596

1.00 0.60 1.010 0.599 1.001 0.598

0.30 −1.00 0.70 0.331 −1.050 0.669 0.303 −1.042 0.697

1.00 0.70 0.989 0.731 0.985 0.711

0.30 −1.00 1.00 0.389 −1.044 0.985 0.288 −1.032 0.936

1.00 1.00 0.899 1.044 1.014 0.938

0.30 −1.00 1.25 0.424 −1.117 1.326 0.269 −1.105 1.085

1.00 1.25 0.882 1.295 1.126 1.116

0.40 −1.00 0.60 0.412 −1.005 0.596 0.400 −1.002 0.597

1.00 0.60 1.007 0.587 1.001 0.596

0.40 −1.00 0.70 0.439 −0.981 0.730 0.403 −0.987 0.678

1.00 0.70 1.081 0.679 1.124 0.727

0.40 −1.00 1.00 0.445 −0.958 1.010 0.398 −0.975 0.967

1.00 1.00 1.120 0.978 1.122 0.972

0.40 −1.00 1.25 0.491 −0.902 1.289 0.391 −0.980 1.185

1.00 1.25 1.288 1.255 1.047 1.192

Table 2 Estimation of
parameters in the simulation
study using the auxiliary
variable method: averages from
20 replications

True distribution Post. mean using

auxiliary variable MCMC

β̂ μ̂1 σ̂1 β̂ μ̂1 σ̂1

μ̂2 σ̂2 μ̂2 σ̂2

0.30 −1.00 0.60 0.297 −1.010 0.594

1.00 0.60 0.997 0.597

0.30 −1.00 0.70 0.298 −1.012 0.693

1.00 0.70 0.995 0.696

0.30 −1.00 1.00 0.299 −1.013 0.989

1.00 1.00 1.000 0.991

0.30 −1.00 1.25 0.299 −1.014 1.233

1.00 1.25 1.003 1.288

0.40 −1.00 0.60 0.399 −1.007 0.594

1.00 0.60 0.984 0.603

0.40 −1.00 0.70 0.398 −1.009 0.693

1.00 0.70 0.982 0.702

0.40 −1.00 1.00 0.399 −1.012 0.986

1.00 1.00 0.977 0.999

0.40 −1.00 1.25 0.403 −1.036 1.233

1.00 1.25 0.963 1.253
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Table 3 Estimates of model
parameters resulting from
alternative analyses of the soil
phosphate dataset

Variational post. Variational post. Recursive method Auxiliary variable

means using PL means using RDA 10 post. means MCMC post. means

β̂ 0.599 0.445 0.442 0.442

μ̂1 3.871 3.851 3.897 3.895

σ̂1 0.345 0.337 0.361 0.359

μ̂2 4.349 4.349 4.360 4.359

σ̂2 0.278 0.275 0.239 0.241

as 0.05. The Gamma prior distribution for the precision was
also chosen to be uninformative.

Using the RDA, our estimates of the association parame-
ter β seem not to be biased. However, the RDA approach
slightly underestimates β when the image is very noisy in
the case where the true value is 0.3. We observed this in
the majority of the replications of the experiment. The PL,
on the other hand, has a tendency to overestimate β when
the data are noisy. We found this to be the case in all of
the replications of the experiment. Both approximations pro-
duced good variational posterior estimates of parameters.
The more accurate estimate of β that resulted from the RDA
led to only slightly improved noise model parameter esti-
mates.

The auxiliary variable MCMC analysis produces quality
estimates of the model parameters and is less sensitive to
noise than the other approaches. However, the drawback of
the method is the length of time required to implement it.
From a computational time perspective, variational Bayes is
much more efficient than the auxiliary method. Images with
a significant amount of noise result in a longer computa-
tion time than those that are less noisy. On a 3.2 GHz Pen-
tium 4 desktop PC with 1 GB of RAM, variational Bayes
with PL took approximately between 10 and 19 minutes
to analyse a dataset of this size. Variational Bayes with
RDA took roughly 12 to 21 minutes. The auxiliary vari-
able MCMC method with 10,000 iterations required approx-
imately 2 hours to analyse the datasets with association para-
meter β equal to 0.3. For β equal to 0.4 the computing time
required for auxiliary variable MCMC increased to around
10 hours per image. If β were to be increased further we
would expect the computational time to be lengthened also.
It should be noted however that the auxiliary method in-
volves perfect sampling and much of the computing time
for the method can be attributed to that. The computing time
for the auxiliary method could be reduced by improving the
efficiency of the perfect sampler.

