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Abstract The effect of nonstationarity in time series co-
lumns of input data in principal components analysis is ex-
amined. Nonstationarity are very common among economic
indicators collected over time. They are subsequently sum-
marized into fewer indices for purposes of monitoring. Due
to the simultaneous drifting of the nonstationary time series
usually caused by the trend, the first component averages all
the variables without necessarily reducing dimensionality.
Sparse principal components analysis can be used, but at-
tainment of sparsity among the loadings (hence, dimension-
reduction is achieved) is influenced by the choice of pa-
rameter(s) (λ1,i). Simulated data with more variables than
the number of observations and with different patterns of
cross-correlations and autocorrelations were used to illus-
trate the advantages of sparse principal components analysis
over ordinary principal components analysis. Sparse com-
ponent loadings for nonstationary time series data can be
achieved provided that appropriate values of λ1,j are used.
We provide the range of values of λ1,j that will ensure con-
vergence of the sparse principal components algorithm and
consequently achieve sparsity of component loadings.
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1 Introduction

Principal Components Analysis (PCA) is commonly used in
dimension reduction, also a popular tool in index construc-
tion. The purpose of PCA is to detect possible structures in
the relationships between variables, particularly by reduc-
ing the dimensionality of the data using components that
capture the information from the different variables (Jollife
2002). PCA finds orthogonal linear combinations of the p

original variables, of which a smaller number (usually less
than p) explains most of the variability among the origi-
nal variables. The linear combinations, called the principal
components (PCs), are uncorrelated; hence characterization
of the PCs, in terms of explained variance is easily done.
The technique is commonly used in cross-sectional data for
description purposes. Jollife (2002) discussed some issues
in PCA of time series data imposing stationarity and using
frequency domain analysis. Unlike Factor Analysis that re-
quires a joint distribution of the multivariate observations,
PCA can be defined without having to rely on such assump-
tion.

The interpretability of the first few principal components
often limits the usefulness of PCA as a descriptive tool.
Note that given the input data matrix, PCA is affected pri-
marily by the dependencies between columns and mini-
mally by the dependence within a column (variance). If the
input data were observed over time, each column of the
data matrix is a time series hence, the temporal dependence
in the data is summarized in the diagonal (variances) and
off-diagonal (cross-covariances) elements of the variance-
covariance matrix. Given that the time series columns of the
data matrix are stationary, PCs could still be properly de-
fined since the variance-covariance matrix is not necessarily
ill-conditioned. If the time series are nonstationary, the si-
multaneous drifting can be registered as correlations of the

mailto:ernielb@yahoo.com
mailto:jrlansangan@yahoo.com


174 Stat Comput (2009) 19: 173–187

Fig. 1 Time plots of stationary time series

columns of the data matrix. Consider the following illustra-
tions:

The four time series plotted in Fig. 1 are all stationary.
The movements of the series over time do not exhibit any
pattern that resembles the possibility that they are corre-
lated. In Fig. 2, however, although the time series may not be
cointegrated, empirical correlations can be present since the
time series drift simultaneously in the same direction, poten-
tially influencing the outcomes of the components. The first
component may possibly combine all variables into a single
component since variance patterns are clearly similar among
all time series. The PCA usually combine together into the
same component all variables with similar variability pat-
tern, with similar loadings, indicating equal importance of
the variables. Similarity in variance pattern among the vari-
ables is usually taken as similarity in the importance of the
variables, resulting to the first few components usually “av-
eraging” the variables, i.e., the variables appear to be equally
weighted on these components.

Interpretability and sparsity are among the main issues
in dimensionality reduction even for cross-sectional data.
Jolliffe and Uddin (2000) used both cross-sectional models
and pooled time series models to assess and improve new
and existing methods of dimension-reduction. In many ap-

plications, the number of indicators may exceed the num-
ber of observations. PCA in this case serves as a tool
in high-dimensional data visualization. Moreover, current
techniques for generating components from time-dependent
variables assume stationarity of the time series, see for ex-
ample Jollife (2002), Zuur et al. (2003), Heaton and Solo
(2004), and Fernandez-Macho (1997). Gervini and Rousson
(2004) proposed some criteria on the assessment of methods
of dimension-reduction, while Rousson and Gasser (2004),
Vines (2000) and Chipman and Gu (2005) proposed some
optimality constraints on the loadings to induce sparsity and
hence, interpretability.

Several indicators are used in monitoring to ensure ap-
propriate assessment of the state/status of a phenomenon
being monitored. Oftentimes, an intervention is involved
pushing the indicators to drift resulting to nonstationarity.
But because of the varying patterns among the indicators,
a summary is required so that the state of the phenomenon
can be reported. This will require index construction, and
when principal components analysis is used, this is applied
to a set of nonstationary time series data. In this paper,
we provide theoretical implications of a nonstationary se-
ries, specifically, a drift in mean process, on PCA. To deal
with dimension-reduction and interpretability when nonsta-
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Fig. 2 Time plots of non-stationary time series

tionary data is used, the sparse principal component analy-
sis (SPCA) algorithm proposed by Zou et al. (2006) is ap-
plied on simulated nonstationary time series embedded with
different cross-correlation and autocorrelation patterns. The
next section shows PCA on nonstationary (drift in mean)
time series results to a single component. The SPCA for-
mulation and optimization algorithm is briefly discussed
in Sect. 3. Applications to simulated data are presented in
Sect. 4. Summary of findings and conclusions are in Sect. 5.

2 Effect of nonstationarity in PCA

Consider the first order autoregressive model:

yt = φyt−1 + μt , (1)

where μt is a white noise and φ is the autoregressive para-
meter that controls the behavior of the moments of the dis-
tribution of yt . If |φ| ≥ 1, the time series is said to be non-
stationary (drift in mean). Otherwise, the series is stationary.

Consider the following lemma on the eigenvalues of a
matrix:

Lemma The eigenvalues of a row-unordered n × p matrix
X are also the eigenvalues of the row-sequenced matrix X.

The lemma follows from the characteristic equation of a
matrix. This suggests that the singular value decomposition
(SVD) of an input data (where columns are time series) is
equivalent to the SVD of the different permutations (with
respect to the time points/observations) of the input data.
That is, the SVD is invariant to the row ordering of the input
data. Hence, the eigenvalues remain the same for any row
permutation of the input data even for time series columns.

The following theorem presents the consequences of non-
stationarity on ordinary principal components.

Theorem Let X be a n × p matrix with columns of a
time series following the representation in (1), i.e. X =
[X1 X2 . . . Xp] such that Xi = {Xti}, ∀i = 1,2, . . . , p

is the ith time series measured across the time points t =
1,2, . . . , n. Then, the p × p diagonal matrix of eigenvalues
of X, say D, such that X = U D1/2V ′ for orthonormal ma-
trices U (of dimension n × p) and V (of dimension p × p),
is aIp for some real number a.
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Proof Since Xi is a nonstationary time series, ∀i = 1,2,

. . . , p, then Xi = {Xti} = {φX(t−1),i + μti}, where μti =
μi + εti with μi some constant and εti ∼ N(0, σ 2), we can
write Xti = 1

1−φB
Yti , where Yti = μti, φ is the autoregres-

sive parameter (also characterizes stationarity), and B is the
backshift operator. X can be written as 1

(1−φB)
Y . By SVD,

there exists n × p matrix U and p × p matrices D and V ,
where UT U = I,V T V = I , and D is diagonal, such that
X = U D1/2V T . D (unique), U and V can be found by first
diagonalizing XT X as XT X = V D V T to compute U as
U = X V D−1/2.

Now, XT X = 1
(1−φB)2 YT Y . But with the existence of

p × p matrices � and B , where BT B = I and � is diag-
onal, YT Y = B � BT . This implies that

B � BT = V (1 − φB)2D V T ,

� = BT V (1 − φB)2D V T B = S(1 − φB)2D ST ,

where S = BT V,

�1/2�1/2 = S(1 − φB)2D ST , since � is diagonal.

Also, (�1/2)T �1/2 = S(1 −φB)2D ST , since �1/2 is diago-
nal and hence symmetric.

�1/2 has eigenvalues (1 − φB)D1/2 since S is ortho-
normal and (1 − φB)D1/2 is diagonal, see Magnus and
Neudecker (1999, pp. 18–19, 25).

Since �1/2 = {γ 1/2
ij } is itself a diagonal matrix, then

�1/2 = (1 − φB)D1/2. With D1/2 = {λ1/2
ij }, and that (1 −

φB)D1/2 = {(1 − φ)λ
1/2
ij }, this implies that γii = λii(1 −

φB)2. That is, � = (1 − φB)2D. From Arnold (1981,
p. 449), this implies that � = a∗I for some real number a∗.
And hence, D = aI , with a = a∗

1−φ
. �

The above theorem applied on nonstationary time series
gives the following corollaries:

Corollary 1 Let X be a n×p matrix of non-stationary (drift
in mean) time series, i.e. X = [X1 X2 . . . Xp] such that
Xi = {Xti}, ∀i = 1,2, . . . , p, is the ith time series measured
across the time points t = 1,2, . . . , n. Then the eigenvalues
of X are undefined.

Corollary 2 Let X be a n × p matrix of non-stationary
(drift in mean) time series, i.e. X = [X1 X2 . . . Xp] such
that Xi = {Xti} is centered, ∀i = 1,2, . . . , p, with the ith
time series measured across the time points t = 1,2, . . . , n.
Further, let D = {λij } be the p × p diagonal matrix of
eigenvalues of X. Then λ11 = tr(X′X) = p, λjj = 0, ∀j =
2,3, . . . , p.

The two corollaries suggest that the PCA of the non-
stationary (drift in mean) time series via SVD results to

a single component. If the input data consists of non-
stationary (drift in mean) time series, a single linear combi-
nation of all the time series can solely explain the variability
existing within the data. Component loadings for all input
variables will be similar if not all equal.

3 Sparse principal component analysis

Zou et al. (2006) proposed an optimization problem that
will facilitate the attainment of sparse loadings. They pro-
posed an algorithm which translates PCA in a regression
optimization framework and uses the elastic net penalty to
derive sparse loadings. Optimization is conducted through
regression-type criterion to derive PCs in two stages—first
is to perform an ordinary PCA, and second is to find sparse
approximations of the first k vector of loadings of the PCs.
Let Xi denote the ith row vector of the data matrix X. Let
Ap×k = [α1, . . . , αk] and Bp×k = [β1, . . . , βk].

(Â, B̂) = arg min
A,β

n∑

i=1

‖Xi − AβT Xi‖2

+ λ

k∑

j=1

‖βj‖2 +
k∑

j=1

λ1,j‖βj‖1,

subject to AT A = Ik×k .
Whereas the same λ is used for all k components, dif-

ferent λ1,j s are allowed for penalizing the loadings of
different principal components. The solutions to the opti-
mization problem are called sparse principal components
(SPCs).