5.2 Soil phosphate measurements at an archaeological
survey site

The data in this application comprise a set of soil phosphate
measurements taken during the 1987 year of the Laconia

Archaeological Survey in Greece. Soil phosphate concen-
tration, resulting from the decomposition of organic mate-
rial, is often higher in areas where archaeological activity
is known to have taken place. Therefore, locating regions
of high and low phosphorus content across a survey area
can be helpful in identifying sites where archaeological ac-
tivity has occurred. The measurements in this dataset were
taken over a 16 by 16 grid at 10 m intervals at the Greek
archaeological site and there are missing data at 9 of the
sites. These data were first analysed by Buck et al. (1988),
using Bayesian change-point analysis, and later by Besag
et al. (1991) using Bayesian image analysis techniques with
an Ising model representation. We model the data using the
Ising model and we assume that the means and variances
of the Gaussian noise distributions are unknown and esti-
mate them along with the association parameter β . Follow-
ing the previous analyses, we assume Gaussian distributions
for the log phosphate concentrations in mg P/100 g of soil.
However, unlike the previous analyses of the data we do not
assume equal variances for the noise models. We used the
same uninformative priors for the means and precisions as
in the previous section.

Table 3 displays the posterior means resulting from four
different analyses of this dataset. The first two methods are
the variational approach presented in this paper using the PL
approach and the RDA approach conditioning on 10 rows
(no advantage was achieved by conditioning on more than
10 rows) to estimate the normalising constant. Results are
also given from two MCMC analyses of the data using the
forward recursion method and the auxiliary variable MCMC
method, respectively, for comparison. Figures 1 and 2 rep-
resent the areas which were identified as being high or low
in phosphorous concentration. In these figures the posterior
probability of high concentration at each grid site is plotted
using a grey scale in which high concentration corresponds
to black and low concentration corresponds to white.

We used a uniform prior for β over the range 0 to 0.6.
The PL approximation has led to an overly high estimate
of β . This is apparent in Fig. 1 as the evidence of human
presence in the lower right section of the grid is suppressed
and the map of high and low areas we obtained when using
the PL shows less similarity to that obtained using the other
methods. The Gibbs sampling analysis of this dataset based
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Fig. 1 High and low phosphorous areas as identified by variational
Bayes with PL estimation

Fig. 2 High and low phosphorous areas as identified by variational
Bayes with RDA

on the PL performed in the paper by Besag et al. (1991) also
resulted in an overly high final estimate β . However, despite
the overestimation of β that is obtained from the PL ap-
proach, we can see from Table 3 that the resulting variational
posterior parameter estimates still compare favourably with
those of the other analyses.

The estimates of β resulting from the variational Bayes
with RDA approach, the auxiliary variable MCMC method
and recursive method are in close agreement. The regions
identified by variational Bayes with the RDA approximation
as having high posterior probability of human archaeologi-
cal activity (Fig. 2) are comparable to those found by an
auxiliary variable MCMC analysis, by the recursive method
and those found in Besag et al. (1991). All of these methods
find two main activity areas and a smaller area in the lower

right part of the grid. The analysis by Buck et al. (1988) did
not provide posterior probabilities for the phosphorous con-
centration levels, but it also picked out two larger regions of
likely activity and one smaller area.

The computing time required to perform both variational
analyses was considerably shorter than that needed for the
recursive and auxiliary variable approaches. On a 3.2 GHz
Pentium 4 desktop PC with 1 GB of RAM, the computing
time for the recursive analysis was approximately 3 days and
the time taken for the auxiliary variable analysis was ap-
proximately 24 hours while variational Bayes with PL took
approximately 5 minutes and variational Bayes with RDA
took around 7 minutes.

6 Conclusions

We have shown how a variational Bayes scheme can be con-
structed to analyse a hidden Potts model and demonstrated
the results on binary images. In doing so we have demon-
strated that variational Bayes is an effective means of infer-
ence in the challenging situation where noise model para-
meters and the association parameter in the Gibbsian model
are unknown. We have also compared the quality of results
obtained when using two alternative approaches to over-
come the normalising constant estimation problem. Both ap-
proaches resulted in a time efficient algorithm and good ap-
proximations to the noise model parameters. However, the
use of the RDA to approximate the normalising constant led
to more accurate results on the whole than did the PL ap-
proach.

In addition, we compared the variational scheme with
two recent MCMC approaches in our analysis of a real data
set and synthetic datasets. The computational time for the
variational analyses was significantly shorter than that re-
quired for the MCMC analyses. Results from the variational
Bayes analysis were comparable with the MCMC results
lending further support to the usefulness of variational ap-
proximate methods for HMRF inference in the particular
case where the Ising model is used to represent the data.

Extension of the variational Bayes technique to more
general HMRF-type models such as the autologistic model
is possible and is a topic of current research. The variational
technique can be straightforwardly applied to models be-
longing to the exponential family, therefore we can easily re-
place the noise model with another from that family. Using
a second-order neighbourhood structure would not exces-
sively increase the computation time for a variational analy-
sis, therefore future work will include investigation of what
improvements in inference the use of a higher order neigh-
bourhood might bring.
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Appendix

To derive the variational posterior distributions we have to
maximise the lower bound (1). We can express the lower

bound as follows:
∫ ∑

{z}
q(θ, z) log

p(y, z, θ)

q(θ, z)
dθ

=
∫ ∑

{z}
qz(z)

{
K∏

l=1

ql(φl)

}
qβ(β)

× log
{∏n

i=1
∏K

l=1 p(yi |φl)
zil }p(z|β){∏K

l=1 p(φl)}p(β)

qz(z){∏K
l=1 ql(φl)}qβ(β)

dφdβ.

(13)
To find the form of the posterior for qz(z) we concentrate

on the parts of (13) that involve z to obtain the following:

∫ ∑
{z}

qz(z)

{
K∏

l=1

ql(φl)

}
qβ(β) log

{∏n
i=1

∏K
l=1 p(yi |φl)

zil }p(z|β)

qz(z)
dφdβ

+ terms not involving qz(z)

=
∑
{z}

qz(z) log
exp{∫ {∏K

l=1 ql(φl)}qβ(β)
∑n

i=1
∑K

l=1 zil logp(yi |φl) + logp(z|β)dφdβ}
qz(z)

+ terms not involving qz(z)

=
∑
{z}

qz(z) log
exp{∑n

i=1
∑K

l=1 zilEφl
logp(yi |φl) + Eβ logp(z|β)}
qz(z)

+ terms not involving qz(z).

The above expression is optimised when

qz(z) ∝ exp

{
n∑

i=1

K∑
l=1

zilEφl
logp(yi |φl) + Eβ logp(z|β)

}
.

Similarly, to optimise qφ(φ), we concentrate on the parts
of (13) that involve φ as follows

∫ ∑
{z}

qz(z)

{
K∏

l=1

ql(φl)

}

× log
{∏n

i=1
∏K

l=1 p(yi |φl)
zil }{∏K

l=1 p(φl)}
{∏K

l=1 ql(φl)}
dφ

+ terms not involving qφ(φ)

=
∫ {

K∏
l=1

ql(φl)

}

× log
{∏n

i=1
∏K

l=1 p(yi |φl)
qil }{∏K

l=1 p(φl)}
{∏K

l=1 ql(φl)}
dφ

+ terms not involving qφ(φ).

This expression is maximised when

ql(φl) ∝
n∏

i=1

{
p(yi |φl)

qil
}
p(φl).

Similarly, to optimise with respect to qβ(β), we obtain
that (13) is
∫ ∑

{z}
qz(z)qβ(β) log

p(z|β)p(β)

qβ(β)
dβ

+ terms not involving qβ(β)

=
∫

qβ(β) log
exp{Ez logp(z|β)}p(β)

qβ(β)
dβ

+ terms not involving qβ(β).

Thus, the optimal qβ(β) is

qβ(β) ∝ exp{Ez logp(z|β)}p(β).
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