The proposed modification is reduced to the ordinary
PCA when the elastic net penalty is eliminated. But unlike
PCA, the algorithm gives components that are correlated and
loadings that are not orthogonal. Zou et al. (2006) proposed
a computational formula for the total variance explained by
the SPCs, which takes into account the correlations of the
SPCs. To derive the first k SPCs, values of A are initialized
for the minimization of the objective function, i.e., finding
solutions to the elastic net problem, then uses singular value
decomposition (SVD) to update the loadings. This is then
done repetitively until values of β converges. For the case
when the number of variables is larger than the number of
observations, the algorithm uses soft thresholding over the
elastic net optimization.

4 Simulations

The effect of nonstationarity on PCA and SPCA are assessed
using simulated data. Different scenarios on non-stationarity
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Fig. 3 Simulation process of data with k groups defined with cross-correlations (lag 0) of c

and/or stationarity of the variables and on the level of inter-
dependence among the variables are considered. The simu-
lated data were constructed so that the number of variables
exceeds the number of observations. Result of SPCA is then
compared to that of PCA.

Given the first order autoregressive model in (1), φ were
set to 1.3, 1, and 0.7, where φ = 0.7 represents a stationary
series, while φ = 1.3 and 1 represent nonstationary series.
A set of “similar” time series (i.e., all have the same values
of φ) were generated. Other groups were generated having
different correlations with the first set. The data then con-
sists of the combined groups. Different scenarios are created
in terms of the between-group cross-correlations (lag 0).
Data with between-group cross-correlations (lag 0) greater
than 0.8 (strong), between 0.8 and 0.65 (moderately high),
between 0.65 and 0.45 (moderate), between 0.45 and 0.35
(moderately weak), and less than 0.35 (weak), were gen-
erated. The simulation procedure for a particular scenario
(at given φ and between-group cross-correlations, say c) is
presented in Fig. 3. The varying interdependencies among

the variables between groups are considered to character-
ize the interaction between nonstationarity and dependen-
cies among the columns of the input data. Note that out-
comes of PCA in cross-sectional and stationary time series
data are determined primarily by the cross-correlations (lag
0) of the columns of the input data matrix. In the simula-
tion process, the within group cross-correlations (lag 0) were
fixed at some range. The reason for grouping the time series
is that a set of time series with similar patterns of cross-
correlations (lag 0) are expected to dominate the loadings
of a principal component. Thus, the number of groupings
should coincide with the number of components derived
later.

The sparsity of the loadings, interpretability of the com-
ponents, and the proportion of variance explained by the
components from the three procedures were evaluated. The
important contribution of the simulation is the identification
of cut-offs or intervals for the choice of λ1,j , j = 1,2, . . . , k,
since some values of λ1,j may result to divergence of the al-
gorithm. Contributions to the algorithm of Zou et al. (2006)
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Table 1 Summary of simulations

Time series φ No. of No. of time No. of time Between-group Mean of μt Range of std.

groups series per group points/obs. cross-correlation for ith group dev. of μt

Stationary 0.7 3 11 20 High {500, 550, 600} (160, 275)

Nonstationary 1.3 3 8 12 High {500, 100, 200} (600, 1200)

2 12 12 Moderately High {600, 800} (700, 6500)

2 12 12 Moderate {600, 800} (700, 7150)

2 12 12 Moderately Weak {600, 800} (700, 7150)

2 12 12 Weak {600, 800} (1050, 7150)

1.0 3 15 30 High {500, 600, 700} (400, 960)

2 19 25 Moderately High {500, 700} (560, 2400)

2 17 20 Moderate {500, 700} (540, 1650)

2 17 20 Moderately Weak {500, 700} (900, 1870)

2 17 20 Weak {500, 700} (720, 1980)

Table 2 High correlations for case when φ is 0.7

Minimim Maximum Variance No. Range of No. Range

cross-correlation cross-correlation explained of values for λ of zero of variance

(lag 0) of time series (lag 0) of time series by the PCs SPCs (attained sparsity) loadings on SPC1 explained by SPCs

Data 1 0.3636 0.9861 0.8246 1 (7.7, 10.2) 1–32 (0.0303, 0.7689)

Data 2 0.4946 0.9682 0.8107 1 (8.1, 10.1) 1–31 (0.0374, 0.7302)

Data 3 0.5213 0.9792 0.8455 1 (8.2, 10.3) 1–31 (0.0377, 0.7965)

Data 4 0.4933 0.9815 0.8262 1 (8.1, 10.2) 1–32 (0.0303, 0.7444)

Data 5 0.4395 0.9752 0.8508 1 (8.2, 10.4) 1–32 (0.0303, 0.7929)

Table 3 High correlations for case when φ is 1.3

Minimim Maximum Variance No. Range of values No. of Range

cross-correlation cross-correlation explained of for λ zero loadings of variance

(lag 0) of time series (lag 0) of time series by the PCs SPCs (attained sparsity) on SPC1 explained by SPCs

Data 1 0.7123 0.9849 0.8896 1 (8.1, 9.1) 1–22 (0.0638, 0.7338)

Data 2 0.6460 0.9773 0.8738 1 (6.5, 8.9) 1–23 (0.0417, 0.8477)

Data 3 0.7060 0.9790 0.9073 1 (8.3, 9.1) 1–21 (0.0928, 0.8351)

Data 4 0.7110 0.9839 0.8626 1 (7.8, 8.8) 1–23 (0.0417, 0.7578)

Data 5 0.6462 0.9887 0.8861 1 (8.0, 9.0) 1–22 (0.0488, 0.7586)

are on (1) computational tractability for any type of time se-
ries, particularly on the number of variables (series) and the
number of observations (data points); and (2) sparsity and
interpretability (similar variance patterns captured in same
component).

The construction of simulated data for the different
scenarios—i.e. in terms of the specification of the value
of φ, number of groups, variables (time series), observa-
tions (points), means and variances of the white noise term;
is presented in Table 1. Tables 2 to 12 summarize the re-

sults for every scenario. The minimum and maximum cross-
correlations (Columns 2 and 3) are the lowest and highest
observed cross-correlation among all the time series. Col-
umn 4 is the proportion of variances explained when the
PCs are used. Column 5 gives the number of PCs, and hence
SPCs, retained. Column 6 shows the range of possible val-
ues of λ1,j s that give sparse loadings. The second to the last
column gives the number of zero loadings in the SPCs. And
the last column provides the range of proportion of variance
explained by the SPCs.
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Table 4 Moderately high correlations for case when φ is 1.3

Minimum Maximum Variance No. of Range No. Range of

cross-correlation cross-correlation explained PCs/SPCs of values for of zero variance

(lag 0) (lag 0) by the PCs (λ1, λ2) loadings explained

of time series of time series (attained sparsity) on each SPC by SPCs

Data 1 0.2048 0.9826 0.8487 2 (5.4, 1.1)– SPC1: 2 (0.6548, 0.6686)

(5.6, 1.7) SPC2: 18

(5.6, 2.2)– SPC1: 2–6 (0.4567, 0.6288)

(6.4, 2.2) SPC2: 23

Data 2 0.1266 0.9609 0.8535 2 (4.5, 1.4)– SPC1: 1 (0.7119, 0.7578)

(4.5, 2.0) SPC2: 14–23

(4.9, 1.4)– SPC1: 1 (0.7004, 0.7467)

(4.9, 2.0) SPC2: 14–23

(4.5, 2.0)– SPC1: 1–14 (0.3248, 0.7119)

(7,3, 2.0) SPC2: 23

Data 3 0.0695 0.9777 0.8555 2 (5.1, 2.0)– SPC1: 1–2 (0.5842, 0.6777)

(5.9, 2.0) SPC2: 18–19

(5.9, 2.2)– SPC1: 2–14 (0.3104, 0.5602)

(6.9, 2.2) SPC2: 21–23

(6.9, 2.4)– SPC1: 13–16 (0.2622, 0.3124)

(7.1, 2.4) SPC2: 23

Table 5 Moderate correlations for case when φ is 1.3

Minimum
cross-
correlation
(lag 0) of
time series

Maximum
cross-
correlation
(lag 0) of
time series

Variance
explained
by the PCs

No. of
PCs/SPCs

Range of values for
(λ1, λ2)

(attained sparsity)

No. of zero
loadings on
each SPC

Range of
variance explained
by SPCs

Data 1 −.1355 0.9554 0.7802 2 (3.5, 1.9)– SPC1: 1 (0.6411, 0.6785)

(4.4, 1.9) SPC2: 14

(4.4, 2.8)– SPC1: 1–18 (0.1692, 0.5651)

(6.3, 2.8) SPC2: 22–23

Data 2 −.1588 0.9444 0.7684 2 (3, 1.5)– SPC1: 1 (0.6850, 0.6941)

(3.3, 1.5) SPC2: 10

(3.3, 3.0)– SPC1: 1–19 (0.1730, 0.5949)

(6.7, 3.0) SPC2: 23

Data 3 −.1698 0.9689 0.7821 2 (2.6, 1.3)– SPC1: 1 (0.7289, 0.7353)

(2.6, 1.4) SPC2: 9–10

(2.9, 1.4)– SPC1: 2 (0.6232, 0.7274)

(2.9, 3.5) SPC2: 10–23

(2.9, 3.5)– SPC1: 2–19 (0.1677, 0.6232)

(6.6, 3.5) SPC2: 23



180 Stat Comput (2009) 19: 173–187

Table 6 Moderately weak correlations for case when φ is 1.3

Minimum
cross-
correlation
(lag 0) of
time series

Maximum
cross-
correlation
(lag 0) of
time series

Variance
explained
by the PCs

No. of
PCs/SPCs

Range of
values for
(λ1, λ2)

(attained
sparsity)

No. of zero
loadings on each
SPC

Range of
variance explained
by SPCs

Data 1 −.1870 0.9567 0.7532 2 (2.2, 1.7)– SPC1: 1 (0.5582, 0.7140)

(2.2, 3.4) SPC2: 6–22

(2.2, 3.4)– SPC1: 1–7 (0.4302, 0.5582)

(4.5, 3.4) SPC2: 22–23

Data 2 −.0743 0.9439 0.7717 2 (3.0, 1.7)– SPC1: 1 (0.5545, 0.7125)

(3.0, 3.4) SPC2: 9–22

(3.0, 3.4)– SPC1: 1–13 (0.2761, 0.5545)

(5.6, 3.4) SPC2: 22

Data 3 −.4214 0.9233 0.7922 3 (2.1, 1.2, 0.4)– SPC1: 1 (0.7304, 0.7558)

(2.1, 1.2, 1.7) SPC2: 7

SPC3:15–23

(2.1, 1.2, 0.4)– SPC1: 1 (0.6831, 0.7558)

(2.1, 1.7, 0.4) SPC2: 7–23

SPC3: 2–15

(2.1, 1.2, 1.7)– SPC1: 1 (0.6065, 0.7304)

(2.2, 2.4, 1.7) SPC2: 7–23

SPC3: 23

(2.1, 1.2, 0.4)– SPC1: 1–8 (0.4979, 0.7558)

(5.1, 2.2, 1.6) SPC2: 7–18

SPC3: 15–23

Data 4 −.1870 0.9548 0.7887 3 (3.0, 2.2, 0.9)– SPC1: 1 (0.6727, 0.6786)

(3.0, 2.2, 1.2) SPC2: 11

SPC3: 20–22

(3.0, 2.2, 0.9)– SPC1: 1 (0.6761, 0.6786)

(3.1, 2.2, 0.9) SPC2: 11

SPC3: 20

(3.1, 2.2, 0.9)– SPC1: 1 (0.6701, 0.6761)

(3.1, 2.2, 1.2) SPC2: 11

SPC3: 20–22

(3.1, 2.2, 1.2)– SPC1: 1 (0.6465, 0.6701)

(3.2, 2.4, 1.2) SPC2: 11–13

SPC3: 22

(3.2, 2.4, 1.2)– SPC1: 1–3 (0.6001, 0.6465)

(3.9, 2.4, 1.2) SPC2: 13

SPC3: 22

4.1 Stationary time series

For the stationary case (Table 2), Data 1 to 5 are replications
of the simulation process for 20 time points of 33 time se-

ries. Factor rotation was not applicable since in all 5 data

sets, the PCA resulted to only 1 PC. It is quite expected that

PCA will give only a single component because of the high

cross-correlations between groups. PCA cannot differenti-
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Table 7 Weak correlations for case when φ is 1.3

Minimum
cross-
correlation
(lag 0) of
time series

Maximum
cross-
correlation
(lag 0) of
time series

Variance
explained
by the PCs

No. of
PCs/SPCs

Range of
values for
(λ1, λ2)

(attained
sparsity)

No. of zero
loadings on each
SPC

Range of variance
explained by SPCs

Data 1 −.3993 0.9663 0.8576 2 (1.3, 0.9)– SPC1: 8–9 (0.7547, 0.7587)

(1.4, 0.9) SPC2: 1

(4.9, 4.2)– SPC1: 10–13 (0.5461, 0.7041)

(5.0, 4.2) SPC2: 12–16

Data 2 −.3529 0.9374 0.7773 2 (1.3, 0.9)– SPC1: 10–11 (0.6644, 0.6676)

(1.4, 1) SPC2: 1

(5.0, 3.9)– SPC1: 12–1 (0.4114, 0.4399)

(5.1, 3.9) SPC2: 20

Table 8 High correlations for case when φ is 1

Minimim
cross-
correlation
(lag 0) of
time series

Maximum
cross-
correlation
(lag 0) of
time series

Variance
explained
by the PCs

No. of SPCs Range of
values for
λ (attained
sparsity)

No. of zero load-
ings on SPC1

Range of variance
explained by SPCs

Data 1 0.7158 0.9912 0.9231 1 (11.2, 12.7) 1–42 (0.0560, 0.8600)

Data 2 0.7240 0.9869 0.9241 1 (11.3, 12.7) 1–43 (0.0436, 0.8733)

Data 3 0.8265 0.9876 0.9301 1 (12.1, 12.7) 1–41 (0.0821, 0.7756)

Data 4 0.8060 0.9884 0.9219 1 (11.7, 12.7) 1–42 (0.0593, 0.8310)

Data 5 0.8014 0.9900 0.9245 1 (11.7, 12.7) 1–40 (0.0929, 0.8276)

Table 9 Moderately high correlations for case when φ is 1

Minimum
cross-
correlation
(lag 0) of
time series

Maximum
cross-
correlation
(lag 0)
of time
series

Variance
explained
by the PCs

No. of
PCs/SPCs

Range of
values for
(λ1, λ2)

(attained
sparsity)

No. of zero
loadings on each
SPC

Range of variance
explained by SPCs

Data 1 0.3022 0.9583 0.7703 2 (6.8, 0.4)– SPC1: 1–2 (0.6727, 0.7130)

(7.5, 0.4) SPC2: 32

(7.5, 0.9)– SPC1: 2–21 (0.2891, 0.6635)

(9.3, 0.9) SPC2: 37

Data 2 0.2781 0.9436 0.8026 2 (7.0, 1.6)– SPC1: 1–4 (0.5817, 0.6603)

(7.7, 1.6) SPC2: 33

(7.7, 2.0)– SPC1: 4–21 (0.2877, 0.5667)

(8.7, 2.0) SPC2: 37

Data 3 0.2886 0.9215 0.7744 2 (6.6, 1.6)– SPC1: 1–3 (0.5418, 0.6284)

(7.3, 1.6) SPC2: 33

(7.3, 1.8)– SPC1: 3–13 (0.4658, 0.5318)

(7.8, 1.8) SPC2: 34–35
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Table 10 Moderate correlations for case when φ is 1

Minimum
cross-
correlation
(lag 0) of
time series

Maximum
cross-
correlation
(lag 0) of
time series

Variance
explained
by the PCs

No. of
PCs/SPCs

Range of
values for
(λ1, λ2)

(attained
sparsity)

No. of zero
loadings on each
SPC

Range of variance
explained by SPCs

Data 1 0.5019 0.9854 0.8772 2 (5.8, 2.3)– SPC1: 1 (0.7012, 0.7266)

(6.6, 2.3) SPC2: 25

(6.6, 3.2)– SPC1: 2–12 (0.5199, 0.6580)

(7.8, 3.2) SPC2: 30–31

Data 2 0.1330 0.9600 0.8430 2 (5.2, 1.9)– SPC1: 1 (0.7378, 0.7394)

(5.3, 1.9) SPC2: 20

(5.3, 2.9)– SPC1: 2–8 (0.5805, 0.6740)

(7.4, 2.9) SPC2: 28–32

Data 3 0.1787 0.9711 0.8242 2 (5.2, 2.0)– SPC1: 1–3 (0.6865, 0.7011)

(5.9, 2.0) SPC2: 22–23

(5.9, 2.8)– SPC1: 3–9 (0.5802, 0.6292)

(7.1, 2.8) SPC2: 27–32

Data 4 0.1029 0.9287 0.8012 3 (5.8, 1.6, 1.0)– SPC1: 2 (0.6644, 0.7023)

(5.8, 1.6, 1.6) SPC2: 25

SPC3: 29–33

(5.8, 1.6, 1.0)– SPC1: 2 (0.6363, 0.7023)

(5.8, 2.4, 1.0) SPC2: 25–33

SPC3: 29

(5.8, 1.6, 1.0)– SPC1: 2 (0.6935, 0.7023)

(5.9, 1.6, 1.0) SPC2: 25

SPC3: 29

(5.8, 1.6, 1.0)– SPC1: 2–6 (0.5423, 0.7023)

(6.6, 2.4, 1.0) SPC2: 25–33

SPC3: 29

(5.8, 1.6, 1.0)– SPC1: 2 (0.6366, 0.7023)

(5.8, 2.4, 1.6) SPC2: 25–29

SPC3: 29–33

(5.8, 2.4, 1.6)– SPC1: 2–7 (0.5246, 0.7023)

(6.7, 2.5, 1.6) SPC2: 25–29

SPC3: 29–33

Data 5 −.0576 0.9300 0.7938 3 (4.1, 1.2, 0.7)– SPC1: 1 (0.7313, 0.7553)

(4.1, 1.2, 1.3) SPC2: 18

SPC3: 23–33

(4.1, 1.2, 0.7)– SPC1: 1 (0.7393, 0.7553)

(4.1, 1.5, 0.7) SPC2: 18–22

SPC3: 23

(4.1, 1.2, 0.7)– SPC1: 1 (0.7543, 0.7553)

(4.2, 1.2, 0.7) SPC2: 18

SPC3: 23

(4.1, 1.2, 0.7)– SPC1: 1 (0.7396, 0.7553)

(4.3, 1.8, 0.7) SPC2: 18–32

SPC3: 15–23
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Table 10 (Continued)

Minimum
cross-
correlation
(lag 0) of
time series

Maximum
cross-
correlation
(lag 0) of
time series

Variance
explained
by the PCs

No. of
PCs/SPCs

Range of
values for
(λ1, λ2)

(attained
sparsity)

No. of zero
loadings on each
SPC

Range of variance
explained by SPCs

(4.1, 1.2, 0.7)– SPC1: 1 (0.6473, 0.7553)

(4.1, 2.9, 1.3) SPC2: 18–33

SPC3: 23–33

(4.1, 2.9, 1.3)– SPC1: 1–5 (0.5143, 0.6473)

(6.2, 2.9, 1.3) SPC2: 33

SPC3: 33

Data 6 0.0078 0.9325 0.8028 3 (4.7, 1.4, 0.8)– SPC1: 1 (0.7314, 0.7345)

(4.7, 1.4, 1.1) SPC2: 19

SPC3: 29–31

(4.7, 1.4, 0.8)– SPC1: 1 (0.7250, 0.7345)

(4.7, 1.5, 0.8) SPC2: 19

SPC3: 28–29

(5.0, 2.0, 1.0)– SPC1: 1 (0.6740, 0.6757)

(5.0, 2.0, 1.5) SPC2: 28

SPC3: 31–33

(5.0, 2.0, 1.0)– SPC1: 1 (0.6709, 0.6757)

(5.0, 2.1, 1.0) SPC2: 28

SPC3: 31

(5.0, 2.0, 1.5)– SPC1: 1–7 (0.5101, 0.6740)

(6.5, 2.0, 1.5) SPC2: 28

SPC3: 33

(5.0, 2.0, 1.5)– SPC1: 1–16 (0.3772, 0.6740)

(7.1, 2.4, 1.5) SPC2: 28–31

SPC3: 33

ate the three groups because of high correlations. Although
possibly, the correlations within groups are also high, sta-
tionary time series may not exhibit within group empirical
correlations, and thus resulting to clustering of all the se-
ries in a single component. Also, large values of λ1,1 yield
more zero loadings (sparsity), but the sparser the PCs are,
the lower the explained proportion of variances is. It can
be noted that, for data under such scenario, to obtain spar-
sity and at least 75% variance explained by the SPCs, λ1,1

should be at least 7.7.

4.2 Nonstationary time series

Tables 3 to 7 give the summary for the nonstationary time
series with φ = 1.3. For the case with between-group cross-
correlations that are high (above 0.8), the PCA resulted to

only 1 PC, so will the SPCA, and thus factor rotation is

not applicable. Again, this is not surprising because of the

high cross-correlations. For the other cases, both PCA and

SPCA resulted to mostly 2 components, and in some cases,

particularly that with between-group cross-correlations less
than 0.45, resulted to 3 components. The 3rd SPCs, though,

have zero loadings in as much as nearly all of the time se-

ries.

Tables 8 to 12 present the results for the nonstation-

ary time series with φ = 1. Note that for the case with
high (greater than 0.8) between-group cross-correlations,

the time series are summarized to a single component (for

PCA and thus, SPCA). For the case with between-group

cross-correlations less than 0.8, both PCA and SPCA sug-
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Table 11 Moderately weak correlations for case when φ is 1

Minimum
cross-
correlation
(lag 0) of
time series

Maximum
cross-
correlation
(lag 0) of
time series

Variance
explained
by the PCs

No. of
PCs/SPCs

Range of
values for
(λ1, λ2, λ3)

(attained
sparsity)

No. of zero
loadings on each
SPC

Range of variance
explained by SPCs

Data 1 −.0764 0.9548 0.7814 2 (3.6, 2.7)– SPC1: 1 (0.6746, 0.6794)

(4.0, 2.7) SPC2: 12–13

(3.6, 2.8)– SPC1: 1–2 (0.6336, 0.6642)

(4.7, 2.8) SPC2: 16–18

(3.5, 3.7)– SPC1: 1–13 (0.4326, 0.6789)

(6.0, 3.7) SPC2: 4–13

Data 2 0.1055 0.9548 0.7886 2 (4.8, 2.7) & SPC1: 1 0.6295

(4.8, 2.8) SPC2: 22

(4.8, 2.9)– SPC1: 1–3 (0.5700, 0.6166)

(5.5, 2.9) SPC2: 23

(4.6, 3.5)– SPC1: 1–18 (0.4933, 0.5722)

(5.9, 3.5) SPC2: 27–29

Data 3 −.0859 0.9498 0.7711 2 (4.3, 2.4) & SPC1: 1–2 (0.6428, 0.6481)

(4.5, 2.4) SPC2: 19

(4.3, 2.5) & SPC1: 1–3 (0.6209, 0.6368)

(4.9, 2.5) SPC2: 20–21

(4.2, 3.6) & SPC1: 2–14 (0.4342, 0.5519)

(6.5, 3.6) SPC2: 29–33

Data 4 −.1396 0.9030 0.7740 3 (2.4, 2.1, 1.1)– SPC1: 1 (0.6854, 0.6856)

(2.4, 2.1, 2.0) SPC2: 8

SPC3: 33

(2.4, 2.1, 1.1)– SPC1: 1 (0.6007, 0.6856)

(2.4, 2.9, 1.1) SPC2: 8–26

SPC3: 33

(2.4, 2.1, 1.1)– SPC1: 1 (0.6792, 0.6856)

(3.0, 2.1, 1.1) SPC2: 8–16

SPC3: 33

(2.4, 2.1, 1.1)– SPC1: 1-11 (0.4693, 0.6856)

(5.7, 2.9, 1.1) SPC2: 26

SPC3: 33

(2.4, 2.1, 1.1)– SPC1: 1 (0.6038, 0.6856)

(2.4, 2.9, 2.0) SPC2: 8–26

SPC3: 33

(2.4, 2.9, 2.0)– SPC1: 1–11 (0.4717, 0.6038)

(5.7, 2.9, 2.0) SPC2: 26–27

SPC3: 33

Data 5 −.0521 0.9218 0.7595 3 (4.1, 2.0, 0.7)– SPC1: 1 (0.6227, 0.6320)

(4.3, 2.0, 0.7) SPC2: 18

SPC3: 31–32

(4.1, 2.0, 0.7)– SPC1: 1 (0.6157, 0.6320)

(4.1, 2.2, 0.7) SPC2: 18–21

SPC3: 31
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Table 11 (Continued)

Minimum
cross-
correlation
(lag 0) of
time series

Maximum
cross-
correlation
(lag 0) of
time series

Variance
explained
by the PCs

No. of
PCs/SPCs

Range of
values for
(λ1, λ2, λ3)

(attained
sparsity)

No. of zero
loadings on each
SPC

Range of variance
explained by SPCs

(4.1, 2.0, 0.7)– SPC1: 1 (0.6269, 0.6320)

(4.1, 2.0, 1.2) SPC2: 18–19

SPC3: 31–33

(4.1, 2.0, 0.7)– SPC1: 1 (0.5678, 0.6320)

(4.1, 2.8, 1.2) SPC2: 18–30

SPC3: 31–33

(4.1, 2.0, 0.7)– SPC1: 1 (0.6182, 0.6320)

(4.3, 2.0, 1.2) SPC2: 18–19

SPC3: 31–33

(4.1, 2.0, 0.7)– SPC1: 1 (0.5985, 0.6320)

(4.6, 2.1, 0.7) SPC2: 18–20

SPC3: 31

Data 5 −.0521 0.9218 0.7595 3 (4.6, 2.1, 0.7)– SPC1: 3 (0.5948, 0.5985)

(4.6, 2.1, 1.2) SPC2: 20

SPC3: 31–33

(4.6, 2.1, 1.2)– SPC1: 3–15 (0.3956, 0.5948)

(6.2, 3.0, 1.2) SPC2: 20–30

SPC3: 33

Data 6 −.2700 0.9161 0.7658 3 (2.9, 1.8, 0.4)– SPC1: 1 (0.6947, 0.6983)

(3.2, 1.8, 0.4) SPC2: 11

SPC3: 24–25

(2.9, 1.8, 0.4)– SPC1: 1 (0.6857, 0.6983)

(2.9, 1.8, 1.4) SPC2: 11

SPC3: 24–33

(2.9, 1.8, 0.4– SPC1: 1 (0.5923, 0.6983)

(2.9, 3.0, 1.4) SPC2: 11–29

SPC3: 24–33

(2.9, 1.8, 0.4)– SPC1: 1 (0.6833, 0.6983)

(3.1, 1.8, 1.4) SPC2: 11

SPC3: 24–33

(2.9, 1.8, 0.4)– SPC1: 1 (0.6947, 0.6983)

(3.2, 1.8, 0.4) SPC2: 11

SPC3: 24–25

(3.2, 1.8, 0.4)– SPC1: 1–16 (0.4188, 0.6983)

(6.2, 3.1, 1.4) SPC2: 11–28

SPC3: 24–33

gest two or three components to be retained, but, as in the
scenario for which φ = 1.3, the SPCA may zero out almost
every loading in the 3rd SPC, depending on the choice of
the λ1,j ’s.

4.3 Choice of values for λ1,i ’s in SPCA

Zou et al. (2006) did not suggest how λ1,j ’s can be cho-
sen. It was noted from the simulation exercise that there are
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Table 12 Weak correlations for case when φ is 1

Minimum
cross-
correlation
(lag 0) of
time series

Maximum
cross-
correlation
(lag 0) of
time series

Variance
explained
by the PCs

No. of
PCs/SPCs

Range of
values for
(λ1, λ2)

(attained
sparsity)

No. of zero
loadings on each
SPC

Range of variance
explained by SPCs

Data 1 −.1517 0.9630 0.8342 2 (1.9, 1.4)– SPC1: 17 (0.7652, 0.7737)

(1.9, 1.5) SPC2: 1

(4.1, 2.6)– SPC1: 17 (0.7915, 0.7927)

(4.1, 3.2) SPC2: 13–17

(6.3, 4.1)– SPC1: 21–24 (0.5645, 0.6322)

(6.3, 4.4) SPC2: 14–17

Data 2 −.2203 0.9503 0.8136 2 (2.8, 2.1)– SPC1: 17 (0.7440, 0.7543)

(2.9, 2.1) SPC2: 1

(4, 2.6)– SPC1: 17 (0.7599, 0.7620)

(4, 2.9) SPC2: 6–13

(4.1, 4.4)– SPC1: 2–12 (0.6031, 0.6464)

(5.4, 4.4) SPC2: 20–26

Data 3 −.2873 0.9530 0.8025 2 (2.7, 2)– SPC1: 16–17 (0.7306, 0.7329)

(2.9, 2) SPC2: 1

(3.5, 2.5)– SPC1: 17 (0.7445, 0.7489)

(3.5, 2.6) SPC2: 6–9

(4, 5.3)– SPC1: 5–26 (0.2325, 0.4963)

(7.1, 5.3) SPC2: 2–32

Data 4 −.1939 0.9611 0.8274 2 (1.5, 1)– SPC1: 15 (0.7838, 0.7862)

(1.6, 1) SPC2: 1

(2.7, 1.3)– SPC1: 16–17 (0.7813, 0.8017)

(2.7, 2.0) SPC2: 1–13

(6.8, 3.7)– SPC1: 33 (0.4074, 0.4180)

(6.8, 4.8) SPC2: 16–17

Data 5 −.1252 0.9393 0.7910 2 (4.0, 3.2)– SPC1: 1–4 (0.5912, 0.6321)

(4.0, 4.3) SPC2: 24–27

(4.0, 4.3)– SPC1: 4–16 (0.5077, 0.5912)

(6.7, 4.3) SPC2: 27

values of λ1,j ’s that will not result to convergence of the
algorithm, in some cases, it cannot produce sparse compo-
nent loadings. Based on the simulation results, the recom-
mended intervals for λ1,j ’s are given in Table 13. The in-
tervals are chosen based on the assumptions regarding the
existing patterns of the input time series matrix data. The
chance of convergence of the algorithm and the attainment
of sparse component loadings are higher within these values
of λ1,j ’s. Note also that large values of λ1,j ’s give higher

number of zero loadings, but at the expense of decreasing
the proportion of variance explained by the components.

5 Conclusions

If the input data has, as columns, non-stationary time se-
ries, principal components analysis can yield only one or
very few components assigning similar loadings to all vari-
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Table 13 Intervals for lambdas
No. of sparse components Intervals for lambdas Remarks

One λ1,1 = 6.5–9.1 Use for explosive non-stationary time
series with high between-group cross-
correlations (lag 0)

λ1,1 = 11.3–12.7 Use for high (above 0.8) between-group
cross-correlations (lag 0)

Two λ1,1 = 4.5–8.7
λ1,2 = 0.4–2.4

Use for moderately high (0.65–0.8)
between-group cross-correlations (lag 0)

λ1,1 = 2.6–7.8
λ1,2 = 1.3–3.5

Use for time series with moderate (0.45–
.65) between-group cross-correlations
(lag 0)

λ1,1 = 2.2–6.5
λ1,2 = 1.7–3.7

Use for time series with moderately
weak (0.35–0.45) between-group cross-
correlations (lag 0)

λ1,1 = 1.3–7.1
λ1,2 = 0.9–5.3

Use for time series with weak (below
0.35) between-group cross-correlations
(lag 0)

Three λ1,1 = 2.1–7.1
λ1,2 = 1.2–3.1
λ1,3 = 0.4–1.7

Any non-stationary time series

ables. This lack of sparsity results to difficulty in interpreta-
tion of results. This may also yield incorrect information on
the state of a phenomenon being monitored through the in-
dicators included in the component (index) lacking sparsity.
Sparsity can be attained in constructing principal compo-
nents of nonstationary time series by imposing constraints
on the estimation of the component loadings as proposed
by Zou et al. (2006). Dimension-reduction and the search
for common patterns among nonstationary time series can
be achieved simultaneously. Simulation shows that SPCA
can achieve sparsity while consistently recognizing the vari-
ance patterns among nonstationary time series. The parame-
ter λ1,j ’s however, should be carefully chosen to ensure con-
vergence of the algorithm.
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